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Γ ια την Iωά ννα , την Kωνσταντίνα ,
και την Θεoδώρα



Preface

The great response to the publication of the book Classical and Modern Fourier
Analysis has been very gratifying. I am delighted that Springer has offered to publish
the second edition of this book in two volumes: Classical Fourier Analysis, 2nd
Edition, and Modern Fourier Analysis, 2nd Edition.

These volumes are mainly addressed to graduate students who wish to study
Fourier analysis. This second volume is intended to serve as a text for a second-
semester course in the subject. It is designed to be a continuation of the first vol-
ume. Chapters 1–5 in the first volume contain Lebesgue spaces, Lorentz spaces and
interpolation, maximal functions, Fourier transforms and distributions, an introduc-
tion to Fourier analysis on the n-torus, singular integrals of convolution type, and
Littlewood–Paley theory.

Armed with the knowledge of this material, in this volume, the reader encounters
more advanced topics in Fourier analysis whose development has led to important
theorems. These theorems are proved in great detail and their proofs are organized
to present the flow of ideas. The exercises at the end of each section enrich the
material of the corresponding section and provide an opportunity to develop addi-
tional intuition and deeper comprehension. The historical notes in each chapter are
intended to provide an account of past research but also to suggest directions for
further investigation. The auxiliary results referred to the appendix can be located
in the first volume.

A web site for the book is maintained at

http://math.missouri.edu/∼loukas/FourierAnalysis.html

I am solely responsible for any misprints, mistakes, and historical omissions in
this book. Please contact me directly (loukas@math.missouri.edu) if you have cor-
rections, comments, suggestions for improvements, or questions.

Columbia Missouri, Loukas Grafakos
June 2008
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10.2.2 The Carleson–Sjölin Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 354
10.2.3 The Kakeya Maximal Function . . . . . . . . . . . . . . . . . . . . . . . . . 359
10.2.4 Boundedness of a Square Function . . . . . . . . . . . . . . . . . . . . . . 361
10.2.5 The Proof of Lemma 10.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
10.3 Kakeya Maximal Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

10.3.1 Maximal Functions Associated with a Set of Directions . . . . 368
10.3.2 The Boundedness of MΣN on Lp(R2) . . . . . . . . . . . . . . . . . . . 370
10.3.3 The Higher-Dimensional Kakeya Maximal Operator . . . . . . . 378

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
10.4 Fourier Transform Restriction and Bochner–Riesz Means . . . . . . . . . 387

10.4.1 Necessary Conditions for Rp→q(Sn−1) to Hold . . . . . . . . . . . . 388
10.4.2 A Restriction Theorem for the Fourier Transform . . . . . . . . . 390
10.4.3 Applications to Bochner–Riesz Multipliers . . . . . . . . . . . . . . . 393
10.4.4 The Full Restriction Theorem on R2 . . . . . . . . . . . . . . . . . . . . 396

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
10.5 Almost Everywhere Convergence of Bochner–Riesz Means . . . . . . . 403

10.5.1 A Counterexample for the Maximal Bochner–Riesz Operator404
10.5.2 Almost Everywhere Summability of the Bochner–Riesz

Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407



Contents xv

10.5.3 Estimates for Radial Multipliers . . . . . . . . . . . . . . . . . . . . . . . . 411
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

11 Time–Frequency Analysis and the Carleson–Hunt Theorem . . . . . . . . 423
11.1 Almost Everywhere Convergence of Fourier Integrals . . . . . . . . . . . . 423

11.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
11.1.2 Discretization of the Carleson Operator . . . . . . . . . . . . . . . . . . 428
11.1.3 Linearization of a Maximal Dyadic Sum . . . . . . . . . . . . . . . . . 432
11.1.4 Iterative Selection of Sets of Tiles with Large Mass and

Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
11.1.5 Proof of the Mass Lemma 11.1.8 . . . . . . . . . . . . . . . . . . . . . . . 439
11.1.6 Proof of Energy Lemma 11.1.9 . . . . . . . . . . . . . . . . . . . . . . . . . 441
11.1.7 Proof of the Basic Estimate Lemma 11.1.10 . . . . . . . . . . . . . . 446

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
11.2 Distributional Estimates for the Carleson Operator . . . . . . . . . . . . . . . 456

11.2.1 The Main Theorem and Preliminary Reductions . . . . . . . . . . 456
11.2.2 The Proof of Estimate (11.2.8) . . . . . . . . . . . . . . . . . . . . . . . . . 460
11.2.3 The Proof of Estimate (11.2.9) . . . . . . . . . . . . . . . . . . . . . . . . . 462
11.2.4 The Proof of Lemma 11.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
11.3 The Maximal Carleson Operator and Weighted Estimates . . . . . . . . . 475

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501



Chapter 6
Smoothness and Function Spaces

In this chapter we study differentiability and smoothness of functions. There are
several ways to interpret smoothness and numerous ways to describe it and quantify
it. A fundamental fact is that smoothness can be measured and fine-tuned using
the Fourier transform, and this point of view is of great importance. In fact, the
investigation of the subject is based on this point. It is not surprising, therefore, that
Littlewood–Paley theory plays a crucial and deep role in this study.

Certain spaces of functions are introduced to serve the purpose of measuring
smoothness. The main function spaces we study are Lipschitz, Sobolev, and Hardy
spaces, although the latter measure smoothness within the realm of rough distri-
butions. Hardy spaces also serve as a substitute for Lp when p < 1. We also take
a quick look at Besov–Lipschitz and Triebel–Lizorkin spaces, which provide an
appropriate framework that unifies the scope and breadth of the subject. One of
the main achievements of this chapter is the characterization of these spaces us-
ing Littlewood–Paley theory. Another major accomplishment of this chapter is
the atomic characterization of these function spaces. This is obtained from the
Littlewood–Paley characterization of these spaces in a single way for all of them.

Before one embarks on a study of function spaces, it is important to under-
stand differentiability and smoothness in terms of the Fourier transform. This can
be achieved using the Laplacian and the potential operators and is discussed in the
first section.

6.1 Riesz Potentials, Bessel Potentials, and Fractional Integrals

Recall the Laplacian operator

Δ = ∂ 2
1 + · · ·+ ∂ 2

n ,

which may act on functions or tempered distributions. The Fourier transform of
a Schwartz function (or even a tempered distribution f ) satisfies the following

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 6,
c© Springer Science+Business Media, LLC 2009
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2 6 Smoothness and Function Spaces

identity:

−̂Δ( f )(ξ ) = 4π2|ξ |2 ̂f (ξ ) .

Motivated by this identity, we replace the exponent 2 by a complex exponent z and
we define (−Δ)z/2 as the operator given by the multiplication with the function
(2π |ξ |)z on the Fourier transform. More precisely, for z ∈ C and Schwartz functions
f we define

(−Δ)z/2( f )(x) = ((2π |ξ |)z
̂f (ξ ))∨(x) . (6.1.1)

Roughly speaking, the operator (−Δ)z/2 is acting as a derivative of order z if z is
a positive integer. If z is a complex number with real part less than −n, then the
function |ξ |z is not locally integrable on Rn and so (6.1.1) may not be well defined.
For this reason, whenever we write (6.1.1), we assume that either Re z > −n or
Re z ≤ −n and that ̂f vanishes to sufficiently high order at the origin so that the
expression |ξ |z ̂f (ξ ) is locally integrable. Note that the family of operators (−Δ)z

satisfies the semigroup property

(−Δ)z(−Δ)w = (−Δ)z+w , for all z,w ∈ C,

when acting on spaces of suitable functions.
The operator (−Δ)z/2 is given by convolution with the inverse Fourier transform

of (2π)z|ξ |z. Theorem 2.4.6 gives that this inverse Fourier transform is equal to

(2π)z(|ξ |z)∨(x) = (2π)z π−
z
2

π
z+n

2

Γ ( n+z
2 )

Γ (−z
2 )

|x|−z−n . (6.1.2)

The expression in (6.1.2) is in L1
loc(R

n) only when −Rez− n > −n, that is when
Re z < 0. In general, (6.1.2) is a distribution. Thus only in the range −n < Re z < 0
are both the function |ξ |z and its inverse Fourier transform locally integrable
functions.

6.1.1 Riesz Potentials

When z is a negative real number, the operation f �→ (−Δ)z/2( f ) is not really “dif-
ferentiating” f , but “integrating” it instead. For this reason, we introduce a slightly
different notation in this case by replacing z by −s.

Definition 6.1.1. Let s be a complex number with Re s > 0. The Riesz potential of
order s is the operator

Is = (−Δ)−s/2.

Using identity (6.1.2), we see that Is is actually given in the form

Is( f )(x) = 2−sπ−
n
2
Γ ( n−s

2 )
Γ ( s

2 )

∫

Rn
f (x− y)|y|−n+s dy ,
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and the integral is convergent if f is a function in the Schwartz class.

We begin with a simple, yet interesting, remark concerning the homogeneity of
the operator Is.

Remark 6.1.2. Suppose that for s real we had an estimate
∥

∥Is f
∥

∥

Lq(Rn) ≤C(p,q,n,s)
∥

∥ f
∥

∥

Lp(Rn) (6.1.3)

for some positive indices p,q and all f ∈ Lp(Rn). Then p and q must be related by

1
p
− 1

q
=

s
n

. (6.1.4)

This follows by applying (6.1.3) to the dilation δ a( f )(x) = f (ax) of the function
f , a > 0, in lieu of f , for some fixed f , say f (x) = e−|x|2 . Indeed, replacing f by
δ a( f ) in (6.1.3) and carrying out some algebraic manipulations using the identity
Is(δ a( f )) = a−sδ a(Is( f )), we obtain

a−
n
q−s∥
∥Is( f )

∥

∥

Lq(Rn) ≤C(p,q,n,s)a−
n
p
∥

∥ f
∥

∥

Lp(Rn) . (6.1.5)

Suppose now that 1
p > 1

q + s
n . Then we can write (6.1.5) as

∥

∥Is( f )
∥

∥

Lq(Rn) ≤C(p,q,n,s)a
n
q−

n
p +s∥
∥ f
∥

∥

Lp(Rn) (6.1.6)

and let a → ∞ to obtain that Is( f ) = 0, a contradiction. Similarly, if 1
p < 1

q + s
n , we

could write (6.1.5) as

a−
n
q + n

p−s∥
∥Is( f )

∥

∥

Lq(Rn) ≤C(p,q,n,s)
∥

∥ f
∥

∥

Lp(Rn) (6.1.7)

and let a → 0 to obtain that
∥

∥ f
∥

∥

Lp =∞, again a contradiction. It follows that (6.1.4)
must necessarily hold.

We conclude that the homogeneity (or dilation structure) of an operator dictates
a relationship on the indices p and q for which it (may) map Lp to Lq.

As we saw in Remark 6.1.2, if the Riesz potentials map Lp to Lq for some p,q,
then we must have q > p. Such operators that improve the integrability of a function
are called smoothing. The importance of the Riesz potentials lies in the fact that
they are indeed smoothing operators. This is the essence of the Hardy–Littlewood–
Sobolev theorem on fractional integration, which we now formulate and prove.

Theorem 6.1.3. Let s be a real number with 0 < s < n and let 1 ≤ p < q <∞ satisfy
(6.1.4). Then there exist constants C(n,s, p) < ∞ such that for all f in Lp(Rn) we
have

∥

∥Is( f )
∥

∥

Lq ≤C(n,s, p)
∥

∥ f
∥

∥

Lp

when p > 1, and also
∥

∥Is( f )
∥

∥

Lq,∞ ≤C(n,s)
∥

∥ f
∥

∥

L1 when p = 1.
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We note that the Lp → Lq,∞ estimate in Theorem 6.1.3 is a consequence of The-
orem 1.2.13, for the kernel |x|−n+s of Is lies in the space Lr,∞ when r = n

n−s , and
(1.2.15) is satisfied for this r. Applying Theorem 1.4.19, we obtain the required
conclusion. Nevertheless, for the sake of the exposition, we choose to give another
self-contained proof of Theorem 6.1.3.

Proof. We begin by observing that the function Is( f ) is well defined whenever f
is bounded and has some decay at infinity. This makes the operator Is well defined
on a dense subclass of all the Lp spaces with p < ∞. Second, we may assume that
f ≥ 0, since |Is( f )| ≤ Is(| f |).

Under these assumptions we write the convolution
∫

Rn
f (x− y)|y|s−n dy = J1( f )(x)+ J2( f )(x),

where, in the spirit of interpolation, J1 and J2 are defined by

J1( f )(x) =
∫

|y|<R
f (x− y)|y|s−n dy,

J2( f )(x) =
∫

|y|≥R
f (x− y)|y|s−n dy,

for some R to be determined later. Observe that J1 is given by convolution with the
function |y|−n+sχ|y|<R(y), which is radial, integrable, and symmetrically decreasing
about the origin. It follows from Theorem 2.1.10 that

J1( f )(x) ≤ M( f )(x)
∫

|y|<R
|y|−n+s dy =

ωn−1

s
RsM( f )(x), (6.1.8)

where M is the Hardy–Littlewood maximal function. Now Hölder’s inequality gives
that

|J2( f )(x)| ≤
(
∫

|y|≥R
(|y|−n+s)p′ dy

) 1
p′ ∥
∥ f
∥

∥

Lp(Rn)

=
(

qωn−1

p′n

) 1
p′

R− n
q
∥

∥ f
∥

∥

Lp(Rn),

(6.1.9)

and note that this estimate is also valid when p = 1 (in which case q = n
n−s ), provided

the Lp′ norm is interpreted as the L∞ norm and the constant
( qωn−1

p′n

) 1
p′ is replaced

by 1. Combining (6.1.8) and (6.1.9), we obtain that

Is( f )(x) ≤C′
n,s,p

(

RsM( f )(x)+ R− n
q
∥

∥ f
∥

∥

Lp

)

(6.1.10)

for all R > 0. A constant multiple of the quantity

R =
∥

∥ f
∥

∥

p
n
Lp

(

M( f )(x)
)− p

n
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minimizes the expression on the right in (6.1.10). This choice of R yields the esti-
mate

Is( f )(x) ≤Cn,s,p M( f )(x)
p
q
∥

∥ f
∥

∥

1− p
q

Lp . (6.1.11)

The required inequality for p > 1 follows by raising to the power q, integrating over
Rn, and using the boundedness of the Hardy–Littlewood maximal operator M on
Lp(Rn). The case p = 1, q = n

n−s also follows from (6.1.11) by the weak type (1,1)
property of M. Indeed,

∣

∣{Cn,s,1M( f )
n−s

n
∥

∥ f
∥

∥

s
n
L1 > λ}

∣

∣ =
∣

∣

∣

{

M( f ) >

(

λ

Cn,s,1
∥

∥ f
∥

∥

s
n
L1

) n
n−s}∣

∣

∣

≤ 3n
(

Cn,s,1
∥

∥ f
∥

∥

s
n
L1

λ

) n
n−s∥
∥ f
∥

∥

L1

= C(n,s)
(
∥

∥ f
∥

∥

L1

λ

) n
n−s

.

We now give an alternative proof of the case p = 1 that corresponds to q = n
n−s .

Without loss of generality we may assume that f ≥ 0 has L1 norm 1. Once this case
is proved, the general case follows by scaling. Observe that

∫

Rn
f (x− y)|y|s−n dy ≤ ∑

j∈Z
2( j−1)(s−n)

∫

|y|≤2 j
f (x− y)dy . (6.1.12)

Let Eλ = {x : Is( f )(x) > λ}. Then

|Eλ | ≤
1
λ

∫

Eλ
Is( f )(x)dx

=
1
λ

∫

Eλ

∫

Rn
|y|s−n f (x− y)dydx

≤ 1
λ

∫

Eλ
∑
j∈Z

2( j−1)(s−n)
∫

|y|≤2 j
f (x− y)dydx

=
1
λ ∑j∈Z

2( j−1)(s−n)
∫

Eλ

∫

|y|≤2 j
f (x− y)dydx

≤ 1
λ ∑j∈Z

2( j−1)(s−n) min(|Eλ |,vn2 jn)

=
1
λ ∑

2 j>|Eλ |
1
n

2( j−1)(s−n)|Eλ |+
vn

λ ∑
2 j≤|Eλ |

1
n

2( j−1)(s−n)2 jn

≤ C
λ
(

|Eλ |
s−n

n |Eλ |+ |Eλ |
s
n
)

=
2C
λ

|Eλ |
s
n .

(6.1.13)
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It follows that |Eλ |
n−s

n ≤ 2C
λ , which implies the weak type (1, n

n−s) estimate for Is.
Here C is a constant that depends on n and s. �

6.1.2 Bessel Potentials

While the behavior of the kernels |x|−n+s as |x| → 0 is well suited to their smooth-
ing properties, their decay as |x| → ∞ gets worse as s increases. We can slightly
adjust the Riesz potentials so that we maintain their essential behavior near zero but
achieve exponential decay at infinity. The simplest way to achieve this is by replac-
ing the “nonnegative” operator −Δ by the “strictly positive” operator I −Δ . Here
the terms nonnegative and strictly positive, as one may have surmised, refer to the
Fourier multipliers of these operators.

Definition 6.1.4. Let s be a complex number with 0 < Res <∞. The Bessel potential
of order s is the operator

Js = (I −Δ)−s/2,

whose action on functions is given by

Js( f ) =
(

̂f ̂Gs
)∨ = f ∗Gs ,

where
Gs(x) =

(

(1 + 4π2|ξ |2)−s/2)∨(x) .

Let us see why this adjustment yields exponential decay for Gs at infinity.

Proposition 6.1.5. Let s > 0. Then Gs is a smooth function on Rn \ {0} that sat-
isfies Gs(x) > 0 for all x ∈ Rn. Moreover, there exist positive finite constants
C(s,n),c(s,n),Cs,n such that

Gs(x) ≤C(s,n)e−
|x|
2 , when |x| ≥ 2, (6.1.14)

and such that

1
c(s,n)

≤ Gs(x)
Hs(x)

≤ c(s,n) , when |x| ≤ 2,

where Hs is equal to

Hs(x) =

⎧

⎪

⎨

⎪

⎩

|x|s−n + 1 + O(|x|s−n+2) for 0 < s < n,

log 2
|x| + 1 + O(|x|2) for s = n,

1 + O(|x|s−n) for s > n,

and O(t) is a function with the property |O(t)| ≤Cs,n|t| for 0 ≤ t ≤ 4.
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Proof. For A,s > 0 we have the gamma function identity

A− s
2 =

1
Γ ( s

2 )

∫ ∞

0
e−tAt

s
2

dt
t

,

which we use to obtain

(1 + 4π2|ξ |2)− s
2 =

1
Γ ( s

2 )

∫ ∞

0
e−t e−π |2

√
πt ξ |2 t

s
2

dt
t

.

Note that the previous integral converges at both ends. Now take the inverse Fourier
transform in ξ and use the fact that the function e−π |ξ |

2
is equal to its Fourier trans-

form (Example 2.2.9) to obtain

Gs(x) =
(2
√
π )−n

Γ ( s
2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2

dt
t

.

This proves that Gs(x) > 0 for all x ∈ Rn and that Gs is smooth on Rn \ {0}. Now

suppose |x| ≥ 2. Then t + |x|2
4t ≥ t + 1

t and also t + |x|2
4t ≥ |x|. This implies that

−t − |x|2
4t

≤− t
2
− 1

2t
− |x|

2
,

from which it follows that when |x| ≥ 2,

|Gs(x)| ≤
(2
√
π )−n

Γ ( s
2 )

(
∫ ∞

0
e−

t
2 e−

1
2t t

s−n
2

dt
t

)

e−
|x|
2 = Cs,ne−

|x|
2 .

This proves (6.1.14).
Suppose now that |x| ≤ 2. Write Gs(x) = G1

s (x)+ G2
s (x)+ G3

s (x), where

G1
s (x) =

(2
√
π )−n

Γ ( s
2 )

∫ |x|2

0
e−t′e−

|x|2
4t′ (t ′)

s−n
2

dt ′

t ′

= |x|s−n (2
√
π )−n

Γ ( s
2)

∫ 1

0
e−t|x|2 e−

1
4t t

s−n
2

dt
t

,

G2
s (x) =

(2
√
π )−n

Γ ( s
2 )

∫ 4

|x|2
e−te−

|x|2
4t t

s−n
2

dt
t

,

G3
s (x) =

(2
√
π )−n

Γ ( s
2 )

∫ ∞

4
e−t e−

|x|2
4t t

s−n
2

dt
t

.

In G1
s we have e−t|x|2 = 1 + O(t|x|2), since t|x|2 ≤ 4; thus we can write

G1
s (x) = |x|s−n (2

√
π )−n

Γ ( s
2 )

∫ 1

0
e−

1
4t t

s−n
2

dt
t

+
O(|x|s−n+2)
Γ ( s

2 )

∫ 1

0
e−

1
4t t

s−n
2 dt

= c1
s,n|x|s−n + O(|x|s−n+2) as |x| → 0.
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Since 0 ≤ |x|2
4t ≤ 1

4 and 0 ≤ t ≤ 4 in G2
s , we have e−

17
4 ≤ e−t− |x|2

4t ≤ 1; thus as |x| → 0
we obtain

G2
s (x) ≈

∫ 4

|x|2
t

s−n
2

dt
t

=

⎧

⎪

⎨

⎪

⎩

2
n−s |x|s−n − 2s−n+1

n−s for s < n,

2 log 2
|x| for s = n,

1
s−n 2s−n+1 − 2

s−n |x|s−n for s > n.

Finally, we have e−
1
4 ≤ e−

|x|2
4t ≤ 1 in G3

s , which yields that G3
s (x) is bounded above

and below by fixed positive constants. Combining the estimates for G1
s (x), G2

s (x),
and G3

s (x), we obtain the required conclusion. �

We end this section with a result analogous to that of Theorem 6.1.3 for the
operator Js.

Corollary 6.1.6. (a) For all 0 < s < ∞, the operator Js maps Lr(Rn) to itself with
norm 1 for all 1 ≤ r ≤ ∞.
(b) Let 0 < s < n and 1 ≤ p < q < ∞ satisfy (6.1.4). Then there exist constants
Cp,q,n,s < ∞ such that for all f in Lp(Rn) with p > 1 we have

∥

∥Js( f )
∥

∥

Lq ≤Cp,q,n,s
∥

∥ f
∥

∥

Lp

and also
∥

∥Js( f )
∥

∥

Lq,∞ ≤C1,q,n,s
∥

∥ f
∥

∥

L1 when p = 1.

Proof. (a) Since ̂Gs(0) = 1 and Gs > 0, it follows that Gs has L1 norm 1. The oper-
ator Js is given by convolution with the positive function Gs, which has L1 norm
1; thus it maps Lr(Rn) to itself with norm 1 for all 1 ≤ r ≤ ∞ (see Exercise 1.2.9).
(b) In the special case 0 < s < n we have that the kernel Gs of Js satisfies

Gs(x) ≈
{

|x|−n+s when |x| ≤ 2,

e−
|x|
2 when |x| ≥ 2.

Then we can write

Js( f )(x) ≤ Cn,s

[
∫

|y|≤2
| f (x− y)| |y|−n+s dy +

∫

|y|≥2
| f (x− y)|e−

|y|
2 dy

]

≤ Cn,s

[

Is(| f |)(x)+
∫

Rn
| f (x− y)|e−

|y|
2 dy

]

.

We now use that the function y �→ e−|y|/2 is in Lr for all r < ∞, Theorem 1.2.12
(Young’s inequality), and Theorem 6.1.3 to complete the proof of the corollary. �
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Exercises

6.1.1. (a) Let 0 < s,t < ∞ be such that s+ t < n. Show that IsIt = Is+t .
(b) Prove the operator identities

Is(−Δ)z = (−Δ)zIs = Is−2z = (−Δ)z− s
2

whenever Res > 2Rez.
(c) Prove that for all z ∈ C we have

〈

(−Δ)z( f ) |(−Δ)−z(g)
〉

=
〈

f |g
〉

whenever the Fourier transforms of f and g vanish to sufficiently high order at the
origin.
(d) Given Re s > 0, find an α ∈ C such that the identity

〈

Is( f ) | f
〉

=
∥

∥(−Δ)α( f )
∥

∥

2
L2

is valid for all functions f as in part (c).

6.1.2. Use Exercise 2.2.14 to prove that for −∞< α < n/2 < β < ∞ we have

∥

∥ f
∥

∥

L∞(Rn) ≤C
∥

∥Δα/2( f )
∥

∥

β−n/2
β−α

L2(Rn)

∥

∥Δβ/2( f )
∥

∥

n/2−α
β−α

L2(Rn) ,

where C depends only on α,n,β .

6.1.3. Show that when 0 < s < n we have

sup
‖ f‖L1(Rn)=1

∥

∥Is( f )
∥

∥

L
n

n−s (Rn)
= sup

‖ f‖L1(Rn)=1

∥

∥Js( f )
∥

∥

L
n

n−s (Rn)
= ∞ .

Thus Is and Js are not of strong type (1, n
n−s).

[

Hint: Consider an approximate identity.
]

6.1.4. Let 0 < s < n. Consider the function h(x)= |x|−s(log 1
|x| )

− s
n (1+δ ) for |x| ≤ 1/e

and zero otherwise. Prove that when 0 < δ < n−s
s we have h ∈ L

n
s (Rn) but that

limx→0 Is(h)(x) = ∞. Conclude that Is does not map L
n
s (Rn) to L∞(Rn).

6.1.5. For 1 ≤ p ≤ ∞ and 0 < s < ∞ define the Bessel potential space L p
s (Rn) as

the space of all functions f ∈ Lp(Rn) for which there exists another function f0 in
Lp(Rn) such that Js( f0) = f . Define a norm on these spaces by setting

∥

∥ f
∥

∥

L
p

s
=

∥

∥ f0
∥

∥

Lp . Prove the following properties of these spaces:
(a)
∥

∥ f
∥

∥

Lp ≤
∥

∥ f
∥

∥

L p
s

; hence L p
s (Rn) is a subspace of Lp(Rn).

(b) For all 0 < t,s < ∞ we have Gs ∗Gt = Gs+t and thus

L p
s (Rn)∗L q

t (Rn) ⊆ L r
s+t(R

n) ,
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where 1 ≤ p,q,r ≤ ∞ and 1
p + 1

q = 1
r + 1.

(c) The sequence of norms
∥

∥ f
∥

∥

L p
s

increases, and therefore the spaces L p
s (Rn) de-

crease as s increases.
(d) The map It is an isomorphism from the space L p

s (Rn) onto L p
s+t(R

n).
[

Note: Note that the Bessel potential space L p
s (Rn) coincides with the Sobolev

space Lp
s (Rn), introduced in Section 6.2.

]

6.1.6. For 0 ≤ s < n define the fractional maximal function

Ms( f )(x) = sup
t>0

1

(vntn)
n−s

n

∫

|y|≤t
| f (x− y)|dy ,

where vn is the volume of the unit ball in Rn.
(a) Show that for some constant C we have

Ms( f ) ≤C Is( f )

for all f ≥ 0 and conclude that Ms maps Lp to Lq whenever Is does.
(b) (Adams [1] ) Let s > 0, 1 < p < n

s , 1 ≤ q ≤∞ be such that 1
r = 1

p −
s
n + sp

nq . Show
that there is a constant C > 0 (depending on the previous parameters) such that for
all positive functions f we have

∥

∥Is( f )
∥

∥

Lr ≤C
∥

∥Mn/p( f )
∥

∥

sp
n

Lq

∥

∥ f
∥

∥

1− sp
n

Lp .

[

Hint: For f �= 0, write Is( f ) = I1 + I2, where

I1 =
∫

|x−y|≤δ
f (y) |y|s−n dy , I2 =

∫

|x−y|>δ
f (y) |y|s−n dy .

Show that I1 ≤Cδ sM0( f ) and that I2( f ) ≤Cδ s− n
p Mn/p( f ). Optimize over δ > 0 to

obtain
Is( f ) ≤CMn/p( f )

sp
n M0( f )1− sp

n ,

from which the required conclusion follows easily.
]

6.1.7. Suppose that a function K defined on Rn satisfies |K(y)| ≤C(1+ |y|)−s+n−ε,
where 0 < s < n and 0 < C,ε < ∞. Prove that the maximal operator

sup
t>0

t−n+s

∣

∣

∣

∣

∫

Rn
f (x− y)K(y/t)dy

∣

∣

∣

∣

maps Lp(Rn) to Lq(Rn) whenever Is maps Lp(Rn) to Lq(Rn).
[

Hint: Control this operator by the maximal function Ms of Exercise 6.1.6.
]

6.1.8. Let 0 < s < n. Use the following steps to obtain a simpler proof of Theorem
6.1.3 based on more delicate interpolation.
(a) Prove that

∥

∥Is(χE)
∥

∥

L∞ ≤ |E| s
n for any set E of finite measure.

(b) For any two sets E and F of finite measure show that
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∫

F
|Is(χE)(x)|dx ≤ |E| |F | s

n .

(c) Use Exercise 1.1.12 to obtain that
∥

∥Is(χE)
∥

∥

L
n

n−s ,∞ ≤Cns|E| .

(d) Use parts (a), (c), and Theorem 1.4.19 to obtain another proof of Theorem 6.1.3.
[

Hint: Parts (a) and (b): Use that when λ > 0, the integral
∫

E |y|−λ dy becomes
largest when E is a ball centered at the origin equimeasurable to E .

]

6.1.9. (Welland [329] ) Let 0 < α < n and suppose 0 < ε < min(α,n−α). Show
that there exists a constant depending only on α,ε , and n such that for all compactly
supported bounded functions f we have

|Iα( f )| ≤C
√

Mα−ε ( f )Mα+ε ( f ) ,

where Mβ ( f ) is the fractional maximal function of Exercise 6.1.6.
[

Hint: Write

|Iα( f )| ≤
∫

|x−y|<s

| f (y)|dy
|x− y|n−α +

∫

|x−y|≥s

| f (y)|dy
|x− y|n−α

and split each integral into a sum of integrals over annuli centered at x to obtain the
estimate

|Iα( f )| ≤C
(

sεMα−ε( f )+ s−εMα+ε ( f )
)

.

Then optimize over s.
]

6.1.10. Show that the discrete fractional integral operator

{a j} j∈Zn →
{

∑
k∈Zn

ak

(| j− k|+ 1)n−α

}

j∈Zn

maps �s(Zn) to �t(Zn) when 0 < α < n, 1 < s < t, and

1
s
− 1

t
=
α
n

.

6.1.11. Show that the bilinear operator

Bα( f ,g)(x) =
∫

Rn

∫

Rn
f (y)g(z)(|x− y|+ |x− z|)−2n+α dydz

maps Lp(Rn)×Lq(Rn) to Lr(Rn) when 1 < p,q < ∞ and

1
p

+
1
q

=
α
n

+
1
r

.

[

Hint: Control Bα( f ,g) by the product of two fractional integrals.
]
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6.1.12. (Grafakos and Kalton [148]/Kenig and Stein [189] ) (a) Prove that the bi-
linear operator

S( f ,g)(x) =
∫

|t|≤1
| f (x + t)g(x− t)|dt

maps L1(Rn)×L1(Rn) to L
1
2 (Rn).

(b) For 0 < α < n prove that the bilinear fractional integral operator

Iα( f ,g)(x) =
∫

Rn
f (x + t)g(x− t)|t|−n+α dt

maps L1(Rn)×L1(Rn) to L
n

2n−α ,∞(Rn).
[

Hint: Part (a): Write f =∑k∈Zn fk, where each fk is supported in the cube k+[0,1]n

and similarly for g. Observe that the resulting double sum reduces to a single sum

and use that (∑ j a j)1/2 ≤ ∑ j a1/2
j for a j ≥ 0. Part (b): Use part (a) and adjust the

argument in (6.1.13) to a bilinear setting.
]

6.2 Sobolev Spaces

In this section we study a quantitative way of measuring smoothness of functions.
Sobolev spaces serve exactly this purpose. They measure the smoothness of a given
function in terms of the integrability of its derivatives. We begin with the classical
definition of Sobolev spaces.

Definition 6.2.1. Let k be a nonnegative integer and let 1 < p < ∞. The Sobolev
space Lp

k (Rn) is defined as the space of functions f in Lp(Rn) all of whose distribu-
tional derivatives ∂α f are also in Lp(Rn) for all multi-indices α that satisfy |α| ≤ k.
This space is normed by the expression

∥

∥ f
∥

∥

Lp
k
= ∑

|α |≤k

∥

∥∂α f
∥

∥

Lp , (6.2.1)

where ∂ (0,...,0) f = f .

Sobolev spaces measure smoothness of functions. The index k indicates the “de-
gree” of smoothness of a given function in Lp

k . As k increases the functions become
smoother. Equivalently, these spaces form a decreasing sequence

Lp ⊃ Lp
1 ⊃ Lp

2 ⊃ Lp
3 ⊃ ·· · ,

meaning that each Lp
k+1(R

n) is a subspace of Lp
k (Rn). This property, which coincides

with our intuition of smoothness, is a consequence of the definition of the Sobolev
norms.

We next observe that the space Lp
k (Rn) is complete. Indeed, if f j is a Cauchy

sequence in the norm given by (6.2.1), then {∂α f j} j are Cauchy sequences for all
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|α| ≤ k. By the completeness of Lp, there exist functions fα such that ∂α f j → fα in
Lp. This implies that for all ϕ in the Schwartz class we have

(−1)|α |
∫

Rn
f j (∂αϕ)dx =

∫

Rn
(∂α f j)ϕ dx →

∫

Rn
fα ϕ dx.

Since the first expression converges to

(−1)|α |
∫

Rn
f0 (∂αϕ)dx ,

it follows that the distributional derivative ∂α f0 is fα . This implies that f j → f0 in
Lp

k (Rn) and proves the completeness of this space.
Our goal in this section is to investigate relations between these spaces and

the Riesz and Bessel potentials discussed in the previous section and to obtain a
Littlewood–Paley characterization of them. Before we embark on this study, we
note that we can extend the definition of Sobolev spaces to the case in which the
index k is not necessarily an integer. In fact, we extend the definition of the spaces
Lp

k (Rn) to the case in which the number k is real.

6.2.1 Definition and Basic Properties of General Sobolev Spaces

Definition 6.2.2. Let s be a real number and let 1 < p < ∞. The inhomogeneous
Sobolev space Lp

s (Rn) is defined as the space of all tempered distributions u in
S ′(Rn) with the property that

((1 + |ξ |2) s
2 û)∨ (6.2.2)

is an element of Lp(Rn). For such distributions u we define

∥

∥u
∥

∥

Lp
s
=
∥

∥((1 + | · |2) s
2 û)∨

∥

∥

Lp(Rn) .

Note that the function (1 + |ξ |2) s
2 is C ∞ and has at most polynomial growth at

infinity. Since û ∈ S ′(Rn), the product in (6.2.2) is well defined.

Several observations are in order. First, we note that when s = 0, Lp
s = Lp. It is

natural to ask whether elements of Lp
s are always Lp functions. We show that this is

the case when s ≥ 0 but not when s < 0. We also show that the space Lp
s coincides

with the space Lp
k given in Definition 6.2.1 when s = k and k is an integer.

To prove that elements of Lp
s are indeed Lp functions when s ≥ 0, we simply note

that if fs = ((1 + |ξ |2)s/2
̂f )∨, then

f =
(

̂fs(ξ )̂Gs(ξ/2π)
)∨ = fs ∗ (2π)n Gs(2π(·)) ,
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where Gs is given in Definition 6.1.4. Thus a certain dilation of f can be expressed
as the Bessel potential of itself; hence Corollary 6.1.6 yields that

c−1
∥

∥ f
∥

∥

Lp ≤
∥

∥ fs
∥

∥

Lp =
∥

∥ f
∥

∥

Lp
s
,

for some constant c.
We now prove that if s = k is a nonnegative integer and 1 < p <∞, then the norm

of the space Lp
k as given in Definition 6.2.1 is comparable to that in Definition 6.2.2.

Suppose that f ∈ Lp
k according to Definition 6.2.2. Then for all |α| ≤ k we have

∂α f = cα(̂f (ξ )ξα)∨ = cα

(

̂f (ξ )(1 + |ξ |2) k
2

ξα

(1 + |ξ |2) k
2

)∨
. (6.2.3)

Theorem 5.2.7 gives that the function

ξα

(1 + |ξ |2)k/2

is an Lp multiplier. Since by assumption
(

̂f (ξ )(1+ |ξ |2) k
2
)∨

is in Lp(Rn), it follows
from (6.2.3) that ∂α f is in Lp and also that

∑
|α |≤k

∥

∥∂α f
∥

∥

Lp ≤Cp,n,k
∥

∥((1 + | · |2) k
2 ̂f )∨

∥

∥

Lp .

Conversely, suppose that f ∈ Lp
k according to Definition 6.2.1; then

(1 + ξ 2
1 + · · ·+ ξ 2

n )
k
2 = ∑

|α |≤k

k!
α1! · · ·αn!(k−|α|)! ξ

α ξα

(1 + |ξ |2) k
2

.

As we have already observed, the functions mα(ξ ) = ξα(1 + |ξ |2)− k
2 are Lp multi-

pliers whenever |α| ≤ k. Since

(

(1 + |ξ |2) k
2 ̂f
)∨ = ∑

|α |≤k

cα ,k
(

mα(ξ )ξα ̂f
)∨ = ∑

|α |≤k

c′α ,k

(

mα(ξ )̂∂α f
)∨

,

it follows that
∥

∥(̂f (ξ )(1 + |ξ |2) k
2 )∨
∥

∥

Lp ≤Cp,n,k ∑
|γ|≤k

∥

∥(̂f (ξ )ξ γ)∨
∥

∥

Lp .

Example 6.2.3. Every Schwartz function lies in Lp
s (Rn) for s real. Sobolev spaces

with negative indices s can indeed contain tempered distributions that are not lo-
cally integrable functions. For example, Dirac mass at the origin δ0 is an element of
Lp
−s(R

n) for all s > n/p′. Indeed, when 0 < s < n, Proposition 6.1.5 gives that Gs

[i.e., the inverse Fourier transform of (1 + |ξ |2)− s
2 ] is integrable to the power p as
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long as (s−n)p > −n (i.e., s > n/p′). When s ≥ n, Gs is integrable to any positive
power.

We now continue with the Sobolev embedding theorem.

Theorem 6.2.4. (a) Let 0 < s < n
p and 1 < p < ∞. Then the Sobolev space Lp

s (Rn)
continuously embeds in Lq(Rn) when

1
p
− 1

q
=

s
n

.

(b) Let 0 < s = n
p and 1 < p < ∞. Then Lp

s (Rn) continuously embeds in Lq(Rn) for
any n

s < q < ∞.
(c) Let n

p < s < ∞ and 1 < p < ∞. Then every element of Lp
s (Rn) can be modified

on a set of measure zero so that the resulting function is bounded and uniformly
continuous.

Proof. (a) If f ∈ Lp
s , then fs(x) = ((1 + |ξ |2) s

2 ̂f )∨(x) is in Lp(Rn). Thus

f (x) = ((1 + |ξ |2)− s
2 ̂fs )∨(x) ;

hence f = Gs ∗ fs. Since s < n, Proposition 6.1.5 gives that

|Gs(x)| ≤Cs,n|x|s−n

for all x ∈ Rn. This implies that | f | = |Gs ∗ fs| ≤ Cs,nIs(| fs|). Theorem 6.1.3 now
yields the required conclusion

∥

∥ f
∥

∥

Lq ≤C′
s,n

∥

∥Is(| fs|)
∥

∥

Lq ≤C′′
s,n

∥

∥ f
∥

∥

Lp
s
.

(b) Given any n
s < q < ∞ we can find t > 1 such that

1 +
1
q

=
s
n

+
1
t

=
1
p

+
1
t

.

Then 1 < s
n + 1

t , which implies that (−n+s)t >−n. Thus the function |x|−n+sχ|x|≤2
is integrable to the tth power, which implies that Gs is in Lt . Since f = Gs ∗ fs,
Young’s inequality gives that

∥

∥ f
∥

∥

Lq(Rn) ≤
∥

∥ fs
∥

∥

Lp(Rn)

∥

∥Gs
∥

∥

Lt(Rn) = Cn,s
∥

∥ f
∥

∥

Lp
n/p

.

(c) As before, f = Gs ∗ fs. If s ≥ n, then Proposition 6.1.5 gives that the function
Gs is in Lp′(Rn). Now if n > s, then Gs(x) looks like |x|−n+s near zero. This function
is integrable to the power p′ near the origin if and only if s > n/p, which is what
we are assuming. Thus f is given as the convolution of an Lp function and an Lp′

function, and hence it is bounded and can be identified with a uniformly continuous
function (cf. Exercise 1.2.3). �
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We now introduce the homogeneous Sobolev spaces L̇p
s . The main difference

with the inhomogeneous spaces Lp
s is that elements of L̇p

s may not themselves be
elements of Lp. Another difference is that elements of homogeneous Sobolev spaces
are not tempered distributions but equivalence classes of tempered distributions.

We would expect the homogeneous Sobolev space L̇p
s to be the space of all dis-

tributions u in S ′(Rn) for which the expression

(|ξ |sû)∨ (6.2.4)

is an Lp function. Since the function |ξ |s is not (always) smooth at the origin, some
care is needed in defining the product in (6.2.4). The idea is that when u lies in
S ′/P , then the value of û at the origin is irrelevant, since we may add to û a
distribution supported at the origin and obtain another element of the equivalence
class of u (Proposition 2.4.1). It is because of this irrelevance that we are allowed
to multiply û by a function that may be nonsmooth at the origin (and which has
polynomial growth at infinity).

To do this, we fix a smooth function η(ξ ) on Rn that is equal to 1 when |ξ | ≥ 2
and vanishes when |ξ | ≤ 1. Then for s ∈ R, u ∈ S ′(Rn)/P , and ϕ ∈ S (Rn) we
define

〈

|ξ |sû,ϕ
〉

= lim
ε→0

〈

û,η( ξε )|ξ |
sϕ(ξ )

〉

,

provided that the last limit exists. Note that this defines |ξ |sû as another element of
S ′/P , and this definition is independent of the function η , as follows easily from
(2.3.23).

Definition 6.2.5. Let s be a real number and let 1 < p < ∞. The homogeneous
Sobolev space L̇p

s (Rn) is defined as the space of all tempered distributions modulo
polynomials u in S ′(Rn)/P for which the expression

(|ξ |sû)∨

exists and is an Lp(Rn) function. For distributions u in L̇p
s (Rn) we define

∥

∥u
∥

∥

L̇p
s

=
∥

∥(| · |sû)∨
∥

∥

Lp(Rn) . (6.2.5)

As noted earlier, to avoid working with equivalence classes of functions, we iden-
tify two distributions in L̇p

s (Rn) whose difference is a polynomial. In view of this
identification, the quantity in (6.2.5) is a norm.

6.2.2 Littlewood–Paley Characterization of Inhomogeneous
Sobolev Spaces

We now present the first main result of this section, the characterization of the inho-
mogeneous Sobolev spaces using Littlewood–Paley theory.
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For the purposes of the next theorem we need the following setup. We fix a radial
Schwartz functionΨ on Rn whose Fourier transform is nonnegative, supported in
the annulus 1− 1

7 ≤ |ξ | ≤ 2, equal to 1 on the smaller annulus 1 ≤ |ξ | ≤ 2− 2
7 , and

satisfies ̂Ψ(ξ )+ ̂Ψ(ξ/2) = 1 on the annulus 1 ≤ |ξ | ≤ 4− 4
7 . This function has the

property

∑
j∈Z

̂Ψ(2− jξ ) = 1 (6.2.6)

for all ξ �= 0. We define the associated Littlewood–Paley operators Δ j given by
multiplication on the Fourier transform side by the function ̂Ψ (2− jξ ), that is,

Δ j( f ) = ΔΨj ( f ) =Ψ2− j ∗ f . (6.2.7)

Notice that the support properties of the Δ j’s yield the simple identity

Δ j =
(

Δ j−1 +Δ j +Δ j+1
)

Δ j

for all j ∈ Z. We also define a Schwartz function Φ so that

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.
(6.2.8)

Note that ̂Φ(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 , vanishes when |ξ | ≥ 2, and satisfies

̂Φ(ξ )+
∞

∑
j=1

̂Ψ (2− jξ ) = 1 (6.2.9)

for all ξ in Rn. We now introduce an operator S0 by setting

S0( f ) =Φ ∗ f . (6.2.10)

Identity (6.2.9) yields the operator identity

S0 +
∞

∑
j=1

Δ j = I ,

in which the series converges in S ′(Rn); see Exercise 2.3.12. (Note that S0( f ) and
Δ j( f ) are well defined functions when f is a tempered distribution.)

Having introduced the relevant background, we are now ready to state and prove
the following result.

Theorem 6.2.6. Let Φ ,Ψ satisfy (6.2.6) and (6.2.8) and let Δ j , S0 be as in (6.2.7)
and (6.2.10). Fix s ∈ R and all 1 < p < ∞. Then there exists a constant C1 that
depends only on n,s, p, Φ , andΨ such that for all f ∈ Lp

s we have

∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
≤C1

∥

∥ f
∥

∥

Lp
s
. (6.2.11)
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Conversely, there exists a constant C2 that depends on the parameters n,s, p,Φ , and
Ψ such that every tempered distribution f that satisfies

∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
< ∞

is an element of the Sobolev space Lp
s with norm

∥

∥ f
∥

∥

Lp
s
≤C2

(

∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp

)

. (6.2.12)

Proof. We denote by C a generic constant that depends on the parameters n,s, p,Φ ,
andΨ and that may vary in different occurrences. For a given tempered distribution
f we define another tempered distribution fs by setting

fs =
(

(1 + | · |2) s
2 ̂f
)∨

,

so that we have
∥

∥ f
∥

∥

Lp
s

=
∥

∥ fs
∥

∥

Lp if f ∈ Lp
s .

We first assume that the expression on the right in (6.2.12) is finite and we show
that the tempered distribution f lies in the space Lp

s by controlling the Lp norm of
fs by a multiple of this expression. We begin by writing

fs =
(

̂Φ ̂fs
)∨ +

(

(1− ̂Φ) ̂fs
)∨

,

and we plan to show that both quantities on the right are in Lp. Pick a smooth
function with compact support η0 that is equal to 1 on the support of ̂Φ . It is a
simple fact that for all s ∈ R the function (1 + |ξ |2) s

2η0(ξ ) is in Mp(Rn) (i.e., it is
an Lp Fourier multiplier). Since

(

̂Φ ̂fs
)∨(x) =

{(

(1 + |ξ |2) s
2η0(ξ )

)

̂S0( f )(ξ )
}∨(x) , (6.2.13)

we have the estimate
∥

∥

(

̂Φ ̂fs
)∨∥
∥

Lp ≤C‖S0( f )‖Lp . (6.2.14)

We now introduce a smooth function η∞ that vanishes in a neighborhood of the
origin and is equal to 1 on the support of 1− ̂Φ . Using Theorem 5.2.7, we can easily
see that the function

(1 + |ξ |2) s
2

|ξ |s η∞(ξ )

is in Mp(Rn) (with constant depending on n, p, η∞, and s). Since

(

(1 + |ξ |2) s
2 (1− ̂Φ(ξ )) ̂f

)∨(x) =
( (1 + |ξ |2) s

2η∞(ξ )
|ξ |s |ξ |s(1− ̂Φ(ξ )) ̂f

)∨
(x) ,

we obtain the estimate
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∥

∥

(

(1− ̂Φ) ̂fs
)∨∥
∥

Lp ≤C
∥

∥ f∞
∥

∥

Lp , (6.2.15)

where f∞ is another tempered distribution defined via

f∞ =
(

|ξ |s(1− ̂Φ(ξ )) ̂f
)∨

.

We are going to show that the quantity
∥

∥ f∞
∥

∥

Lp is finite using Littlewood–Paley

theory. To achieve this, we introduce a smooth bump ̂ζ supported in the annulus
1
2 ≤ |ξ | ≤ 4 and equal to 1 on the support of ̂Ψ . Then we define ̂θ (ξ ) = |ξ |ŝζ (ξ )
and we introduce Littlewood–Paley operators

Δθj (g) = g ∗θ2− j ,

where θ2− j (t) = 2 jnθ (2 jt). Recalling that

1− ̂Φ(ξ ) = ∑
k≥1

̂Ψ(2−kξ ) ,

we obtain that

̂f∞ =
∞

∑
j=1

|ξ |s ̂Ψ(2− jξ )̂ζ (2− jξ )̂f =
∞

∑
j=1

2 js
̂Ψ(2− jξ )̂θ (2− jξ )̂f

and hence

f∞ =
∞

∑
j=1
Δθj (2 jsΔ j( f )) .

Using estimate (5.1.20), we obtain

∥

∥ f∞
∥

∥

Lp ≤C
∥

∥

(

∞

∑
j=1

|2 jsΔ j( f )|2
) 1

2
∥

∥

Lp < ∞ . (6.2.16)

Combining (6.2.14), (6.2.15), and (6.2.16), we deduce the estimate in (6.2.12). (In-
cidentally, this argument shows that f∞ is a function.)

To obtain the converse inequality (6.2.11) we essentially have to reverse our
steps. Here we assume that f ∈ Lp

s and we show the validity of (6.2.11). First, we
have the estimate

∥

∥S0( f )
∥

∥

Lp ≤C
∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

Lp
s
, (6.2.17)

since we can obtain the Fourier transform of S0( f ) =Φ ∗ f by multiplying ̂fs by the
Lp Fourier multiplier (1 + |ξ |2)− s

2 ̂Φ(ξ ). Second, setting σ̂(ξ ) = |ξ |−s
̂Ψ(ξ ) and

letting Δσj be the Littlewood–Paley operator associated with the bump σ̂(2− jξ ), we
have

2 js
̂Ψ(2− jξ )̂f = σ̂(2− jξ )|ξ |s ̂f = σ̂(2− jξ )|ξ |s(1− ̂Φ(ξ ))̂f ,

when j ≥ 2 [since ̂Φ vanishes on the support of σ̂(2− jξ ) when j ≥ 2]. This yields
the operator identity
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2 jsΔ j( f ) = Δσj ( f∞) . (6.2.18)

Using identity (6.2.18) we obtain

∥

∥

∥

( ∞

∑
j=2

|2 jsΔ j( f )|2
) 1

2
∥

∥

∥

Lp
=
∥

∥

∥

( ∞

∑
j=2

|Δσj ( f∞)|2
) 1

2
∥

∥

∥

Lp
≤C

∥

∥ f∞
∥

∥

Lp , (6.2.19)

where the last inequality follows by Theorem 5.1.2. Notice that

f∞ =
(

|ξ |s(1− ̂Φ(ξ )) ̂f
)∨ =

( |ξ |s(1− ̂Φ(ξ ))
(1 + |ξ |2) s

2

̂fs

)∨
,

and since the function |ξ |s(1− ̂Φ(ξ ))(1+ |ξ |2)− s
2 is in Mp(Rn) by Theorem 5.2.7,

it follows that
∥

∥ f∞
∥

∥

Lp ≤C
∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

Lp
s
,

which combined with (6.2.19) yields

∥

∥

∥

( ∞

∑
j=2

|2 jsΔ j( f )|2
) 1

2
∥

∥

∥

Lp
≤C

∥

∥ f
∥

∥

Lp
s
. (6.2.20)

Finally, we have

2sΔ1( f ) = 2s(
̂Ψ( 1

2ξ )(1 + |ξ |2)− s
2 (1 + |ξ |2) s

2 ̂f
)∨ = 2s(

̂Ψ ( 1
2ξ )(1 + |ξ |2)− s

2 ̂fs
)∨

,

and since the function ̂Ψ ( 1
2ξ )(1+ |ξ |2)− s

2 is smooth with compact support and thus
in Mp, it follows that

∥

∥2sΔ1( f )
∥

∥

Lp ≤C
∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

Lp
s
. (6.2.21)

Combining estimates (6.2.17), (6.2.20), and (6.2.21), we conclude the proof of
(6.2.11). �

6.2.3 Littlewood–Paley Characterization of Homogeneous Sobolev
Spaces

We now state and prove the homogeneous version of the previous theorem.

Theorem 6.2.7. Let Ψ satisfy (6.2.6) and let Δ j be the Littlewood–Paley operator
associated withΨ . Let s ∈ R and 1 < p < ∞. Then there exists a constant C1 that
depends only on n,s, p, andΨ such that for all f ∈ L̇p

s (Rn) we have

∥

∥

∥

(

∑
j∈Z

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
≤C1

∥

∥ f
∥

∥

L̇p
s
. (6.2.22)
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Conversely, there exists a constant C2 that depends on the parameters n,s, p, andΨ
such that every element f of S ′(Rn)/P that satisfies

∥

∥

∥

(

∑
j∈Z

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
< ∞

lies in the homogeneous Sobolev space L̇p
s and we have

∥

∥ f
∥

∥

∥

L̇p
s
≤C2

∥

∥

∥

(

∑
j∈Z

(2 js|Δ j( f )|)2)
1
2

∥

∥

∥

Lp
. (6.2.23)

Proof. The proof of the theorem is similar but a bit simpler than that of Theorem
6.2.6. To obtain (6.2.22) we start with f ∈ L̇p

s and we note that

2 jsΔ j( f ) = 2 js(|ξ |s|ξ |−s
̂Ψ(2− jξ ) ̂f

)∨ =
(

σ̂(2− jξ ) ̂fs
)∨ = Δσj ( fs) ,

where σ̂(ξ ) = ̂Ψ(ξ )|ξ |−s and Δσj is the Littlewood–Paley operator given on the

Fourier transform side by multiplication with the function σ̂(2− jξ ). We have

∥

∥

∥

(

∑
j∈Z

|2 jsΔ j( f )|2
) 1

2
∥

∥

∥

Lp
=
∥

∥

∥

(

∑
j∈Z

|Δσj ( fs)|2
) 1

2
∥

∥

∥

Lp
≤C

∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

L̇p
s
,

where the last inequality follows from Theorem 5.1.2. This proves (6.2.22).
Next we show that if the expression on the right in (6.2.23) is finite, then the

distribution f in S ′(Rn)/P must lie the in the homogeneous Sobolev space L̇p
s

with norm controlled by a multiple of this expression.
Define Littlewood–Paley operators Δηj given by convolution with η2− j , where η̂

is a smooth bump supported in the annulus 4
5 ≤ |ξ | ≤ 2 that satisfies

∑
k∈Z
η̂(2−kξ ) = 1, ξ �= 0 , (6.2.24)

or, in operator form,

∑
k∈Z
Δηk = I ,

where the convergence is in the sense of S ′/P in view of Exercise 2.3.12. We
introduce another family of Littlewood–Paley operators Δθj given by convolution

with θ2− j , where ̂θ (ξ ) = η̂(ξ )|ξ |s. Given f ∈ S ′(Rn)/P , we set fs =
(

|ξ |s ̂f
)∨

,
which is also an element of S ′(Rn)/P . In view of (6.2.24) we can use the reverse
estimate (5.1.8) in Theorem 5.1.2 to obtain for some polynomial Q,

∥

∥ f
∥

∥

L̇p
s
=
∥

∥ fs −Q
∥

∥

Lp ≤C
∥

∥

∥

(

∑
j∈Z

|Δηj ( fs)|2
) 1

2
∥

∥

∥

Lp
= C

∥

∥

∥

(

∑
j∈Z

|2 jsΔθj ( f )|2
) 1

2
∥

∥

∥

Lp
.
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Recalling the definition of Δ j (see the discussion before the statement of Theorem
6.2.6), we notice that the function

̂Ψ( 1
2ξ )+ ̂Ψ(ξ )+ ̂Ψ(2ξ )

is equal to 1 on the support of ̂θ (which is the same as the support of η). It follows
that

Δθj =
(

Δ j−1 +Δ j +Δ j+1
)

Δθj .

We therefore have the estimate

∥

∥

∥

(

∑
j∈Z

|2 jsΔθj ( f )|2
) 1

2
∥

∥

∥

Lp
≤

1

∑
r=−1

∥

∥

∥

(

∑
j∈Z

|Δθj Δ j+r(2 js f )|2
) 1

2
∥

∥

∥

Lp
,

and applying Proposition 5.1.4, we can control the last expression
(

and thus
∥

∥ f
∥

∥

L̇p
s

)

by a constant multiple of

∥

∥

∥

(

∑
j∈Z

|Δ j(2 js f )|2
) 1

2
∥

∥

∥

Lp
.

This proves that the homogeneous Sobolev norm of f is controlled by a multiple of
the expression in (6.2.23). In particular, the distribution f lies in the homogeneous
Sobolev space L̇p

s . This ends the proof of the converse direction and completes the
proof of the theorem. �

Exercises

6.2.1. Show that the spaces L̇p
s and Lp

s are complete and that the latter are decreasing
as s increases.

6.2.2. (a) Let 1 < p < ∞ and s ∈ Z+. Suppose that f ∈ Lp
s (Rn) and that ϕ is in

S (Rn). Prove that ϕ f is also an element of Lp
s (Rn).

(b) Let v be a function whose Fourier transform is a bounded compactly supported
function. Prove that if f is in L2

s (R
n), then so is v f .

6.2.3. Let s > 0 and α a fixed multi-index. Find the set of p in (1,∞) such that the
distribution ∂αδ0 belongs to Lp

−s.

6.2.4. Let I be the identity operator, I1 the Riesz potential of order 1, and R j the
usual Riesz transform. Prove that

I =
n

∑
j=1

I1R j∂ j ,

and use this identity to obtain Theorem 6.2.4 when s = 1.
[

Hint: Take the Fourier transform.
]
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6.2.5. Let f be in Lp
s for some 1 < p < ∞. Prove that ∂α f is in Lp

s−|α |.

6.2.6. Prove that for all C 1 functions f that are supported in a ball B we have

| f (x)| ≤ 1
ωn−1

∫

B
|∇ f (y)||x− y|−n+1 dy ,

where ωn−1 = |Sn−1|. For such functions obtain the local Sobolev inequality
∥

∥ f
∥

∥

Lq(B) ≤Cq,r,n
∥

∥∇ f
∥

∥

Lp(B) ,

where 1 < p < q < ∞ and 1/p = 1/q + 1/n.
[

Hint: Start from f (x) =
∫ ∞

0 ∇ f (x− tθ ) ·θ dt and integrate over θ ∈ Sn−1.
]

6.2.7. Show that there is a constant C such that for all C 1 functions f that are
supported in a ball B we have

1
|B′|

∫

B′
| f (x)− f (z)|dz ≤C

∫

B
|∇ f (y)||x− y|−n+1 dy

for all B′ balls contained in B and all x ∈ B′.
[

Hint: Start with f (z)− f (x) =
∫ 1

0 ∇ f (x + t(z− x)) · (z− x)dt.
]

6.2.8. Let 1 < p < ∞ and s > 0. Show that

f ∈ Lp
s ⇐⇒ f ∈ Lp and f ∈ L̇p

s .

Conclude that L̇p
s ∩Lp = Lp

s and obtain an estimate for the corresponding norms.
[

Hint: If f is in L̇p
s ∩Lp use Theorem 5.2.7 to obtain that

∥

∥ f
∥

∥

Lp
s

is controlled by a

multiple of the Lp norm of (̂f (ξ )(1 + |ξ |s))∨. Use the same theorem to show that
∥

∥ f
∥

∥

L̇p
s
≤C

∥

∥ f
∥

∥

Lp
s
.
]

6.2.9. (Gagliardo [139]/Nirenberg [249] ) Prove that all Schwartz functions on Rn

satisfy the estimate
∥

∥ f
∥

∥

Lq ≤
n

∏
j=1

∥

∥∂ j f
∥

∥

1/n
L1 ,

where 1/q + 1/n = 1.
[

Hint: Use induction beginning with the case n = 1. Assuming that the inequality is
valid for n−1, set I j(x1)=

∫

Rn−1 |∂ j f (x1,x′)|dx′ for j = 2, . . . ,n, where x =(x1,x′)∈
R×Rn−1 and I1(x′) =

∫

R1 |∂1 f (x1,x′)|dx1. Apply the induction hypothesis to obtain

∥

∥ f (x1, ·)
∥

∥

Lq′ ≤
n

∏
j=2

I j(x1)1/(n−1)

and use that | f |q ≤ I1(x′)1/(n−1)| f | and Hölder’s inequality to calculate
∥

∥ f
∥

∥

Lq .
]
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6.2.10. Let f ∈ L2
1(R

n). Prove that there is a constant cn > 0 such that

∫

Rn

∫

Rn

| f (x + t)+ f (x− t)−2 f (x)|2
|t|n+2 dxdt = cn

∫

Rn

n

∑
j=1

|∂ j f (x)|2 dx.

6.2.11. (Christ [61] ) Let 0 ≤ β < ∞ and let

C0 =
∫

Rn
|ĝ(ξ )|2(1 + |ξ |)n( log(2 + |ξ |)

)−β
dξ .

(a) Prove that there is a constant C(n,β ,C0) such that for every q > 2 we have

∥

∥g
∥

∥

Lq(Rn) ≤C(n,β ,C0)q
β+1

2 .

(b) Conclude that for any compact subset K of Rn we have
∫

K
e|g(x)|γ dx < ∞

whenever γ < 2
β+1 .

[

Hint: Part (a): For q > 2 control
∥

∥g
∥

∥

Lq(Rn) by
∥

∥ĝ
∥

∥

Lq′ (Rn) and apply Hölder’s in-

equality with exponents 2
q′ and 2(q−1)

q−2 . Part (b): Expand the exponential in a Taylor

series.
]

6.2.12. Suppose that m ∈ L2
s (R

n) for some s > n
2 and let λ > 0. Define the operator

Tλ by setting ̂Tλ ( f )(ξ ) = m(λξ )̂f (ξ ). Show that there exists a constant C = C(n,s)
such that for all f and u ≥ 0 and λ > 0 we have

∫

Rn
|Tλ ( f )(x)|2 u(x)dx ≤C

∫

Rn
| f (x)|2 M(u)(x)dx .

6.3 Lipschitz Spaces

The classical definition says that a function f on Rn is Lipschitz (or Hölder) contin-
uous of order γ > 0 if there is constant C < ∞ such that for all x,y ∈ Rn we have

| f (x + y)− f (x)| ≤C|y|γ . (6.3.1)

It turns out that only constant functions satisfy (6.3.1) when γ > 1, and the corre-
sponding definition needs to be suitably adjusted in this case. This is discussed in
this section. The key point is that any function f that satisfies (6.3.1) possesses a
certain amount of smoothness “measured” by the quantity γ . The Lipschitz norm of
a function is introduced to serve this purpose, that is, to precisely quantify and ex-
actly measure this smoothness. In this section we formalize these concepts and we
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explore connections they have with the orthogonality considerations of the previ-
ous chapter. The main achievement of this section is a characterization of Lipschitz
spaces using Littlewood–Paley theory.

6.3.1 Introduction to Lipschitz Spaces

Definition 6.3.1. Let 0 < γ < 1. A function f on Rn is said to be Lipschitz of order
γ if it is bounded and satisfies (6.3.1) for some C < ∞. In this case we let

∥

∥ f
∥

∥

Λγ (Rn) =
∥

∥ f
∥

∥

L∞ + sup
x∈Rn

sup
h∈Rn\{0}

| f (x + h)− f (x)|
|h|γ

and we set

Λγ (Rn) = { f : Rn → C continuous :
∥

∥ f
∥

∥

Λγ (Rn) <∞}.

Note that functions in Λγ (Rn) are automatically continuous when γ < 1, so we did
not need to make this part of the definition. We call Λγ(Rn) the inhomogeneous
Lipschitz space of order γ . For reasons of uniformity we also set

Λ0(Rn) = L∞(Rn)∩C(Rn),

where C(Rn) is the space of all continuous functions on Rn. See Exercise 6.3.2.

Example 6.3.2. The function h(x) = cos(x ·a) for some fixed a ∈ Rn is in Λγ for all
γ < 1. Simply notice that |h(x)−h(y)| ≤ min(2, |a| |x− y|).

We now extend this definition to indices γ ≥ 1.

Definition 6.3.3. For h ∈ Rn define the difference operator Dh by setting

Dh( f )(x) = f (x + h)− f (x)

for a continuous function f : Rn → C. We may check that

D2
h( f )(x) = Dh(Dh f )(x) = f (x + 2h)−2 f (x + h)+ f (x),

D3
h( f )(x) = Dh(D2

h f )(x) = f (x + 3h)−3 f (x + 2h)+ 3 f (x + h)− f (x) ,

and in general, that Dk+1
h ( f ) = Dk

h(Dh( f )) is given by

Dk+1
h ( f )(x) =

k+1

∑
s=0

(−1)k+1−s
(

k + 1
s

)

f (x + sh) (6.3.2)

for a nonnegative integer k. See Exercise 6.3.3. For γ > 0 define
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∥

∥ f
∥

∥

Λγ
=
∥

∥ f
∥

∥

L∞ + sup
x∈Rn

sup
h∈Rn\{0}

|D[γ]+1
h ( f )(x)|

|h|γ ,

where [γ] denotes the integer part of γ , and set

Λγ = { f : Rn → C continuous :
∥

∥ f
∥

∥

Λγ
< ∞} .

We call Λγ (Rn) the inhomogeneous Lipschitz space of order γ ∈ R+.
For a tempered distribution u we also define another distribution Dk

h(u) via the
identity

〈

Dk
h(u),ϕ

〉

=
〈

u,Dk
−h(ϕ)

〉

for all ϕ in the Schwartz class.

We now define the homogeneous Lipschitz spaces. We adhere to the usual con-
vention of using a dot on a space to indicate its homogeneous nature.

Definition 6.3.4. For γ > 0 we define

∥

∥ f
∥

∥

Λ̇γ
= sup

x∈Rn
sup

h∈Rn\{0}

|D[γ]+1
h ( f )(x)|

|h|γ

and we also let Λ̇γ be the space of all continuous functions f on Rn that satisfy
∥

∥ f
∥

∥

Λ̇γ
< ∞. We call Λ̇γ the homogeneous Lipschitz space of order γ . We note that

elements of Λ̇γ have at most polynomial growth at infinity and thus they are elements
of S ′(Rn).

A few observations are in order here. Constant functions f satisfy Dh( f )(x) = 0
for all h,x ∈ Rn, and therefore the homogeneous quantity

∥

∥ ·
∥

∥

Λ̇γ
is insensitive to

constants. Similarly the expressions Dk+1
h ( f ) and

∥

∥ f
∥

∥

Λ̇γ
do not recognize polyno-

mials of degree up to k. Moreover, polynomials are the only continuous functions
with this property; see Exercise 6.3.1. This means that the quantity

∥

∥ f
∥

∥

Λ̇γ
is not a

norm but only a seminorm. To make it a norm, we need to consider functions mod-
ulo polynomials, as we did in the case of homogeneous Sobolev spaces. For this
reason we think of Λ̇γ as a subspace of S ′(Rn)/P .

We make use of the following proposition concerning properties of the difference
operators Dk

h.

Proposition 6.3.5. Let f be a C m function on Rn for some m ∈ Z+. Then for all
h = (h1, . . . ,hn) and x ∈ Rn the following identity holds:

Dh( f )(x) =
∫ 1

0

n

∑
j=1

h j (∂ j f )(x + sh)ds . (6.3.3)

More generally, we have that
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Dm
h ( f )(x) =

∫

[0,1]m
∑

1≤ j�≤n
1≤�≤m

h j1 · · ·h jm(∂ j1 · · ·∂ jm f )(x+(s1+· · ·+sm)h)ds1 · · ·dsm. (6.3.4)

Proof. Identity (6.3.3) is a consequence of the fundamental theorem of calculus
applied to the function t �→ f ((1 − t)x + t(x + h)) on [0,1], while identity (6.3.4)
follows by induction. �

6.3.2 Littlewood–Paley Characterization of Homogeneous
Lipschitz Spaces

We now characterize the homogeneous Lipschitz spaces using the Littlewood–Paley
operators Δ j. As in the previous section, we fix a radial Schwartz functionΨ whose
Fourier transform is nonnegative, supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2, is equal
to one on the annulus 1 ≤ |ξ | ≤ 2− 2

7 , and that satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 (6.3.5)

for all ξ �= 0. The Littlewood–Paley operators Δ j = ΔΨj associated withΨ are given

by multiplication on the Fourier transform side by the smooth bump ̂Ψ(2− jξ ).

Theorem 6.3.6. Let Δ j be as above and γ > 0. Then there is a constant C = C(n,γ)
such that for every f in Λ̇γ we have the estimate

sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λ̇γ
. (6.3.6)

Conversely, every element f of S ′(Rn)/P that satisfies

sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞ < ∞ (6.3.7)

is an element of Λ̇γ with norm

∥

∥ f
∥

∥

Λ̇γ
≤C′ sup

j∈Z
2 jγ∥
∥Δ j( f )

∥

∥

L∞ (6.3.8)

for some constant C′ = C′(n,γ).

Note that condition (6.3.7) remains invariant if a polynomial is added to the func-
tion f ; this is consistent with the analogous property of the mapping f �→

∥

∥ f
∥

∥

Λ̇γ
.

Proof. We begin with the proof of (6.3.8). Let k = [γ] be the integer part of γ .
Let us pick a Schwartz function η on Rn whose Fourier transform is nonnegative,
supported in the annulus 4

5 ≤ |ξ | ≤ 2, and that satisfies



28 6 Smoothness and Function Spaces

∑
j∈Z
η̂(2− jξ )2 = 1 (6.3.9)

for all ξ �= 0. Associated with η , we define the Littlewood–Paley operatorsΔηj given
by multiplication on the Fourier transform side by the smooth bump η̂(2− jξ ). With
Ψ as in (6.2.6) we set

̂Θ(ξ ) = ̂Ψ( 1
2ξ )+ ̂Ψ(ξ )+ ̂Ψ(2ξ ) ,

and we denote by ΔΘj = Δ j−1 +Δ j +Δ j+1 the Littlewood–Paley operator given by

multiplication on the Fourier transform side by the smooth bump ̂Θ(2− jξ ).
The fact that the previous function is equal to 1 on the support of η̂ together with

the functional identity (6.3.9) yields the operator identity

I = ∑
j∈Z

(Δηj )2 = ∑
j∈Z
ΔΘj Δ

η
j Δ

η
j ,

with convergence in the sense of the space S ′(Rn)/P . Since convolution is a linear
operation, we have Dk+1

h (F ∗G) = F ∗Dk+1
h (G), from which we deduce

Dk+1
h ( f ) = ∑

j∈Z
ΔΘj ( f ) ∗ Dk+1

h (η2− j ) ∗ η2− j

= ∑
j∈Z

Dk+1
h (ΔΘj ( f )) ∗ (η ∗η)2− j

(6.3.10)

for all tempered distributions f . The convergence of the series in (6.3.10) is in the
sense of S ′/P in view of Exercise 5.2.2. The convergence of the series in (6.3.10)
in the L∞ norm is a consequence of condition (6.3.7) and is contained in the follow-
ing argument.

Using (6.3.2), we easily obtain the estimate
∥

∥Dk+1
h (ΔΘj ( f ))∗ (η ∗η)2− j

∥

∥

L∞ ≤ 2k+1
∥

∥η ∗η
∥

∥

L1

∥

∥ΔΘj ( f )
∥

∥

L∞ . (6.3.11)

We first integrate over (s1, . . . ,sk+1) ∈ [0,1]k+1 the identity

n

∑
r1=1

· · ·
n

∑
rk+1=1

hr1 · · ·hrk+1(∂r1 · · ·∂rk+1η2− j)(x +(s1 + · · ·+ sk+1)h)

= 2 j(k+1)
n

∑
r1=1

· · ·
n

∑
rk+1=1

hr1 · · ·hrk+1(∂r1 . . .∂rk+1η)2− j (x +(s1 + · · ·+ sk+1)h) .

We then use (6.3.4) with m = k + 1, and we integrate over x ∈ Rn to obtain

∥

∥Dk+1
h (η2− j)

∥

∥

L1 ≤ 2 j(k+1)|h|k+1
n

∑
r1=1

· · ·
n

∑
rk+1=1

∥

∥∂r1 · · ·∂rk+1η
∥

∥

L1 .
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We deduce the validity of the estimate
∥

∥ΔΘj ( f )∗Dk+1
h (η2− j)∗η2− j

∥

∥

L∞

≤
∥

∥ΔΘj ( f )
∥

∥

L∞

∥

∥Dk+1
h (η2− j )∗η2− j

∥

∥

L1

≤
∥

∥ΔΘj ( f )
∥

∥

L∞ |2
jh|k+1ck ∑

|α |≤k+1

∥

∥∂αη
∥

∥

L1

∥

∥η
∥

∥

L1 .

(6.3.12)

Combining (6.3.11) and (6.3.12), we obtain
∥

∥ΔΘj ( f )∗Dk+1
h (η2− j )∗η2− j

∥

∥

L∞

≤Cη,n,k

∥

∥ΔΘj ( f )
∥

∥

L∞ min
(

1, |2 jh|k+1) .
(6.3.13)

We insert estimate (6.3.13) in (6.3.10) to deduce
∥

∥Dk+1
h ( f )

∥

∥

L∞

|h|γ ≤ C′

|h|γ ∑j∈Z
2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ min
(

2− jγ ,2 j(k+1−γ)|h|k+1) ,

from which it follows that

∥

∥ f
∥

∥

Λ̇γ
≤ sup

h∈Rn\{0}

C′

|h|γ ∑j∈Z
2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ min
(

2− jγ ,2 j(k+1−γ)|h|k+1)

≤ C′ sup
j∈Z

2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ sup
h �=0
∑
j∈Z

min
(

|h|−γ2− jγ ,2 j(k+1−γ)|h|k+1−γ)

≤ C′ sup
j∈Z

2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ ,

since the last numerical series converges (γ < k + 1 = [γ]+ 1). This proves (6.3.8)
with the difference that instead of Δ j we have ΔΘj on the right. The passage to Δ j is

a trivial matter, since ΔΘj = Δ j−1 +Δ j +Δ j+1.
Having established (6.3.8), we now turn to the proof of (6.3.6). We first consider

the case 0 < γ < 1, which is very simple. Since each Δ j is given by convolution with
a function with mean value zero, we may write

Δ j( f )(x) =
∫

Rn
f (x− y)Ψ2− j(y)dy

=
∫

Rn
( f (x− y)− f (x))Ψ2− j(y)dy

= 2− jγ
∫

Rn

D−y( f )(x)
|y|γ |2 jy|γ2 jnΨ(2 jy)dy ,

and the previous expression is easily seen to be controlled by a constant multiple of
2− jγ

∥

∥ f
∥

∥

Λ̇γ
. This proves (6.3.6) when 0 < γ < 1. In the case γ ≥ 1 we have to work

a bit harder.
As before, set k = [γ]. Notice that for Schwartz functions g we have the identity
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Dk+1
h (g) =

(

ĝ(ξ )(e2π iξ ·h −1)k+1)∨ .

To express Δ j(g) in terms of Dk+1
h (g), we need to introduce the function

ξ �→ ̂Ψ (2− jξ )(e2π iξ ·h −1)−(k+1) .

But as the support of ̂Ψ(2− jξ ) may intersect the set of all ξ for which ξ · h is an
integer, the previous function is not well defined. To deal with this problem, we pick
a finite family of unit vectors {ur}r so that the annulus 1

2 ≤ |ξ | ≤ 2 is covered by
the union of sets

Ur =
{

ξ ∈ Rn : 1
2 ≤ |ξ | ≤ 2, 1

4 ≤ |ξ ·ur| ≤ 2
}

.

Then we write ̂Ψ as a finite sum of smooth functions ̂Ψ (r), where each ̂Ψ (r) is
supported in Ur. Setting

hr =
1
8

2− jur ,

we note that

Ψ (r)
2− j ∗ f =

(

̂Ψ (r)(2− jξ )(e2π iξ ·hr −1)−(k+1)(e2π iξ ·hr −1)k+1
̂f (ξ )

)∨

=
(

̂Ψ (r)(2− jξ )(e2π i2− jξ · 1
8 ur −1)−(k+1) ̂Dk+1

hr
( f )(ξ )

)∨
(6.3.14)

and observe that the exponential is never equal to 1, since

2− jξ ∈Ur =⇒ 1
32 ≤ |2− jξ · 1

8 ur| ≤ 1
4 .

Since the function ̂ζ (r) = ̂Ψ (r)(ξ )(e2π iξ · 1
8 ur − 1)−(k+1) is well defined and smooth

with compact support, it follows that

Ψ (r)
2− j ∗ f = (ζ (r))2− j ∗Dk+1

2− j 1
8 ur

( f ) ,

which implies that

∥

∥Ψ (r)
2− j ∗ f

∥

∥

L∞ ≤
∥

∥(ζ (r))2− j

∥

∥

L1

∥

∥Dk+1
2− j 1

8 ur
( f )
∥

∥

L∞

≤
∥

∥ζ (r)∥
∥

L1

∥

∥ f
∥

∥

Λ̇γ
2− jγ .

Summing over the finite number of r, we obtain the estimate
∥

∥Δ j( f )
∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λ̇γ
2− jγ ,

which concludes the proof of the theorem. �
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6.3.3 Littlewood–Paley Characterization of Inhomogeneous
Lipschitz Spaces

We have seen that quantities involving the Littlewood–Paley operators Δ j character-
ize homogeneous Lipschitz spaces. We now address the same question for inhomo-
geneous spaces.

As in the Littlewood–Paley characterization of inhomogeneous Sobolev spaces,
we need to treat the contribution of the frequencies near zero separately. We recall
the Schwartz function Φ introduced in Section 6.2.2:

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.
(6.3.15)

Note that ̂Φ(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. We also

recall the operator S0( f ) = Φ ∗ f . One should not be surprised to find out that a
result analogous to that in Theorem 6.2.6 is valid for Lipschitz spaces as well.

Theorem 6.3.7. Let Ψ and Δ j be as in the Theorem 6.3.6, Φ as in (6.3.15), and
γ > 0. Then there is a constant C = C(n,γ) such that for every f in Λγ we have the
estimate

∥

∥S0( f )
∥

∥

L∞ + sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λγ
. (6.3.16)

Conversely, every tempered distribution f that satisfies
∥

∥S0( f )
∥

∥

L∞ + sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ < ∞ (6.3.17)

can be identified with an element of Λγ . Moreover, there is a constant C′ = C′(n,γ)
such that for all f that satisfy (6.3.17) we have

∥

∥ f
∥

∥

Λγ
≤C′

(

∥

∥S0( f )
∥

∥

L∞ + sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞

)

. (6.3.18)

Proof. The proof of (6.3.16) is immediate, since we trivially have
∥

∥S0( f )
∥

∥

L∞ =
∥

∥ f ∗Φ
∥

∥

L∞ ≤
∥

∥Φ
∥

∥

L1

∥

∥ f
∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λγ

and also
sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λ̇γ
≤C

∥

∥ f
∥

∥

Λγ

by the previous theorem.
Therefore, the main part of the argument is contained in the proof of the converse

estimate (6.3.18). Here we introduce Schwartz functions ζ ,η so that

̂ζ (ξ )2 +
∞

∑
j=1
η̂(2− jξ )2 = 1
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and such that η̂ is supported in the annulus 4
5 ≤ |ξ | ≤ 2 and ̂ζ is supported in the ball

|ξ | ≤ 1. We associate Littlewood–Paley operators Δηj given by convolution with the

functions η2− j and we also let ΔΘj = Δ j−1 +Δ j +Δ j+1. Note that ̂Φ is equal to one

on the support of ̂ζ . Moreover, ΔΘj Δ
η
j = Δηj ; hence for tempered distributions f we

have the identity

f = ζ ∗ ζ ∗Φ ∗ f +
∞

∑
j=1
η2− j ∗η2− j ∗ΔΘj ( f ) , (6.3.19)

where the series converges in S ′(Rn). With k = [γ] we write

Dk+1
h ( f )
|h|γ = ζ ∗

Dk+1
h (ζ )
|h|γ ∗Φ ∗ f +

∞

∑
j=1

η2− j ∗
Dk+1

h (η2− j)
|h|γ ∗ΔΘj ( f ) , (6.3.20)

and we use Proposition 6.3.5 to estimate the L∞ norm of the term ζ ∗ Dk+1
h (ζ )
|h|γ ∗Φ ∗ f

in the previous sum as follows:

∥

∥ζ ∗ Dk+1
h (ζ )
|h|γ ∗Φ ∗ f

∥

∥

L∞ ≤
∥

∥

Dk+1
h (ζ )
|h|γ

∥

∥

L∞

∥

∥ζ ∗Φ ∗ f
∥

∥

L1

≤ C min
(

1
|h|γ ,

|h|k+1

|h|γ
)∥

∥Φ ∗ f
∥

∥

L∞

≤ C
∥

∥Φ ∗ f
∥

∥

L∞ .

(6.3.21)

The corresponding L∞ estimates for ΔΘj ( f ) ∗η2− j ∗Dk+1
h (η2− j ) have already been

obtained in (6.3.13). Indeed, we obtained
∥

∥Dk+1
h (η2− j)∗η2− j ∗ΔΘj ( f )

∥

∥

L∞ ≤Cη,n,k

∥

∥ΔΘj ( f )
∥

∥

L∞ min
(

1, |2 jh|k+1) ,

from which it follows that

∥

∥

∥

∞

∑
j=1

η2− j ∗
Dk+1

h (η2− j)
|h|γ ∗ΔΘj ( f )

∥

∥

∥

L∞

≤ C
(

sup
j≥1

2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞

) ∞

∑
j=1

2− jγ |h|−γmin
(

1, |2 jh|k+1)

≤ C
(

sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞

) ∞

∑
j=1

min
(

|2 jh|−γ , |2 jh|k+1−γ)

≤ C sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ,

(6.3.22)

where the last series is easily seen to converge uniformly in h ∈ Rn, since k + 1 =
[γ]+ 1 > γ . We now combine identity (6.3.20) with estimates (6.3.21) and (6.3.22)
to obtain that the expression on the right in (6.3.19) has a bounded L∞ norm. This
implies that f can be identified with a bounded function that satisfies (6.3.18). �
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Next, we obtain consequences of the Littlewood–Paley characterization of Lip-
schitz spaces. In the following corollary we identify Λ0 with L∞.

Corollary 6.3.8. For 0 ≤ γ ≤ δ < ∞ there is a constant Cn,γ,δ < ∞ such that for all
f ∈Λδ (Rn) we have

∥

∥ f
∥

∥

Λγ
≤Cn,γ,δ

∥

∥ f
∥

∥

Λδ
.

In other words, the space Λδ (Rn) can be identified with a subspace of Λγ(Rn).

Proof. If 0 < γ ≤ δ and j ≥ 0, then we must have 2 jγ ≤ 2 jδ and thus

sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤ sup
j≥1

2 jδ∥
∥Δ j( f )

∥

∥

L∞ .

Adding
∥

∥S0( f )
∥

∥

L∞ and using Theorem 6.3.7, we obtain the required conclusion.
The case γ = 0 is trivial. �

Remark 6.3.9. We proved estimates (6.3.18) and (6.3.8) using the Littlewood–Paley
operatorsΔ j constructed by a fixed choice of the functionΨ ;Φ also depended onΨ .
It should be noted that the specific choice of the functionsΨ andΦ was unimportant
in those estimates. In particular, if we know (6.3.18) and (6.3.8) for some choice
of Littlewood–Paley operators ˜Δ j and some Schwartz function ˜Φ whose Fourier
transform is supported in a neighborhood of the origin, then (6.3.18) and (6.3.8)
would also hold for our fixed choice of Δ j and Φ . This situation is illustrated in the
next corollary.

Corollary 6.3.10. Let γ > 0 and let α be a multi-index with |α| < γ . If f ∈ Λγ ,
then the distributional derivative ∂α f (of f ) lies in Λγ−|α |. Likewise, if f ∈ Λ̇γ , then
∂α f ∈ Λ̇γ−|α | . Precisely, we have the norm estimates

∥

∥∂α f
∥

∥

Λγ−|α|
≤Cγ,α

∥

∥ f
∥

∥

Λγ
, (6.3.23)

∥

∥∂α f
∥

∥

Λ̇γ−|α|
≤Cγ,α

∥

∥ f
∥

∥

Λ̇γ
. (6.3.24)

In particular, elements of Λγ and Λ̇γ are in C α for all |α| < γ .

Proof. Let α be a multi-index with |α| < γ . We denote by Δ∂αΨj the Littlewood–
Paley operator associated with the bump (∂αΨ)2− j . It is straightforward to check
that the identity

Δ j(∂α f ) = 2 j|α |Δ∂
αΨ

j ( f )

is valid for any tempered distribution f . Using the support properties ofΨ , we obtain

2 j(γ−|α |)Δ j(∂α f ) = 2 jγΔ∂
αΨ

j (Δ j−1 +Δ j +Δ j+1)( f ) , (6.3.25)

and from this it easily follows that

sup
j∈Z

2 j(γ−|α |)∥
∥Δ j(∂α f )

∥

∥

L∞ ≤ (2γ + 2)
∥

∥∂αΨ
∥

∥

L1 sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞
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and also that

sup
j≥1

2 j(γ−|α |)∥
∥Δ j(∂α f )

∥

∥

L∞ ≤ (2γ + 2)
∥

∥∂αΨ
∥

∥

L1 sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ . (6.3.26)

Using Theorem 6.3.6, we deduce that if f ∈ Λ̇γ , then ∂α f ∈ Λ̇γ−|α | , and we also
obtain (6.3.24). To derive the inhomogeneous version, we note that

S0(∂α f ) =Φ ∗ (∂α f ) = (∂αΦ ∗ f ) =
(

∂αΦ ∗ (Φ+Ψ2−1)∗ f
)

,

since the function ̂Φ + ̂Ψ2−1 is equal to 1 on the support of ̂∂αΦ . Taking L∞ norms,
we obtain

∥

∥S0(∂α f )
∥

∥

L∞ ≤
∥

∥∂αΦ
∥

∥

L1

(∥

∥Φ ∗ f
∥

∥

L∞ +
∥

∥Ψ2−1 ∗ f
∥

∥

L∞
)

≤
∥

∥∂αΦ
∥

∥

L1

(

∥

∥S0( f )
∥

∥

∥

L∞
+ sup

j≥1

∥

∥Δ j( f )
∥

∥

L∞

)

,

which, combined with (6.3.26), yields
∥

∥∂α f
∥

∥

Λγ−|α|
≤Cγ,α

∥

∥ f
∥

∥

Λγ
. �

Exercises

6.3.1. Fix k ∈ Z+. Show that
Dk

h( f )(x) = 0

for all x,h in Rn if and only if f is a polynomial of degree at most k−1.
[

Hint: One direction may be proved by direct verification. For the converse direc-

tion, show that ̂f is supported at the origin and use Proposition 2.4.1.
]

6.3.2. (a) Extend Definition 6.3.1 to the case γ = 0 and show that for all continuous
functions f we have

∥

∥ f
∥

∥

L∞ ≤
∥

∥ f
∥

∥

Λ0
≤ 3

∥

∥ f
∥

∥

L∞ ;

hence the space Λ0(Rn) can be identified with L∞(Rn)∩C(Rn).
(b) Given a measurable function f on Rn we define

∥

∥ f
∥

∥

L̇∞ = inf
{∥

∥ f + c
∥

∥

L∞ : c ∈ C
}

.

Let L̇∞(Rn) be the space of equivalent classes of bounded functions whose differ-
ence is a constant, equipped with this norm. Show that for all continuous functions
f on Rn we have

∥

∥ f
∥

∥

L̇∞ ≤ sup
x,h∈Rn

| f (x + h)− f (x)| ≤ 2
∥

∥ f
∥

∥

L̇∞ .

In other words, Λ̇0(Rn) can be identified with L̇∞(Rn)∩C(Rn).
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6.3.3. (a) For a continuous function f prove the identity

Dk+1
h ( f )(x) =

k+1

∑
s=0

(−1)k+1−s
(

k + 1
s

)

f (x + sh)

for all x,h ∈ Rn and k ∈ Z+ ∪{0}.
(b) Prove that Dk

hDl
h = Dk+l

h for all k, l ∈ Z+∪{0}.

6.3.4. For x ∈ R let

f (x) =
∞

∑
k=1

2−ke2π i2kx .

(a) Prove that f ∈Λγ (R) for all 0 < γ < 1.
(b) Prove that there is an A < ∞ such that

sup
x,t �=0

| f (x + t)+ f (x− t)−2 f (x)| |t|−1 ≤ A ;

thus f ∈Λ1(R).
(c) Show, however, that for all x ∈ [0,1] we have

sup
0<|t|<1

| f (x + t)− f (x)| |t|−1 =∞ ;

thus f is nowhere differentiable.
[

Hint: Part (c): Use that f (x) is 1-periodic and thus

∫ 1

0
| f (x + t)− f (x)|2 dx =

∞

∑
k=1

2−2k|e2π i2kt −1|2.

Observe that when 2k|t| ≤ 1
2 we have |e2π i2kt −1| ≥ 2k+2|t|.

]

6.3.5. For 0 < a,b < ∞ and x ∈ R let

gab(x) =
∞

∑
k=1

2−ake2π i2bkx .

Show that gab lies in Λ a
b
(R).

[

Hint: Use the estimate |DL
h(e2π i2bkx)| ≤C min

(

1,(2bk|h|)L
)

with L = [a/b]+1 and
split the sum into two parts.

]

6.3.6. Let γ > 0 and let k = [γ].
(a) Use Exercise 6.3.3(b) to prove that if |Dk

h( f )(x)| ≤ C|h|γ for all x,h ∈ Rn, then
|Dk+l

h ( f )(x)| ≤C2l|h|γ for all l ≥ 1.
(b) Conversely, assuming that for some l ≥ 1 we have

sup
x,h∈Rn

∣

∣Dk+l
h ( f )(x)

∣

∣

|h|γ < ∞ ,
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show that f ∈ Λ̇γ .
[

Hint: Part (b): Use (6.3.14) but replace k + 1 by k + l.
]

6.3.7. Let Ψ and Δ j be as in Theorem 6.3.7. Define a continuous operator Qt by
setting

Qt( f ) = f ∗Ψt , Ψt(x) = t−nΨ (t−1x) .

Show that all tempered distributions f satisfy

sup
t>0

t−γ
∥

∥Qt( f )
∥

∥

L∞ ≈ sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞

with the interpretation that if either term is finite, then it controls the other term by
a constant multiple of itself.
[

Hint: Observe that Qt = Qt(Δ j−2 +Δ j−1 +Δ j +Δ j+1) when 2− j ≤ t ≤ 21− j.
]

6.3.8. (a) Let 0 ≤ γ < 1 and suppose that ∂ j f ∈ Λ̇γ for all 1 ≤ j ≤ n. Show that for
some constant C we have

∥

∥ f
∥

∥

Λ̇γ+1
≤C

n

∑
j=1

∥

∥∂ j f
∥

∥

Λ̇γ

and conclude that f ∈ Λ̇γ+1.
(b) Let γ ≥ 0. If we have ∂α f ∈ Λ̇γ for all multi-indices α with |α| = r, then there
is an estimate

∥

∥ f
∥

∥

Λ̇γ+r
≤Cγ ∑

|α |=r

∥

∥∂α f
∥

∥

Λ̇γ
,

and thus f ∈ Λ̇γ+r.
(c) Use Corollary 6.3.10 to obtain that the estimates in both (a) and (b) can be
reversed.
[

Hint: Part (a): Write

D2
h( f )(x) =

∫ 1

0

n

∑
j=1

[

∂ j f (x + th + 2h)− ∂ j f (x + th + h)
]

h j dt .

Part (b): Use induction.
]

6.3.9. Introduce a difference operator

Dβ ( f )(x) =
[
∫

Rn

|D[β ]+1
y ( f )(x)|2
|y|n+2β dy

] 1
2

,

where β > 0. Show that for some constant c0(n,β ) we have

∥

∥Dβ ( f )
∥

∥

2
L2(Rn) = c0(n,β )

∫

Rn
|̂f (ξ )|2 |ξ |2β dξ

for all functions f ∈ L̇2
β (R

n).
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6.4 Hardy Spaces

Having been able to characterize Lp spaces, Sobolev spaces, and Lipschitz spaces
using Littlewood–Paley theory, it should not come as a surprise that the theory can
be used to characterize other spaces as well. This is the case with the Hardy spaces
H p(Rn), which form a family of spaces with some remarkable properties in which
the integrability index p can go all the way down to zero.

There exists an abundance of equivalent characterizations for Hardy spaces, of
which only a few representative ones are discussed in this section. A reader inter-
ested in going through the material quickly may define the Hardy space H p as the
space of all tempered distributions f modulo polynomials for which

∥

∥ f
∥

∥

H p =
∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
) 1

2
∥

∥

∥

Lp
< ∞ (6.4.1)

whenever 0 < p ≤ 1. An atomic decomposition for Hardy spaces can be obtained
from this definition (see Section 6.6), and once this is in hand, the analysis of these
spaces is significantly simplified. For historical reasons, however, we choose to de-
fine Hardy spaces using a more classical approach, and as a result, we have to go
through a considerable amount of work to obtain the characterization alluded to in
(6.4.1).

6.4.1 Definition of Hardy Spaces

To give the definition of Hardy spaces on Rn, we need some background. We say
that a tempered distribution v is bounded if ϕ ∗v∈ L∞(Rn) wheneverϕ is in S (Rn).
We observe that if v is a bounded tempered distribution and h ∈ L1(Rn), then the
convolution h ∗ v can be defined as a distribution via the convergent integral

〈

h ∗ v,ϕ
〉

=
〈

ϕ̃ ∗ v,˜h
〉

=
∫

Rn
(ϕ̃ ∗ v)(x)˜h(x)dx,

where ϕ is a Schwartz function, and as usual, we set ϕ̃(x) = ϕ(−x).
Let us recall the Poisson kernel P introduced in (2.1.13):

P(x) =
Γ ( n+1

2 )

π
n+1

2

1

(1 + |x|2) n+1
2

. (6.4.2)

For t > 0, let Pt(x) = t−nP(t−1x). If v is a bounded tempered distribution, then Pt ∗v
is a well defined distribution, since Pt is in L1. We claim that Pt ∗ v can be identified
with a well defined bounded function. To see this, write 1 = ϕ̂(ξ )+η(ξ ), where ϕ̂
has compact support and η is a smooth function that vanishes in a neighborhood of
the origin. Then the function ψ defined by ψ̂(ξ ) = e−2π |ξ |η(ξ ) is in the Schwartz
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class, and one has that

̂Pt(ξ ) = e−2πt|ξ | = e−2πt|ξ |ϕ̂(tξ )+ ψ̂(tξ )

is a sum of a compactly supported function and a Schwartz function. Then

Pt ∗ v = Pt ∗ (ϕt ∗ v)+ψt ∗ v,

but ϕt ∗v and ψt ∗v are bounded functions, since ϕt and ψt are in the Schwartz class.
The last identity proves that Pt ∗ v is a bounded function.

Before we define Hardy spaces we introduce some notation.

Definition 6.4.1. Let a,b > 0. LetΦ be a Schwartz function and let f be a tempered
distribution on Rn. We define the smooth maximal function of f with respect to Φ
as

M( f ;Φ)(x) = sup
t>0

|(Φt ∗ f )(x)| .

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Φt ∗ f )(y)| .

We also define the auxiliary maximal function

M∗∗
b ( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f )(x− y)|
(1 + t−1|y|)b ,

and we observe that

M( f ;Φ) ≤ M∗
a ( f ;Φ) ≤ (1 + a)bM∗∗

b ( f ;Φ) (6.4.3)

for all a,b > 0. We note that if Φ is merely integrable, for example, if Φ is the
Poisson kernel, the maximal functions M( f ;Φ), M∗

a ( f ;Φ), and M∗∗
b ( f ;Φ) are well

defined only for bounded tempered distributions f on Rn.
For a fixed positive integer N and a Schwartz function ϕ we define the quantity

NN(ϕ) =
∫

Rn
(1 + |x|)N ∑

|α |≤N+1

|∂αϕ(x)|dx . (6.4.4)

We now define
FN =

{

ϕ ∈ S (Rn) : NN(ϕ) ≤ 1
}

, (6.4.5)

and we also define the grand maximal function of f (with respect to N) as

MN( f )(x) = sup
ϕ∈FN

M∗
1( f ;ϕ)(x) .
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Having introduced a variety of smooth maximal operators useful in the develop-
ment of the theory, we proceed with the definition of Hardy spaces.

Definition 6.4.2. Let f be a bounded tempered distribution on Rn and let 0 < p <∞.
We say that f lies in the Hardy space H p(Rn) if the Poisson maximal function

M( f ;P)(x) = sup
t>0

|(Pt ∗ f )(x)| (6.4.6)

is in Lp(Rn). If this is the case, we set
∥

∥ f
∥

∥

H p =
∥

∥M( f ;P)
∥

∥

Lp .

At this point we don’t know whether these spaces coincide with any other known
spaces for some values of p. In the next theorem we show that this is the case when
1 < p < ∞.

Theorem 6.4.3. (a) Let 1 < p < ∞. Then every bounded tempered distribution f in
H p is an element of Lp. Moreover, there is a constant Cn,p such that for all such f
we have

∥

∥ f
∥

∥

Lp ≤
∥

∥ f
∥

∥

H p ≤Cn,p
∥

∥ f
∥

∥

Lp ,

and therefore H p(Rn) coincides with Lp(Rn).
(b) When p = 1, every element of H1 is an integrable function. In other words,
H1(Rn) ⊆ L1(Rn) and for all f ∈ H1 we have

∥

∥ f
∥

∥

L1 ≤
∥

∥ f
∥

∥

H1 . (6.4.7)

Proof. (a) Let f ∈ H p(Rn). The set {Pt ∗ f : t > 0} lies in a multiple of the unit ball
of Lp. By the Banach–Alaoglu–Bourbaki theorem there exists a sequence t j → 0
such that Ptj ∗ f converges to some Lp function f0 in the weak∗ topology of Lp. On
the other hand, we see that Pt ∗ϕ→ ϕ in S (Rn) as t → 0 for all ϕ in S (Rn). Thus

Pt ∗ f → f in S ′(Rn), (6.4.8)

and it follows that the distribution f coincides with the Lp function f0. Since the
family {Pt}t>0 is an approximate identity, Theorem 1.2.19 gives that

∥

∥Pt ∗ f − f
∥

∥

Lp → 0 as t → 0,

from which it follows that
∥

∥ f
∥

∥

Lp ≤
∥

∥sup
t>0

|Pt ∗ f |
∥

∥

Lp =
∥

∥ f
∥

∥

H p . (6.4.9)

The converse inequality is a consequence of the fact that

sup
t>0

|Pt ∗ f | ≤ M( f ) ,

where M is the Hardy–Littlewood maximal operator. (See Corollary 2.1.12.)
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(b) The case p = 1 requires only a small modification of the case p > 1. Embed-
ding L1 into the space of finite Borel measures M whose unit ball is weak∗ compact,
we can extract a sequence t j → 0 such that Ptj ∗ f converges to some measure μ in
the topology of measures. In view of (6.4.8), it follows that the distribution f can be
identified with the measure μ .

It remains to show that μ is absolutely continuous with respect to Lebesgue mea-
sure, which would imply that it coincides with some L1 function. Let |μ | be the total
variation of μ . We show that μ is absolutely continuous by showing that for all sub-
sets E of Rn we have |E|= 0 =⇒ |μ |(E) = 0. Given an ε > 0, there exists a δ > 0
such that for any measurable subset F of Rn we have

|F| < δ =⇒
∫

F
sup
t>0

|Pt ∗ f |dx < ε .

Given E with |E|= 0, we can find an open set U such that E ⊆U and |U |< δ . Then
for any g continuous function supported in U we have

∣

∣

∣

∣

∫

Rn
gdμ

∣

∣

∣

∣

= lim
j→∞

∣

∣

∣

∣

∫

Rn
g(x)(Ptj ∗ f )(x)dx

∣

∣

∣

∣

≤
∥

∥g
∥

∥

L∞

∫

U
sup
t>0

|Pt ∗ f |dx

< ε
∥

∥g
∥

∥

L∞ .

But we have

|μ(U)| = sup

{∣

∣

∣

∣

∫

Rn
gdμ

∣

∣

∣

∣

: g continuous supported in U with
∥

∥g
∥

∥

L∞ ≤ 1

}

,

which implies that |μ(U)| < ε . Since ε was arbitrary, it follows that |μ |(E) = 0;
hence μ is absolutely continuous with respect to Lebesgue measure. Finally, (6.4.7)
is a consequence of (6.4.9), which is also valid for p = 1. �

We may wonder whether H1 coincides with L1. We show in Theorem 6.7.4 that
elements of H1 have integral zero; thus H1 is a proper subspace of L1.

We now proceed to obtain some characterizations of these spaces.

6.4.2 Quasinorm Equivalence of Several Maximal Functions

It is a fact that all the maximal functions of the preceding subsection have compara-
ble Lp quasinorms for all 0 < p < ∞. This is the essence of the following theorem.

Theorem 6.4.4. Let 0 < p < ∞. Then the following statements are valid:
(a) There exists a Schwartz function Φ with

∫

RnΦ(x)dx �= 0 and a constant C1

(which does not depend on any parameter) such that
∥

∥M( f ;Φ)
∥

∥

Lp ≤C1
∥

∥ f
∥

∥

H p (6.4.10)



6.4 Hardy Spaces 41

for all bounded f ∈ S ′(Rn).
(b) For every a > 0 andΦ in S (Rn) there exists a constant C2(n, p,a,Φ) such that

∥

∥M∗
a( f ;Φ)

∥

∥

Lp ≤C2(n, p,a,Φ)
∥

∥M( f ;Φ)
∥

∥

Lp (6.4.11)

for all f ∈ S ′(Rn).
(c) For every a > 0, b > n/p, andΦ in S (Rn) there exists a constantC3(n, p,a,b,Φ)
such that

∥

∥M∗∗
b ( f ;Φ)

∥

∥

Lp ≤C3(n, p,a,b,Φ)
∥

∥M∗
a ( f ;Φ)

∥

∥

Lp (6.4.12)

for all f ∈ S ′(Rn).
(d) For every b > 0 and Φ in S (Rn) with

∫

RnΦ(x)dx �= 0 there exists a constant
C4(b,Φ) such that if N = [b]+ 1 we have

∥

∥MN( f )
∥

∥

Lp ≤C4(b,Φ)
∥

∥M∗∗
b ( f ;Φ)

∥

∥

Lp (6.4.13)

for all f ∈ S ′(Rn).
(e) For every positive integer N there exists a constant C5(n,N) such that every
tempered distribution f with

∥

∥MN( f )
∥

∥

Lp <∞ is a bounded distribution and satisfies

∥

∥ f
∥

∥

H p ≤C5(n,N)
∥

∥MN( f )
∥

∥

Lp , (6.4.14)

that is, it lies in the Hardy space H p.

We conclude that for f ∈ H p(Rn), the inequality in (6.4.14) can be reversed, and
therefore for any Schwartz functionΦ with

∫

RnΦ(x)dx �= 0, we have
∥

∥M∗
a ( f ;Φ)

∥

∥

Lp ≤C(a,n, p,Φ)
∥

∥ f
∥

∥

H p .

Consequently, there exists N ∈ Z+ large enough such that for f ∈ S ′(Rn) we have
∥

∥MN( f )
∥

∥

Lp ≈
∥

∥M∗∗
b ( f ;Φ)

∥

∥

Lp ≈
∥

∥M∗
a( f ;Φ)

∥

∥

Lp ≈
∥

∥M( f ;Φ)
∥

∥

Lp ≈
∥

∥ f
∥

∥

H p

for all Schwartz functions Φ with
∫

RnΦ(x)dx �= 0 and constants that depend only
on Φ,a,b,n, p. This furnishes a variety of characterizations for Hardy spaces.

The proof of this theorem is based on the following lemma.

Lemma 6.4.5. Let m ∈ Z+ and let Φ in S (Rn) satisfy
∫

RnΦ(x)dx = 1. Then there
exists a constant C0(Φ,m) such that for any Ψ in S (Rn), there exist Schwartz
functionsΘ (s), 0 ≤ s ≤ 1, with the properties

Ψ(x) =
∫ 1

0
(Θ (s) ∗Φs)(x)ds (6.4.15)

and
∫

Rn
(1 + |x|)m|Θ (s)(x)|dx ≤C0(Φ,m)sm

Nm(Ψ). (6.4.16)

Proof. We start with a smooth function ζ supported in [0,1] that satisfies
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0 ≤ ζ (s) ≤ 2sm

m!
for all 0 ≤ s ≤ 1 ,

ζ (s) =
sm

m!
for all 0 ≤ s ≤ 1

2
,

drζ
dtr (1) = 0 for all 0 ≤ r ≤ m+ 1 .

We define

Θ (s) = Ξ (s)− dm+1ζ (s)
dsm+1

m+1 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs ∗Ψ , (6.4.17)

where

Ξ (s) = (−1)m+1ζ (s)
∂m+1

∂ sm+1

(

m+2 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs

)

∗Ψ ,

and we claim that (6.4.15) holds for this choice ofΘ (s). To verify this assertion, we
apply m+ 1 integration by parts to write

∫ 1

0
Θ (s) ∗Φs ds =

∫ 1

0
Ξ (s) ∗Φs ds+

dmζ (s)
dsm (0) lim

s→0+

(

m+2 terms
︷ ︸︸ ︷

Φ ∗ · · · ∗Φ
)

s ∗Ψ

− (−1)m+1
∫ 1

0
ζ (s)

∂m+1

∂ sm+1

(

m+2 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs

)

∗Ψ ds ,

noting that all the boundary terms vanish except for the one in the first integration
by parts at s = 0. The first and the third terms in the previous expression on the right
add up to zero, while the second term is equal toΨ , since Φ has integral one, which
implies that the family {(Φ ∗ · · · ∗Φ)s}s>0 is an approximate identity as s → 0.
Therefore, (6.4.15) holds.

We now prove estimate (6.4.16). LetΩ be the (m+1)-fold convolution ofΦ . For
the second term on the right in (6.4.17), we note that the (m+1)st derivative of ζ (s)
vanishes on

[

0, 1
2

]

, so that we may write

∫

Rn
(1 + |x|)m

∣

∣

∣

dm+1ζ (s)
dsm+1

∣

∣

∣ |Ωs ∗Ψ(x)|dx

≤ Cm χ[ 1
2 ,1](s)

∫

Rn
(1 + |x|)m

[
∫

Rn

1
sn

∣

∣Ω( x−y
s )
∣

∣ |Ψ(y)|dy

]

dx

≤ Cm χ[ 1
2 ,1](s)

∫

Rn

∫

Rn
(1 + |y + sx|)m|Ω(x)| |Ψ (y)|dydx

≤ Cm χ[ 1
2 ,1](s)

∫

Rn

∫

Rn
(1 + |sx|)m|Ω(x)|(1 + |y|)m|Ψ (y)|dydx

≤ Cm χ[ 1
2 ,1](s)

(
∫

Rn
(1 + |x|)m|Ω(x)|dx

)(
∫

Rn
(1 + |y|)m|Ψ (y)|dy

)

≤ C′
0(Φ,m)sm

Nm(Ψ ) ,
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since χ[ 1
2 ,1](s) ≤ 2msm. To obtain a similar estimate for the first term on the right in

(6.4.17), we argue as follows:

∫

Rn
(1 + |x|)m|ζ (s)|

∣

∣

∣

dm+1(Ωs ∗Ψ)
dsm+1 (x)

∣

∣

∣dx

=
∫

Rn
(1 + |x|)m |ζ (s)|

∣

∣

∣

∣

dm+1

dsm+1

∫

Rn

1
snΩ

(x− y
s

)

Ψ(y)dy

∣

∣

∣

∣

dx

=
∫

Rn
(1 + |x|)m |ζ (s)|

∣

∣

∣

∣

∫

Rn
Ω(y)

dm+1Ψ(x− sy)
dsm+1 dy

∣

∣

∣

∣

dx

≤C′
m

∫

Rn
(1 + |x|)m |ζ (s)|

∫

Rn
|Ω(y)|

[

∑
|α |≤m+1

|∂αΨ(x− sy)| |y||α |
]

dydx

≤C′
m|ζ (s)|

∫

Rn

∫

Rn
(1 + |x + sy|)m|Ω(y)| ∑

|α |≤m+1

|∂αΨ (x)|(1 + |y|)m+1 dydx

≤C′
m|ζ (s)|

∫

Rn
(1 + |y|)m+1 |Ω(y)|(1 + |y|)m dy

∫

Rn
(1 + |x|)m ∑

|α |≤m+1

|∂αΨ(x)|dx

≤C′′
0 (Φ,m)sm

Nm(Ψ ) .

We now set C0(Φ,m) = C′
0(Φ,m)+C′′

0 (Φ,m) to conclude the proof of (6.4.16). �

Next, we discuss the proof of Theorem 6.4.4.

Proof. (a) We pick a continuous and integrable function ψ(s) on the interval [1,∞)
that decays faster than the reciprocal of any polynomial (i.e., |ψ(s)| ≤CNs−N for all
N > 0) such that

∫ ∞

1
skψ(s)ds =

{

1 if k = 0,

0 if k = 1,2,3, . . . .
(6.4.18)

Such a function exists; in fact, we may take

ψ(s) =
e
π

1
s

Im
(

e(
√

2
2 −i

√
2

2 )(s−1)
1
4
)

. (6.4.19)

See Exercise 6.4.4. We now define a function

Φ(x) =
∫ ∞

1
ψ(s)Ps(x)ds , (6.4.20)

where Ps is the Poisson kernel. The Fourier transformΦ is

̂Φ(ξ ) =
∫ ∞

1
ψ(s)̂Ps(ξ )ds =

∫ ∞

1
ψ(s)e−2πs|ξ | ds

(cf. Exercise 2.2.11), which is easily seen to be rapidly decreasing as |ξ | → ∞.
The same is true for all the derivatives of ̂Φ . The function ̂Φ is clearly smooth on
Rn \ {0}. Moreover,
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∂ j ̂Φ(ξ ) =
L−1

∑
k=0

(−2π)k+1 |ξ |k
k!
ξ j

|ξ |

∫ ∞

1
sk+1ψ(s)ds+ O(|ξ |L) = O(|ξ |L)

as |ξ | → 0, which implies that the distributional derivative ∂ j ̂Φ is continuous at the
origin. Since

∂αξ (e−2πs|ξ |) = s|α |pα(ξ )|ξ |−mα e−2πs|ξ |

for some mα ∈ Z+ and some polynomial pα , choosing L sufficiently large gives
that every derivative of ̂Φ is also continuous at the origin. We conclude that the
function ̂Φ is in the Schwartz class, and thus so is Φ . It also follows from (6.4.18)
and (6.4.20) that

∫

Rn
Φ(x)dx = 1 �= 0 .

Finally, we have the estimate

M( f ;Φ)(x) = sup
t>0

|(Φt ∗ f )(x)|

= sup
t>0

∣

∣

∣

∣

∫ ∞

1
ψ(s)( f ∗Pts)(x)ds

∣

∣

∣

∣

≤
∫ ∞

1
|ψ(s)|dsM( f ;P)(x) ,

and the required conclusion follows with C1 =
∫ ∞

1 |ψ(s)|ds. Note that we actually
obtained the stronger pointwise estimate

M( f ;Φ) ≤C1 M( f ;P)

rather than (6.4.10).

(b) The control of the nontagential maximal function M∗
a (· ;Φ) in terms of the

vertical maximal function M( · ;Φ) is the hardest and most technical part of the
proof. For matters of exposition, we present the proof only in the case that a = 1
and we note that the case of general a > 0 presents only notational differences. We
derive (6.4.11) as a consequence of the estimate

(
∫

Rn
M∗

1 ( f ;Φ)ε,N(x)pdx

) 1
p

≤C2(n, p,N,Φ)
∥

∥M( f ;Φ)
∥

∥

Lp , (6.4.21)

where N is a large enough integer depending on f , 0 < ε < 1, and

M∗
1( f ;Φ)ε,N (x) = sup

0<t< 1
ε

sup
|y−x|≤t

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N .

Let us a fix an element f in S ′(Rn) such that M( f ;Φ) ∈ Lp. We first show that
M∗

1 ( f ;Φ)ε,N lies in Lp(Rn)∩L∞(Rn). Indeed, using (2.3.22) (with α = 0), we obtain
the following estimate for some constants Cf , m, and l (depending on f ):
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|(Φt ∗ f )(y)| ≤ Cf ∑
|β |≤l

sup
z∈Rn

(|y|m + |z|m)|(∂β ˜Φt)(z)|

≤ Cf (1 + |y|m) ∑
|β |≤l

sup
z∈Rn

(1 + |z|m)|(∂βΦt)(−z)|

≤ Cf
(1 + |y|m)

min(tn,tn+l) ∑|β |≤l

sup
z∈Rn

(1 + |z|m)|(∂βΦ)(−z/t)|

≤ Cf
(1 + |y|)m

min(tn,tn+l)
(1 + tm) ∑

|β |≤l

sup
z∈Rn

(1 + |z/t|m)|(∂βΦ)(−z/t)|

≤ C( f ,Φ)(1 + ε|y|)mε−m(1 + tm)(t−n + t−n−l) .

Multiplying by ( t
t+ε )

N(1 + ε|y|)−N for some 0 < t < 1
ε and |y− x|< t yields

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N ≤C( f ,Φ)

ε−m(1 + ε−m)(εn−N + εn+l−N)
(1 + ε|y|)N−m ,

and using that 1 + ε|y| ≥ 1
2(1 + ε|x|), we obtain for some C( f ,Φ,ε,n, l,m,N) < ∞,

M∗
1 ( f ;Φ)ε,N (x) ≤ C( f ,Φ,ε,n, l,m,N)

(1 + ε|x|)N−m .

Taking N > (m+ n)/p, we deduce that M∗
1 ( f ;Φ)ε,N lies in Lp(Rn)∩L∞(Rn).

We now introduce a parameter L > 0 and functions

U( f ;Φ)ε,N(x) = sup
0<t< 1

ε

sup
|y−x|<t

t
∣

∣∇(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

and

V ( f ;Φ)ε,N,L(x) = sup
0<t< 1

ε

sup
y∈Rn

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

(

t
t + |x− y|

)L

.

We fix an integer L > n/p. We need the norm estimate
∥

∥V ( f ;Φ)ε,N,L
∥

∥

Lp ≤Cn,p
∥

∥M∗
1 ( f ;Φ)ε,N

∥

∥

Lp (6.4.22)

and the pointwise estimate

U( f ;Φ)ε,N ≤ A(Φ,N,n, p)V ( f ;Φ)ε,N,L , (6.4.23)

where
A(Φ,N,n, p) = 2L C0(∂ jΦ;N + L)NN+L(∂ jΦ) .

To prove (6.4.22) we observe that when z ∈ B(y,t) ⊆ B(x, |x− y|+ t) we have
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∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N ≤ M∗

1( f ;Φ)ε,N (z) ,

from which it follows that for any 0 < q < ∞ and y ∈ Rn,

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

≤
(

1
|B(y,t)|

∫

B(y,t)
M∗

1 ( f ;Φ)ε,N (z)q dz

) 1
q

≤
(

|x− y|+ t
t

) n
q
(

1
|B(x, |x− y|+ t)|

∫

B(x,|x−y|+t)
M∗

1( f ;Φ)ε,N (z)q dz

) 1
q

≤
(

|x− y|+ t
t

)L

M
(

[

M∗
1 ( f ;Φ)ε,N

]q
) 1

q (x) ,

where we used that L > n/p. We now take 0 < q < p and we use the boundedness
of the Hardy–Littlewood maximal operator M on Lp/q to obtain (6.4.22).

In proving (6.4.23), we may assume that Φ has integral 1; otherwise we can
multiply Φ by a suitable constant to arrange for this to happen. We note that

t
∣

∣∇(Φt ∗ f )
∣

∣=
∣

∣(∇Φ)t ∗ f
∣

∣≤
√

n
n

∑
j=1

|(∂ jΦ)t ∗ f | ,

and it suffices to work with each partial derivative ∂ jΦ of Φ . Using Lemma 6.4.5
we write

∂ jΦ =
∫ 1

0
Θ (s) ∗Φs ds

for suitable Schwartz functionsΘ (s). Fix x ∈ Rn, t > 0, and y with |y−x|< t < 1/ε .
Then we have

∣

∣

(

(∂ jΦ)t ∗ f
)

(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

=
( t

t + ε

)N 1
(1 + ε|y|)N

∣

∣

∣

∣

∫ 1

0

(

(Θ (s))t ∗Φst ∗ f
)

(y)ds

∣

∣

∣

∣

≤
( t

t + ε

)N ∫ 1

0

∫

Rn
t−n
∣

∣Θ (s)(t−1z)
∣

∣

∣

∣

(

Φst ∗ f
)

(y− z)
∣

∣

(1 + ε|y|)N dz ds .

(6.4.24)

Inserting the factor 1 written as

(

ts
ts+ |x− (y− z)|

)L( ts
ts+ ε

)N( ts+ |x− (y− z)|
ts

)L( ts+ ε
ts

)N

in the preceding z-integral and using that
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1
(1 + ε|y|)N ≤ (1 + ε|z|)N

(1 + ε|y− z|)N

and the fact that |x− y|< t < 1/ε , we obtain the estimate

( t
t + ε

)N ∫ 1

0

∫

Rn
t−n
∣

∣Θ (s)(t−1z)
∣

∣

∣

∣

(

Φst ∗ f
)

(y− z)
∣

∣

(1 + ε|y|)N dzds

≤ V ( f ;Φ)ε,N,L(x)
∫ 1

0

∫

Rn
(1 + ε|z|)N

(

ts+ |x− (y− z)|
ts

)L

t−n
∣

∣Θ (s)(t−1z)
∣

∣dz
ds
sN

≤ V ( f ;Φ)ε,N,L(x)
∫ 1

0

∫

Rn
s−L−N(1 + εt|z|)N(s+ 1 + |z|)L

∣

∣Θ (s)(z)
∣

∣dzds

≤ 2L C0(∂ jΦ;N + L)NN+L(∂ jΦ)V ( f ;Φ)ε,N,L(x)

in view of conclusion (6.4.16) of Lemma 6.4.5. Combining this estimate with
(6.4.24), we deduce (6.4.23). Having established both (6.4.22) and (6.4.23), we con-
clude that

∥

∥U( f ;Φ)ε,N
∥

∥

Lp ≤Cn,p A(Φ,N,n, p)
∥

∥M∗
1 ( f ;Φ)ε,N

∥

∥

Lp . (6.4.25)

We now set

Eε =
{

x ∈ Rn : U( f ;Φ)ε,N (x) ≤ KM∗
1( f ;Φ)ε,N (x)

}

for some constant K to be determined shortly. With A = A(Φ,N,n, p) we have

∫

(Eε)c

[

M∗
1 ( f ;Φ)ε,N (x)

]p
dx ≤ 1

K p

∫

(Eε)c

[

U( f ;Φ)ε,N (x)
]p

dx

≤ 1
K p

∫

Rn

[

U( f ;Φ)ε,N(x)
]p

dx

≤ Cp
n,p Ap

K p

∫

Rn

[

M∗
1 ( f ;Φ)ε,N (x)

]p
dx

≤ 1
2

∫

Rn

[

M∗
1( f ;Φ)ε,N (x)

]p
dx ,

(6.4.26)

provided we choose K such that K p = 2Cp
n,p Ap. Obviously K = K(Φ,N,n, p), i.e.,

it depends on all these variables, in particular on N, which depends on f .
It remains to estimate the contribution of the integral of

[

M∗
1( f ;Φ)ε,N (x)

]p
over

the set Eε . We claim that the following pointwise estimate is valid:

M∗
1( f ;Φ)ε,N (x) ≤Cn,N,K M

(

M( f ;Φ)r)
1
q (x) (6.4.27)

for any x ∈ Eε and 0 < q < ∞. Note that Cn,N,K depends on K. To prove (6.4.27) we
fix x ∈ Eε and we also fix y such that |y− x|< t.

By the definition of M∗
1( f ;Φ)ε,N (x) there exists a point (y0, t) ∈ Rn+1

+ such that
|x− y0| < t < 1

ε and
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∣

∣(Φt ∗ f )(y0)
∣

∣

( t
t + ε

)N 1
(1 + ε|y0|)N ≥ 1

2
M∗

1( f ;Φ)ε,N (x) . (6.4.28)

Also by the definitions of Eε and U( f ;Φ)ε,N , for any x ∈ Eε we have

t
∣

∣∇(Φt ∗ f )(ξ )
∣

∣

( t
t + ε

)N 1
(1 + ε|ξ |)N ≤ K M∗

1( f ;Φ)ε,N (x) (6.4.29)

for all ξ satisfying |ξ − x|< t < 1
ε . It follows from (6.4.28) and (6.4.29) that

t
∣

∣∇(Φt ∗ f )(ξ )
∣

∣≤ 2K
∣

∣(Φt ∗ f )(y0)
∣

∣

(

1 + ε|ξ |
1 + ε|y0|

)N

(6.4.30)

for all ξ satisfying |ξ − x| < t < 1
ε . We let z be such that |z− x| < t. Applying the

mean value theorem and using (6.4.30), we obtain, for some ξ between y0 and z,
∣

∣(Φt ∗ f )(z)− (Φt ∗ f )(y0)
∣

∣ =
∣

∣∇(Φt ∗ f )(ξ )
∣

∣ |z− y0|

≤ 2K
t

∣

∣(Φt ∗ f )(ξ )
∣

∣

(

1 + ε|ξ |
1 + ε|y0|

)N

|z− y0|

≤ 2N+1K
t

∣

∣(Φt ∗ f )(y0)
∣

∣ |z− y0|

≤ 1
2

∣

∣(Φt ∗ f )(y0)
∣

∣ ,

provided z also satisfies |z− y0| < 2−N−2K−1t in addition to |z− x| < t. Therefore,
for z satisfying |z− y0| < 2−N−2K−1t and |z− x|< t we have

∣

∣(Φt ∗ f )(z)
∣

∣≥ 1
2

∣

∣(Φt ∗ f )(y0)
∣

∣≥ 1
4

M∗
1( f ;Φ)ε,N (x) ,

where the last inequality uses (6.4.28). Thus we have

M
(

M( f ;Φ)q)(x) ≥ 1
|B(x,t)|

∫

B(x,t)

[

M( f ;Φ)(w)
]q

dw

≥ 1
|B(x,t)|

∫

B(x,t)∩B(y0,2−N−2K−1t)

[

M( f ;Φ)(w)
]q

dw

≥ 1
|B(x,t)|

∫

B(x,t)∩B(y0,2−N−2K−1t)

1
4q

[

M∗
1( f ;Φ)ε,N (x)

]q
dw

≥ |B(x,t)∩B(y0,2−N−2K−1t)|
|B(x,t)|

1
4q

[

M∗
1( f ;Φ)ε,N (x)

]r

≥ Cn,N,K4−q[M∗
1( f ;Φ)ε,N (x)

]q
,

where we used the simple geometric fact that if |x− y0| ≤ t and δ > 0, then
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|B(x,t)∩B(y0,δ t)|
|B(x,t)| ≥ cn,δ > 0 ,

the minimum of this constant being obtained when |x− y0| = t. See Figure 6.1.

Fig. 6.1 The ball B(y0,δ t)
captures at least a fixed pro-
portion of the ball B(x, t).

. .t

x
y
0tδ

This proves (6.4.27). Taking r < p and applying the boundedness of the Hardy–
Littlewood maximal operator yields

∫

Eε

[

M∗
1 ( f ;Φ)ε,N(x)

]p
dx ≤C′

Φ ,N,K,n,p

∫

Rn
M( f ;Φ)(x)p dx . (6.4.31)

Combining this estimate with (6.4.26), we obtain

∫

Rn

[

M∗
1 ( f ;Φ)ε,N

]p
dx ≤Cp

Φ ,N,K,n,p

∫

Rn
M( f ;Φ)p dx +

1
2

∫

Rn

[

M∗
1 ( f ;Φ)ε,N

]p
dx ,

and using the fact (obtained earlier)
∥

∥M∗
1( f ;Φ)ε,N

∥

∥

Lp < ∞, we obtain the required
conclusion (6.4.11). This proves the inequality

∥

∥M∗
1( f ;Φ)ε,N

∥

∥

Lp ≤ 21/pCΦ ,N,K,n,p
∥

∥M( f ;Φ)
∥

∥

Lp . (6.4.32)

The previous constant depends on f but is independent of ε . Notice that

M∗
1 ( f ;Φ)ε,N (x) ≥ 2−N

(1 + ε|x|)N sup
0<t<1/ε

( t
t + ε

)N
sup

|y−x|<t

∣

∣(Φt ∗ f )(y)
∣

∣

and that the preceding expression on the right increases to

2−NM∗
1 ( f ;Φ)(x)

as ε ↓ 0. Since the constant in (6.4.32) does not depend on ε , an application of the
Lebesgue monotone convergence theorem yields

∥

∥M∗
1( f ;Φ)

∥

∥

Lp ≤ 2N+ 1
p CΦ ,N,K,n,p

∥

∥M( f ;Φ)
∥

∥

Lp . (6.4.33)

The problem with this estimate is that the finite constant 2NCΦ ,N,K,n,p depends on
N and thus on f . However, we have managed to show that under the assumption
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∥

∥M( f ;Φ)
∥

∥

Lp <∞, one must necessarily have
∥

∥M∗
1( f ;Φ)

∥

∥

Lp <∞ . This is a signifi-
cant observation that allows us now to repeat the preceding argument from the point
where the functions U( f ;φ)ε,N and V ( f ;φ)ε,N,L are introduced, setting ε = N = 0.
Since the resulting constant no longer depends on the tempered distribution f , the
required conclusion follows.

(c) As usual, B(x,R) denotes a ball centered at x with radius R. It follows from
the definition of M∗

a( f ;Φ) that

|(Φt ∗ f )(y)| ≤ M∗
a( f ;Φ)(z) if z ∈ B(y,at) .

But the ball B(y,at) is contained in the ball B(x, |x− y|+ at); hence it follows that

|(Φt ∗ f )(y)| n
b ≤ 1

|B(y,at)|

∫

B(y,at)
M∗

a( f ;Φ)(z)
n
b dz

≤ 1
|B(y,at)|

∫

B(x,|x−y|+at)
M∗

a( f ;Φ)(z)
n
b dz

≤
(

|x− y|+ at
at

)n

M
(

M∗
a( f ;Φ)

n
b
)

(x)

≤ max(1,a−n)
(

|x− y|
t

+ 1

)n

M
(

M∗
a ( f ;Φ)

n
b
)

(x) ,

from which we conclude that for all x ∈ Rn we have

M∗∗
b ( f ;Φ)(x) ≤ max(1,a−n)

{

M
(

M∗
a( f ;Φ)

n
b
)

(x)
} b

n
.

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy–Littlewood maximal operator M on Lpb/n, we obtain the required conclusion
(6.4.12).

(d) In proving (d) we may replace b by the integer b0 = [b] + 1. Let Φ be a
Schwartz function with nonvanishing integral. MultiplyingΦ by a constant, we can
assume thatΦ has integral equal to 1. Applying Lemma 6.4.5 with m = b0, we write
any function ϕ in FN as

ϕ(y) =
∫ 1

0
(Θ (s) ∗Φs)(y)ds

for some choice of Schwartz functionsΘ (s). Then we have

ϕt(y) =
∫ 1

0
((Θ (s))t ∗Φts)(y)ds

for all t > 0. Fix x ∈ Rn. Then for y in B(x,t) we have
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|(ϕt ∗ f )(y)| ≤
∫ 1

0

∫

Rn
|(Θ (s))t(z)| |(Φts ∗ f )(y− z)|dz ds

≤
∫ 1

0

∫

Rn
|(Θ (s))t(z)|M∗∗

b0
( f ;Φ)(x)

(

|x− (y− z)|
st

+ 1

)b0

dz ds

≤
∫ 1

0
s−b0

∫

Rn
|(Θ (s))t(z)|M∗∗

b0
( f ;Φ)(x)

(

|x− y|
t

+
|z|
t

+ 1

)b0

dz ds

≤ 2b0M∗∗
b0

( f ;Φ)(x)
∫ 1

0
s−b0

∫

Rn
|Θ (s)(w)|

(

|w|+ 1
)b0 dw ds

≤ 2b0M∗∗
b0

( f ;Φ)(x)
∫ 1

0
s−b0C0(Φ,b0)sb0 Nb0(ϕ)ds ,

where we applied conclusion (6.4.16) of Lemma 6.4.5. Setting N = b0 = [b]+1, we
obtain for y in B(x,t) and ϕ ∈ FN ,

|(ϕt ∗ f )(y)| ≤ 2b0C0(Φ,b0)M∗∗
b0

( f ;Φ)(x) .

Taking the supremum over all y in B(x,t), over all t > 0, and over all ϕ in FN , we
obtain the pointwise estimate

MN( f )(x) ≤ 2b0C0(Φ,b0)M∗∗
b0

( f ;Φ)(x) , x ∈ Rn,

where N = b0 + 1. This clearly yields (6.4.13) if we set C4 = 2b0C0(Φ,b0).

(e) We fix an f ∈ S ′(Rn) that satisfies
∥

∥MN( f )
∥

∥

Lp < ∞ for some fixed positive
integer N. To show that f is a bounded distribution, we fix a Schwartz function ϕ
and we observe that for some positive constant c = cϕ , we have that cϕ is an element
of FN and thus M∗

1( f ;cϕ) ≤ MN( f ). Then

cp |(ϕ ∗ f )(x)|p ≤ inf
|y−x|≤1

sup
|z−y|≤1

|(cϕ ∗ f )(z)|p

≤ inf
|y−x|≤1

M∗
1( f ;cϕ)(y)p

≤ 1
vn

∫

|y−x|≤1
M∗

1( f ;cϕ)(y)p dy

≤ 1
vn

∫

Rn
M∗

1( f ;cϕ)(y)p dy

≤ 1
vn

∫

Rn
MN( f )(y)p dy < ∞ ,

which implies that ϕ ∗ f is a bounded function. We conclude that f is a bounded
distribution. We now proceed to show that f is an element of H p. We fix a smooth
function with compact support θ such that

θ (x) =

{

1 if |x| < 1,

0 if |x| > 2.
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We observe that the identity

P(x) = P(x)θ (x)+
∞

∑
k=1

(

θ (2−kx)P(x)−θ (2−(k−1)x)P(x)
)

= P(x)θ (x)+
Γ ( n+1

2 )

π
n+1

2

∞

∑
k=1

2−k
(

θ ( ·)−θ (2( ·))
(2−2k + | · |2) n+1

2

)

2k
(x)

is valid for all x ∈ Rn. Setting

Φ(k)(x) =
(

θ (x)−θ (2x)
) 1

(2−2k + |x|2) n+1
2

,

we note that for some fixed constant c0 = c0(n,N), the functions c0 θ P and c0Φ(k)

lie in FN uniformly in k = 1,2,3, . . . . Combining this observation with the identity
for P(x) obtained earlier, we conclude that

sup
t>0

|Pt ∗ f | ≤ sup
t>0

|(θP)t ∗ f |+ 1
c0

Γ ( n+1
2 )

π
n+1

2

sup
t>0

∞

∑
k=1

2−k
∣

∣(c0Φ(k))2kt ∗ f
∣

∣

≤ C5(n,N)MN( f ) ,

which proves the required conclusion (6.4.14).
We observe that the last estimate also yields the stronger estimate

M∗
1( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Pt ∗ f )(y)| ≤C5(n,N)MN( f )(x) . (6.4.34)

It follows that the quasinorm
∥

∥M∗
1( f ;P)

∥

∥

Lp(Rn) is also equivalent to
∥

∥ f
∥

∥

H p . This
fact is very useful. �

Remark 6.4.6. To simplify the understanding of the equivalences just proved, a
first-time reader may wish to define the H p quasinorm of a distribution f as

∥

∥ f
∥

∥

H p =
∥

∥M∗
1( f ;P)

∥

∥

Lp

and then study only the implications (a) =⇒ (c), (c) =⇒ (d), (d) =⇒ (e), and
(e) =⇒ (a) in the proof of Theorem 6.4.4. In this way one avoids passing through
the statement in part (b). For many applications, the identification of

∥

∥ f
∥

∥

H p with
∥

∥M∗
1 ( f ;Φ)

∥

∥

Lp for some Schwartz functionΦ (with nonvanishing integral) suffices.
We also remark that the proof of Theorem 6.4.4 yields

∥

∥ f
∥

∥

H p(Rn) ≈
∥

∥MN( f )
∥

∥

Lp(Rn) ,

where N = [ n
p ]+ 1.
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6.4.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 6.4.4. In many appli-
cations we need to be working with dense subspaces of H p. It turns out that both
H p ∩L2 and H p ∩L1 are dense in H p.

Proposition 6.4.7. Let 0 < p ≤ 1 and let r satisfy p ≤ r ≤∞. Then Lr ∩H p is dense
in H p. Hence, H p ∩L2 and H p ∩L1 are dense in H p.

Proof. Let f be a distribution in H p(Rn). Recall the Poisson kernel P(x) and set
N = [ n

p ]+ 1. For any fixed x ∈ Rn and t > 0 we have

|(Pt ∗ f )(x)| ≤ M∗
1 ( f ;P)(y) ≤CMN( f )(y) (6.4.35)

for any |y− x| ≤ t. Indeed, the first estimate in (6.4.35) follows from the definition
of M∗

1( f ;P), and the second estimate by (6.4.34). Raising (6.4.35) to the power p
and averaging over the ball B(x,t), we obtain

|(Pt ∗ f )(x)|p ≤ Cp

vntn

∫

B(x,t)
MN( f )(y)p dy ≤ Cp

1

tn

∥

∥ f‖p
H p .

It follows that the function Pt ∗ f is in L∞(Rn) with norm at most a constant multiple
of t−n/p

∥

∥ f‖H p . Moreover, this function is also in Lp(Rn), since it is controlled by
M( f ;P). Therefore, the functions Pt ∗ f lie in Lr(Rn) for all r ≤ p ≤ ∞. It remains
to show that Pt ∗ f also lie in H p and that Pt ∗ f → f in H p as t → 0.

To see that Pt ∗ f lies in H p, we use the semigroup formula Pt ∗Ps = Pt+s for the
Poisson kernel, which is a consequence of the fact that ̂Pt(ξ ) = e−2πt|ξ | by applying
the Fourier transform. Therefore, for any t > 0 we have

sup
s>0

|Ps ∗Pt ∗ f | = sup
s>0

|Ps+t ∗ f | ≤ sup
s>0

|Ps ∗ f | ,

which implies that
∥

∥Pt ∗ f
∥

∥

H p ≤
∥

∥ f
∥

∥

H p

for all t > 0. We now need to show that Pt ∗ f → f in H p as t → 0. This will be a
consequence of the Lebesgue dominated convergence theorem once we know that

sup
s>0

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| → 0 as t → 0 (6.4.36)

pointwise for all x ∈ Rn and also

sup
s>0

|Ps ∗Pt ∗ f −Ps ∗ f | ≤ 2sup
s>0

|Ps ∗ f | ∈ Lp(Rn) . (6.4.37)

Statement (6.4.37) is a trivial consequence of the Poisson semigroup formula. As
far as (6.4.36) is concerned, we note that for all x ∈ Rn the function

s �→ |(Ps ∗Pt ∗ f )(x)− (Ps ∗ f )(x)| = |(Ps+t ∗ f )(x)− (Ps ∗ f )(x)|
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is bounded by a constant multiple of s−n/p and therefore tends to zero as s → ∞.
Given any ε > 0, there exists an M > 0 such that for all t > 0 we have

sup
s>M

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| < ε
2

. (6.4.38)

Moreover, the function t �→ sup0≤s≤M |(Ps ∗Pt ∗ f −Ps ∗ f )(x)| is continuous in t.
Therefore, there exists a t0 > 0 such that for t < t0 we have

sup
0≤s≤M

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| < ε
2

. (6.4.39)

Combining (6.4.38) and (6.4.39) proves (6.4.36). �

Next we observe the following consequence of Theorem 6.4.4.

Corollary 6.4.8. For any two Schwartz functions Φ andΘ with nonvanishing inte-
gral we have

∥

∥sup
t>0

|Θt ∗ f |
∥

∥

Lp ≈
∥

∥sup
t>0

|Φt ∗ f |
∥

∥

Lp ≈
∥

∥ f
∥

∥

H p

for all f ∈ S ′(Rn), with constants depending only on n, p,Φ , andΘ .

Proof. See the discussion after Theorem 6.4.4. �

Next we define a norm on Schwartz functions relevant in the theory of Hardy
spaces:

NN(ϕ ;x0,R) =
∫

Rn

(

1 +
∣

∣

∣

x− x0

R

∣

∣

∣

)N

∑
|α |≤N+1

R|α ||∂αϕ(x)|dx .

Note that NN(ϕ ;0,1) = NN(ϕ).

Corollary 6.4.9. (a) For any 0 < p ≤ 1, any f ∈ H p(Rn), and any ϕ ∈ S (Rn) we
have

∣

∣

〈

f ,ϕ
〉∣

∣≤ NN(ϕ) inf
|z|≤1

MN( f )(z) , (6.4.40)

where N = [ n
p ]+ 1. More generally, for any x0 ∈ Rn and R > 0 we have

∣

∣

〈

f ,ϕ
〉∣

∣≤ NN(ϕ ;x0,R) inf
|z−x0|≤R

MN( f )(z) . (6.4.41)

(b) Let 0 < p ≤ 1 and p ≤ r ≤ ∞. For any f ∈ H p we have the estimate
∥

∥ϕ ∗ f
∥

∥

Lr ≤C(p,n)NN(ϕ)
∥

∥ f‖H p ,

where N = [n/p]+ 1.

Proof. (a) Set ψ(x) = ϕ(−Rx + x0). It follows directly from Definition 6.4.1 that
for any fixed z with |z− x0| ≤ R we have
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∣

∣

〈

f ,ϕ
〉∣

∣ = Rn|( f ∗ψR)(x0)|
≤ sup

y: |y−z|≤R
Rn|( f ∗ψR)(y)|

≤ Rn
[
∫

Rn
(1 + |w|)N ∑

|α |≤N+1

|∂αψ(w)|dw

]

MN( f )(z) ,

from which the second assertion in the corollary follows easily by the change of
variables x = −Rw + x0. Taking the infimum over all z with |z− x0| ≤ R yields the
required conclusion.

(b) For any fixed x ∈ Rn and t > 0 we have

|(ϕ ∗ f )(x)| ≤ NN(ϕ)M∗
1

(

f ;
ϕ

NN(ϕ)

)

(y) ≤ NN(ϕ)MN( f )(y) (6.4.42)

for all y satisfying |y− x| ≤ 1. Hence

|(ϕ ∗ f )(x)|p ≤ NN(ϕ)p

|B(x,1)|

∫

B(x,1)
MN( f )p(y)dy ≤ NN(ϕ)pCp

p,n

∥

∥ f
∥

∥

p
H p .

This implies that
∥

∥ϕ ∗ f
∥

∥

L∞ ≤ Cp,nNN(ϕ)
∥

∥ f
∥

∥

H p . Choosing y = x in (6.4.42) and
then taking Lp quasinorms yields a similar estimate for

∥

∥ϕ ∗ f
∥

∥

Lp . By interpolation
we deduce

∥

∥ϕ ∗ f
∥

∥

Lr ≤ NN(ϕ)
∥

∥ f
∥

∥

H p . �
Proposition 6.4.10. Let 0 < p ≤ 1. Then the following statements are valid:
(a) Convergence in H p implies convergence in S ′.
(b) H p is a complete quasinormed metrizable space.

Proof. Part (a) says that if a sequence f j tends to f in H p(Rn), then f j → f in
S ′(Rn). But this easily follows from the estimate

∣

∣

〈

f ,ϕ
〉∣

∣≤Cϕ inf
|z|≤1

MN( f )(z) ≤ Cϕ
vn

∫

Rn
MN( f )p dz ≤CϕCn,p

∥

∥ f
∥

∥

p
H p ,

which is a direct consequence of (6.4.40) for all ϕ in S (Rn). As before, here N =
[ n

p ]+ 1.

To obtain the statement in (b), we first observe that the map ( f ,g) �→
∥

∥ f −g
∥

∥

p
H p

is a metric on H p that generates the same topology as the quasinorm f �→
∥

∥ f
∥

∥

H p .
To show that H p is a complete space, it suffices to show that for any sequence of
functions f j that satisfies

∑
j

∫

Rn
MN( f j)p dx < ∞ ,

the series ∑ j f j converges in H p(Rn). The partial sums of this series are Cauchy in
H p(Rn) and therefore are Cauchy in S ′(Rn) by part (a). It follows that the sequence
∑k
−k f j converges to some tempered distribution f in S ′(Rn). Sublinearity gives
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∫

Rn
MN( f )p dx =

∫

Rn
MN

(

∑
j

f j

)p
dx ≤∑

j

∫

Rn
MN( f j)p dx < ∞ ,

which implies that f ∈ H p. Finally,

∫

Rn
MN

(

f −
k

∑
j=−k

f j

)p
dx ≤ ∑

| j|≥k+1

∫

Rn
MN( f j)p dx → 0

as k → ∞; thus the series converges in H p. �

6.4.4 Vector-Valued H p and Its Characterizations

We now obtain a vector-valued analogue of Theorem 6.4.4 crucial in the charac-
terization of Hardy spaces using Littlewood–Paley theory. To state this analogue
we need to extend the definitions of the maximal operators to sequences of distri-
butions. Let a,b > 0 and let Φ be a Schwartz function on Rn. In accordance with
Definition 6.4.1, we give the following sequence of definitions.

Definition 6.4.11. For a sequence �f = { f j} j∈Z of tempered distributions on Rn we
define the smooth maximal function of �f with respect to Φ as

M(�f ;Φ)(x) = sup
t>0

∥

∥{(Φt ∗ f j)(x)} j
∥

∥

�2 .

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a(�f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

∥

∥{(Φt ∗ f j)(y)} j
∥

∥

�2 .

We also define the auxiliary maximal function

M∗∗
b (�f ;Φ)(x) = sup

t>0
sup
y∈Rn

∥

∥{(Φt ∗ f j)(x− y)} j
∥

∥

�2

(1 + t−1|y|)b .

We note that if the function Φ is not assumed to be Schwartz but merely inte-
grable, for example, if Φ is the Poisson kernel, the maximal functions M(�f ;Φ),
M∗

a(�f ;Φ), and M∗∗
b (�f ;Φ) are well defined for sequences �f = { f j} j whose terms

are bounded tempered distributions on Rn.
For a fixed positive integer N we define the grand maximal function of �f (with

respect to N) as
M N(�f ) = sup

ϕ∈FN

M∗
1(�f ;ϕ) , (6.4.43)

where
FN =

{

ϕ ∈ S (Rn) : NN(ϕ) ≤ 1
}
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is as defined in (6.4.5).

We note that as in the scalar case, we have the sequence of simple inequalities

M(�f ;Φ) ≤ M∗
a(�f ;Φ) ≤ (1 + a)bM∗∗

b (�f ;Φ) . (6.4.44)

We now define the vector-valued Hardy space H p(Rn, �2).

Definition 6.4.12. Let �f = { f j} j be a sequence of bounded tempered distributions
on Rn and let 0 < p < ∞. We say that �f lies in the vector-valued Hardy space
H p(Rn, �2) if the Poisson maximal function

M(�f ;P)(x) = sup
t>0

∥

∥{(Pt ∗ f j)(x)} j
∥

∥

�2

lies in Lp(Rn). If this is the case, we set

∥

∥�f
∥

∥

H p(Rn,�2) =
∥

∥M(�f ;P)
∥

∥

Lp(Rn) =
∥

∥

∥sup
ε>0

(

∑
j
| f j ∗Pε |2

)1
2
∥

∥

∥

Lp(Rn)
.

The next theorem provides a vector-valued analogue of Theorem 6.4.4.

Theorem 6.4.13. Let 0 < p < ∞. Then the following statements are valid:
(a) There exists a Schwartz function Φ with

∫

RnΦ(x)dx �= 0 and a constant C1

(which does not depend on any parameters) such that
∥

∥M(�f ;Φ)
∥

∥

Lp(Rn,�2) ≤C1
∥

∥�f
∥

∥

H p(Rn,�2) (6.4.45)

for every sequence �f = { f j} j of tempered distributions.
(b) For every a > 0 andΦ in S (Rn) there exists a constant C2(n, p,a,Φ) such that

∥

∥M∗
a(�f ;Φ)

∥

∥

Lp(Rn,�2) ≤C2(n, p,a,Φ)
∥

∥M(�f ;Φ)
∥

∥

Lp(Rn,�2) (6.4.46)

for every sequence �f = { f j} j of tempered distributions.
(c) For every a > 0, b > n/p, andΦ in S (Rn) there exists a constantC3(n, p,a,b,Φ)
such that

∥

∥M∗∗
b (�f ;Φ)

∥

∥

Lp(Rn,�2) ≤C3(n, p,a,b,Φ)
∥

∥M∗
a(�f ;Φ)

∥

∥

Lp(Rn,�2) (6.4.47)

for every sequence �f = { f j} j of tempered distributions.
(d) For every b > 0 and Φ in S (Rn) with

∫

RnΦ(x)dx �= 0 there exists a constant
C4(b,Φ) such that if N = [ n

p ]+ 1 we have

∥

∥M N(�f )
∥

∥

Lp(Rn,�2) ≤C4(b,Φ)
∥

∥M∗∗
b (�f ;Φ)

∥

∥

Lp(Rn,�2) (6.4.48)

for every sequence �f = { f j} j of tempered distributions.
(e) For every positive integer N there exists a constant C5(n,N) such that every
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sequence �f = { f j} j of tempered distributions that satisfies
∥

∥M N(�f )
∥

∥

Lp(Rn,�2) < ∞
consists of bounded distributions and satisfies

∥

∥�f
∥

∥

H p(Rn,�2) ≤C5(n,N)
∥

∥M N(�f )
∥

∥

Lp(Rn,�2) , (6.4.49)

that is, it lies in the Hardy space H p(Rn, �2).

Proof. The proof of this theorem is obtained via a step-by-step repetition of the
proof of Theorem 6.4.4 in which the scalar absolute values are replaced by �2 norms.
This is small notational change in our point of view but yields a significant improve-
ment of the scalar version of the theorem. Moreover, this perspective provides an
example of the power of Hilbert space techniques. The verification of the details of
this step-by-step repetition of the proof of Theorem 6.4.4 are left to the reader. �

We end this subsection by observing the validity of the following vector-valued
analogue of (6.4.41):

(

∑
j

∣

∣

〈

f j,ϕ
〉∣

∣

2
)1

2 ≤ NN(ϕ ;x0,R) inf
|z−x0|≤R

M N(�f )(z) . (6.4.50)

The proof of (6.4.50) is identical to the corresponding estimate for scalar-valued
functions. Set ψ(x) = ϕ(−Rx + x0). It follows directly from Definition 6.4.11 that
for any fixed z with |z− x0| ≤ R we have

(

∑
j

∣

∣

〈

f j,ϕ
〉∣

∣

2
) 1

2 = Rn
∥

∥{( f j ∗ψR)(x0)} j
∥

∥

�2

≤ sup
y: |y−z|≤R

Rn
∥

∥{( f j ∗ψR)(y)} j
∥

∥

�2

≤ Rn
NN(ψ)M N(�f )(z) ,

which, combined with the observation

Rn
NN(ψ) = NN(ϕ ;x0,R) ,

yields the required conclusion by taking the infimum over all z with |z− x0| ≤ R.

6.4.5 Singular Integrals on Hardy Spaces

To obtain the Littlewood–Paley characterization of Hardy spaces, we need a multi-
plier theorem for vector-valued Hardy spaces.

Suppose that Kj(x) is a family of functions defined on Rn \ {0} that satisfies the
following: There exist constants A,B < ∞ and an integer N such that for all multi-
indices α with |α| ≤ N we have
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∣

∣∑
j∈Z
∂αKj(x)

∣

∣≤ A |x|−n−|α | < ∞ (6.4.51)

and also
sup
ξ∈Rn

∣

∣

∣∑
j∈Z

̂Kj(ξ )
∣

∣

∣≤ B <∞ . (6.4.52)

Theorem 6.4.14. Suppose that a sequence of kernels {Kj} j satisfies (6.4.51) and
(6.4.52) with N = [ n

p ]+1, for some 0 < p ≤ 1. Then there exists a constant Cn,p that
depends only on the dimension n and on p such that for all sequences of tempered
distributions { f j} j we have the estimate

∥

∥

∥∑
j

Kj ∗ f j

∥

∥

∥

H p(Rn)
≤Cn,p(A + B)

∥

∥{ f j} j
∥

∥

H p(Rn,�2) .

Proof. We fix a smooth positive function Φ supported in the unit ball B(0,1) with
∫

RnΦ(x)dx = 1 and we consider the sequence of smooth maximal functions

M
(

∑
j

Kj ∗ f j;Φ
)

= sup
ε>0

∣

∣Φε ∗∑
j

Kj ∗ f j
∣

∣ ,

which will be shown to be an element of Lp(Rn, �2). We work with a fixed sequence
of integrable functions �f = { f j} j, since such functions are dense in Lp(Rn, �2) in
view of Proposition 6.4.7.

We now fix a λ > 0 and we set N = [ n
p ]+ 1. We also fix γ > 0 to be chosen later

and we define the set

Ωλ = {x ∈ Rn : M N(�f )(x) > γ λ} .

The set Ωλ is open, and we may use the Whitney decomposition (Appendix J) to
write it is a union of cubes Qk such that

(a)
⋃

k Qk =Ωλ and the Qk’s have disjoint interiors;

(b)
√

n�(Qk) ≤ dist (Qk,(Ωλ )c) ≤ 4
√

n�(Qk).

We denote by c(Qk) the center of the cube Qk. For each k we set

dk = dist (Qk,(Ωλ )c)+ 2
√

n�(Qk) ≈ �(Qk) ,

so that
B(c(Qk),dk)∩ (Ωλ )c �= /0 .

We now introduce a partition of unity {ϕk}k adapted to the sequence of cubes {Qk}k

such that

(c) χΩλ = ∑kϕk and each ϕk satisfies 0 ≤ ϕk ≤ 1;

(d) each ϕk is supported in 6
5 Qk and satisfies

∫

Rn ϕk dx ≈ dn
k ;
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(e)
∥

∥∂αϕk
∥

∥

L∞ ≤Cαd−|α |
k for all multi-indices α and some constants Cα .

We decompose each f j as
f j = g j +∑

k

b j,k ,

where g j is the good function of the decomposition given by

g j = f jχRn\Ωλ +∑
k

∫

Rn f jϕk dx
∫

Rn ϕk dx
ϕk

and b j = ∑k b j,k is the bad function of the decomposition given by

b j,k =
(

f j −
∫

Rn f jϕk dx
∫

Rn ϕk dx

)

ϕk .

We note that each b j,k has integral zero. We define�g = {g j} j and�b = {b j} j . At this
point we appeal to (6.4.50) and to properties (d) and (e) to obtain

(

∑
j

∣

∣

∣

∫

Rn f jϕk dx
∫

Rn ϕk dx

∣

∣

∣

2)1
2 ≤

NN
(

ϕk;c(Qk),dk
)

∫

Rn ϕk dx
inf

|z−c(Qk)|≤dk

M N(�f )(z) . (6.4.53)

But since

NN
(

ϕk;c(Qk),dk
)

∫

Rn ϕk dx
≤
[
∫

Qk

(

1 +
|x− c(Qk)|

dk

)N

∑
|α |≤N+1

d|α |
k Cαd−|α |

k
∫

Rn ϕk dx
dx

]

≤CN,n ,

it follows that (6.4.53) is at most a constant multiple of λ , since the ball B(c(Qk),dk)
meets the complement of Ωλ . We conclude that

∥

∥�g
∥

∥

L∞(Ωλ ,�2) ≤CN,n γ λ . (6.4.54)

We now turn to estimating M(∑ j Kj ∗ b j,k;Φ). For fixed k and ε > 0 we have

(

Φε ∗∑
j

Kj ∗ b j,k
)

(x)

=
∫

Rn
Φε ∗∑

j
Kj(x− y)

[

f j(y)ϕk(y)−
∫

Rn f jϕk dx
∫

Rn ϕk dx
ϕk(y)

]

dy

=
∫

Rn
∑

j

{

(

Φε ∗Kj
)

(x−z)−
∫

Rn

(

Φε ∗Kj
)

(x−y)
ϕk(y)
∫

Rn ϕk dx
dy

}

ϕk(z) f j(z)dz

=
∫

Rn
∑

j
R j,k(x,z)ϕk(z) f j(z)dz ,

where we set R j,k(x,z) for the expression inside the curly brackets. Using (6.4.41),
we obtain
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∣

∣

∣

∣

∫

Rn
∑

j

R j,k(x,z)ϕk(z) f j(z)dz

∣

∣

∣

∣

≤ ∑
j

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

inf
|z−c(Qk)|≤dk

MN( f j)(z)

≤ ∑
j

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

inf
|z−c(Qk)|≤dk

M N(�f )(z) .

(6.4.55)

Since ϕk(z) is supported in 6
5 Qk, the term (1+ |z−c(Qk)|

dk
)N contributes only a constant

factor in the integral defining NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

, and we obtain

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

≤CN,n

∫

6
5 Qk

∑
|α |≤N+1

d|α |+n
k

∣

∣

∣

∂α

∂ zα
(

R j,k(x,z)ϕk(z)
)

∣

∣

∣dz .
(6.4.56)

For notational convenience we set Kεj =Φε ∗Kj . We observe that the family {Kεj } j

satisfies (6.4.51) and (6.4.52) with constants A′ and B′ that are only multiples of
A and B, respectively, uniformly in ε . We now obtain a pointwise estimate for
NN(R j,k

(

x, ·)ϕk;c(Qk),dk
)

when x ∈ Rn \Ωλ . We have

R j,k(x,z)ϕk(z) =
∫

Rn
ϕk(z)

{

Kεj (x− z)−Kεj (x− y)
} ϕk(y)dy
∫

Rn ϕk dx
,

from which it follows that

∣

∣

∣

∂α

∂ zα
R j,k(x,z)ϕk(z)

∣

∣

∣≤
∫

Rn

∣

∣

∣

∣

∂α

∂ zα

{

ϕk(z)
[

Kεj (x− z)−Kεj (x− y)
]

}∣

∣

∣

∣

ϕk(y)dy
∫

Rn ϕk dx
.

Using hypothesis (6.4.51), we can now easily obtain the estimate

∑
j

∣

∣

∣

∣

∂α

∂ zα

{

ϕk(z)
{

Kεi, j(x−z)−Kεi, j(x−y)
}

}∣

∣

∣

∣

≤CN,nA
dkd−|α |

k

|x− c(Qk)|n+1

for all |α| ≤ N and for x ∈ Rn \Ωλ , since for such x we have |x− c(Qk)| ≥ cn dk. It
follows that

d|α |+n
k ∑

j

∣

∣

∣

∂α

∂ zα
{

R j,k(x,z)ϕk(z)
}

∣

∣

∣≤CN,nAdn
k

(

dk

|x− c(Qk)|n+1

)

.

Inserting this estimate in the summation of (6.4.56) over all j yields

∑
j

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

≤CN,nA

(

dn+1
k

|x− c(Qk)|n+1

)

. (6.4.57)

Combining (6.4.57) with (6.4.55) gives for x ∈ Rn \Ωλ ,
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∑
j

∣

∣

∣

∣

∫

Rn
Ri, j,k(x,z)ϕk(z) f j(z)dz

∣

∣

∣

∣

≤
CN,nAdn+1

k

|x− c(Qk)|n+1 inf
|z−c(Qk)|≤dk

M N(�f )(z) .

This provides the estimate

sup
ε>0

∣

∣∑
j
(Kεj ∗ b j,k)(x)

∣

∣≤
CN,nAdn+1

k

|x− c(Qk)|n+1 γ λ

for all x ∈ Rn \Ωλ , since the ball B(c(Qk),dk) intersects (Ωλ )c. Summing over k
results in

M
(

∑
j

Kj ∗ b j;Φ
)

(x) ≤∑
k

CN,nAγ λ dn+1
k

|x− c(Qk)|n+1 ≤∑
k

CN,nAγ λ dn+1
k

(dk + |x− c(Qk)|)n+1

for all x∈ (Ωλ )c. The last sum is known as the Marcinkiewicz function. It is a simple
fact that

∫

Rn
∑
k

dn+1
k

(dk + |x− c(Qk)|)n+1 dx ≤Cn∑
k

|Qk| = Cn |Ωλ |;

see Exercise 4.6.6. We have therefore shown that
∫

Rn
M(�K ∗�b ;Φ)(x)dx ≤CN,n Aγ λ |Ωλ | , (6.4.58)

where we used the notation �K ∗�b = ∑ j Kj ∗ b j .
We now combine the information we have acquired so far. First we have
∣

∣{M(�K ∗ �f ;Φ) > λ}
∣

∣≤
∣

∣{M(�K ∗�g ;Φ) > λ
2 }
∣

∣+
∣

∣{M(�K ∗�b ;Φ) > λ
2 }
∣

∣ .

For the good function�g we have the estimate

∣

∣{M(�K ∗�g ;Φ) > λ
2 }
∣

∣ ≤ 4
λ 2

∫

Rn
M(�K ∗�g ;Φ)(x)2 dx

≤ 4
λ 2∑

j

∫

Rn
M(Kj ∗ g j)(x)2 dx

≤ CnB2

λ 2

∫

Rn
∑

j
|g j(x)|2 dx

≤ CnB2

λ 2

∫

Ωλ
∑

j
|g j(x)|2 dx +

CnB2

λ 2

∫

(Ωλ )c
∑

j
| f j(x)|2 dx

≤ B2CN,nγ2 |Ωλ |+
CnB2

λ 2

∫

(Ωλ )c
M N(�f )(x)2 dx ,



6.4 Hardy Spaces 63

where we used Corollary 2.1.12, the L2 boundedness of the Hardy–Littlewood max-
imal operator, hypothesis (6.4.52), the fact that f j = g j on (Ωλ )c, estimate (6.4.54),
and the fact that

∥

∥�f
∥

∥

�2 ≤ M N(�f ) in the sequence of estimates.
On the other hand, estimate (6.4.58) and Chebyshev’s inequality gives

∣

∣{M(�K ∗�b ;Φ) > λ
2 }
∣

∣≤CN,nAγ |Ωλ | ,

which, combined with the previously obtained estimate for�g, gives

∣

∣

{

M(�K ∗ �f ;Φ) > λ
}∣

∣≤CN,n(Aγ+ B2 γ2) |Ωλ |+
CnB2

λ 2

∫

(Ωλ )c
M N(�f )(x)2 dx .

Multiplying this estimate by pλ p−1, recalling that Ωλ = {M N(�f ) > γ λ}, and in-
tegrating in λ from 0 to ∞, we can easily obtain
∥

∥M(�K ∗ �f ;Φ)
∥

∥

p
Lp(Rn,�2) ≤CN,n(Aγ1−p + B2γ2−p)

∥

∥M N(�f )
∥

∥

p
Lp(Rn,�2) . (6.4.59)

Choosing γ = (A+B)−1 and recalling that N = [ n
p ]+1 gives the required conclusion

for some constant Cn,p that depends only on n and p.
Finally, use density to extend this estimate to all �f in H p(Rn, �2). �

6.4.6 The Littlewood–Paley Characterization of Hardy Spaces

We discuss an important characterization of Hardy spaces in terms of Littlewood–
Paley square functions. The vector-valued Hardy spaces and the action of singular
integrals on them are crucial tools in obtaining this characterization.

We first set up the notation. We fix a radial Schwartz functionΨ on Rn whose
Fourier transform is nonnegative, supported in the annulus 1

2 + 1
10 ≤ |ξ | ≤ 2− 1

10 ,
and satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 (6.4.60)

for all ξ �= 0. Associated with this bump, we define the Littlewood–Paley operators
Δ j given by multiplication on the Fourier transform side by the function ̂Ψ(2− jξ ),
that is,

Δ j( f ) = ΔΨj ( f ) =Ψ2− j ∗ f . (6.4.61)

We have the following.

Theorem 6.4.15. LetΨ be a radial Schwartz function on Rn whose Fourier trans-
form is nonnegative, supported in 1

2 + 1
10 ≤ |ξ | ≤ 2− 1

10 , and satisfies (6.4.60). Let
Δ j be the Littlewood–Paley operators associated with Ψ and let 0 < p ≤ 1. Then
there exists a constant C = Cn,p,Ψ such that for all f ∈ H p(Rn) we have
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∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
≤C

∥

∥ f
∥

∥

H p . (6.4.62)

Conversely, suppose that a tempered distribution f satisfies

∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
< ∞ . (6.4.63)

Then there exists a unique polynomial Q(x) such that f −Q lies in the Hardy space
H p and satisfies the estimate

1
C

∥

∥ f −Q
∥

∥

H p ≤
∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
. (6.4.64)

Proof. We fix Φ ∈ S (Rn) with integral equal to 1 and we take f ∈ H p ∩L1 and M
in Z+. Let r j be the Rademacher functions, introduced in Appendix C.1, reindexed
so that their index set is the set of all integers (not the set of nonnegative integers).
We begin with the estimate

∣

∣

∣

M

∑
j=−M

rj(ω)Δ j( f )
∣

∣

∣≤ sup
ε>0

∣

∣

∣Φε ∗
M

∑
j=−M

rj(ω)Δ j( f )
∣

∣

∣ ,

which holds since {Φε}ε>0 is an approximate identity. We raise this inequality to the
power p, we integrate over x ∈ Rn and ω ∈ [0,1], and we use the maximal function
characterization of H p [Theorem 6.4.4 (a)] to obtain

∫ 1

0

∫

Rn

∣

∣

∣

M

∑
j=−M

rj(ω)Δ j( f )(x)
∣

∣

∣

p
dxdω ≤Cp

p,n

∫ 1

0

∥

∥

∥

M

∑
j=−M

rj(ω)Δ j( f )
∥

∥

∥

p

H p
dω .

The lower inequality for the Rademacher functions in Appendix C.2 gives

∫

Rn

( M

∑
j=−M

|Δ j( f )(x)|2
)

p
2

dx ≤Cp
pCp

p,n

∫ 1

0

∥

∥

∥

M

∑
j=−M

rj(ω)Δ j( f )
∥

∥

∥

p

H p
dω ,

where the second estimate is a consequence of Theorem 6.4.14 (we need only the
scalar version here), since the kernel

M

∑
k=−M

rk(ω)Ψ2−k(x)

satisfies (6.4.51) and (6.4.52) with constants A and B depending only on n andΨ
(and, in particular, independent of M). We have now proved that

∥

∥

∥

( M

∑
j=−M

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
≤Cn,p,Ψ

∥

∥ f
∥

∥

H p ,
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from which (6.4.62) follows directly by letting M → ∞. We have now established
(6.4.62) for f ∈ H p ∩L1. Using density, we can extend this estimate to all f ∈ H p.

To obtain the converse estimate, for r ∈ {0,1,2} we consider the sets

3Z+ r = {3k + r : k ∈ Z} ,

and we observe that for j,k ∈ 3Z+ r the Fourier transforms of Δ j( f ) and Δk( f ) are
disjoint if j �= k. We fix a Schwartz function η whose Fourier transform is compactly
supported away from the origin so that for all j,k ∈ 3Z we have

Δηj Δk =

{

Δ j when j = k,

0 when j �= k,
(6.4.65)

where Δηj is the Littlewood–Paley operator associated with the bump η , that is,

Δηj ( f ) = f ∗η2− j . It follows from Theorem 6.4.14 that the map

{

f j
}

j∈Z → ∑
j∈3Z

Δηj ( f j)

maps H p(Rn, �2) to H p(Rn). Indeed, we can see easily that
∣

∣

∣ ∑
j∈3Z

η̂(2− jξ )
∣

∣

∣≤ B

and

∑
j∈3Z

∣

∣∂α
(

2 jnη(2 jx)
)∣

∣≤ Aα |x|−n−|α |

for all multi-indices α and for constants depending only on B and Aα . Applying this
estimate with f j = Δ j( f ) and using (6.4.65) yields the estimate

∥

∥

∥ ∑
j∈3Z

Δ j( f )
∥

∥

∥

H p
≤Cn,p,Ψ

∥

∥

∥

(

∑
j∈3Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp

for all distributions f that satisfy (6.4.63). Applying the same idea with 3Z+ 1 and
3Z+ 2 replacing 3Z and summing the corresponding estimates gives

∥

∥

∥∑
j∈Z
Δ j( f )

∥

∥

∥

H p
≤ 3

1
p Cn,p,Ψ

∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
.

But note that f −∑ jΔ j( f ) is equal to a polynomial Q(x), since its Fourier transform
is supported at the origin. It follows that f −Q lies in H p and satisfies (6.4.64). �

We show in the next section that the square function characterization of H p is
independent of the choice of the underlying functionΨ .
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Exercises

6.4.1. Prove that if v is a bounded tempered distribution and h1,h2 are in S (Rn),
then

(h1 ∗ h2)∗ v = h1 ∗ (h2 ∗ v).

6.4.2. (a) Show that the H1 norm remains invariant under the L1 dilation ft(x) =
t−n f (t−1x).
(b) Show that the H p norm remains invariant under the Lp dilation tn−n/p ft(x) in-
terpreted in the sense of distributions.

6.4.3. (a) Let 1 < q≤∞ and let g in Lq(Rn) be a compactly supported function with
integral zero. Show that g lies in the Hardy space H1(Rn).
(b) Prove the same conclusion when Lq is replaced by L log+ L.
[

Hint: Part (a): Pick a C ∞0 function Φ supported in the unit ball with nonvanishing
integral and suppose that the support of g is contained in the ball B(0,R). For |x| ≤
2R we have that M( f ;Φ)(x) ≤CΦ M(g)(x), and since M(g) lies in Lq, it also lies in
L1(B(0,2R)). For |x| > 2R, write (Φt ∗ g)(x) =

∫

Rn

(

Φt(x− y)−Φt(x)
)

g(y)dy and
use the mean value theorem to estimate this expression by t−n−1

∥

∥∇Φ
∥

∥

L∞

∥

∥g
∥

∥

L1 ≤
|x|−n−1CΦ

∥

∥g
∥

∥

Lq , since t ≥ |x−y| ≥ |x|− |y| ≥ |x|/2 whenever |x| ≥ 2R and |y| ≤ R.
Thus M( f ;Φ) lies in L1(Rn). Part (b): Use Exercise 2.1.4(a) to deduce that M(g) is
integrable over B(0,2R).

]

6.4.4. Show that the function ψ(s) defined in (6.4.19) is continuous and inte-
grable over [1,∞), decays faster than the reciprocal of any polynomial, and satisfies
(6.4.18), that is,

∫ ∞

1
skψ(s)ds =

{

1 if k = 0,

0 if k = 1,2,3, . . . .
[

Hint: Apply Cauchy’s theorem over a suitable contour.
]

6.4.5. Let 0 < a < ∞ be fixed. Show that a bounded tempered distribution f lies in
H p if and only if the nontangential Poisson maximal function

M∗
a ( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Pt ∗ f )(y)|

lies in Lp, and in this case we have
∥

∥ f
∥

∥

H p ≈
∥

∥M∗
a( f ;P)

∥

∥

Lp .
[

Hint: Observe that M( f ;P) can be replaced with M∗
a( f ;P) in the proof of parts (a)

and (e) of Theorem 6.4.4).
]

6.4.6. Show that for every integrable function g with mean value zero and support
inside a ball B, we have M(g;Φ) ∈ Lp((3B)c) for p > n/(n + 1). Here Φ is in S .

6.4.7. Show that the space of all Schwartz functions whose Fourier transform is
supported away from a neighborhood of the origin is dense in H p.
[

Hint: Use the square function characterization of H p.
]
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6.4.8. (a) Suppose that f ∈ H p(Rn) for some 0 < p ≤ 1 and Φ in S (Rn). Then
show that for all t > 0 the functionΦt ∗ f belongs to Lr(Rn) for all p ≤ r ≤∞. Find
an estimate for the Lr norm of Φt ∗ f in terms of

∥

∥ f
∥

∥

H p and t > 0.
(b) Let 0 < p ≤ 1. Show that there exists a constant Cn,p such that for all f in
H p(Rn)∩L1(Rn) we have

|̂f (ξ )| ≤Cn,p |ξ |
n
p−n∥
∥ f
∥

∥

H p .

[

Hint: Obtain that
∥

∥Φt ∗ f
∥

∥

L1 ≤Ct−n/p+n
∥

∥ f
∥

∥

H p ,

using an idea from the proof of Proposition 6.4.7.
]

6.4.9. Show that H p(Rn, �2) = Lp(Rn, �2) whenever 1< p<∞ and that H1(Rn, �2)
is contained in L1(Rn, �2).

6.4.10. For a sequence of tempered distributions �f = { f j} j, define the following
variant of the grand maximal function:

˜M N(�f )(x) = sup
{ϕ j} j∈FN

sup
ε>0

sup
y∈Rn

|y−x|<ε

(

∑
j

∣

∣((ϕ j)ε ∗ f j)(y)
∣

∣

2
) 1

2
,

where N ≥ [ n
p ]+ 1 and

FN =
{

{ϕ j} j ∈ S (Rn) : ∑
j

NN(ϕ j) ≤ 1

}

.

Show that for all sequences of tempered distributions �f = { f j} j we have

∥

∥ ˜M N(�f )
∥

∥

Lp(Rn,�2) ≈
∥

∥M N(�f )
∥

∥

Lp(Rn,�2)

with constants depending only on n and p.
[

Hint: Fix Φ in S (Rn) with integral 1. Using Lemma 6.4.5, write

(ϕ j)t(y) =
∫ 1

0
((Θ (s)

j )t ∗Φts)(y)ds

and apply a vector-valued extension of the proof of part (d) of Theorem 6.4.4 to
obtain the pointwise estimate

˜M N(�f ) ≤Cn,pM∗∗
m (�f ;Φ) ,

where m > n/p.
]
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6.5 Besov–Lipschitz and Triebel–Lizorkin Spaces

The main achievement of the previous sections was the remarkable characteriza-
tion of Sobolev, Lipschitz, and Hardy spaces using the Littlewood–Paley operators
Δ j. These characterizations motivate the introduction of classes of spaces defined
in terms of expressions involving the operators Δ j. These scales furnish a general
framework within which one can launch a study of function spaces from a unified
perspective.

We have encountered two expressions involving the operators Δ j in the charac-
terizations of the function spaces obtained in the previous sections. Some spaces
were characterized by an Lp norm of the Littlewood–Paley square function

(

∑
j
|2 jαΔ j( f )|2

) 1
2
,

and other spaces were characterized by an �q norm of the sequence of quantities
∥

∥2 jαΔ j( f )
∥

∥

Lp . Examples of spaces in the first case are the homogeneous Sobolev
spaces, Hardy spaces, and, naturally, Lp spaces. We have studied only one example
of spaces in the second category, the Lipschitz spaces, in which case p = q = ∞.
These examples motivate the introduction of two fundamental scales of function
spaces, called the Triebel–Lizorkin and Besov–Lipschitz spaces, respectively.

6.5.1 Introduction of Function Spaces

Before we give the pertinent definitions, we recall the setup that we developed in
Section 6.2 and used in Section 6.3. Throughout this section we fix a radial Schwartz
functionΨ on Rn whose Fourier transform is nonnegative, is supported in the an-
nulus 1− 1

7 ≤ |ξ | ≤ 2, is equal to one on the smaller annulus 1 ≤ |ξ | ≤ 2− 2
7 , and

satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 , ξ �= 0 . (6.5.1)

Associated with this bump, we define the Littlewood–Paley operators Δ j = ΔΨj
given by multiplication on the Fourier transform side by the function ̂Ψ (2− jξ ). We
also define a Schwartz functionΦ such that

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.
(6.5.2)

Note that ̂Φ(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. It follows

from these definitions that

S0 +
∞

∑
j=1

Δ j = I , (6.5.3)
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where S0 = SΨ0 is the operator given by convolution with the bump Φ and the con-
vergence of the series in (6.5.3) is in S ′(Rn). Moreover, we also have the identity

∑
j∈Z
Δ j = I , (6.5.4)

where the convergence of the series in (6.5.4) is in the sense of S ′(Rn)/P .

Definition 6.5.1. Let α ∈ R and 0 < p,q ≤∞. For f ∈ S ′(Rn) we set

∥

∥ f
∥

∥

Bα,q
p

=
∥

∥S0( f )
∥

∥

Lp +
( ∞

∑
j=1

(

2 jα∥
∥Δ j( f )

∥

∥

Lp

)q
) 1

q

with the obvious modification when p,q = ∞. When p,q < ∞ we also set

∥

∥ f
∥

∥

Fα,q
p

=
∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(

2 jα |Δ j( f )|
)q
) 1

q
∥

∥

∥

Lp
.

The space of all tempered distributions f for which the quantity
∥

∥ f
∥

∥

Bα,q
p

is finite

is called the (inhomogeneous) Besov–Lipschitz space with indices α, p,q and is
denoted by Bα ,q

p . The space of all tempered distributions f for which the quantity
∥

∥ f
∥

∥

Fα,q
p

is finite is called the (inhomogeneous) Triebel–Lizorkin space with indices

α, p,q and is denoted by Fα ,q
p .

We now define the corresponding homogeneous versions of these spaces. For an
element f of S ′(Rn)/P we let

∥

∥ f
∥

∥

Ḃα,q
p

=
(

∑
j∈Z

(

2 jα∥
∥Δ j( f )

∥

∥

Lp

)q
) 1

q

and
∥

∥ f
∥

∥

Ḟα,q
p

=
∥

∥

∥

(

∑
j∈Z

(

2 jα |Δ j( f )|
)q
) 1

q
∥

∥

∥

Lp
.

The space of all f in S ′(Rn)/P for which the quantity
∥

∥ f
∥

∥

Ḃα,q
p

is finite is called the

(homogeneous) Besov–Lipschitz space with indices α, p,q and is denoted by Ḃα ,q
p .

The space of f in S ′(Rn)/P such that
∥

∥ f
∥

∥

Ḟα,q
p

< ∞ is called the (homogeneous)

Triebel–Lizorkin space with indices α, p,q and is denoted by Ḟα ,q
p .

We now make several observations related to these definitions. First we note that
the expressions

∥

∥ ·
∥

∥

Ḟα,q
p

,
∥

∥ ·
∥

∥

Fα,q
p

,
∥

∥ ·
∥

∥

Ḃα,q
p

, and
∥

∥ ·
∥

∥

Bα,q
p

are built in terms of Lp

quasinorms of �q quasinorms of 2 jαΔ j or �q quasinorms of Lp quasinorms of the
same expressions. As a result, we can see that these quantities satisfy the triangle
inequality with a constant (which may be taken to be 1 when 1 ≤ p,q < ∞). To de-
termine whether these quantities are indeed quasinorms, we need to check whether
the following property holds:
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∥

∥ f
∥

∥

X = 0 =⇒ f = 0 , (6.5.5)

where X is one of the Ḟα ,q
p , Fα ,q

p , Ḃα ,q
p , and Bα ,q

p . Since these are spaces of distribu-
tions, the identity f = 0 in (6.5.5) should be interpreted in the sense of distributions.
If
∥

∥ f
∥

∥

X = 0 for some inhomogeneous space X , then S0( f ) = 0 and Δ j( f ) = 0 for
all j ≥ 1. Using (6.5.3), we conclude that f = 0; thus the quantities

∥

∥ ·
∥

∥

Fα,q
p

and
∥

∥ ·
∥

∥

Bα,q
p

are indeed quasinorms. Let us investigate what happens when
∥

∥ f
∥

∥

X = 0 for

some homogeneous space X . In this case we must have Δ j( f ) = 0, and using (6.5.4)
we conclude that ̂f must be supported at the origin. Proposition 2.4.1 yields that f
must be a polynomial and thus f must be zero (since distributions whose difference
is a polynomial are identified in homogeneous spaces).

Remark 6.5.2. We interpret the previous definition in certain cases. According to
what we have seen so far, we have

Ḟ0,2
p ≈ F0,2

p ≈ Lp , 1 < p < ∞,

Ḟ0,2
p ≈ H p , 0 < p ≤ 1,

Fs,2
p ≈ Lp

s , 1 < p < ∞,

Ḟs,2
p ≈ L̇p

s , 1 < p < ∞,

Bγ,∞∞ ≈ Λγ , γ > 0,

Ḃγ,∞∞ ≈ Λ̇γ , γ > 0 ,

where ≈ indicates that the corresponding norms are equivalent.
Although in this text we restrict attention to the case p < ∞, it is noteworthy

mentioning that when p =∞, Ḟ0,q
∞ can be defined as the space of all f ∈S ′/P that

satisfy

∥

∥ f
∥

∥

Ḟα,q
∞

= sup
Q dyadic cube

∫

Q

1
|Q|

( ∞

∑
j=− log2 �(Q)

(2 jα |Δ j( f )|)q
)1

q

< ∞ .

In the particular case q = 2 and α = 0, the space obtained in this way is called BMO
and coincides with the space introduced and studied in Chapter 7; this space serves
as a substitute for L∞ and plays a fundamental role in analysis. It should now be
clear that several important spaces in analysis can be thought of as elements of the
scale of Triebel–Lizorkin spaces.

It would have been more natural to denote Besov–Lipschitz and Triebel–Lizorkin
spaces by Bp

α ,q and F p
α ,q to maintain the upper and lower placements of the corre-

sponding indices analogous to those in the previously defined Lebesgue, Sobolev,
Lipschitz, and Hardy spaces. However, the notation in Definition 6.5.1 is more or
less prevalent in the field of function spaces, and we adhere to it.
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6.5.2 Equivalence of Definitions

It is not clear from the definitions whether the finiteness of the quasinorms defining
the spaces Bα ,q

p , Fα ,q
p ,Ḃα ,q

p , and Ḟα ,q
p depends on the choice of the functionΨ (recall

that Φ is determined by Ψ ). We show that if Ω is another function that satisfies
(6.5.1) and Θ is defined in terms of Ω in the same way that Φ is defined in terms
of Ψ , [i.e., via (6.5.2)], then the norms defined in Definition 6.5.1 with respect to
the pairs (Φ,Ψ ) and (Θ ,Ω) are comparable. To prove this we need the following
lemma.

Lemma 6.5.3. Let 0 < c0 < ∞ and 0 < r < ∞. Then there exist constants C1 and C2

(which depend only on n, c0, and r) such that for all t > 0 and for all C 1 functions
u on Rn whose Fourier transform is supported in the ball |ξ | ≤ c0t and that satisfy
|u(z)| ≤ B(1 + |z|) n

r for some B > 0 we have the estimate

sup
z∈Rn

1
t
|∇u(x− z)|
(1 + t|z|) n

r
≤C1 sup

z∈Rn

|u(x− z)|
(1 + t|z|) n

r
≤C2 M(|u|r)(x) 1

r , (6.5.6)

where M denotes the Hardy–Littlewood maximal operator. (The constants C1 and
C2 are independent of B.)

Proof. Select a Schwartz function ψ whose Fourier transform is supported in the
ball |ξ | ≤ 2c0 and is equal to 1 on the smaller ball |ξ | ≤ c0. Then ψ̂( ξt ) is equal to
1 on the support of û and we can write

u(x− z) =
∫

Rn
tnψ(t(x− z− y))u(y)dy .

Taking partial derivatives and using that ψ is a Schwartz function, we obtain

|∇u(x− z)| ≤CN

∫

Rn
tn+1(1 + t|x− z− y|)−N|u(y)|dy ,

where N is arbitrarily large. Using that for all x,y,z ∈ Rn we have

1 ≤ (1 + t|x− z− y|) n
r

(1 + t|z|) n
r

(1 + t|x− y|) n
r

,

we obtain

1
t
|∇u(x− z)|
(1 + t|z|) n

r
≤CN

∫

Rn
tn(1 + t|x− z− y|) n

r −N |u(y)|
(1 + t|x− y|) n

r
dy ,

from which the first estimate in (6.5.6) follows easily.
Let |y| ≤ δ for some δ > 0 to be chosen later. We now use the mean value theorem

to write
u(x− z) = (∇u)(x− z− ξy) · y + u(x− z− y)

for some ξy satisfying |ξy| ≤ |y| ≤ δ . This implies that
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|u(x− z)| ≤ sup
|w|≤|z|+δ

|(∇u)(x−w)|δ + |u(x− z− y)|.

Raising to the power r, averaging over the ball |y| ≤ δ , and then raising to the power
1
r yields

|u(x− z)| ≤ cr

[

sup
|w|≤|z|+δ

|(∇u)(x−w)|δ +
(

1
vnδ n

∫

|y|≤δ
|u(x− z− y)|r dy

) 1
r
]

with cr = max(21/r,2r). Here vn is the volume of the unit ball in Rn. Then

|u(x− z)|
(1 + t|z|) n

r
≤ cr

[

sup
|w|≤|z|+δ

|(∇u)(x−w)|
(1 + t|z|) n

r
δ

(

1
vnδ n

∫

|y|≤δ+|z|
|u(x− y)|r dy

) 1
r

(1 + t|z|) n
r

]

.

We now set δ = ε/t for some ε ≤ 1. Then we have

|w| ≤ |z|+ ε
t

=⇒ 1
1 + t|z| ≤

2
1 + t|w| ,

and we can use this to obtain the estimate

|u(x− z)|
(1 + t|z|) n

r
≤ cr,n

[

sup
w∈Rn

1
t
|(∇u)(x−w)|
(1 + t|w|) n

r
ε

(

tn

vnεn

∫

|y|≤ 1
t +|z|

|u(x− y)|r dy

) 1
r

(1 + t|z|) n
r

]

with cr,n = max(21/r,2r)2n/r. It follows that

sup
z∈Rn

|u(x− z)|
(1 + t|z|) n

r
≤ cr,n

[

sup
w∈Rn

1
t
|(∇u)(x−w)|
(1 + t|w|) n

r
ε+ ε−

n
r M(|u|r)(x) 1

r

]

.

Taking ε = 1
2 (cr,n C1)−1, where C1 is the constant in (6.5.6), we obtain the second

estimate in (6.5.6) with C2 = 2ε−n/r. At this step we used the hypothesis that

sup
z∈Rn

|u(x− z)|
(1 + t|z|) n

r
≤ sup

z∈Rn

B(1 + |x|+ |z|) n
r

(1 + t|z|) n
r

< ∞ .

This concludes the proof of the lemma. �

Remark 6.5.4. The reader is reminded that û in Lemma 6.5.3 may not be a function;
for example, this is the case when u is a polynomial (say of degree [n/r]). If û
were an integrable function, then u would be a bounded function, and condition
|u(x)| ≤ B(1 + |x|) n

r would not be needed.

We now return to a point alluded to earlier, that changingΨ by another bump
Ω that satisfies similar properties yields equivalent norms for the function spaces
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given in Definition 6.5.1. Suppose that Ω is another bump whose Fourier transform
is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2 and that satisfies (6.5.1). The support
properties ofΨ and Ω imply the identity

ΔΩj = ΔΩj (ΔΨj−1 +ΔΨj +ΔΨj+1) . (6.5.7)

Let 0 < p < ∞ and pick r < p and N > n
r + n. Then we have

∣

∣ΔΩj Δ
Ψ
j ( f )(x)

∣

∣ ≤ CN,Ω

∫

Rn

∣

∣ΔΨj ( f )(x− z)
∣

∣

(1 + 2 j|z|) n
r

2 jndz

(1 + 2 j|z|)N− n
r

≤ CN,Ω sup
z∈Rn

∣

∣ΔΨj ( f )(x− z)
∣

∣

(1 + 2 j|z|) n
r

∫

Rn

2 jndz

(1 + 2 j|z|)N− n
r

≤ CN,r,Ω (M(|ΔΨj ( f )|r)(x) 1
r

(6.5.8)

where we applied Lemma 6.5.3. The same estimate is also valid for ΔΩj ΔΨj±1( f )
and thus for ΔΩj ( f ), in view of identity (6.5.7). Armed with this observation and
recalling that r < p, the boundedness of the Hardy–Littlewood maximal operator
on Lp/r yields that the homogeneous Besov–Lipschitz norm defined in terms of the
bump Ω is controlled by a constant multiple of the corresponding Besov–Lipschitz
norm defined in terms of Ψ . A similar argument applies for the inhomogeneous
Besov–Lipschitz norms. The equivalence constants depend onΨ ,Ω ,n, p,q, and α .

The corresponding equivalence of norms for Triebel–Lizorkin spaces is more
difficult to obtain, and it is a consequence of the characterization of these spaces
proved later.

Definition 6.5.5. For b > 0 and j ∈ R we introduce the notation

M∗∗
b, j( f ;Ψ )(x) = sup

y∈Rn

|(Ψ2− j ∗ f )(x− y)|
(1 + 2 j|y|)b ,

so that we have
M∗∗

b ( f ;Ψ ) = sup
t>0

M∗∗
b,t( f ;Ψ ) ,

in accordance with the notation in the previous section. The function M∗∗
b ( f ;Ψ ) is

called the Peetre maximal function of f (with respect toΨ ).

We clearly have
|ΔΨj ( f )| ≤ M∗∗

b, j( f ;Ψ ) ,

but the next result shows that a certain converse is also valid.

Theorem 6.5.6. Let b > n(min(p,q))−1 and 0 < p,q <∞. LetΨ andΩ be Schwartz
functions whose Fourier transforms are supported in the annulus 1

2 ≤ |ξ | ≤ 2 and
satisfy (6.5.1). Then we have
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∥

∥

∥

(

∑
j∈Z

∣

∣2 jαM∗∗
b, j( f ;Ω)

∣

∣

q
) 1

q
∥

∥

∥

Lp
≤C

∥

∥

∥

(

∑
j∈Z

∣

∣2 jαΔΨj ( f )
∣

∣

q
) 1

q
∥

∥

∥

Lp
(6.5.9)

for all f ∈ S ′(Rn), where C = Cα ,p,q,n,b,Ψ ,Ω .

Proof. We start with a Schwartz functionΘ whose Fourier transform is nonnegative,
supported in the annulus 1− 2

7 ≤ |ξ | ≤ 2, and satisfies

∑
j∈Z

̂Θ(2− jξ )2 = 1, ξ ∈ Rn \ {0} . (6.5.10)

Using (6.5.10), we have

Ω2−k ∗ f = ∑
j∈Z

(Ω2−k ∗Θ2− j)∗ (Θ2− j ∗ f ) .

It follows that

2kα |(Ω2−k ∗ f )(x− z)|
(1 + 2k|z|)b

≤ ∑
j∈Z

2kα
∫

Rn
|(Ω2−k ∗Θ2− j)(y)|

|(Θ2− j ∗ f )(x− z− y)|
(1 + 2k|z|)b dy

= ∑
j∈Z

2kα
∫

Rn
2kn|(Ω ∗Θ2−( j−k))(2ky)| (1 + 2 j|y + z|)b

(1 + 2k|z|)b

|(Θ2− j ∗ f )(x−z−y)|
(1 + 2 j|y + z|)b dy

≤ ∑
j∈Z

2kα
∫

Rn
|(Ω ∗Θ2−( j−k))(y)|

(1 + 2 j|2−ky + z|)b

(1 + 2k|z|)b

|(Θ2− j ∗ f )(x−z−y)|
(1 + 2 j|y + z|)b

dy

≤ ∑
j∈Z

2(k− j)α
∫

Rn
|(Ω ∗Θ2−( j−k))(y)|

(1 + 2 j−k|y|+ 2 j|z|)b

(1 + 2k|z|)b dy2 jαM∗∗
b, j( f ;Θ)(x)

≤ ∑
j∈Z

2(k− j)α
∫

Rn
|(Ω ∗Θ2−( j−k))(y)|(1+2 j−k)b(1+2 j−k|y|)bdy2 jαM∗∗

b, j( f ;Θ)(x) .

We conclude that

2kαM∗∗
b,k( f ;Ω)(x) ≤ ∑

j∈Z
Vk− j 2 jαM∗∗

b, j( f ;Θ)(x) , (6.5.11)

where
Vj = 2− jα(1 + 2 j)b

∫

Rn
|(Ω ∗Θ2− j)(y)|(1 + 2 j|y|)b dy .

We now use the facts that both Ω andΘ have vanishing moments of all orders and
the result in Appendix K.2 to obtain

|(Ω ∗Θ2− j)(y)| ≤CL,N,n,Θ ,Ω
2−| j|L

(1 + 2min(0, j)|y|)N
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for all L,N > 0. We deduce the estimate

|Vj| ≤CL,M,n,Θ ,Ω2−| j|M

for all M sufficiently large, which, in turn, yields the estimate

∑
j∈Z

|Vj|min(1,q) < ∞ .

We deduce from (6.5.11) that for all x ∈ Rn we have
∥

∥{2kαM∗∗
b,k( f ;Ω)(x)}k

∥

∥

�q ≤Cα ,p,q,n,Ψ ,Ω
∥

∥{2kαM∗∗
b,k( f ;Θ)(x)}k

∥

∥

�q .

We now appeal to Lemma 6.5.3, which gives

2kαM∗∗
b,k( f ;Θ) ≤C2kαM(|ΔΘk ( f )|r) 1

r = CM(|2kαΔΘk ( f )|r) 1
r

with b = n/r. We choose r < min(p,q). We use the Lp/r(Rn, �q/r) to Lp/r(Rn, �q/r)
boundedness of the Hardy–Littlewood maximal operator, Theorem 4.6.6, to com-
plete the proof of (6.5.9) with the exception that the functionΨ on the right-hand
side of (6.5.9) is replaced byΘ . The passage toΨ is a simple matter (at least when
p ≥ 1), since

ΔΨj = ΔΨj
(

ΔΘj−1 +ΔΘj +ΔΘj+1

)

.

For general 0 < p < ∞ the conclusion follows with the use of (6.5.8). �
We obtain as a corollary that a different choice of bumps gives equivalent

Triebel–Lizorkin norms.

Corollary 6.5.7. LetΨ ,Ω be Schwartz functions whose Fourier transforms are sup-
ported in the annulus 1− 1

7 ≤ |ξ | ≤ 2 and satisfy (6.5.1). Let Φ be as in (6.5.2) and
let

̂Θ(ξ ) =

{

∑ j≤0
̂Ω (2− jξ ) when ξ �= 0,

1 when ξ = 0.

Then the Triebel–Lizorkin quasinorms defined with respect to the pairs (Ψ ,Φ) and
(Ω ,Θ) are equivalent.

Proof. We note that the quantity on the left in (6.5.9) is greater than or equal to

∥

∥

∥

(

∑
j∈Z

∣

∣2 jαΔΩj ( f )
∣

∣

q
) 1

q
∥

∥

∥

Lp

for all f ∈ S ′(Rn). This shows that the homogeneous Triebel–Lizorkin norm de-
fined usingΩ is bounded by a constant multiple of that defined usingΨ . This proves
the equivalence of norms in the homogeneous case.

In the case of the inhomogeneous spaces, we let SΨ0 and SΩ0 be the operators
given by convolution with the bumps Φ and Θ , respectively (recall that these are
defined in terms ofΨ and Ω ). Then for f ∈ S ′(Rn) we have
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Θ ∗ f =Θ ∗ (Φ ∗ f )+Θ ∗ (Ψ2−1 ∗ f ) , (6.5.12)

since the Fourier transform of the functionΦ+Ψ2−1 is equal to 1 on the support of
̂Θ . Applying Lemma 6.5.3 (with t = 1), we obtain that

|Θ ∗ (Φ ∗ f )| ≤Cr M(|Φ ∗ f |r) 1
r

and also
|Θ ∗ (Ψ2−1 ∗ f )| ≤Cr M(|Ψ2−1 ∗ f |r) 1

r

for any 0 < r < ∞. Picking r < p, we obtain that
∥

∥Θ ∗ (Φ ∗ f )
∥

∥

Lp ≤C
∥

∥SΨ0 ( f )
∥

∥

Lp

and also
∥

∥Θ ∗ (Ψ2−1 ∗ f )
∥

∥

Lp ≤C
∥

∥ΔΨ1 ( f )
∥

∥

Lp .

Combining the last two estimates with (6.5.12), we obtain that
∥

∥SΩ0 ( f )
∥

∥

Lp is con-
trolled by a multiple of the Triebel–Lizorkin norm of f defined usingΨ . This gives
the equivalence of norms in the inhomogeneous case. �

Several other properties of these spaces are discussed in the exercises that follow.

Exercises

6.5.1. Let 0 < q0 ≤ q1 < ∞, 0 < p < ∞, ε > 0, and α ∈ R. Prove the embeddings

Bα ,q0
p ⊆ Bα ,q1

p ,

Fα ,q0
p ⊆ Fα ,q1

p ,

Bα+ε,q0
p ⊆ Bα ,q1

p ,

Fα+ε,q0
p ⊆ Fα ,q1

p ,

where p and q1 are allowed to be infinite in the case of Besov spaces.

6.5.2. Let 0 < q < ∞, 0 < p < ∞, and α ∈ R. Show that

Bα ,min(p,q)
p ⊆ Fα ,q

p ⊆ Bα ,max(p,q)
p .

[

Hint: Consider the cases p ≥ q and p < q and use the triangle inequality in the
spaces Lp/q and �q/p, respectively.

]

6.5.3. (a) Let 0 < p,q ≤∞ and α ∈ R. Show that S (Rn) is continuously embedded
in Bα ,q

p (Rn) and that the latter is continuously embedded in S ′(Rn).
(b) Obtain the same conclusion for Fα ,q

p (Rn) when p,q < ∞.
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6.5.4. 0 < p,q < ∞ and α ∈ R. Show that the Schwartz functions are dense in all
the spaces Bα ,q

p (Rn) and Fα ,q
p (Rn).

[

Hint: Every Cauchy sequence { fk}k in Bα ,q
p is also Cauchy in S ′(Rn) and hence

converges to some f in S ′(Rn). Then Δ j( fk)→Δ j( f ) in S ′(Rn). But Δ j( fk) is also
Cauchy in Lp and therefore converges to Δ j( f ) in Lp. Argue similarly for Fα ,q

p (Rn).
]

6.5.5. Let α ∈ R, let 0 < p,q < ∞, and let N = [ n
2 + n

min(p,q) ]+ 1. Assume that m is

a C N function on Rn \ {0} that satisfies

|∂ γm(ξ )| ≤Cγ |ξ |−|γ|

for all |γ| ≤ N. Show that there exists a constant C such that for all f ∈ S ′(Rn) we
have

∥

∥(m ̂f )∨
∥

∥

Ḃα,q
p

≤C
∥

∥ f
∥

∥

Ḃα,q
p

.

[

Hint: Pick r < min(p,q) such that N > n
2 + n

r . Write m = ∑ j m j, where m̂ j(ξ ) =
̂Θ(2− jξ )m(ξ ) and ̂Θ(2− jξ ) is supported in an annulus 2 j ≤ |ξ | ≤ 2 j+1. Obtain the
estimate

sup
z∈Rn

∣

∣

(

m j
̂Δ j( f )

)∨(x− z)
∣

∣

(1 + 2 j|z|) n
r

≤C sup
z∈Rn

∣

∣Δ j( f )(x− z)
∣

∣

(1 + 2 j|z|) n
r

∫

Rn
|m∨

j (y)|(1 + 2 j|y|) n
r dy

≤C′
(
∫

Rn
|m j(2 j( ·))∨(y)|2(1 + |y|)2N dy

) 1
2

.

Then use the hypothesis on m and apply Lemma 6.5.3.
]

6.5.6. (Peetre [258] ) Let m be as in Exercise 6.5.5. Show that there exists a constant
C such that for all f ∈ S ′(Rn) we have

∥

∥(m ̂f )∨
∥

∥

Ḟα,q
p

≤C
∥

∥ f
∥

∥

Ḟα,q
p

.

[

Hint: Use the hint of Exercise 6.5.5 and Theorem 4.6.6.
]

6.5.7. (a) Suppose that Bα0,q0
p0 = Bα1,q1

p1 with equivalent norms. Prove that α0 = α1

and p0 = p1. Prove the same result for the scale of F spaces.
(b) Suppose that Bα0,q0

p0 = Bα1,q1
p1 with equivalent norms. Prove that q0 = q1. Argue

similarly with the scale of F spaces.
[

Hint: Part (a): Test the corresponding norms on the functionΨ(2 jx), whereΨ is
chosen so that its Fourier transform is supported in 1

2 ≤ |ξ | ≤ 2. Part (b): Try a func-

tion f of the form ̂f (ξ ) =∑N
j=1 a jϕ̂(ξ1−2 j,ξ2, . . . ,ξn), where ϕ is a Schwartz func-

tion whose Fourier transform is supported in a small neighborhood of the origin.
]
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6.6 Atomic Decomposition

In this section we focus attention on the homogeneous Triebel–Lizorkin spaces
Ḟα ,q

p , which include the Hardy spaces discussed in Section 6.4. Most results dis-
cussed in this section are also valid for the inhomogeneous Triebel–Lizorkin spaces
and for the Besov–Lipschitz via a similar or simpler analysis. We refer the interested
reader to the relevant literature on the subject at the end of this chapter.

6.6.1 The Space of Sequences ḟ α,q
p

To provide further intuition in the understanding of the homogeneous Triebel–
Lizorkin spaces we introduce a related space consisting of sequences of scalars.
This space is denoted by ḟ α ,q

p and is related to Ḟα ,q
p in a way similar to that in which

�2(Z) is related to L2([0,1]).

Definition 6.6.1. Let 0 < q ≤ ∞ and α ∈ R. Let D be the set of all dyadic cubes in
Rn. We consider the set of all sequences {sQ}Q∈D such that the function

gα ,q({sQ}Q) =
(

∑
Q∈D

(|Q|− αn − 1
2 |sQ|χQ)q

) 1
q

(6.6.1)

is in Lp(Rn). For such sequences s = {sQ}Q we set
∥

∥s
∥

∥

ḟα,q
p

=
∥

∥gα ,q(s)
∥

∥

Lp(Rn) .

6.6.2 The Smooth Atomic Decomposition of Ḟα,q
p

Next, we discuss the smooth atomic decomposition of these spaces. We begin with
the definition of smooth atoms on Rn.

Definition 6.6.2. Let Q be a dyadic cube and let L be a nonnegative integer. A C ∞

function aQ on Rn is called a smooth L-atom for Q if it satisfies

(a) aQ is supported in 3Q (the cube concentric with Q having three times its side
length);

(b)
∫

Rn
xγaQ(x)dx = 0 for all multi-indices |γ| ≤ L;

(c) |∂ γaQ| ≤ |Q|−
|γ|
n − 1

2 for all multi-indices γ satisfying |γ| ≤ L+ n + 1.

The value of the constant L + n + 1 in (c) may vary in the literature. Any suffi-
ciently large constant depending on L will serve the purposes of the definition.
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We now prove a theorem stating that elements of Ḟα ,q
p can be decomposed as

sums of smooth atoms.

Theorem 6.6.3. Let 0 < p,q < ∞, α ∈ R, and let L be a nonnegative integer
satisfying L≥ [nmax(1, 1

p , 1
q )−n−α]. Then there is a constant Cn,p,q,α such that for

every sequence of smooth L-atoms {aQ}Q∈D and every sequence of complex scalars
{sQ}Q∈D we have

∥

∥

∥ ∑
Q∈D

sQaQ

∥

∥

∥

Ḟα,q
p

≤Cn,p,q,α
∥

∥{sQ}Q
∥

∥

ḟα,q
p

. (6.6.2)

Conversely, there is a constant C′
n,p,q,α such that given any distribution f in Ḟα ,q

p

and any L ≥ 0, there exist a sequence of smooth L-atoms {aQ}Q∈D and a sequence
of complex scalars {sQ}Q∈D such that

f = ∑
Q∈D

sQaQ ,

where the sum converges in S ′/P and moreover,
∥

∥{sQ}Q
∥

∥

ḟα,q
p

≤C′
n,p,q,α

∥

∥ f
∥

∥

Ḟα,q
p

. (6.6.3)

Proof. We begin with the first claim of the theorem. We let ΔΨj be the Littlewood–
Paley operator associated with a Schwartz functionΨ whose Fourier transform is
compactly supported away from the origin in Rn. Let aQ be a smooth L-atom sup-
ported in a cube 3Q with center CQ and let the side length be �(Q) = 2−μ . It follows
trivially from Definition 6.6.2 that aQ satisfies

|∂ γy aQ(y)| ≤CN,n2−
μn
2

2μ|γ|+μn

(1 + 2μ|y− cQ|)N (6.6.4)

for all N > 0 and for all multi-indices γ satisfying |γ| ≤ L + n + 1. Moreover, the
function y �→Ψ2− j(y− x) satisfies

|∂δyΨ2− j(y− x)| ≤CN,n,δ
2 j|δ |+ jn

(1 + 2 j|y− x|)N (6.6.5)

for all N > 0 and for all multi-indices δ . Using first the facts that aQ has vanishing
moments of all orders up to and including L = (L + 1)− 1 and that the function
y �→Ψ2− j(y− x) satisfies (6.6.5) for all multi-indices δ with |δ | = L, secondly the
facts that the function y �→Ψ2− j(y−x) has vanishing moments of all orders up to and
including L+n = (L+n+1)−1 and that aQ satisfies (6.6.4) for all multi-indices γ
satisfying |γ| = L+ n + 1, and the result in Appendix K.2, we deduce the following
estimate for all N > 0:

∣

∣ΔΨj (aQ)(x)
∣

∣≤CN,n,L′ 2−
μn
2

2min( j,μ)n−|μ− j|L′

(1 + 2min( j,μ)|x− cQ|)N
, (6.6.6)
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where

L′ =

{

L+ 1 when j < μ ,

L+ n when μ ≤ j.

Now fix 0 < b < min(1, p,q) so that

L+ 1 > n
b −n−α . (6.6.7)

This can be achieved by taking b close enough to min(1, p,q), since our assumption
L ≥

[

nmax
(

1, 1
p , 1

q

)

−n−α
]

implies L+ 1 > nmax
(

1, 1
p , 1

q

)

−n−α .
Using Exercise 6.6.6, we obtain

∑
Q∈D

�(Q)=2−μ

|sQ|
(1 + 2min( j,μ)|x− cQ|)N

≤ c2max(μ− j,0) n
b

{

M
(

∑
Q∈D

�(Q)=2−μ

|sQ|bχQ

)

(x)
}1

b

whenever N > n/b, where M is the Hardy–Littlewood maximal operator. It follows
from the preceding estimate and (6.6.6) that

2 jα ∑
μ∈Z

∑
Q∈D

�(Q)=2−μ

|sQ|
∣

∣ΔΨj (aQ)(x)
∣

∣≤C ∑
μ∈Z

2min( j,μ)n2−| j−μ|L′2−μn2( j−μ)α

×2max(μ− j,0) n
b

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)

(x)
} 1

b

.

Raise the preceding inequality to the power q and sum over j ∈ Z; then raise to the
power 1/q and take

∥

∥ ·
∥

∥

Lp norms in x. We obtain

∥

∥ f
∥

∥

Ḟα,q
p

≤
∥

∥

∥

∥

{

∑
j∈Z

[

∑
μ∈Z

d( j− μ)
{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)} 1
b
]q} 1

q
∥

∥

∥

∥

Lp
,

where f = ∑Q∈D sQaQ and

d( j− μ) = C 2min( j−μ,0)(n− n
b )+( j−μ)α−| j−μ|L′ .

We now estimate the expression inside the last Lp norm by

{

∑
j∈Z

d( j)min(1,q)
} 1

min(1,q)
{

∑
μ∈Z

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)}
q
b
} 1

q

,

and we note that the first term is a constant in view of (6.6.7). We conclude that
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∥

∥

∥ ∑
Q∈D

sQaQ

∥

∥

∥

Ḟα,q
p

≤ C

∥

∥

∥

∥

{

∑
μ∈Z

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)}
q
b
} 1

q
∥

∥

∥

∥

Lp

= C

∥

∥

∥

∥

{

∑
μ∈Z

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)}
q
b
} b

q
∥

∥

∥

∥

1
b

L
p
b

≤ C′
∥

∥

∥

∥

{

∑
μ∈Z

{

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

}
q
b
} b

q
∥

∥

∥

∥

1
b

L
p
b

= C′
∥

∥

∥

∥

{

∑
μ∈Z

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)qχQ

} 1
q
∥

∥

∥

∥

Lp

= C′∥
∥{sQ}Q

∥

∥

ḟα,q
p

,

where in the last inequality we used Theorem 4.6.6, which is valid under the as-
sumption 1 < p

b , q
b < ∞. This proves (6.6.2).

We now turn to the converse statement of the theorem. It is not difficult to see that
there exist Schwartz functionsΨ (unrelated to the previous one) andΘ such that ̂Ψ
is supported in the annulus 1

2 ≤ |ξ | ≤ 2, ̂Ψ is at least c > 0 in the smaller annulus
3
5 ≤ |ξ | ≤ 5

3 , and Θ is supported in the ball |x| ≤ 1 and satisfies
∫

Rn xγΘ(x)dx = 0
for all |γ| ≤ L, such that the identity

∑
j∈Z

̂Ψ(2− jξ )̂Θ(2− jξ ) = 1 (6.6.8)

holds for all ξ ∈ Rn \ {0}. (See Exercise 6.6.1.)
Using identity (6.6.8), we can write

f = ∑
j∈Z
Ψ2− j ∗Θ2− j ∗ f .

Setting D j = {Q ∈ D : �(Q) = 2− j}, we now have

f = ∑
j∈Z
∑

Q∈D j

∫

Q
Θ2− j(x− y)(Ψ2− j ∗ f )(y)dy = ∑

j∈Z
∑

Q∈D j

sQaQ ,

where we also set

sQ = |Q| 1
2 sup

y∈Q
|(Ψ2− j ∗ f )(y)| sup

|γ|≤L

∥

∥∂ γΘ
∥

∥

L1

for Q in D j and
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aQ(x) =
1
sQ

∫

Q
Θ2− j(x− y)(Ψ2− j ∗ f )(y)dy .

It is straightforward to verify that aQ is supported in 3Q and that it has vanishing
moments up to and including order L. Moreover, we have

|∂ γaQ| ≤
1
sQ

∥

∥∂ γΘ
∥

∥

L12 j(n+|γ|) sup
Q

|Ψ2− j ∗ f | ≤ |Q|− 1
2−

|γ|
n ,

which makes the function aQ a smooth L-atom. Now note that

∑
�(Q)=2− j

(

|Q|− αn − 1
2 sQχQ(x)

)q

= C ∑
�(Q)=2− j

(

2 jα sup
y∈Q

|(Ψ2− j ∗ f )(y)|χQ(x)
)q

≤ C sup
|z|≤

√
n2− j

(

2 jα(1 + 2 j|z|)−b|(Ψ2− j ∗ f )(x− z)|
)q(1 + 2 j|z|)bq

≤ C
(

2 jαM∗∗
b, j( f ,Ψ )(x)

)q
,

where we used the fact that in the first inequality there is only one nonzero term in
the sum because of the appearance of the characteristic function. Summing over all
j ∈ Zn, raising to the power 1/q, and taking Lp norms yields the estimate

∥

∥{sQ}Q
∥

∥

ḟα,q
p

≤C
∥

∥

∥

(

∑
j∈Z

∣

∣2 jαM∗∗
b, j( f ;Ψ )

∣

∣

q
) 1

q
∥

∥

∥

Lp
≤C

∥

∥ f
∥

∥

Ḟα,q
p

,

where the last inequality follows from Theorem 6.5.6. This proves (6.6.3). �

6.6.3 The Nonsmooth Atomic Decomposition of Ḟα,q
p

We now discuss the main theorem of this section, the nonsmooth atomic decomposi-
tion of the homogeneous Triebel–Lizorkin spaces Ḟα ,q

p , which in particular includes
that of the Hardy spaces H p. We begin this task with a definition.

Definition 6.6.4. Let 0 < p ≤ 1 and 1 ≤ q ≤ ∞. A sequence of complex numbers
r = {rQ}Q∈D is called an ∞-atom for ḟ α ,q

p if there exists a dyadic cube Q0 such that

(a) rQ = 0 if Q � Q0;

(b)
∥

∥gα ,q(r)
∥

∥

L∞ ≤ |Q0|−
1
p .

We observe that every ∞-atom r = {rQ} for ḟ α ,q
p satisfies

∥

∥r
∥

∥

ḟα,q
p

≤ 1. Indeed,

∥

∥r
∥

∥

p
ḟα,q
p

=
∫

Q0

|gα ,q(r)|p dx ≤ |Q0|−1|Q0| = 1 .



6.6 Atomic Decomposition 83

The following theorem concerns the atomic decomposition of the spaces ḟ α ,q
p .

Theorem 6.6.5. Suppose α ∈ R, 0 < q < ∞, 0 < p < ∞, and s = {sQ}Q is in ḟ α ,q
p .

Then there exist Cn,p,q > 0, a sequence of scalars λ j, and a sequence of ∞-atoms
r j = {r j,Q}Q for ḟ α ,q

p such that

s = {sQ}Q =
∞

∑
j=1

λ j{r j,Q}Q =
∞

∑
j=1

λ jr j

and such that
( ∞

∑
j=1

|λ j|p
) 1

p ≤Cn,p,q
∥

∥s
∥

∥

ḟα,q
p

. (6.6.9)

Proof. We fix α, p,q, and a sequence s = {sQ}Q as in the statement of the theorem.
For a dyadic cube R in D we define the function

gα ,q
R (s)(x) =

(

∑
Q∈D
R⊆Q

(

|Q| αn − 1
2 |sQ|χQ(x)

)q
) 1

q

and we observe that this function is constant on R. We also note that for dyadic
cubes R1 and R2 with R1 ⊆ R2 we have

gα ,q
R2

(s) ≤ gα ,q
R1

(s) .

Finally, we observe that

lim
�(R)→∞

x∈R

gα ,q
R (s)(x) = 0

lim
�(R)→0

x∈R

gα ,q
R (s)(x) = gα ,q(s)(x) ,

where gα ,q(s) is the function defined in (6.6.1).
For k ∈ Z we set

Ak =
{

R ∈ D : gα ,q
R (s)(x) > 2k for all x ∈ R

}

.

We note that Ak+1 ⊆ Ak for all k in Z and that

{x ∈ Rn : gα ,q(s)(x) > 2k} =
⋃

R∈Ak

R . (6.6.10)

Moreover, we have for all k ∈ Z,

(

∑
Q∈D\Ak

(

|Q|− αn − 1
2 |sQ|χQ(x)

)q
) 1

q ≤ 2k , for all x ∈ Rn. (6.6.11)
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To prove (6.6.11) we assume that gα ,q(s)(x) > 2k; otherwise, the conclusion is triv-
ial. Then there exists a maximal dyadic cube Rmax in Ak such that x ∈ Rmax. Letting
R0 be the unique dyadic cube that contains Rmax and has twice its side length, we
have that the left-hand side of (6.6.11) is equal to gα ,q

R0
(s)(x), which is at most 2k,

since R0 is not contained in Ak.
Since gα ,q(s) ∈ Lp(Rn), by our assumption, and gα ,q(s) > 2k for all x ∈ Q if

Q ∈ Ak, the cubes in Ak must have size bounded above by some constant. We set

Bk =
{

Q ∈ D : Q is a maximal dyadic cube in Ak \Ak+1
}

.

For J in Bk we define a sequence t(k,J) = {t(k,J)Q}Q∈D by setting

t(k,J)Q =

{

sQ if Q ⊆ J and Q ∈ Ak \Ak+1,

0 otherwise.

We can see that if
Q /∈

⋃

k∈Z

Ak , then sQ = 0 ,

and the identity
s = ∑

k∈Z
∑

J∈Bk

t(k,J) (6.6.12)

is valid. For all x ∈ Rn we have

∣

∣gα ,q(t(k,J))(x)
∣

∣ =
(

∑
Q⊆J

Q∈Ak\Ak+1

(

|Q|− αn − 1
2 |sQ|χQ(x)

)q
) 1

q

≤
(

∑
Q⊆J

Q∈D\Ak+1

(

|Q|− αn − 1
2 |sQ|χQ(x)

)q
) 1

q

≤ 2k+1 ,

(6.6.13)

where we used (6.6.11) in the last estimate. We define atoms r(k,J) = {r(k,J)Q}Q∈D

by setting

r(k,J)Q = 2−k−1|J|−
1
p t(k,J)Q , (6.6.14)

and we also define scalars
λk,J = 2k+1|J|

1
p .

To see that each r(k,J) is an ∞-atom for ḟ α ,q
p , we observe that r(k,J)Q = 0 if Q � J

and that
∣

∣gα ,q(t(k,J))(x)
∣

∣≤ |J|−
1
p , for all x ∈ Rn,

in view of (6.6.13). Also using (6.6.12) and (6.6.14), we obtain that

s = ∑
k∈Z
∑

J∈Bk

λk,J r(k,J) ,
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which says that s can be written as a linear combination of atoms. Finally, we esti-
mate the sum of the pth power of the coefficients λk,J . We have

∑
k∈Z
∑

J∈Bk

|λk,J|p = ∑
k∈Z

2(k+1)p ∑
J∈Bk

|J|

≤ 2p∑
k∈Z

2kp

∣

∣

∣

∣

⋃

Q∈Ak

Q

∣

∣

∣

∣

= 2p∑
k∈Z

2k(p−1)2k|{x ∈ Rn : gα ,q(s)(x) > 2k}|

≤ 2p∑
k∈Z

∫ 2k+1

2k
2k(p−1)|{x ∈ Rn : gα ,q(s)(x) > λ

2 }|dλ

≤ 2p∑
k∈Z

∫ 2k+1

2k
λ p−1|{x ∈ Rn : gα ,q(s)(x) > λ

2 }|dλ

=
22p

p

∥

∥gα ,q(s)
∥

∥

p
Lp

=
22p

p

∥

∥s
∥

∥

p
ḟα,q
p

.

Taking the pth root yields (6.6.9). The proof of the theorem is now complete. �

We now deduce a corollary regarding a new characterization of the space ḟ α ,q
p .

Corollary 6.6.6. Suppose α ∈ R, 0 < p ≤ 1, and p ≤ q ≤ ∞. Then we have

∥

∥s
∥

∥

ḟα,q
p

≈ inf

{

( ∞

∑
j=1

|λ j|p
) 1

p
: s =

∞

∑
j=1
λ jr j , r j is an ∞-atom for ḟ α ,q

p

}

.

Proof. One direction in the previous estimate is a direct consequence of (6.6.9). The
other direction uses the observation made after Definition 6.6.4 that every ∞-atom r
for ḟ α ,q

p satisfies
∥

∥r
∥

∥

ḟα,q
p

≤ 1 and that for p ≤ 1 and p ≤ q the quantity s →
∥

∥s
∥

∥

p
ḟα,q
p

is

subadditive; see Exercise 6.6.2. Then each s = ∑∞j=1λ jr j (with r j ∞-atoms for ḟ α ,q
p

and ∑∞j=1 |λ j|p < ∞) must be an element of ḟ α ,q
p , since

∥

∥

∥

∞

∑
j=1

λ jr j

∥

∥

∥

p

ḟα,q
p

≤
∞

∑
j=1

|λ j|p
∥

∥r j
∥

∥

p
ḟα,q
p

≤
∞

∑
j=1

|λ j|p < ∞ .

This concludes the proof of the corollary. �

The theorem we just proved allows us to obtain an atomic decomposition for the
space Ḟα ,q

p as well. Indeed, we have the following result:

Corollary 6.6.7. Let α ∈ R, 0 < p ≤ 1, L ≥ [ n
p −n−α] and let q satisfy p ≤ q <∞.

Then we have the following representation:
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∥

∥ f
∥

∥

Ḟα,q
p

≈ inf
{( ∞

∑
j=1

|λ j|p
) 1

p
: f =

∞

∑
j=1

λ jA j, A j = ∑
Q∈D

rQaQ , aQ are

smooth L-atoms for Ḟα ,q
p and {rQ}Q is an ∞-atom for ḟ α ,q

p

}

.

Proof. Let f = ∑∞j=1λ jA j as described previously. Using Exercise 6.6.2, we have

∥

∥ f
∥

∥

p
Ḟα,q

p
≤

∞

∑
j=1

|λ j|p
∥

∥A j
∥

∥

p
Ḟα,q

p
≤ cn,p

∞

∑
j=1

|λ j|p
∥

∥r
∥

∥

p
ḟα,q
p

,

where in the last estimate we used Theorem 6.6.3. Using the fact that every ∞-atom
r = {rQ} for ḟ α ,q

p satisfies
∥

∥r
∥

∥

ḟα,q
p

≤ 1, we conclude that every element f in S ′(Rn)

that has the form ∑∞j=1λ jA j lies in the homogeneous Triebel–Lizorkin space Ḟα ,q
p

[and has norm controlled by a constant multiple of
(

∑∞j=1 |λ j|p
) 1

p ].
Conversely, Theorem 6.6.3 gives that every element of Ḟα ,q

p has a smooth atomic
decomposition. Then we can write

f = ∑
Q∈D

sQaQ ,

where each aQ is a smooth L-atom for the cube Q. Using Theorem 6.6.5 we can now
write s = {sQ}Q as a sum of ∞-atoms for ḟ α ,q

p , that is,

s =
∞

∑
j=1

λ jr j ,

where
(

∞

∑
j=1

|λ j|p
) 1

p ≤ c
∥

∥s
∥

∥

ḟα,q
p

≤ c
∥

∥ f
∥

∥

Ḟα,q
p

,

where the last step uses Theorem 6.6.3 again. It is simple to see that

f = ∑
Q∈D

∞

∑
j=1
λ jr j,QaQ =

∞

∑
j=1
λ j

(

∑
Q∈D

r j,QaQ

)

,

and we set the expression inside the parentheses equal to A j. �

6.6.4 Atomic Decomposition of Hardy Spaces

We now pass to one of the main theorems of this chapter, the atomic decomposition
of H p(Rn) for 0 < p ≤ 1. We begin by defining atoms for H p.

Definition 6.6.8. Let 1 < q ≤ ∞. A function A is called an Lq-atom for H p(Rn) if
there exists a cube Q such that
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(a) A is supported in Q;

(b)
∥

∥A
∥

∥

Lq ≤ |Q|
1
q−

1
p ;

(c)
∫

xγA(x)dx = 0 for all multi-indices γ with |γ| ≤ [ n
p −n].

Notice that any Lr-atom for H p is also an Lq-atom for H p whenever 0 < p ≤ 1
and 1 < q < r ≤ ∞. It is also simple to verify that an Lq-atom A for H p is in fact in
H p. We prove this result in the next theorem for q = 2, and we refer the reader to
Exercise 6.6.4 for the case of a general q.

Theorem 6.6.9. Let 0 < p≤ 1. There is a constant Cn,p <∞ such that every L2-atom
A for H p(Rn) satisfies

∥

∥A
∥

∥

H p ≤Cn,p .

Proof. We could prove this theorem either by showing that the smooth maximal

function M(A;Φ) is in Lp or by showing that the square function
(

∑ j |Δ j(A)|2
)1/2

is in Lp. The operators Δ j here are as in Theorem 5.1.2. Both proofs are similar; we
present the second, and we refer to Exercise 6.6.3 for the first.

Let A(x) be an atom that we assume is supported in a cube Q centered at the
origin [otherwise apply the argument to the atom A(x− cQ), where cQ is the center

of Q]. We control the Lp quasinorm of
(

∑ j |Δ j(A)|2
)1/2 by estimating it over the

cube Q∗ and over (Q∗)c, where Q∗ = 2
√

nQ. We have

(
∫

Q∗

(

∑
j

|Δ j(A)|2
)

p
2 dx

) 1
p

≤
(
∫

Q∗∑
j

|Δ j(A)|2 dx

) 1
2

|Q∗|
1

p(2/p)′ .

Using that the square function f �→
(

∑ j |Δ j( f )|2
) 1

2 is L2 bounded, we obtain

(
∫

Q∗

(

∑
j
|Δ j(A)|2

)
p
2 dx

) 1
p

≤ Cn
∥

∥A
∥

∥

L2 |Q∗|
1

p(2/p)′

≤ Cn(2
√

n)
n
p−

n
2 |Q|

1
2−

1
p |Q|

1
p−

1
2

= C′
n .

(6.6.15)

To estimate the contribution of the square function outside Q∗, we use the cancella-
tion of the atoms. Let k = [ n

p −n]+ 1. We have

Δ j(A)(x) =
∫

Q
A(y)Ψ2− j(x− y)dy

= 2 jn
∫

Q
A(y)

[

Ψ(2 jx−2 jy)− ∑
|β |≤k−1

(∂βΨ)(2 jx)
(−2 jy)β

β !

]

dy

= 2 jn
∫

Q
A(y)

[

∑
|β |=k

(∂βΨ )(2 jx−2 jθy)
(−2 jy)β

β !

]

dy ,
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where 0 ≤ θ ≤ 1. Taking absolute values, using the fact that ∂βΨ are Schwartz
functions, and that |x−θy| ≥ |x|− |y| ≥ 1

2 |x| whenever y ∈ Q and x /∈ Q∗, we obtain
the estimate

|Δ j(A)(x)| ≤ 2 jn
∫

Q
|A(y)| ∑

|β |=k

CN

(1 + 2 j 1
2 |x|)N

|2 jy|k
β !

dy

≤ CN,p,n2 j(k+n)

(1 + 2 j|x|)N

(
∫

Q
|A(y)|2 dy

) 1
2
(
∫

Q
|y|2k dy

) 1
2

≤
C′

N,p,n2 j(k+n)

(1 + 2 j|x|)N |Q|
1
2−

1
p |Q| k

n + 1
2

=
CN,p,n2 j(k+n)

(1 + 2 j|x|)N |Q|1+ k
n−

1
p

for x ∈ (Q∗)c. For such x we now have

(

∑
j∈Z

|Δ j(A)(x)|2
) 1

2

≤CN,p,n|Q|1+ k
n−

1
p

(

∑
j∈Z

22 j(k+n)

(1 + 2 j|x|)2N

) 1
2

. (6.6.16)

It is a simple fact that the series in (6.6.16) converges. Indeed, considering the cases
2 j ≤ 1/|x| and 2 j > 1/|x| we see that both terms in the second series in (6.6.16) con-
tribute at most a fixed multiple of |x|−2k−2n. It remains to estimate the Lp quasinorm
of the square root of the second series in (6.6.16) raised over (Q∗)c. This is bounded
by a constant multiple of

(
∫

(Q∗)c

1

|x|p(k+n) dx

) 1
p

≤Cn,p

(
∫ ∞

c|Q|
1
n

r−p(k+n)+n−1 dr

) 1
p

,

for some constant c, and the latter is easily seen to be bounded above by a constant

multiple of |Q|−1− k
n + 1

p . Here we use the fact that p(k + n) > n or, equivalently,
k > n

p −n, which is certainly true, since k was chosen to be [ n
p −n]+ 1. Combining

this estimate with that in (6.6.15), we conclude the proof of the theorem. �

We now know that Lq-atoms for H p are indeed elements of H p. The main result
of this section is to obtain the converse (i.e., every element of H p can be decomposed
as a sum of L2-atoms for H p).

Applying the same idea as in Corollary 6.6.7 to H p, we obtain the following
result.

Theorem 6.6.10. Let 0 < p ≤ 1. Given a distribution f ∈ H p(Rn), there exists a
sequence of L2-atoms for H p, {A j}∞j=1, and a sequence of scalars {λ j}∞j=1 such that

N

∑
j=1
λ jA j → f in H p.
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Moreover, we have

∥

∥ f
∥

∥

H p ≈ inf
{

(

∞

∑
j=1

|λ j|p
) 1

p : f = lim
N→∞

N

∑
j=1
λ jA j,

A j are L2-atoms for H p and the limit is taken in H p
}

.

(6.6.17)

Proof. Let A j be L2-atoms for H p and ∑∞j=1 |λ j|p < ∞. It follows from Theorem
6.6.9 that

∥

∥

∥

N

∑
j=1

λ jA j

∥

∥

∥

p

H p
≤Cp

n,p

N

∑
j=1

|λ j|p .

Thus if the sequence ∑N
j=1λ jA j converges to f in H p, then

∥

∥ f
∥

∥

H p ≤Cn,p

( ∞

∑
j=1

|λ j|p
) 1

p
,

which proves the direction ≤ in (6.6.17). The gist of the theorem is contained in the
converse statement.

Using Theorem 6.6.3 (with L = [ n
p −n]), we can write every element f in Ḟ0,2

p =
H p as a sum of the form f =∑Q∈D sQaQ, where each aQ is a smooth L-atom for the

cube Q and s = {sQ}Q∈D is a sequence in ḟ 0,2
p . We now use Theorem 6.6.5 to write

the sequence s = {sQ}Q as

s =
∞

∑
j=1

λ jr j ,

i.e., as a sum of ∞-atoms r j for ḟ 0,2
p , such that

(

∞

∑
j=1

|λ j|p
) 1

p ≤C
∥

∥s
∥

∥

ḟ 0,2
p

≤C
∥

∥ f
∥

∥

H p . (6.6.18)

Then we have

f = ∑
Q∈D

sQaQ = ∑
Q∈D

∞

∑
j=1

λ j r j,Q aQ =
∞

∑
j=1

λ jA j , (6.6.19)

where we set
A j = ∑

Q∈D

r j,Q aQ (6.6.20)

and the series in (6.6.19) converges in S ′(Rn). Next we show that each A j is a fixed
multiple of an L2-atom for H p. Let us fix an index j. By the definition of the∞-atom
for ḟ 0,2

p , there exists a dyadic cube Q j
0 such that r j,Q = 0 for all dyadic cubes Q not

contained in Q j
0. Then the support of each aQ that appears in (6.6.20) is contained in

3Q, hence in 3Q j
0. This implies that the function A j is supported in 3Q j

0. The same
is true for the function g0,2(r j) defined in (6.6.1). Using this fact, we have
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∥

∥A j
∥

∥

L2 ≈
∥

∥A j
∥

∥

Ḟ0,2
2

≤ c
∥

∥r j
∥

∥

ḟ 0,2
2

= c
∥

∥g0,2(r j)
∥

∥

L2

≤ c
∥

∥g0,2(r j)
∥

∥

L∞ |3Q j
0|

1
2

≤ c |3Q j
0|
− 1

p + 1
2 .

Since the series (6.6.20) defining A j converges in L2 and A j is supported in some
cube, this series also converges in L1. It follows that the vanishing moment condi-
tions of A j are inherited from those of each aQ. We conclude that each A j is a fixed
multiple of an L2-atom for H p.

Finally, we need to show that the series in (6.6.19) converges in H p(Rn). But

∥

∥

M

∑
j=N
λ jA j

∥

∥

H p ≤Cn,p

( M

∑
j=N

|λ j|p
) 1

p → 0

as M,N → ∞ in view of the convergence of the series in (6.6.18). This implies that
the series ∑∞j=1λ jA j is Cauchy in H p, and since it converges to f in S ′(Rn), it must
converge to f in H p. Combining this fact with (6.6.18) yields the direction ≥ in
(6.6.17). �

Remark 6.6.11. Property (c) in Definition 6.6.8 can be replaced by
∫

xγA(x)dx = 0 for all multi-indices γ with |γ| ≤ L,

for any L ≥ [ n
p −n], and the atomic decomposition of H p holds unchanged. In fact,

in the proof of Theorem 6.6.10 we may take L ≥ [ n
p −n] instead of L = [ n

p −n] and
then apply Theorem 6.6.3 for this L. Observe that Theorem 6.6.3 was valid for all
L ≥ [ n

p −n].
This observation can be very useful in certain applications.

Exercises

6.6.1. (a) Prove that there exists a Schwartz function Θ supported in the unit ball
|x| ≤ 1 such that

∫

Rn xγΘ(x)dx = 0 for all multi-indices γ with |γ| ≤ N and such that
| ̂Θ | ≥ 1

2 on the annulus 1
2 ≤ |ξ | ≤ 2.

(b) Prove there exists a Schwartz functionΨ whose Fourier transform is supported
in the annulus 1

2 ≤ |ξ | ≤ 2 and is at least c > 0 in the smaller annulus 3
5 ≤ |ξ | ≤ 5

3
such that we have

∑
j∈Z

̂Ψ(2− jξ )̂Θ(2− jξ ) = 1
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for all ξ ∈ Rn \ {0}.
[

Hint: Part (a): Let θ be a real-valued Schwartz function supported in the ball

|x| ≤ 1 and such that ̂θ (0) = 1. Then for some ε > 0 we have ̂θ (ξ ) ≥ 1
2 for

all ξ satisfying |ξ | < 2ε < 1. Set Θ = (−Δ)N(θε ). Part (b): Define the function
̂Ψ (ξ ) = η̂(ξ )

(

∑ j∈Z η̂(2− jξ )̂Θ(2− jξ )
)−1

for a suitable η .
]

6.6.2. Let α ∈ R, 0 < p ≤ 1, p ≤ q ≤ +∞.
(a) For all f ,g in S ′(Rn) show that

∥

∥ f + g
∥

∥

p
Ḟα,q

p
≤
∥

∥ f
∥

∥

p
Ḟα,q

p
+
∥

∥g
∥

∥

p
Ḟα,q

p
.

(b) For all sequences {sQ}Q∈D and {tQ}Q∈D show that
∥

∥{sQ}Q +{tQ}Q
∥

∥

p
ḟα,q
p

≤
∥

∥{sQ}Q
∥

∥

p
ḟα,q
p

+
∥

∥{tQ}Q
∥

∥

p
ḟα,q
p

.

[

Hint: Use |a + b|p ≤ |a|p + |b|p and apply Minkowski’s inequality on Lq/p (or on
�q/p).

]

6.6.3. Let Φ be a smooth function supported in the unit ball of Rn. Use the same
idea as in Theorem 6.6.9 to show directly (without appealing to any other theorem)
that the smooth maximal function M(·,Φ) of an L2-atom for H p lies in Lp when
p < 1. Recall that M( f ,Φ) = supt>0 |Φt ∗ f |.

6.6.4. Extend Theorem 6.6.9 to the case 1 < q ≤ ∞. Precisely, prove that there is a
constant Cn,p,q such that every Lq-atom A for H p satisfies

∥

∥A
∥

∥

H p ≤Cn,p,q .

[

Hint: If 1 < q < 2, use the boundedness of the square function on Lq, and for
2 ≤ q ≤ ∞, its boundedness on L2.

]

6.6.5. Show that the space H p
F of all finite linear combinations of L2-atoms for H p

is dense in H p.
[

Hint: Use Theorem 6.6.10.
]

6.6.6. Show that for all μ , j ∈ Z, all N,b > 0 satisfying N > n/b and b < 1, all
scalars sQ (indexed by dyadic cubes Q with centers cQ), and all x ∈ Rn we have

∑
Q∈D

�(Q)=2−μ

|sQ|
(1 + 2min( j,μ)|x− cQ|)N

≤ c(n,N,b)2max(μ− j,0) n
b

{

M
(

∑
Q∈D

�(Q)=2−μ

|sQ|b χQ

)

(x)
} 1

b

,
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where M is the Hardy–Littlewood maximal operator and c(n,N,b) is a constant.
[

Hint: Define F0 =
{

Q ∈ D : �(Q) = 2−μ , |cQ − x|2min( j,μ) ≤ 1
}

and for k ≥ 1 de-
fine Fk =

{

Q ∈D : �(Q) = 2−μ , 2k−1 < |cQ−x|2min( j,μ) ≤ 2k
}

. Break up the sum

on the left as a sum over the families Fk and use that∑Q∈Fk
|sQ| ≤

(

∑Q∈Fk
|sQ|b

)1/b

and the fact that
∣

∣

⋃

Q∈Fk
Q
∣

∣≤ cn2−min( j,μ)n+kn.
]

6.6.7. Let A be an L2-atom for H p(Rn) for some 0 < p < 1. Show that there is a
constant C such that for all multi-indices α with |α| ≤ k = [ n

p −n] we have

sup
ξ∈Rn

|ξ ||α |−k−1
∣

∣(∂α ̂A)(ξ )
∣

∣≤C
∥

∥A
∥

∥

− 2p
2−p ( k+1

n + 1
2 )−1

L2(Rn) .

[Hint: Subtract the Taylor polynomial of degree k − |α| at 0 of the function x �→
e−2π ix·ξ .

]

6.6.8. Let A be an L2-atom for H p(Rn) for some 0 < p < 1. Show that for all multi-
indices α and all 1 ≤ r ≤ ∞ there is a constant C such that

∥

∥ |∂α ̂A|2
∥

∥

Lr′ (Rn) ≤C
∥

∥A
∥

∥

− 2p
2−p ( 2|α|

n + 1
r )+2

L2(Rn) .

[

Hint: In the case r = 1 use the L1 → L∞ boundedness of the Fourier transform and
in the case r = ∞ use Plancherel’s theorem. For general r use interpolation.

]

6.6.9. Let f be in H p(Rn) for some 0 < p ≤ 1. Then the Fourier transform of f ,
originally defined as a tempered distribution, is a continuous function that satisfies

|̂f (ξ )| ≤Cn,p
∥

∥ f
∥

∥

H p(Rn)|ξ |
n
p−n

for some constant Cn,p independent of f .
[

Hint: If f is an L2-atom for H p, combine the estimates of Exercises 6.6.7 and 6.6.8
with α = 0 (and r = 1). In general, apply Theorem 6.6.10.

]

6.6.10. Let A be an L∞-atom for H p(Rn) for some 0 < p < 1 and let α = n
p − n.

Show that there is a constant Cn,p such that for all g in Λ̇α(Rn) we have

∣

∣

∣

∣

∫

Rn
A(x)g(x)dx

∣

∣

∣

∣

≤Cn,p
∥

∥g
∥

∥

Λ̇α (Rn) .

[

Hint: Suppose that A is supported in a cube Q of side length 2−ν and center cQ.
Write the previous integrand as ∑ jΔ j(A)Δ j(g) for a suitable Littlewood–Paley op-
erator Δ j and apply the result of Appendix K.2 to obtain the estimate

∣

∣Δ j(A)(x)
∣

∣≤CN |Q|−
1
p +1 2min( j,ν)n2−| j−ν|D

(

1 + 2min( j,ν)|x− cQ|
)N ,

where D = [α]+ 1 when ν ≥ j and D = 0 when ν < j. Use Theorem 6.3.6.
]
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6.7 Singular Integrals on Function Spaces

Our final task in this chapter is to investigate the action of singular integrals on
function spaces. The emphasis of our study focuses on Hardy spaces, although with
no additional effort the action of singular integrals on other function spaces can also
be obtained.

6.7.1 Singular Integrals on the Hardy Space H1

Before we discuss the main results in this topic, we review some background on
singular integrals from Chapter 4.

Let K(x) be a function defined away from the origin on Rn that satisfies the size
estimate

sup
0<R<∞

1
R

∫

|x|≤R
|K(x)| |x|dx ≤ A1 , (6.7.1)

the smoothness estimate, expressed in terms of Hörmander’s condition,

sup
y∈Rn\{0}

∫

|x|≥2|y|

|K(x− y)−K(x)|dx ≤ A2 , (6.7.2)

and the cancellation condition

sup
0<R1<R2<∞

∣

∣

∣

∣

∫

R1<|x|<R2

K(x)dx

∣

∣

∣

∣

≤ A3 , (6.7.3)

for some A1,A2,A3 <∞. Condition (6.7.3) implies that there exists a sequence ε j ↓ 0
as j → ∞ such that the following limit exists:

lim
j→∞

∫

ε j≤|x|≤1
K(x)dx = L0.

This gives that for a smooth and compactly supported function f on Rn, the limit

lim
j→∞

∫

|x−y|>ε j

K(x− y) f (y)dy = T ( f )(x) (6.7.4)

exists and defines a linear operator T . This operator T is given by convolution with
a tempered distribution W that coincides with the function K on Rn \ {0}.

By the results of Chapter 4 we know that such a T , initially defined on C ∞0 (Rn),
admits an extension that is Lp bounded for all 1 < p < ∞ and is also of weak type
(1,1). All these norms are bounded above by dimensional constant multiples of the
quantity A1 + A2 + A3 (cf. Theorem 4.4.1). Therefore, such a T is well defined on
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L1(Rn) and in particular on H1(Rn), which is contained in L1(Rn). We begin with
the following result.

Theorem 6.7.1. Let K satisfy (6.7.1), (6.7.2), and (6.7.3), and let T be defined as in
(6.7.4). Then there is a constant Cn such that for all f in H1(Rn) we have

∥

∥T ( f )
∥

∥

L1 ≤Cn(A1 + A2 + A3)
∥

∥ f
∥

∥

H1 . (6.7.5)

Proof. To prove this theorem we have a powerful tool at our disposal, the atomic
decomposition of H1(Rn). It is therefore natural to start by checking the validity of
(6.7.5) whenever f is an L2-atom for H1.

Since T is a convolution operator (i.e., it commutes with translations), it suffices
to take the atom f supported in a cube Q centered at the origin. Let f = a be such
an atom, supported in Q, and let Q∗ = 2

√
nQ. We write

∫

Rn
|T (a)(x)|dx =

∫

Q∗
|T (a)(x)|dx +

∫

(Q∗)c
|T (a)(x)|dx (6.7.6)

and we estimate each term separately. We have

∫

Q∗
|T (a)(x)|dx ≤ |Q∗| 1

2

(
∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤Cn(A1 + A2 + A3)|Q∗| 1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤Cn(A1 + A2 + A3)|Q∗| 1
2 |Q| 1

2−
1
1 = C′

n(A1 + A2 + A3) ,

where we used property (b) of atoms in Definition 6.6.8. Now note that if x /∈ Q∗

and y ∈ Q, then |x| ≥ 2|y| and x− y stays away from zero; thus K(x− y) is well
defined. Moreover, in this case T (a)(x) can be expressed as a convergent integral of
a(y) against K(x− y). We have

∫

(Q∗)c
|T (a)(x)|dx =

∫

(Q∗)c

∣

∣

∣

∫

Q
K(x− y)a(y)dy

∣

∣

∣dx

=
∫

(Q∗)c

∣

∣

∣

∫

Q

(

K(x− y)−K(x)
)

a(y)dy
∣

∣

∣dx

≤
∫

Q

∫

(Q∗)c

∣

∣K(x− y)−K(x)
∣

∣dx |a(y)|dy

≤
∫

Q

∫

|x|≥2|y|

∣

∣K(x− y)−K(x)
∣

∣dx |a(y)|dy

≤ A2

∫

Q
|a(x)|dx

≤ A2|Q| 1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ A2|Q| 1
2 |Q| 1

2−
1
1 = A2 .
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Combining this calculation with the previous one and inserting the final conclusions
in (6.7.6) we deduce that L2-atoms a for H1 satisfy

∥

∥T (a)
∥

∥

L1 ≤ (C′
n + 1)(A1 + A2 + A3) . (6.7.7)

We now pass to general functions in H1. In view of Theorem 6.6.10 we can write
an f ∈ H1 as

f =
∞

∑
j=1

λ ja j ,

where the series converges in H1, the a j are L2-atoms for H1, and

∥

∥ f
∥

∥

H1 ≈
∞

∑
j=1

|λ j| . (6.7.8)

Since T maps L1 to weak L1 (Theorem 4.3.3), T ( f ) is already a well defined L1,∞

function. We plan to prove that

T ( f ) =
∞

∑
j=1
λ jT (a j) a.e. (6.7.9)

We observe that the series in (6.7.9) converges in L1. Once (6.7.9) is established, the
required conclusion (6.7.5) follows easily by taking L1 norms in (6.7.9) and using
(6.7.7) and (6.7.8).

To prove (6.7.9), we show that T is of weak type (1,1). For a given δ > 0 we
have

∣

∣

{∣

∣T ( f )−
∞

∑
j=1
λ jT (a j)

∣

∣> δ
}∣

∣

≤
∣

∣

{∣

∣T ( f )−
N

∑
j=1

λ jT (a j)
∣

∣> δ/2
}∣

∣+
∣

∣

{∣

∣

∞

∑
j=N+1

λ jT (a j)
∣

∣> δ/2
}∣

∣

≤ 2
δ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

L1
+

2
δ

∥

∥

∥

∞

∑
j=N+1

λ jT (a j)
∥

∥

∥

L1

≤ 2
δ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

H1
+

2
δ

(C′
n + 1)(A1 + A2 + A3)

∞

∑
j=N+1

|λ j| .

Since ∑N
j=1λ ja j converges to f in H1 and ∑∞j=1 |λ j| < ∞, both terms in the sum

converge to zero as N → ∞. We conclude that

∣

∣

{∣

∣T ( f )−
∞

∑
j=1

λ jT (a j)
∣

∣> δ
}∣

∣= 0

for all δ > 0, which implies (6.7.9). �
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6.7.2 Singular Integrals on Besov–Lipschitz Spaces

We continue with a corollary concerning Besov–Lipschitz spaces.

Corollary 6.7.2. Let K satisfy (6.7.1), (6.7.2), and (6.7.3), and let T be defined as
in (6.7.4). Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and α ∈ R. Then there is a constant Cn,p,q,α
such that for all f in S (Rn) we have

∥

∥T ( f )
∥

∥

Ḃα,q
p

≤Cn(A1 + A2 + A3)
∥

∥ f
∥

∥

Ḃα,q
p

. (6.7.10)

Therefore, T admits a bounded extension on all homogeneous Besov–Lipschitz
spaces Ḃα ,q

p with p ≥ 1, in particular, on all homogeneous Lipschitz spaces.

Proof. LetΨ be a Schwartz function whose Fourier transform is supported in the
annulus 1− 1

7 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 , ξ �= 0 .

Pick a Schwartz function ζ whose Fourier transform ̂ζ is supported in the annulus
1
4 < |ξ | < 8 and that is equal to one on the support of ̂Ψ . Let W be the tempered
distribution that coincides with K on Rn \ {0} so that T ( f ) = f ∗W . Then we have
ζ2− j ∗Ψ2− j =Ψ2− j for all j and hence

∥

∥Δ j(T ( f ))
∥

∥

Lp =
∥

∥ζ2− j ∗Ψ2− j ∗W ∗ f
∥

∥

Lp

≤
∥

∥ζ2− j ∗W
∥

∥

L1

∥

∥Δ j( f )
∥

∥

Lp ,
(6.7.11)

since 1 ≤ p ≤ ∞. It is not hard to check that the function ζ2− j is in H1 with norm
independent of j. Therefore, ζ2− j is in H1. Using Theorem 6.7.1, we conclude that

∥

∥T (ζ2− j )
∥

∥

L1 =
∥

∥ζ2− j ∗W
∥

∥

L1 ≤C
∥

∥ζ2− j

∥

∥

H1 = C′ .

Inserting this in (6.7.11), multiplying by 2 jα , and taking �q norms, we obtain the
required conclusion. �

6.7.3 Singular Integrals on H p(Rn)

We are now interested in extending Theorem 6.7.1 to other H p spaces for p < 1. It
turns out that this is possible, provided some additional smoothness assumptions on
K are imposed.

For the purposes of this subsection, we fix a function K(x) on Rn \{0} that satis-
fies |K(x)| ≤A|x|−n for x �= 0 and we assume that there is a distributionW in S ′(Rn)
that coincides with K on Rn \{0}. We make two assumptions about the distribution
W : first, that its Fourier transform ̂W is a bounded function, i.e., it satisfies
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| ̂W (ξ )| ≤ B , ξ ∈ Rn, (6.7.12)

for some B < ∞; secondly, that W is obtained from the function K as a limit of
its smooth truncations. This allows us to properly define the convolution of this
distribution with elements of H p. So we fix a nonnegative smooth function η that
vanishes in the unit ball of Rn and is equal to one outside the ball B(0,2). We assume
that for some sequence ε j ∈ (0,1) with ε j ↓ 0 the distribution W has the form

〈

W,ϕ
〉

= lim
j→∞

∫

Rn
K(y)η(y/ε j)ϕ(y)dy (6.7.13)

for all ϕ ∈ S (Rn). Then we define the smoothly truncated singular integral associ-
ated with K and η by

T (ε)
η ( f )(x) =

∫

Rn
η(y/ε)K(y) f (x− y)dy

for Schwartz functions f [actually the integral is absolutely convergent for every
f ∈ Lp and any p ∈ [1,∞)]. We also define an operator T given by convolution with
W by

T ( f ) = lim
j→∞

T (ε j)( f ) = f ∗W . (6.7.14)

This provides a representation of the operator T . If the function K satisfies condi-
tion (4.4.3), this representation is also valid pointwise almost everywhere for func-
tions f ∈ L2, i.e., lim j→∞T (ε j)( f )(x) = T ( f )(x) for almost all x ∈ Rn. This follows
from Theorem 4.4.5, Exercise 4.3.10, and Theorem 2.1.14 (since the convergence
holds for Schwartz functions).

Next we define T ( f ) for f ∈ H p. One can write W = W0 +K∞, where W0 =ΦW
and K∞ = (1−Φ)K, where Φ is a smooth function equal to one on the ball B(0,1)
and vanishing off the ball B(0,2). Then for f in H p(Rn), 0 < p ≤ 1, we may define
a tempered distribution T ( f ) = W ∗ f by setting

〈

T ( f ),φ
〉

=
〈

f ,φ ∗˜W0
〉

+
〈

˜φ ∗ f ,˜K∞
〉

(6.7.15)

for φ in S (Rn). The function φ ∗˜W0 is in S , so the action of f on it is well defined.
Also ˜φ ∗ f is in L1 (see Proposition 6.4.9), while ˜K∞ is in L∞; hence the second
term on the right above represents an absolutely convergent integral. Moreover, in
view of Theorem 2.3.20 and Corollary 6.4.9, both terms on the right in (6.7.15) are
controlled by a finite sum of seminorms ρα ,β (φ) (cf. Definition 2.2.1). This defines
T ( f ) as a tempered distribution.

The following is an extension of Theorem 6.7.1 for p < 1.

Theorem 6.7.3. Let 0 < p ≤ 1 and N = [ n
p − n] + 1. Let K be a C N function on

Rn \ {0} that satisfies
|∂βK(x)| ≤ A |x|−n−|β | (6.7.16)
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for all multi-indices |β | ≤ N and all x �= 0. Let W be a tempered distribution that
coincides with K on Rn \ {0} and satisfies (6.7.12) and (6.7.13). Then there is a
constant Cn,p such that the operator T defined in (6.7.15) satisfies, for all f ∈ H p,

∥

∥T ( f )
∥

∥

Lp ≤Cn,p(A + B)
∥

∥ f
∥

∥

H p .

Proof. The proof of this theorem is based on the atomic decomposition of H p.
We first take f = a to be an L2-atom for H p, and without loss of generality we

may assume that a is supported in a cube Q centered at the origin. We let Q∗ be the
cube with side length 2

√
n�(Q), where �(Q) is the side length of Q. We have

(
∫

Q∗
|T (a)(x)|p dx

) 1
p

≤ C|Q∗|
1
p−

1
2

(
∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ C′′B|Q|
1
p−

1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ CnB|Q|
1
p−

1
2 |Q|

1
2−

1
p

= CnB .

For x /∈ Q∗ and y ∈ Q, we have |x| ≥ 2|y|, and thus x− y stays away from zero
and K(x− y) is well defined. We have

T (a)(x) =
∫

Q
K(t)(x− y)a(y)dy .

Recall that N = [ n
p −n]+ 1. Using the cancellation of atoms for H p, we deduce

T (a)(x) =
∫

Q
a(y)K(x− y)dy

=
∫

Q
a(y)

[

K(x− y)− ∑
|β |≤N−1

(∂βK(x)
(y)β

β !

]

dy

=
∫

Q
a(y)

[

∑
|β |=N

(∂βK(x−θyy)
(y)β

β !

]

dy

for some 0 ≤ θy ≤ 1. Using that |x| ≥ 2|y| and (6.7.23), we obtain the estimate

|T (a)(x)| ≤ cn,N
A

|x|N+n

∫

Q
|a(y)| |y||β |dy ,

from which it follows that for x /∈ Q∗ we have

|T (a)(x)| ≤ cn,p
A

|x|N+n |Q|1+ N
n −

1
p
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via a calculation using properties of atoms (see the proof of Theorem 6.6.9). Inte-
grating over (Q∗)c, we obtain that

(
∫

(Q∗)c
|T (a)(x)|pdx

) 1
p

≤ cn,p A |Q|1+ N
n −

1
p

(
∫

(Q∗)c

1

|x|p(N+n) dx

) 1
p

≤ c′n,p A .

We have now shown that there exists a constant Cn,p such that
∥

∥T (a)
∥

∥

Lp ≤Cn,p (A + B) (6.7.17)

whenever a is an L2-atom for H p. We need to extend this estimate to infinite sums
of atoms. To achieve this, it convenient to use operators with more regular kernels
and then approximate T by such operators.

Recall the smooth function η that vanishes when |x| ≤ 1 and is equal to 1 when
|x| ≥ 2. We fix a smooth function θ with support in the unit ball having integral
equal to 1. We define θδ (x) = δ−nθ (x/δ ),

Kε,μ(x) = K(x)
(

η(x/ε)−η(μx)
)

and
Kδ ,ε,μ = θδ ∗Kε,μ

for 0 < 10δ < ε < (10μ)−1. We make the following observations: first Kδ ,ε,μ is C ∞;
second, it has rapid decay at infinity, and hence it is a Schwartz function; third, it
satisfies (6.7.16) for all |β | ≤ N with constant a multiple of A, that is, independent

of δ , ε , μ . Let Tδ ,ε,μ be the operator given by convolution with Kδ ,ε,μ and let T (∗)
η

be the maximal smoothly truncated singular integral associated with the bump η .
Then for h ∈ L2 we have
∥

∥Tδ ,ε,μ(h)
∥

∥

L2 ≤ 2
∥

∥T (∗)
η (θδ ∗ h)

∥

∥

L2 ≤Cn (A + B)
∥

∥θδ ∗ h
∥

∥

L2 ≤Cn (A + B)
∥

∥h
∥

∥

L2 ;

hence Tδ ,ε,μ maps L2 to L2 with norm a fixed multiple of A+B. The proof of (6.7.17)
thus yields for any L2-atom a for H p the estimate

∥

∥Tδ ,ε,μ(a)
∥

∥

Lp ≤C′
n,p (A + B) (6.7.18)

with a constant C′
n,p that is independent of δ ,ε,μ .

Let f be in L2 ∩H p, which is a dense subspace of H p, and suppose that f =
∑ j λ ja j, where a j are L2-atoms for H p, the series converges in H p, and we have

∑
j
|λ j|p ≤Cp

p

∥

∥ f
∥

∥

p
H p(Rn) . (6.7.19)

We set fM =∑M
j=1λ ja j. Then fM , f are in L2 but fM → f in H p; hence by Proposition

6.4.10, fM → f in S ′. Acting on the Schwartz functions Kδ ,ε,μ(x−·), we obtain that

Tδ ,ε,μ( fM)(x) → Tδ ,ε,μ( f )(x) as M → ∞ for all x ∈ Rn . (6.7.20)
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Recall the discussion in the introduction of this section defining T = lim j→∞T (ε j)

in an appropriate sense. Let h ∈ L2(Rn). Since h ∗Kδ ,ε,μ is a continuous function,
Theorem 1.2.19 (b) gives that

Tδ ,ε j ,μ(h) → T
(ε j)
η (h)−T (1/μ)

η (h) (6.7.21)

pointwise as δ → 0, where T (ε)
η is the smoothly truncated singular integral associ-

ated with the bump η (cf. Exercise 4.3.10). The expressions on the right in (6.7.21)

are obviously pointwise bounded by 2T (∗)
η (h). Since T (∗)

η is an L2 bounded opera-

tor, and T
(ε j)
η (ψ)−T (1/μ)

η (ψ) → T (ψ) for every ψ ∈ S (Rn), it follows from The-

orem 2.1.14 that T
(ε j)
η (h)− T (1/μ)

η (h) → T (h) pointwise a.e. as ε j,μ → 0. Thus
Tδ ,ε j ,μ(h) → T (h) pointwise a.e. as δ → 0, μ → 0, and ε j → 0 in this order. Using

this fact, (6.7.20), and Fatou’s lemma, we deduce for the given f , fM ∈ L2 ∩H p that
∥

∥T ( f )
∥

∥

p
Lp ≤ liminf

δ ,μ,ε j→0

∥

∥Tδ ,ε j ,μ( f )
∥

∥

p
Lp ≤ liminf

δ ,μ,ε j→0
liminf
M→∞

∥

∥Tδ ,ε j ,μ( fM)
∥

∥

p
Lp .

The last displayed expression is at most (CpC′
n,p)p(A + B)p

∥

∥ f
∥

∥

p
H p using the sublin-

earity of the pth power of the Lp norm, (6.7.18), and (6.7.19).
This proves the required assertion for f ∈ H p ∩L2. The case of general f ∈ H p

follows by density and the fact that T ( f ) is well defined for all f ∈ H p, as observed
at the beginning of this subsection. �

We discuss another version of the previous theorem in which the target space is
H p.

Theorem 6.7.4. Under the hypotheses of Theorem 6.7.3, we have the following con-
clusion: there is a constant Cn,p such that the operator T satisfies, for all f ∈ H p,

∥

∥T ( f )
∥

∥

H p ≤Cn,p(A + B)
∥

∥ f
∥

∥

H p .

Proof. The proof of this theorem provides another classical application of the
atomic decomposition of H p. However, we use the atomic decomposition only for
the domain Hardy space, while it is more convenient to use the maximal (or square
function) characterization of H p for the target H p space.

We fix a smooth function Φ supported in the unit ball B(0,1) in Rn whose mean
value is not equal to zero. For t > 0 we define the smooth functions

W (t) =Φt ∗W

and we observe that they satisfy

sup
t>0

∣

∣
̂W (t)(ξ )

∣

∣≤
∥

∥ ̂Φ
∥

∥

L∞B (6.7.22)

and that
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sup
t>0

|∂βW (t)(x)| ≤CΦA |x|−n−|β | (6.7.23)

for all |β | ≤ N, where

CΦ = sup
|γ|≤N

∫

Rn
|ξ ||γ|| ̂Φ(ξ )|dξ .

Indeed, assertion (6.7.22) is easily verified, while assertion (6.7.23) follows from
the identity

W (t)(x) =
(

(Φt ∗W )̂
)∨(x) =

∫

Rn
e2π ix·ξ

̂W (ξ ) ̂Φ(tξ )dξ

whenever |x| ≤ 2t and from (6.7.16) and the fact that for |x| ≥ 2t we have the integral
representation

∂βW (t)(x) =
∫

|y|≤t
∂βK(x− y)Φt(y)dy .

We now take f = a to be an L2-atom for H p, and without loss of generality we
may assume that a is supported in a cube Q centered at the origin. We let Q∗ be
the cube with side length 2

√
n�(Q), where �(Q) is the side length of Q. Recall the

smooth maximal function M( f ;Φ) from Section 6.4. Then M(T (a);Φ) is pointwise
controlled by the Hardy–Littlewood maximal function of T (a). Using an argument
similar to that in Theorem 6.7.1, we have

(
∫

Q∗
|M(T (a);Φ)(x)|p dx

) 1
p

≤
∥

∥Φ
∥

∥

L1

(
∫

Q∗
|M(T (a))(x)|p dx

) 1
p

≤ C|Q∗|
1
p−

1
2

(
∫

Q∗
|M(T (a))(x)|2 dx

) 1
2

≤ C′|Q|
1
p−

1
2

(
∫

Rn
|T (a)(x)|2 dx

) 1
2

≤ C′′B|Q|
1
p−

1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ CnB|Q|
1
p−

1
2 |Q|

1
2−

1
p

= CnB .

It therefore remains to estimate the contribution of M(T (a);Φ) on the complement
of Q∗.

If x /∈ Q∗ and y ∈ Q, then |x| ≥ 2|y| and hence x− y �= 0. Thus K(x− y) is well
defined as an integral. We have

(T (a)∗Φt)(x) = (a ∗W (t))(x) =
∫

Q
K(t)(x− y)a(y)dy .
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Recall that N = [ n
p −n]+ 1. Using the cancellation of atoms for H p we deduce

(T (a)∗Φt)(x) =
∫

Q
a(y)

[

K(t)(x− y)− ∑
|β |≤N−1

(∂βK(t))(x)
(y)β

β !

]

dy

=
∫

Q
a(y)

[

∑
|β |=N

(∂βK(t))(x−θyy)
(y)β

β !

]

dy

for some 0 ≤ θy ≤ 1. Using that |x| ≥ 2|y| and (6.7.23), we obtain the estimate

|(T (a)∗Φt)(x)| ≤ cn,N
A

|x|N+n

∫

Q
|a(y)| |y||β | dy ,

from which it follows that for x /∈ Q∗ we have

|(T (a)∗Φt)(x)| ≤ cn,p
A

|x|N+n |Q|1+ N
n −

1
p

via a calculation using properties of atoms (see the proof of Theorem 6.6.9). Taking
the supremum over all t > 0 and integrating over (Q∗)c, we obtain that

(
∫

(Q∗)c
sup
t>0

|(T (a)∗Φt)(x)|pdx

) 1
p

≤ cn,p A |Q|1+ N
n −

1
p

(
∫

(Q∗)c

1

|x|p(N+n) dx

) 1
p

,

and the latter is easily seen to be finite and controlled by a constant multiple of
A. Combining this estimate with the previously obtained estimate for the integral
of M(T (a);Φ) = supt>0 |(T (a) ∗Φt | over Q∗ yields the conclusion of the theorem
when f = a is an atom.

We have now shown that there exists a constant Cn,p such that
∥

∥T (a)
∥

∥

H p ≤Cn,p(A + B) (6.7.24)

whenever a is an L2-atom for H p. We need to extend this estimate to infinite sums
of atoms.

Let f be L2 ∩H p which is a dense subspace of H p, and suppose that f =∑ j λ ja j

for some L2-atoms a j for H p, where the series converges in H p and we have

∑
j

|λ j|p ≤Cp
p

∥

∥ f
∥

∥

p
H p(Rn) . (6.7.25)

We let fM =∑M
j=1λ ja j and we recall the smooth truncations Tδ ,ε j ,μ of T . As fM → f

in H p, Proposition 6.4.10 gives that fM → f in S ′, and since the functions Kδ ,ε j ,μ
are smooth with compact support, it follows that for all δ ,ε j,μ ,

Tδ ,ε j ,μ( fM) → Tδ ,ε j ,μ( f ) in S ′ as M → ∞. (6.7.26)
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We show that this convergence is also valid for T . Given ε > 0 and a Schwartz
function ϕ , we find δ0,ε j0 ,μ0 such that
∣

∣

〈

T ( fM),ϕ
〉

−
〈

Tδ0,ε j0
,μ0

( fM),ϕ
〉∣

∣< εCp
∥

∥ f
∥

∥

H p for all M = 1,2, . . . . (6.7.27)

To find such δ0,ε j0 ,μ0, we write

∣

∣

〈

T ( fM),ϕ
〉

−
〈

Tδ0,ε j0 ,μ0
( fM),ϕ

〉∣

∣ ≤
∣

∣

∣

M

∑
j=1

λ j
〈

(Kδ0,ε j0 ,μ0
−W)∗ a j,ϕ

〉

∣

∣

∣

≤
( M

∑
j=1

|λ j|p
∣

∣

〈

a j,(˜Kδ0,ε j0 ,μ0
− ˜W)∗ϕ

〉∣

∣

p
) 1

p

≤
( M

∑
j=1

|λ j|p
∥

∥a j
∥

∥

p
L2

∥

∥(˜Kδ0,ε j0 ,μ0
− ˜W)∗ϕ

∥

∥

p
L2

) 1
p

≤ Cp
∥

∥ f
∥

∥

H p

∥

∥(Kδ0,ε j0
,μ0

−W)∗ ϕ̃
∥

∥

L2 .

Now pick δ0,ε j0 ,μ0 such that

∥

∥(Kδ0,ε j0 ,μ0
−W)∗ ϕ̃

∥

∥

L2 =
∥

∥((Kδ0,ε j0 ,μ0
)̂− ̂W)̂ϕ̃

∥

∥

L2 < ε .

This is possible, since this expression tends to zero when δ0,ε j0 ,μ0 → 0 by the
Lebesgue dominated convergence theorem; indeed, the functions (Kδ0,ε j0

,μ0
)̂− ̂W

are uniformly bounded and converge pointwise to zero as δ0,ε j0 ,μ0 → 0, while ̂ϕ̃
is square integrable. This proves (6.7.27).

Next we show that for this choice of δ0,ε j0 ,μ0 we also have
∣

∣

〈

Tδ0,ε j0
,μ0

( f ),ϕ
〉

−
〈

T ( f ),ϕ
〉∣

∣< ε
∥

∥ f
∥

∥

L2 . (6.7.28)

This is a consequence of the Cauchy–Schwarz inequality, since

∣

∣

〈

Tδ0,ε j0
,μ0

( f ),ϕ
〉

−
〈

T ( f ),ϕ
〉∣

∣≤
∥

∥((Kδ0,ε j0
,μ0

)̂− ̂W)̂ϕ̃
∥

∥

L2

∥

∥ f
∥

∥

L2 .

Using (6.7.26) we can find an M0 such that for M ≥ M0 we have
∣

∣

〈

Tδ0,ε j0
,μ0

( fM),ϕ
〉

−
〈

Tδ0,ε j0
,μ0

( f ),ϕ
〉∣

∣< ε . (6.7.29)

Combining (6.7.27), (6.7.28), and (6.7.29) for M ≥ M0, we obtain
∣

∣

〈

T ( fM),ϕ
〉

−
〈

T ( f ),ϕ
〉∣

∣< ε
(

1 +Cp
∥

∥ f
∥

∥

H p +
∥

∥ f
∥

∥

L2

)

,

and this implies that T ( fM) converges to T ( f ) in S ′(Rn).
Using the inequality,
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∥

∥T ( fM)−T ( fM′)
∥

∥

p
H p ≤Cp

n,p(A + B)p ∑
M< j≤M′

|λ j|p ,

one easily shows that the sequence {T ( fM)}M is Cauchy in H p. Thus T ( fM) con-
verges in H p to some element G ∈ H p as M → ∞. By Proposition 6.4.10, T ( fM)
converges to G in S ′. But as we saw, T ( fM) converges to T ( f ) in S ′ as M → ∞.
Hence T ( f ) = G and we conclude that T ( fM) converges to T ( f ) in H p, i.e., the
series ∑ j λ jT (a j) converges to T ( f ) in H p. This allows us to estimate the H p quasi-
norm of T ( f ) as follows:

∥

∥T ( f )
∥

∥

p
H p(Rn) =

∥

∥∑
j
λ jT (a j)

∥

∥

p
H p(Rn)

≤∑
j

|λ j|p
∥

∥T (a j)
∥

∥

p
H p(Rn)

≤ (C′
n,p)

p(A + B)p∑
j
|λ j|p

≤ (C′
n,pCp)p(A + B)p

∥

∥ f
∥

∥

p
H p(Rn) .

This concludes the proof for f ∈ H p ∩L2. The extension to general f ∈ H p follows
by density and the fact that T ( f ) is well defined for all f ∈ H p, as observed at the
beginning of this subsection. �

6.7.4 A Singular Integral Characterization of H1(Rn)

We showed in Section 6.7.1 that singular integrals map H1 to L1. In particular, the
Riesz transforms have this property. In this subsection we obtain a converse to this
statement. We show that if R j( f ) are integrable functions for some f ∈ L1 and all
j = 1, . . . ,n, then f must be an element of the Hardy space H1. This provides a
characterization of H1(Rn) in terms of the Riesz transforms.

Theorem 6.7.5. For n ≥ 2, there exists a constant Cn such that for f in L1(Rn) we
have

Cn
∥

∥ f
∥

∥

H1 ≤
∥

∥ f
∥

∥

L1 +
n

∑
k=1

∥

∥Rk( f )
∥

∥

L1 . (6.7.30)

When n = 1 the corresponding statement is

C1
∥

∥ f
∥

∥

H1 ≤
∥

∥ f
∥

∥

L1 +
∥

∥H( f )
∥

∥

L1 (6.7.31)

for all f ∈ L1(R). Naturally, these statements are interesting when the expressions
on the right in (6.7.30) and (6.7.31) are finite.

Before we prove this theorem we discuss two corollaries.
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Corollary 6.7.6. An integrable function on the line lies in the Hardy space H1(R)
if and only if its Hilbert transform is integrable. For n ≥ 2, an integrable function
on Rn lies in the Hardy space H1(Rn) if and only its Riesz transforms are also in
L1(Rn).

Proof. The corollary follows by combining Theorems 6.7.1 and 6.7.5. �

Corollary 6.7.7. Functions in H1(Rn), n ≥ 1, have integral zero.

Proof. Indeed, if f ∈ H1(Rn), we must have R1( f ) ∈ L1(Rn); thus ̂R1( f ) is uni-
formly continuous. But since

̂R1( f )(ξ ) = −îf (ξ )
ξ1

|ξ | ,

it follows that ̂R1( f ) is continuous at zero if and only if ̂f (ξ ) = 0. But this happens
exactly when f has integral zero. �

We now discuss the proof of Theorem 6.7.5.

Proof. We consider the case n ≥ 2, although the argument below also works in
the case n = 1 with a suitable change of notation. Let Pt be the Poisson kernel.
In the proof we may assume that f is real-valued, since it can be written as f =
f1 + i f2, where fk are real-valued and R j( fk) are also integrable. Given a real-valued
function f ∈ L1(Rn) such that R j( f ) are integrable over Rn for every j = 1, . . . ,n,
we associate with it the n + 1 functions

u1(x,t) = (Pt ∗R1( f ))(x) ,
. . . = . . . ,

un(x,t) = (Pt ∗Rn( f ))(x) ,
un+1(x,t) = (Pt ∗ f )(x) ,

which are harmonic on the space Rn+1
+ (see Example 2.1.13). It is convenient to

denote the last variable t by xn+1. One may check using the Fourier transform that
these harmonic functions satisfy the following system:

n+1

∑
j=1

∂u j

∂x j
= 0 ,

∂u j

∂xk
− ∂uk

∂x j
= 0 , k, j ∈ {1, . . . ,n + 1}, k �= j.

(6.7.32)

This system of equations may also be expressed as div F = 0 and curl F =�0, where
F = (u1, . . . ,un+1) is a vector field in Rn+1

+ . Note that when n = 1, the equations
in (6.7.32) are the usual Cauchy–Riemann equations, which assert that the function
F = (u1,u2) = u1 + iu2 is holomorphic in the upper half-space. For this reason, when
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n ≥ 2 the equations in (6.7.32) are often referred to as the system of generalized
Cauchy–Riemann equations.

The function |F | enjoys a crucial property in the study of this problem.

Lemma 6.7.8. Let u j be real-valued harmonic functions on Rn+1 satisfying the sys-
tem of equations (6.7.32) and let F = (u1, . . . ,un+1). Then the function

|F|q =
(n+1

∑
j=1

|u j|2
)q/2

is subharmonic when q ≥ (n−1)/n, i.e., it satisfies Δ(|F |q) ≥ 0, on Rn+1
+ .

Lemma 6.7.9. Let 0 < q < p < ∞. Suppose that the function |F(x, t)|q defined on
Rn+1

+ is subharmonic and satisfies

sup
t>0

(
∫

Rn
|F(x,t)|p dx

)1/p

≤ A < ∞ . (6.7.33)

Then there is a constant Cn,p,q < ∞ such that the nontangential maximal function
|F |∗(x) = supt>0 sup|y−x|<t |F(y,t)|, x ∈ Rn, (cf. Definition 7.3.1) satisfies

∥

∥|F |∗
∥

∥

Lp(Rn) ≤Cn,p,q A .

Assuming these lemmas, whose proofs are postponed until the end of this section,
we return to the proof of the theorem.

Since the Poisson kernel is an approximate identity, the function x �→ un+1(x, t)
converges to f (x) in L1 as t → 0. To show that f ∈ H1(Rn), it suffices to show that
the Poisson maximal function

M( f ;P)(x) = sup
t>0

|(Pt ∗ f )(x)| = sup
t>0

|un+1(x, t)|

is integrable. But this maximal function is pointwise controlled by

sup
t>0

|F(x,t)| ≤ sup
t>0

[

|(Pt ∗ f )(x)|+
n

∑
j=1

|(Pt ∗R j( f ))(x)|
]

,

and certainly it satisfies

sup
t>0

∫

Rn
|F(x,t)|dx ≤ A f , (6.7.34)

where

A f =
∥

∥ f
∥

∥

L1 +
n

∑
k=1

∥

∥Rk( f )
∥

∥

L1 .

We now have

M( f ;P)(x) ≤ sup
t>0

|un+1(x,t)| ≤ sup
t>0

|F(x, t)| ≤ |F|∗(x) , (6.7.35)
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and using Lemma 6.7.8 with q = n−1
n and Lemma 6.7.9 with p = 1 we obtain that

∥

∥|F|∗
∥

∥

L1(Rn) ≤CnA f . (6.7.36)

Combining (6.7.34), (6.7.35), and (6.7.36), one deduces that

∥

∥M( f ;P)(x)
∥

∥

L1(Rn) ≤Cn

(

∥

∥ f
∥

∥

L1 +
n

∑
k=1

∥

∥Rk( f )
∥

∥

L1

)

,

from which (6.7.30) follows. This proof is also valid when n = 1, provided one
replaces the Riesz transforms with the Hilbert transform; hence the proof of (6.7.31)
is subsumed in that of (6.7.30). �

See Exercise 6.7.1 for an extension of this result to H p for n−1
n < p < 1. We now

give a proof of Lemma 6.7.8

Proof. Denoting the variable t by xn+1, we have

∂
∂x j

|F|q = q|F|q−2
(

F · ∂F
∂x j

)

and also

∂ 2

∂x2
j

|F |q = q |F |q−2
[

F · ∂
2F

∂x2
j

+
∂F
∂x j

· ∂F
∂x j

]

+ q(q−2)|F|q−4
(

F · ∂F
∂x j

)2

for all j = 1,2, . . . ,n + 1. Summing over all these j’s, we obtain

Δ(|F |q) = q |F |q−4
[

|F|2
n+1

∑
j=1

∣

∣

∣

∂F
∂x j

∣

∣

∣

2
+(q−2)

n+1

∑
j=1

∣

∣

∣F · ∂F
∂x j

∣

∣

∣

2
]

, (6.7.37)

since the term containing F · Δ(F) = ∑n+1
j=1 u jΔ(u j) vanishes because each u j is

harmonic. The only term that could be negative in (6.7.37) is that containing the
factor q− 2 and naturally, if q ≥ 2, the conclusion is obvious. Let us assume that
n−1

n ≤ q < 2. Since q ≥ n−1
n , we must have that 2−q ≤ n+1

n . Thus (6.7.37) is non-
negative if

n+1

∑
j=1

∣

∣

∣F · ∂F
∂x j

∣

∣

∣

2
≤ n

n + 1
|F |2

n+1

∑
j=1

∣

∣

∣

∂F
∂x j

∣

∣

∣

2
. (6.7.38)

This is certainly valid for points (x,t) such that F(x, t) = 0. To prove (6.7.38) for
points (x, t) with F(x,t) �= 0, it suffices to show that for every vector v ∈ Rn+1 with
Euclidean norm |v| = 1, we have

n+1

∑
j=1

∣

∣

∣v ·
∂F
∂x j

∣

∣

∣

2
≤ n

n + 1

n+1

∑
j=1

∣

∣

∣

∂F
∂x j

∣

∣

∣

2
. (6.7.39)
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Denoting by A the (n + 1)× (n + 1) matrix whose entries are a j,k = ∂uk/∂x j, we
rewrite (6.7.39) as

∣

∣Av
∣

∣

2 ≤ n
n + 1

∥

∥A
∥

∥

2
, (6.7.40)

where
∥

∥A
∥

∥

2 =
n+1

∑
j=1

n+1

∑
k=1

|a j,k|2 .

By assumption, the functions u j are real-valued and thus the numbers a j,k are real.
In view of identities (6.7.32), the matrix A is real symmetric and has zero trace (i.e.,
∑n+1

j=1 a j, j = 0). A real symmetric matrix A can be written as A = PDPt , where P
is an orthogonal matrix and D is a real diagonal matrix. Since orthogonal matrices
preserve the Euclidean distance, estimate (6.7.40) follows from the corresponding
one for a diagonal matrix D. If A = PDPt , then the traces of A and D are equal;
hence ∑n+1

j=1 λ j = 0, where λ j are entries on the diagonal of D. Notice that estimate
(6.7.40) with the matrix D in the place of A is equivalent to

n+1

∑
j=1

|λ j|2|v j|2 ≤
n

n + 1

(

n+1

∑
j=1

|λ j|2
)

, (6.7.41)

where we set v = (v1, . . . ,vn+1) and we are assuming that |v|2 = ∑n+1
j=1 |v j|2 = 1.

Estimate (6.7.41) is certainly a consequence of

sup
1≤ j≤n+1

|λ j|2 ≤
n

n + 1

(

n+1

∑
j=1

|λ j|2
)

. (6.7.42)

But this is easy to prove. Let |λ j0 | = max1≤ j≤n+1 |λ j|. Then

|λ j0 |2 =
∣

∣− ∑
j �= j0

λ j
∣

∣

2 ≤
(

∑
j �= j0

|λ j|
)2 ≤ n ∑

j �= j0

|λ j|2 . (6.7.43)

Adding n|λ j0 |2 to both sides of (6.7.43), we deduce (6.7.42) and thus (6.7.38). �

We now give the proof of Lemma 6.7.9.

Proof. A consequence of the subharmonicity of |F|q is that

|F(x,t + ε)|q ≤ (|F(·,ε)|q ∗Pt)(x) (6.7.44)

for all x ∈ Rn and t,ε > 0. To prove (6.7.44), fix ε > 0 and consider the functions

U(x,t) = |F(x,t + ε)|q , V (x,t) = (|F(·,ε)|q ∗Pt)(x) .

Given η > 0, we find a half-ball

BR0 = {(x,t) ∈ Rn+1
+ : |x|2 + t2 < R2

0}
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such that for (x, t) ∈ Rn+1
+ \BR0 we have

U(x,t)−V(x,t) ≤ η . (6.7.45)

Suppose that this is possible. Since U(x,0) =V (x,0), then (6.7.45) actually holds on
the entire boundary of BR0 . The function V is harmonic and U is subharmonic; thus
U −V is subharmonic. The maximum principle for subharmonic functions implies
that (6.7.45) holds in the interior of BR0 , and since it also holds on the exterior, it
must be valid for all (x,t) with x ∈ Rn and t ≥ 0. Since η was arbitrary, letting
η → 0+ implies (6.7.44).

We now prove that R0 exists such that (6.7.45) is possible for (x,t) ∈ Rn+1
+ \BR0.

Let B((x, t), t/2) be the (n+1)-dimensional ball of radius t/2 centered at (x, t). The
subharmonicity of |F|q is reflected in the inequality

|F(x,t)|q ≤ 1
|B((x,t), t/2)|

∫

B((x,t),t/2)
|F(y,s)|q dyds ,

which by Hölder’s inequality and the fact p > q gives

|F(x,t)|q ≤
(

1
|B((x,t), t/2)|

∫

B((x,t),t/2)
|F(y,s)|p dyds

)
q
p

.

From this we deduce that

|F(x, t + ε)|q ≤
[

2n+1/vn+1

(t + ε)n+1

∫ 3
2 (t+ε)

1
2 (t+ε)

∫

|y|≥|x|− 1
2 (t+ε)

|F(y,s)|p dyds

]
q
p

. (6.7.46)

If t + ε ≥ |x|, using (6.7.33), we see that the expression on the right in (6.7.46) is
bounded by c′ε−nAqt−nq/p, and thus it can be made smaller than η/2 by taking
t ≥ R1, for some R1 > ε large enough. Since R1 > ε , we must have 2t ≥ t + ε ≥ |x|,
which implies that t ≥ |x|/2, and thus with R′

0 =
√

5R1, if |(x, t)| > R′
0 then t ≥ R1.

Hence, the expression in (6.7.46) can be made smaller than η/2 for |(x,t)| > R′
0.

If t + ε < |x| we estimate the expression on the right in (6.7.46) by

(

2n+1

vn+1

1
(t + ε)n+1

∫ 3
2 (t+ε)

1
2 (t+ε)

[
∫

|y|≥ 1
2 |x|

|F(y,s)|p dy

]

ds

)
q
p

,

and we notice that the preceding expression is bounded by

(

3n+1

vn+1

∫ ∞

1
2 ε

[
∫

|y|≥ 1
2 |x|

|F(y,s)|p dy

]

ds
sn+1

)
q
p

. (6.7.47)

Let G|x|(s) be the function inside the square brackets in (6.7.47). Then G|x|(s) →
0 as |x| → ∞ for all s. The hypothesis (6.7.33) implies that G|x| is bounded by a
constant and it is therefore integrable over the interval

[ 1
2ε,∞

)

with respect to the
measure s−n−1ds. By the Lebesgue dominated convergence theorem we deduce that
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the expression in (6.7.47) converges to zero as |x| → ∞ and thus it can be made
smaller that η/2 for |x| ≥ R2, for some constant R2. Then with R′′

0 =
√

2R2 we have
that if |(x,t)| ≥ R′′

0 then (6.7.47) is at most η/2. Since U −V ≤ U , we deduce the
validity of (6.7.45) for |(x,t)| > R0 = max(R′

0,R
′′
0).

Let r = p/q > 1. Assumption (6.7.33) implies that the functions x �→ |F(x,ε)|q
are in Lr uniformly in t. Since any closed ball of Lr is weak∗ compact, there is a
sequence εk → 0 such that |F(x,εk)|q → h weakly in Lr as k → ∞ to some function
h ∈ Lr. Since Pt ∈ Lr′ , this implies that

(|F(·,εk)|q ∗Pt)(x) → (h ∗Pt)(x)

for all x ∈ Rn. Using (6.7.44) we obtain

|F(x,t)|q = limsup
k→∞

|F(x,t + εk)|p ≤ limsup
k→∞

(

|F(x,εk)|q ∗Pt
)

(x) = (h ∗Pt)(x) ,

which gives for all x ∈ Rn,

|F |∗(x) ≤
[

sup
t>0

sup
|y−x|<t

(|h| ∗Pt)(x)
]1/q ≤C′

nM(h)(x)1/q . (6.7.48)

Let g ∈ Lr′(Rn) with Lr′ norm at most one. The weak convergence yields
∫

Rn
|F(x,εk)|qg(x)dx →

∫

Rn
h(x)g(x)dx

as k → ∞, and consequently we have

∣

∣

∣

∣

∫

Rn
h(x)g(x)dx

∣

∣

∣

∣

≤ sup
k

∫

Rn
|F(x,εk)|q|g(x)|dx ≤

∥

∥g
∥

∥

Lr′ sup
t>0

(
∫

Rn
|F(x, t)|p dx

) 1
r

.

Since g is arbitrary with Lr′ norm at most one, this implies that

∥

∥h
∥

∥

Lr ≤ sup
t>0

(
∫

Rn
|F(x,t)|p dx

) 1
r

. (6.7.49)

Putting things together, we have
∥

∥|F|∗
∥

∥

Lp ≤ C′
n

∥

∥M(h)1/q
∥

∥

Lp

= C′
n

∥

∥M(h)
∥

∥

1/q
Lr

= Cn,p,q
∥

∥h
∥

∥

1/q
Lr

= Cn,p,q sup
t>0

(
∫

Rn
|F(x,t)|p dx

)1/qr

≤ Cn,p,q A ,
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where we have used (6.7.48) and (6.7.49) in the last two displayed inequalities. �

Exercises

6.7.1. Prove the following generalization of Theorem 6.7.4. Let ϕ be a nonnegative
Schwartz function with integral one on Rn and let n−1

n < p < 1. Prove that there
are constants c1,cn,C1,Cn such that for bounded tempered distributions f on Rn (cf.
Section 6.4.1) we have

cn
∥

∥ f
∥

∥

H p ≤ sup
δ>0

[

∥

∥ϕδ ∗ f
∥

∥

Lp +
n

∑
k=1

∥

∥ϕδ ∗Rk( f )
∥

∥

Lp

]

≤Cn
∥

∥ f
∥

∥

H p

when n ≥ 2 and

c1
∥

∥ f
∥

∥

H p ≤ sup
δ>0

[

∥

∥ϕδ ∗ f
∥

∥

Lp +
∥

∥ϕδ ∗H( f )
∥

∥

Lp

]

≤C1
∥

∥ f
∥

∥

H p

when n = 1.
[

Hint: One direction is a consequence of Theorem 6.7.4. For the other direction, de-
fine Fδ = (u1 ∗ϕδ , . . . ,un+1 ∗ϕδ ), where u j(x,t) = (Pt ∗R j( f ))(x), j = 1, . . . ,n, and
un+1(x,t) = (Pt ∗ f )(x). Each u j ∗ϕδ is a harmonic function on Rn+1

+ and continu-
ous up to the boundary. The subharmonicity of |Fδ (x,t)|p has as a consequence that
|Fδ (x, t + ε)|p ≤ |(Fδ (·,ε)|p ∗Pt)(x) in view of (6.7.44). Letting ε → 0 implies that
|Fδ (x, t)|p ≤ |(Fδ (·,0)|p ∗Pt)(x), by the continuity of Fδ up to the boundary. Since
Fδ (x,0) = (R1( f )∗ϕδ , . . . ,Rn( f )∗ϕδ , f ∗ϕδ ), the hypothesis that f ∗ϕδ ,R j( f )∗ϕδ
are in Lp uniformly in δ > 0 gives that supt,δ>0

∫

Rn |Fδ (x, t)|p dx <∞. Fatou’s lemma
yields (6.7.33) for F(x,t) = (u1, . . . ,un+1). Then Lemma 6.7.9 implies the required
conclusion.

]

6.7.2. (a) Let h be a function on R such that h(x) and xh(x) are in L2(R). Show that
h is integrable over R and satisfies

∥

∥h
∥

∥

2
L1 ≤ 8

∥

∥h
∥

∥

L2

∥

∥xh(x)
∥

∥

L2 .

(b) Suppose that g is an integrable function on R with vanishing integral and g(x)
and xg(x) are in L2(R). Show that g lies in H1(R) and that for some constant C we
have

∥

∥g
∥

∥

2
H1 ≤C

∥

∥g
∥

∥

L2

∥

∥xg(x)
∥

∥

L2 .
[

Hint: Part (a): split the integral of |h(x)| over the regions |x| ≤ R and |x| > R and
pick a suitable R. Part (b): Show that both H(g) and H(yg(y)) lie in L2. But since g
has vanishing integral, we have xH(g)(x) = H(yg(y))(x).

]

6.7.3. (a) Let H be the Hilbert transform. Prove the identity

H( f g−H( f )H(g)) = f H(g)+ gH( f )
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for all f ,g in
⋃

1≤p<∞Lp(R).
(b) Show that the bilinear operators

( f ,g) �→ f H(g)+ H( f )g ,

( f ,g) �→ f g−H( f )H(g) ,

map Lp(R)×Lp′(R) → H1(R) whenever 1 < p < ∞.
[

Hint: Part (a): Consider the boundary values of the product of the analytic exten-
sions of f + iH( f ) and g+ iH(g) on the upper half-space. Part (b): Use part (a) and
Theorem 6.7.5.

]

6.7.4. Follow the steps given to prove the following interpolation result. Let 1 <
p1 ≤ ∞ and let T be a subadditive operator that maps H1(Rn)+ Lp1(Rn) into mea-
surable functions on Rn. Suppose that there is A0 < ∞ such that for all f ∈ H1(Rn)
we have

sup
λ>0
λ
∣

∣

{

x ∈ Rn : |T ( f )(x)| > λ
}∣

∣≤ A0
∥

∥ f
∥

∥

H1

and that it also maps Lp1(Rn) to Lp1,∞(Rn) with norm at most A1. Show that for any
1 < p < p1, T maps Lp(Rn) to itself with norm at most

C A

1
p − 1

p1
1− 1

p1
0 A

1− 1
p

1− 1
p1

1 ,

where C = C(n, p, p1).
(a) Fix 1 < q < p < p1 < ∞ and f and let Q j be the family of all maximal
dyadic cubes such that λ q < |Q j|−1 ∫

Qj
| f |q dx . Write Eλ =

⋃

Q j and note that

Eλ ⊆
{

M(| f |q)
1
q > λ

}

and that | f | ≤ λ a.e. on (Eλ )c. Write f as the sum of the
good function

gλ = f χ(Eλ )c +∑
j

(Avg
Qj

f )χQj

and the bad function

bλ =∑
j

b j
λ , where b j

λ =
(

f −Avg
Qj

f
)

χQj .

(b) Show that gλ lies in Lp1(Rn)∩L∞(Rn),
∥

∥gλ
∥

∥

L∞ ≤ 2
n
q λ , and that

∥

∥gλ
∥

∥

p1
Lp1 ≤

∫

| f |≤λ
| f (x)|p1 dx + 2

np1
q λ p1 |Eλ | < ∞ .

(c) Show that for c = 2
n
q +1, each c−1λ−1|Q j|−1b j

λ is an Lq-atom for H1. Conclude
that bλ lies in H1(Rn) and satisfies

∥

∥bλ
∥

∥

H1 ≤ cλ∑
j
|Q j| ≤ cλ |Eλ | < ∞ .
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(d) Start with

∥

∥T ( f )
∥

∥

p
Lp ≤ pγ p

∫ ∞

0
λ p−1

∣

∣

{

T (gλ )| > 1
2 γλ

}∣

∣dλ

+ pγ p
∫ ∞

0
λ p−1

∣

∣

{

T (bλ )| > 1
2 γλ

}∣

∣dλ

and use the results in parts (b) and (c) to obtain that the preceding expression is

at most C(n, p,q, p1)max(A1γ p−p1 ,γ p−1A0). Select γ = A
p1

p1−1

1 A
− 1

p1−1

0 to obtain the
required conclusion.
(e) In the case p1 = ∞ we have |T (gλ )| ≤ A12

n
q λ and pick γ > 2A12

n
q to make the

integral involving gλ vanishing.

6.7.5. Let f be an integrable function on the line whose Fourier transform is also
integrable and vanishes on the negative half-line. Show that f lies in H1(R).

HISTORICAL NOTES

The strong type Lp → Lq estimates in Theorem 6.1.3 were obtained by Hardy and Littlewood
[157] (see also [158]) when n = 1 and by Sobolev [285] for general n. The weak type estimate L1 →
L

n
n−s ,∞ first appeared in Zygmund [339]. The proof of Theorem 6.1.3 using estimate (6.1.11) is

taken from Hedberg [161]. The best constants in this theorem when p = 2n
n+s , q = 2n

n−s , and 0 < s < n
were precisely evaluated by Lieb [213]. A generalization of Theorem 6.1.3 for nonconvolution
operators was obtained by Folland and Stein [132].

The Riesz potentials were systematically studied by Riesz [270] on Rn although their one-
dimensional version appeared in earlier work of Weyl [330]. The Bessel potentials were introduced
by Aronszajn and Smith [7] and also by Calderón [41], who was the first to observe that the
potential space L p

s (i.e., the Sobolev space Lp
s ) coincides with the space Lp

k given in the classical
Definition 6.2.1 when s = k is an integer. Theorem 6.2.4 is due to Sobolev [285] when s is a positive
integer. The case p = 1 of Sobolev’s theorem (Exercise 6.2.9) was later obtained independently by
Gagliardo [139] and Nirenberg [249]. We refer to the books of Adams [2], Lieb and Loss [214],
and Maz’ya [229] for a more systematic study of Sobolev spaces and their use in analysis.

An early characterization of Lipschitz spaces using Littlewood–Paley type operators (built from
the Poisson kernel) appears in the work of Hardy and Littlewood [160]. These and other charac-
terizations were obtained and extensively studied in higher dimensions by Taibleson [300], [301],
[302] in his extensive study. Lipschitz spaces can also be characterized via mean oscillation over
cubes. This idea originated in the simultaneous but independent work of Campanato [39], [40] and
Meyers [234] and led to duality theorems for these spaces. Incidentally, the predual of the space
Λ̇α is the Hardy space H p with p = n

n+α , as shown by Duren, Romberg, and Shields [118] for the
unit circle and by Walsh [327] for higher-dimensional spaces; see also Fefferman and Stein [130].
We refer to the book of Garcı́a-Cuerva and Rubio de Francia [141] for a nice exposition of these
results. An excellent expository reference on Lipschitz spaces is the article of Krantz [199].

Taibleson in his aforementioned work also studied the generalized Lipschitz spaces Λ p,q
α called

today Besov spaces. These spaces were named after Besov, who obtained a trace theorem and em-
beddings for them [24], [25]. The spaces Bα,q

p , as defined in Section 6.5, were introduced by Peetre
[255], although the case p = q = 2 was earlier considered by Hörmander [166]. The connection
of Besov spaces with modern Littlewood–Paley theory was brought to the surface by Peetre [255].
The extension of the definition of Besov spaces to the case p < 1 is also due to Peetre [256],
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but there was a forerunner by Flett [131]. The spaces Fα,q
p with 1 < p,q < ∞ were introduced by

Triebel [316] and independently by Lizorkin [218]. The extension of the spaces Fα,q
p to the case

0 < p < ∞ and 0 < q ≤ ∞ first appeared in Peetre [258], who also obtained a maximal character-
ization for all of these spaces. Lemma 6.5.3 originated in Peetre [258]; the version given in the
text is based on a refinement of Triebel [317]. The article of Lions, Lizorkin, and Nikol’skij [216]
presents an account of the treatment of the spaces Fα,q

p introduced by Triebel and Lizorkin as well
as the equivalent characterizations obtained by Lions, using interpolation between Banach spaces,
and by Nikol’skij, using best approximation.

The theory of Hardy spaces is vast and complicated. In classical complex analysis, the
Hardy spaces H p were spaces of analytic functions and were introduced to characterize bound-
ary values of analytic functions on the unit disk. Precisely, the space H p(D) was introduced
by Hardy [156] to consist of all analytic functions F on the unit disk D with the property that
sup0<r<1

∫ 1
0 |F(re2πiθ )|p dθ < ∞, 0 < p < ∞. When 1 < p < ∞, this space coincides with the

space of analytic functions whose real parts are Poisson integrals of functions in Lp(T1). But for
0 < p ≤ 1 this characterization fails and for several years a satisfactory characterization was miss-
ing. For a systematic treatment of these spaces we refer to the books of Duren [117] and Koosis
[195].

With the illuminating work of Stein and Weiss [293] on systems of conjugate harmonic func-
tions the road opened to higher-dimensional extensions of Hardy spaces. Burkholder, Gundy, and
Silverstein [38] proved the fundamental theorem that an analytic function F lies in H p(R2

+) [i.e.,
supy>0

∫

R |F(x + iy)|p dx < ∞] if and only if the nontangential maximal function of its real part
lies in Lp(R). This result was proved using Brownian motion, but later Koosis [194] obtained an-
other proof using complex analysis. This theorem spurred the development of the modern theory
of Hardy spaces by providing the first characterization without the notion of conjugacy and indi-
cating that Hardy spaces are intrinsically defined. The pioneering article of Fefferman and Stein
[130] furnished three new characterizations of Hardy spaces: using a maximal function associ-
ated with a general approximate identity, using the grand maximal function, and using the area
function of Luzin. From this point on, the role of the Poisson kernel faded into the background,
when it turned out that it was not essential in the study of Hardy spaces. A previous character-
ization of Hardy spaces using the g-function, a radial analogue of the Luzin area function, was
obtained by Calderón [42]. Two alternative characterizations of Hardy spaces were obtained by
Uchiyama in terms of the generalized Littlewood–Paley g-function [319] and in terms of Fourier
multipliers [320]. Necessary and sufficient conditions for systems of singular integral operators
to characterize H1(Rn) were also obtained by Uchiyama [318]. The characterization of H p using
Littlewood–Paley theory was observed by Peetre [257]. The case p = 1 was later independently
obtained by Rubio de Francia, Ruiz, and Torrea [276].

The one-dimensional atomic decomposition of Hardy spaces is due to Coifman [72] and its
higher-dimensional extension to Latter [206]. A simplification of some of the technical details in
Latter’s proof was subsequently obtained by Latter and Uchiyama [207]. Using the atomic de-
composition Coifman and Weiss [86] extended the definition of Hardy spaces to more general
structures. The idea of obtaining the atomic decomposition from the reproducing formula (6.6.8)
goes back to Calderón [44]. Another simple proof of the L2-atomic decomposition for H p (starting
from the nontangential Poisson maximal function) was obtained by Wilson [332]. With only a little
work, one can show that Lq-atoms for H p can be written as sums of L∞-atoms for H p. We refer
to the book of Garcı́a-Cuerva and Rubio de Francia [141] for a proof of this fact. Although finite
sums of atoms are dense in H1, an example due to Y. Meyer (contained in [233]) shows that the
H1 norm of a function may not be comparable to inf∑N

j=1 |λ j|, where the infimum is taken over all

representations of the function as finite linear combinations ∑N
j=1 λ ja j with the a j being L∞-atoms

for H1. Based on this idea, Bownik [34] constructed an example of a linear functional on a dense
subspace of H1 that is uniformly bounded on L∞-atoms for H1 but does not extend to a bounded
linear functional on the whole H1. However, if a Banach-valued linear operator is bounded uni-
formly on all Lq-atoms for H p with 1 < q < ∞ and 0 < p ≤ 1, then it is bounded on the entire H p

as shown by Meda, Sjögren, and Vallarino [230]. This fact is also valid for quasi-Banach-valued
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linear operators, and when q = 2 it was obtained independently by Yang and Zhou [338]. A re-
lated general result says that a sublinear operator maps the Triebel–Lizorkin space Ḟs

p,q(Rn) to a
quasi-Banach space if and only if it is uniformly bounded on certain infinitely differentiable atoms
of the space; see Liu and Yang [217]. Atomic decompositions of general function spaces were
obtained in the fundamental work of Frazier and Jawerth [135], [136]. The exposition in Section
6.6 is based on the article of Frazier and Jawerth [137]. The work of these authors provides a solid
manifestation that atomic decompositions are intrinsically related to Littlewood–Paley theory and
not wedded to a particular space. Littlewood–Paley theory therefore provides a comprehensive and
unifying perspective on function spaces.

Main references on H p spaces and their properties are the books of Baernstein and Sawyer [12],
Folland and Stein [133] in the context of homogeneous groups, Lu [219] (on which the proofs of
Lemma 6.4.5 and Theorem 6.4.4 are based), Strömberg and Torchinsky [298] (on weighted Hardy
spaces), and Uchiyama [321]. The articles of Calderón and Torchinsky [45], [46] develop and
extend the theory of Hardy spaces to the nonisotropic setting. Hardy spaces can also be defined in
terms of nonstandard convolutions, such as the “twisted convolution” on R2n. Characterizations of
the space H1 in this context have been obtained by Mauceri, Picardello, and Ricci [226]

The localized Hardy spaces hp, 0 < p ≤ 1, were introduced by Goldberg [146] as spaces of
distributions for which the maximal operator sup0<t<1 |Φt ∗ f | lies in Lp(Rn) (here Φ is a Schwartz
function with nonvanishing integral). These spaces can be characterized in ways analogous to those
of the homogeneous Hardy spaces H p; in particular, they admit an atomic decomposition. It was
shown by Bui [37] that the space hp coincides with the Triebel–Lizorkin space F0,2

p (Rn); see also
Meyer [232]. For the local theory of Hardy spaces one may consult the articles of Dafni [100] and
Chang, Krantz, and Stein [59].

Interpolation of operators between Hardy spaces was originally based on complex function
theory; see the articles of Calderón and Zygmund [48] and Weiss [328]. The real-interpolation
approach discussed in Exercise 6.7.4 can be traced in the article of Igari [174]. Interpolation be-
tween Hardy spaces was further studied and extended by Riviere and Sagher [271] and Fefferman,
Riviere, and Sagher [128].

The action of singular integrals on periodic spaces was studied by Calderón and Zygmund [47].
The preservation of Lipschitz spaces under singular integral operators is due to Taibleson [299].
The case 0 < α < 1 was earlier considered by Privalov [268] for the conjugate function on the
circle. Fefferman and Stein [130] were the first to show that singular integrals map Hardy spaces to
themselves. The boundedness of fractional integrals on H p was obtained by Krantz [198]. The case
p = 1 was earlier considered by Stein and Weiss [293]. The action of multilinear singular integrals
on Hardy spaces was studied by Coifman and Grafakos [75] and Grafakos and Kalton [149]. An
exposition on the subject of function spaces and the action of singular integrals on them was written
by Frazier, Jawerth, and Weiss [138]. For a careful study of the action of singular integrals on
function spaces, we refer to the book of Torres [315]. The study of anisotropic function spaces and
the action of singular integrals on them has been studied by Bownik [33]. Weighted anisotropic
Hardy spaces have been studied by Bownik, Li, Yang, and Zhou [35].



Chapter 7
BMO and Carleson Measures

The space of functions of bounded mean oscillation, or BMO, naturally arises as
the class of functions whose deviation from their means over cubes is bounded.
L∞ functions have this property, but there exist unbounded functions with bounded
mean oscillation. Such functions are slowly growing, and they typically have at
most logarithmic blowup. The space BMO shares similar properties with the space
L∞, and it often serves as a substitute for it. For instance, classical singular inte-
grals do not map L∞ to L∞ but L∞ to BMO. And in many instances interpolation
between Lp and BMO works just as well between Lp and L∞. But the role of the
space BMO is deeper and more far-reaching than that. This space crucially arises in
many situations in analysis, such as in the characterization of the L2 boundedness
of nonconvolution singular integral operators with standard kernels.

Carleson measures are among the most important tools in harmonic analysis.
These measures capture essential orthogonality properties and exploit properties of
extensions of functions on the upper half-space. There exists a natural and deep
connection between Carleson measures and BMO functions; indeed, certain types
of measures defined in terms of functions are Carleson if and only if the underlying
functions are in BMO. Carleson measures are especially crucial in the study of L2

problems, where the Fourier transform cannot be used to provide boundedness via
Plancherel’s theorem. The power of the Carleson measure techniques becomes ap-
parent in Chapter 8, where they play a crucial role in the proof of several important
results.

7.1 Functions of Bounded Mean Oscillation

What exactly is bounded mean oscillation and what kind of functions have this
property? The mean of a (locally integrable) function over a set is another word
for its average over that set. The oscillation of a function over a set is the absolute
value of the difference of the function from its mean over this set. Mean oscillation is
therefore the average of this oscillation over a set. A function is said to be of bounded

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 7,
c© Springer Science+Business Media, LLC 2009
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mean oscillation if its mean oscillation over all cubes is bounded. Precisely, given a
locally integrable function f on Rn and a measurable set Q in Rn, denote by

Avg
Q

f =
1
|Q|

∫

Q
f (x)dx

the mean (or average) of f over Q. Then the oscillation of f over Q is the function
| f −AvgQ f |, and the mean oscillation of f over Q is

1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣dx.

7.1.1 Definition and Basic Properties of BMO

Definition 7.1.1. For f a complex-valued locally integrable function on Rn, set

∥

∥ f
∥

∥

BMO = sup
Q

1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣dx,

where the supremum is taken over all cubes Q in Rn. The function f is called of
bounded mean oscillation if

∥

∥ f
∥

∥

BMO < ∞ and BMO(Rn) is the set of all locally
integrable functions f on Rn with

∥

∥ f
∥

∥

BMO < ∞.

Several remarks are in order. First it is a simple fact that BMO(Rn) is a linear
space, that is, if f ,g ∈BMO(Rn) and λ ∈ C, then f +g and λ f are also in BMO(Rn)
and

∥

∥ f + g
∥

∥

BMO ≤
∥

∥ f
∥

∥

BMO +
∥

∥g
∥

∥

BMO ,
∥

∥λ f
∥

∥

BMO = |λ |
∥

∥ f
∥

∥

BMO .

But
∥

∥

∥

∥

BMO is not a norm. The problem is that if
∥

∥ f
∥

∥

BMO = 0, this does not imply
that f = 0 but that f is a constant. See Proposition 7.1.2. Moreover, every constant
function c satisfies

∥

∥c
∥

∥

BMO = 0. Consequently, functions f and f +c have the same
BMO norms whenever c is a constant. In the sequel, we keep in mind that elements
of BMO whose difference is a constant are identified. Although

∥

∥

∥

∥

BMO is only a
seminorm, we occasionally refer to it as a norm when there is no possibility of
confusion.

We begin with a list of basic properties of BMO.

Proposition 7.1.2. The following properties of the space BMO(Rn) are valid:

(1) If
∥

∥ f
∥

∥

BMO = 0, then f is a.e. equal to a constant.

(2) L∞(Rn) is contained in BMO(Rn) and
∥

∥ f
∥

∥

BMO ≤ 2
∥

∥ f
∥

∥

L∞ .

(3) Suppose that there exists an A > 0 such that for all cubes Q in Rn there exists a
constant cQ such that
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sup
Q

1
|Q|

∫

Q
| f (x)− cQ|dx ≤ A . (7.1.1)

Then f ∈ BMO(Rn) and
∥

∥ f
∥

∥

BMO ≤ 2A.

(4) For all f locally integrable we have

1
2

∥

∥ f
∥

∥

BMO ≤ sup
Q

1
|Q| inf

cQ

∫

Q
| f (x)− cQ|dx ≤

∥

∥ f
∥

∥

BMO.

(5) If f ∈ BMO(Rn), h∈ Rn, and τh( f ) is given by τh( f )(x) = f (x−h), then τh( f )
is also in BMO(Rn) and

∥

∥τh( f )
∥

∥

BMO =
∥

∥ f
∥

∥

BMO.

(6) If f ∈ BMO(Rn) and λ > 0, then the function δλ ( f ) defined by δλ ( f )(x) =
f (λx) is also in BMO(Rn) and

∥

∥δλ ( f )
∥

∥

BMO =
∥

∥ f
∥

∥

BMO.

(7) If f ∈ BMO then so is | f |. Similarly, if f ,g are real-valued BMO functions, then
so are max( f ,g), and min( f ,g). In other words, BMO is a lattice. Moreover,

∥

∥| f |
∥

∥

BMO ≤ 2
∥

∥ f
∥

∥

BMO ,

∥

∥max( f ,g)
∥

∥

BMO ≤ 3
2

(

∥

∥ f
∥

∥

BMO +
∥

∥g
∥

∥

BMO

)

,

∥

∥min( f ,g)
∥

∥

BMO ≤ 3
2

(

∥

∥ f
∥

∥

BMO +
∥

∥g
∥

∥

BMO

)

.

(8) For locally integrable functions f define

∥

∥ f
∥

∥

BMOballs
= sup

B

1
|B|

∫

B

∣

∣ f (x)−Avg
B

f
∣

∣dx, (7.1.2)

where the supremum is taken over all balls B in Rn. Then there are positive
constants cn,Cn such that

cn
∥

∥ f
∥

∥

BMO ≤
∥

∥ f
∥

∥

BMOballs
≤Cn

∥

∥ f
∥

∥

BMO.

Proof. To prove (1) note that f has to be a.e. equal to its average cN over every cube
[−N,N]n. Since [−N,N]n is contained in [−N−1,N +1]n, it follows that cN = cN+1

for all N. This implies the required conclusion. To prove (2) observe that

Avg
Q

∣

∣ f −Avg
Q

f
∣

∣≤ 2Avg
Q

| f | ≤ 2
∥

∥ f
∥

∥

L∞ .

For part (3) note that
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∣

∣ f −Avg
Q

f
∣

∣≤ | f − cQ|+
∣

∣Avg
Q

f − cQ
∣

∣≤ | f − cQ|+
1
|Q|

∫

Q
| f (t)− cQ|dt .

Averaging over Q and using (7.1.1), we obtain that
∥

∥ f
∥

∥

BMO ≤ 2A. The lower in-
equality in (4) follows from (3) while the upper one is trivial. Property (5) is imme-
diate. For (6) note that AvgQ δλ ( f ) = AvgλQ f and thus

1
|Q|

∫

Q

∣

∣ f (λx)−Avg
Q
δλ ( f )

∣

∣dx =
1

|λQ|

∫

λQ

∣

∣ f (x)−Avg
λQ

f
∣

∣dx.

Property (7) is a consequence of the easy fact that
∣

∣| f |−Avg
Q

| f |
∣

∣≤
∣

∣ f −Avg
Q

f
∣

∣+ Avg
Q

∣

∣ f −Avg
Q

f
∣

∣ .

Also, the maximum and the minimum of two functions can be expressed in terms of
the absolute value of their difference. We now turn to (8). Given any cube Q in Rn,
we let B be the smallest ball that contains it. Then |B|/|Q|= 2−nvn

√
nn, where vn is

the volume of the unit ball, and

1
|Q|

∫

Q

∣

∣ f (x)−Avg
B

f
∣

∣dx ≤ |B|
|Q|

1
|B|

∫

B

∣

∣ f (x)−Avg
B

f
∣

∣dx ≤ vn
√

nn

2n

∥

∥ f
∥

∥

BMOballs
.

It follows from (3) that
∥

∥ f
∥

∥

BMO ≤ 21−nvn
√

nn
∥

∥ f
∥

∥

BMOballs
. To obtain the reverse

conclusion, given any ball B find the smallest cube Q that contains it and argue
similarly using a version of (3) for the space BMOballs. �

Example 7.1.3. We indicate why L∞(Rn) is a proper subspace of BMO(Rn). We
claim that the function log |x| is in BMO(Rn) but not in L∞(Rn). To prove that it is
in BMO(Rn), for every x0 ∈ Rn and R > 0, we must find a constant Cx0,R such that
the average of | log |x|−Cx0,R| over the ball {x : |x−x0| ≤ R} is uniformly bounded.
Since

1
vnRn

∫

|x−x0|≤R

∣

∣ log |x|−Cx0,R
∣

∣dx =
1
vn

∫

|z−R−1x0|≤1

∣

∣ log |z|−Cx0,R + logR
∣

∣dz,

we may take Cx0,R = CR−1x0,1 + logR, and things reduce to the case that R = 1 and
x0 is arbitrary. If R = 1 and |x0| ≤ 2, take Cx0,1 = 0 and observe that

∫

|x−x0|≤1

∣

∣ log |x|
∣

∣dx ≤
∫

|x|≤3

∣

∣ log |x|
∣

∣dx = C.

When R = 1 and |x0| ≥ 2, take Cx0,1 = log |x0|. In this case notice that

1
vn

∫

|x−x0|≤1

∣

∣ log |x|− log |x0|
∣

∣dx =
1
vn

∫

|x−x0|≤1

∣

∣

∣

∣

log
|x|
|x0|

∣

∣

∣

∣

dx ≤ log2 ,
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since when |x− x0| ≤ 1 and |x0| ≥ 2 we have that log |x|
|x0| ≤ log |x0|+1

|x0| ≤ log 3
2 and

log |x0|
|x| ≤ log |x0|

|x0|−1 ≤ log2. Thus log |x| is in BMO.

The function log |x| turns out to be a typical element of BMO, but we make this
statement a bit more precise later. It is interesting to observe that an abrupt cutoff of
a BMO function may not give a function in the same space.

Example 7.1.4. The function h(x) = χx>0 log 1
x is not in BMO(R). Indeed, the prob-

lem is at the origin. Consider the intervals (−ε,ε), where 0 < ε < 1
2 . We have that

Avg
(−ε,ε)

h =
1

2ε

∫ +ε

−ε
h(x)dx =

1
2ε

∫ ε

0
log

1
x

dx =
1 + log 1

ε
2

.

But then

1
2ε

∫ +ε

−ε

∣

∣h(x)− Avg
(−ε,ε)

h
∣

∣dx ≥ 1
2ε

∫ 0

−ε

∣

∣ Avg
(−ε,ε)

h
∣

∣dx =
1 + log 1

ε
4

,

and the latter is clearly unbounded as ε → 0.

Let us now look at some basic properties of BMO functions. Observe that if a
cube Q1 is contained in a cube Q2, then

∣

∣Avg
Q1

f −Avg
Q2

f
∣

∣ ≤ 1
|Q1|

∫

Q1

∣

∣ f −Avg
Q2

f
∣

∣dx

≤ 1
|Q1|

∫

Q2

∣

∣ f −Avg
Q2

f
∣

∣dx

≤ |Q2|
|Q1|

∥

∥ f
∥

∥

BMO.

(7.1.3)

The same estimate holds if the sets Q1 and Q2 are balls.
A version of this inequality is the first statement in the following proposition.

For simplicity, we denote by
∥

∥ f
∥

∥

BMO the expression given by
∥

∥ f
∥

∥

BMOballs
in (7.1.2),

since these quantities are comparable. For a ball B and a > 0, aB denotes the ball
that is concentric with B and whose radius is a times the radius of B.

Proposition 7.1.5. (i) Let f be in BMO(Rn). Given a ball B and a positive integer
m, we have

∣

∣Avg
B

f −Avg
2mB

f
∣

∣≤ 2nm
∥

∥ f
∥

∥

BMO. (7.1.4)

(ii) For any δ > 0 there is a constant Cn,δ such that for any ball B(x0,R) we have

Rδ
∫

Rn

∣

∣ f (x)−AvgB(x0,R) f
∣

∣

(R + |x− x0|)n+δ dx ≤Cn,δ
∥

∥ f
∥

∥

BMO. (7.1.5)

An analogous estimate holds for cubes with center x0 and side length R.
(iii) There exists a constant Cn such that for all f ∈ BMO(Rn) we have
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sup
y∈Rn

sup
t>0

∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x− y)dx ≤Cn

∥

∥ f
∥

∥

BMO. (7.1.6)

Here Pt denotes the Poisson kernel introduced in Chapter 2.
(iv) Conversely, there is a constant C′

n such that for all f ∈ L1
loc(R

n) for which

∫

Rn

| f (x)|
(1 + |x|)n+1 dx < ∞

we have

C′
n

∥

∥ f
∥

∥

BMO ≤ sup
y∈Rn

sup
t>0

∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x− y)dx . (7.1.7)

Proof. (i) We have

∣

∣Avg
B

f −Avg
2B

f
∣

∣ =
1
|B|

∣

∣

∣

∣

∫

B

(

f (t)−Avg
2B

f
)

dt

∣

∣

∣

∣

≤ 2n

|2B|

∫

2B

∣

∣ f (t)−Avg
2B

f
∣

∣dt

≤ 2n
∥

∥ f
∥

∥

BMO.

Using this inequality, we derive (7.1.4) by adding and subtracting the terms

Avg
2B

f , Avg
22B

f , . . . , Avg
2m−1B

f .

(ii) In the proof below we take B(x0,R) to be the ball B = B(0,1) with radius 1
centered at the origin. Once this case is known, given a ball B(x0,R) we replace the
function f by the function f (Rx + x0). When B = B(0,1) we have

∫

Rn

∣

∣ f (x)−Avg
B

f
∣

∣

(1 + |x|)n+δ dx

≤
∫

B

∣

∣ f (x)−Avg
B

f
∣

∣

(1 + |x|)n+δ dx +
∞

∑
k=0

∫

2k+1B\2kB

∣

∣ f (x)− Avg
2k+1B

f
∣

∣+
∣

∣ Avg
2k+1B

f −Avg
B

f
∣

∣

(1 + |x|)n+δ dx

≤
∫

B

∣

∣ f (x)−Avg
B

f
∣

∣dx

+
∞

∑
k=0

2−k(n+δ )
∫

2k+1B

(

∣

∣ f (x)− Avg
2k+1B

f
∣

∣+
∣

∣ Avg
2k+1B

f −Avg
B

f
∣

∣

)

dx

≤ vn
∥

∥ f
∥

∥

BMO +
∞

∑
k=0

2−k(n+δ )(1+2n(k+1)
)

(2k+1)nvn
∥

∥ f
∥

∥

BMO

= C′
n,δ
∥

∥ f
∥

∥

BMO.
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(iii) The proof of (7.1.6) is a reprise of the argument given in (ii). Set Bt = B(y,t).
We first prove a version of (7.1.6) in which the expression (Pt ∗ f )(y) is replaced by
AvgBt

f . For fixed y,t we have

∫

Rn

t
∣

∣ f (x)−Avg
Bt

f
∣

∣

(t2 + |x− y|2) n+1
2

dx

≤
∫

Bt

t
∣

∣ f (x)−Avg
Bt

f
∣

∣

(t2 + |x− y|2) n+1
2

dx

+
∞

∑
k=0

∫

2k+1Bt\2kBt

t
(

∣

∣ f (x)− Avg
2k+1Bt

f
∣

∣+
∣

∣ Avg
2k+1Bt

f −Avg
Bt

f
∣

∣

)

(t2 + |x− y|2) n+1
2

dx

≤
∫

Bt

∣

∣ f (x)−Avg
Bt

f
∣

∣

tn dx

+
∞

∑
k=0

2−k(n+1)

tn

∫

2k+1Bt

(

∣

∣ f (x)− Avg
2k+1Bt

f
∣

∣+
∣

∣ Avg
2k+1Bt

f −Avg
Bt

f
∣

∣

)

dx

≤ vn
∥

∥ f
∥

∥

BMO +
∞

∑
k=0

2−k(n+1)(1+2n(k+1)
)

(2k+1)nvn
∥

∥ f
∥

∥

BMO

= Cn
∥

∥ f
∥

∥

BMO.

(7.1.8)

Using the inequality just proved, we also obtain
∫

Rn

∣

∣(Pt ∗ f )(y)−Avg
Bt

f
∣

∣Pt(x− y)dx =
∣

∣(Pt ∗ f )(y)−Avg
Bt

f
∣

∣

≤
∫

Rn
Pt(x− y)

∣

∣ f (x)−Avg
Bt

f
∣

∣dx

≤ Cn
∥

∥ f
∥

∥

BMO ,

which, combined with the inequality in (7.1.8), yields (7.1.6) with constant 2Cn.
(iv) Conversely, let A be the expression on the right in (7.1.7). For |x− y| ≤ t we

have Pt(x− y) ≥ cnt(2t2)−
n+1

2 = c′nt−n, which gives

A ≥
∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x− y)dx ≥ c′n

tn

∫

|x−y|≤t
| f (x)− (Pt ∗ f )(y)|dx.

Proposition 7.1.2 (3) now implies that
∥

∥ f
∥

∥

BMO ≤ 2A/(vnc′n) .

This concludes the proof of the proposition. �
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7.1.2 The John–Nirenberg Theorem

Having set down some basic facts about BMO, we now turn to a deeper property of
BMO functions: their exponential integrability. We begin with a preliminary remark.
As we saw in Example 7.1.3, the function g(x) = log |x|−1 is in BMO(Rn). This
function is exponentially integrable over any compact subset K of Rn in the sense
that

∫

K
ec|g(x)| dx < ∞

for any c < n. It turns out that this is a general property of BMO functions, and this
is the content of the next theorem.

Theorem 7.1.6. For all f ∈ BMO(Rn), for all cubes Q, and all α > 0 we have
∣

∣

∣

{

x ∈ Q :
∣

∣ f (x)−Avg
Q

f
∣

∣> α
}∣

∣

∣≤ e |Q|e−Aα/‖ f‖BMO (7.1.9)

with A = (2ne)−1.

Proof. Since inequality (7.1.9) is not altered when we multiply both f and α by the
same constant, it suffices to assume that

∥

∥ f
∥

∥

BMO = 1. Let us now fix a closed cube
Q and a constant b > 1 to be chosen later.

We apply the Calderón–Zygmund decomposition to the function f −AvgQ f in-
side the cube Q. We introduce the following selection criterion for a cube R:

1
|R|

∫

R

∣

∣ f (x)−Avg
Q

f
∣

∣dx > b. (7.1.10)

Since
1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣dx ≤
∥

∥ f
∥

∥

BMO = 1 < b ,

the cube Q does not satisfy the selection criterion (7.1.10). Set Q(0) = Q and sub-
divide Q(0) into 2n equal closed subcubes of side length equal to half of the side
length of Q. Select such a subcube R if it satisfies the selection criterion (7.1.10).
Now subdivide all nonselected cubes into 2n equal subcubes of half their side length
by bisecting the sides, and select among these subcubes those that satisfy (7.1.10).

Continue this process indefinitely. We obtain a countable collection of cubes {Q(1)
j } j

satisfying the following properties:

(A-1) The interior of every Q(1)
j is contained in Q(0).

(B-1) b < |Q(1)
j |−1

∫

Q
(1)
j

∣

∣ f (x)−Avg
Q(0)

f
∣

∣dx ≤ 2nb.

(C-1)
∣

∣Avg
Q

(1)
j

f −Avg
Q(0)

f
∣

∣≤ 2nb.
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(D-1) ∑
j
|Q(1)

j | ≤ 1
b∑j

∫

Q
(1)
j

∣

∣ f (x)−Avg
Q(0)

f
∣

∣dx ≤ 1
b
|Q(0)|.

(E-1)
∣

∣ f −Avg
Q(0)

f
∣

∣≤ b a.e. on the set Q(0) \⋃ j Q(1)
j .

We call the cubes Q(1)
j of first generation. Note that the second inequality in (D-1)

requires (B-1) and the fact that Q(0) does not satisfy (7.1.10).

We now fix a selected first-generation cube Q(1)
j and we introduce the following

selection criterion for a cube R:

1
|R|

∫

R

∣

∣ f (x)−Avg
Q(1)

j

f
∣

∣dx > b. (7.1.11)

Observe that Q(1)
j does not satisfy the selection criterion (7.1.11). We apply a similar

Calderón–Zygmund decomposition to the function

f −Avg
Q(1)

j

f

inside the cube Q(1)
j . Subdivide Q(1)

j into 2n equal closed subcubes of side length

equal to half of the side length of Q(1)
j by bisecting the sides, and select such a

subcube R if it satisfies the selection criterion (7.1.11). Continue this process indef-

initely. Also repeat this process for any other cube Q(1)
j of the first generation. We

obtain a collection of cubes {Q(2)
l }l of second generation each contained in some

Q(1)
j such that versions of (A-1)–(E-1) are satisfied, with the superscript (2) replac-

ing (1) and the superscript (1) replacing (0). We use the superscript (k) to denote
the generation of the selected cubes.

For a fixed selected cube Q(2)
l of second generation, introduce the selection cri-

terion
1
|R|

∫

R

∣

∣ f (x)−Avg
Q(2)

l

f
∣

∣dx > b

and repeat the previous process to obtain a collection of cubes of third generation

inside Q(2)
l . Repeat this procedure for any other cube Q(2)

j of the second generation.

Denote by {Q(3)
s }s the thus obtained collection of all cubes of the third generation.

We iterate this procedure indefinitely to obtain a doubly indexed family of cubes

Q(k)
j satisfying the following properties:

(A-k) The interior of every Q(k)
j is contained in a unique Q(k−1)

j′ .

(B-k) b < |Q(k)
j |−1

∫

Q
(k)
j

∣

∣ f (x)− Avg
Q(k−1)

j′

f
∣

∣dx ≤ 2nb.
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(C-k)
∣

∣Avg
Q

(k)
j

f − Avg
Q

(k−1)
j′

f
∣

∣≤ 2nb.

(D-k) ∑
j

∣

∣Q(k)
j

∣

∣≤ 1
b∑j′

∣

∣Q(k−1)
j′

∣

∣.

(E-k)
∣

∣ f − Avg
Q

(k−1)
j′

f
∣

∣≤ b a.e. on the set Q(k−1)
j′ \⋃ j Q(k)

j .

We prove (A-k)–(E-k). Note that (A-k) and the lower inequality in (B-k) are sat-
isfied by construction. The upper inequality in (B-k) is a consequence of the fact

that the unique cube Q(k)
j0

with double the side length of Q(k)
j that contains it was not

selected in the process. Now (C-k) follows from the upper inequality in (B-k). (E-k)
is a consequence of the Lebesgue differentiation theorem, since for every point in

Q(k−1)
j′ \⋃ j Q(k)

j there is a sequence of cubes shrinking to it and the averages of

∣

∣ f − Avg
Q

(k−1)
j′

f
∣

∣

over all these cubes is at most b. It remains to prove (D-k). We have

∑
j
|Q(k)

j | <
1
b∑j

∫

Q(k)
j

∣

∣ f (x)− Avg
Q

(k−1)
j′

f
∣

∣dx

=
1
b∑j′ ∑

j corresp. to j′

∫

Q(k)
j

∣

∣ f (x)− Avg
Q

(k−1)
j′

f
∣

∣dx

≤ 1
b∑j′

∫

Q
(k−1)
j′

∣

∣ f (x)− Avg
Q(k−1)

j′

f
∣

∣dx

≤ 1
b∑j′

∣

∣Q(k−1)
j′

∣

∣

∥

∥ f
∥

∥

BMO

=
1
b∑j′

∣

∣Q(k−1)
j′

∣

∣ .

Having established (A-k)–(E-k) we turn to some consequences. Applying (D-k) suc-
cessively k−1 times, we obtain

∑
j

∣

∣Q(k)
j

∣

∣≤ b−k
∣

∣Q(0)∣
∣ . (7.1.12)

For any fixed j we have that
∣

∣Avg
Q

(1)
j

f −AvgQ(0) f
∣

∣≤ 2nb and
∣

∣ f −Avg
Q

(1)
j

f
∣

∣≤ b

a.e. on Q(1)
j \⋃l Q(2)

l . This gives
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∣

∣ f −Avg
Q(0)

f
∣

∣≤ 2nb + b a.e. on Q(1)
j \

⋃

l

Q(2)
l ,

which, combined with (E-1), yields

∣

∣ f −Avg
Q(0)

f
∣

∣≤ 2n2b a.e. on Q(0) \
⋃

l

Q(2)
l . (7.1.13)

For every fixed l we also have that
∣

∣ f −Avg
Q(2)

l
f
∣

∣≤ b a.e. on Q(2)
l \⋃s Q(3)

s , which

combined with
∣

∣Avg
Q(2)

l
f − Avg

Q(1)
l′

f
∣

∣ ≤ 2nb and
∣

∣Avg
Q(1)

l′
f − AvgQ(0) f

∣

∣ ≤ 2nb

yields
∣

∣ f −Avg
Q(0)

f
∣

∣≤ 2n3b a.e. on Q(2)
l \

⋃

s

Q(3)
s .

In view of (7.1.13), the same estimate is valid on Q(0) \⋃s Q(3)
s . Continuing this

reasoning, we obtain by induction that for all k ≥ 1 we have

∣

∣ f −Avg
Q(0)

f
∣

∣≤ 2nkb a.e. on Q(0) \
⋃

s

Q(k)
s . (7.1.14)

This proves the almost everywhere inclusion
{

x ∈ Q :
∣

∣ f (x)−Avg
Q

f
∣

∣> 2nkb
}

⊆
⋃

j

Q(k)
j

for all k = 1,2,3, . . . . (This also holds when k = 0.) We now use (7.1.12) and (7.1.14)
to prove (7.1.9). We fix an α > 0. If

2nkb < α ≤ 2n(k + 1)b

for some k ≥ 0, then
∣

∣

∣

{

x ∈ Q :
∣

∣ f −Avg
Q

f
∣

∣> α
}∣

∣

∣ ≤
∣

∣

∣

{

x ∈ Q :
∣

∣ f −Avg
Q

f
∣

∣> 2nkb
}∣

∣

∣

≤ ∑
j

∣

∣Q(k)
j

∣

∣≤ 1
bk

∣

∣Q(0)∣
∣

= |Q|e−k logb

≤ |Q|be−α logb/(2nb),

since −k ≤ 1− α
2nb . Choosing b = e > 1 yields (7.1.9). �
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7.1.3 Consequences of Theorem 7.1.6

Having proved the important distribution inequality (7.1.9), we are now in a position
to deduce from it a few corollaries.

Corollary 7.1.7. Every BMO function is exponentially integrable over any cube.
More precisely, for any γ < 1/(2ne), for all f ∈ BMO(Rn), and all cubes Q we have

1
|Q|

∫

Q
eγ| f (x)−AvgQ f |/‖ f‖BMO dx ≤ 1 +

2ne2 γ
1−2neγ

.

Proof. Using identity (1.1.7) with ϕ(t) = et −1, we write

1
|Q|

∫

Q
eh dx = 1 +

1
|Q|

∫

Q
(eh −1)dx = 1 +

1
|Q|

∫ ∞

0
eα |{x ∈ Q : |h(x)| > α}|dα

for a measurable function h. Then we take h = γ| f −AvgQ f |/‖ f‖BMO and we use
inequality (7.1.9) with γ < A = (2ne)−1 to obtain

1
|Q|

∫

Q
eγ| f (x)−AvgQ f |/‖ f‖BMO dx ≤

∫ ∞

0
eα ee−A( αγ ‖ f‖BMO)/‖ f‖BMOdα = Cn,γ ,

where Cn,γ is a unit less than the constant in the statement of the inequality. �

Another important corollary of Theorem 7.1.6 is the following.

Corollary 7.1.8. For all 0 < p < ∞, there exists a finite constant Bp,n such that

sup
Q

(

1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣

p
dx

)1
p

≤ Bp,n
∥

∥ f
∥

∥

BMO(Rn). (7.1.15)

Proof. This result can be obtained from the one in the preceding corollary or directly
in the following way:

1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣

p
dx =

p
|Q|

∫ ∞

0
α p−1|{x ∈ Q : | f (x)−Avg

Q
f | > α}|dα

≤ p
|Q| e |Q|

∫ ∞

0
α p−1e−Aα/‖ f‖BMOdα

= pΓ (p)
e

Ap

∥

∥ f
∥

∥

p
BMO ,

where A = (2ne)−1. Setting Bp,n = (pΓ (p) e
Ap )

1
p = (pΓ (p))

1
p e

1
p +1 2n, we conclude

the proof of (7.1.15). �

Since the inequality in Corollary 7.1.8 can be reversed when p > 1 via Hölder’s
inequality, we obtain the following important Lp characterization of BMO norms.
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Corollary 7.1.9. For all 1 < p < ∞ we have

sup
Q

(

1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣

p
dx

)1
p

≈
∥

∥ f
∥

∥

BMO.

Proof. Obvious. �

Exercises

7.1.1. Prove that BMO is a complete space, that is, every BMO-Cauchy sequence
converges in BMO.
[

Hint: Use Proposition 7.1.5 (ii) to show first that such a sequence is Cauchy in L1

of every compact set.
]

7.1.2. Find an example showing that the product of two BMO functions may not be
in BMO.

7.1.3. Prove that
∥

∥ | f |α
∥

∥

BMO ≤ 2
∥

∥ f
∥

∥

α
BMO

whenever 0 < α ≤ 1.

7.1.4. Let f be a real-valued BMO function on Rn. Prove that the functions

fKL(x) =

⎧

⎪

⎨

⎪

⎩

K if f (x) < K,

f (x) if K ≤ f (x) ≤ L,

L if f (x) > L,

satisfy
∥

∥ fKL
∥

∥

BMO ≤ 9
4

∥

∥ f
∥

∥

BMO.

7.1.5. Let a > 1, let B be a ball (or a cube) in Rn, and let aB be a concentric ball
whose radius is a times the radius of B. Show that there is a dimensional constant
Cn such that for all f in BMO we have

∣

∣Avg
aB

f −Avg
B

f
∣

∣≤Cn log(a + 1)
∥

∥ f
∥

∥

BMO .

7.1.6. Let a > 1 and let f be a BMO function on Rn. Show that there exist dimen-
sional constants Cn, C′

n such that
(a) for all balls B1 and B2 in Rn with radius R whose centers are at distance aR we
have

∣

∣Avg
B1

f −Avg
B2

f
∣

∣≤C′
n log(a + 1)

∥

∥ f
∥

∥

BMO .

(b) Conclude that
∣

∣ Avg
(a+1)B1

f −Avg
B2

f
∣

∣≤Cn log(a + 1)
∥

∥ f
∥

∥

BMO.
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[

Hint: Part (a): Consider the balls 2 jB1 and 2 jB2 for j = 0,1,2, . . . and find the
smallest j such that these intersect. Use (7.1.3) and Exercise 7.1.5.

]

7.1.7. Let f be locally integrable on Rn. Suppose that there exist positive constants
m and b such that for all cubes Q in Rn and for all 0 < p < ∞ we have

α
∣

∣

∣

{

x ∈ Q :
∣

∣ f (x)−Avg
Q

f
∣

∣> α
}∣

∣

∣

1
p ≤ b pm |Q|

1
p .

Show that f satisfies the estimate
∣

∣

∣

{

x ∈ Q :
∣

∣ f (x)−Avg
Q

f
∣

∣> α
}∣

∣

∣≤ |Q|e−cα1/m

with c = (2b)−1/m log2.
[

Hint: Try p = (α/2b)1/m.
]

7.1.8. Prove that
∣

∣ log |x|
∣

∣

p
is not in BMO(R) when 1 < p < ∞.

[

Hint: Show that if
∣

∣ log |x|
∣

∣

p
were in BMO, then estimate (7.1.9) would be violated

for large α .
]

7.1.9. Let f ∈ BMO(R) have mean value equal to zero on the fixed interval I. Find
a BMO function g on R such that

(1) g = f on I.

(2) g = 0 on R\ 4
3 I.

(3)
∥

∥g
∥

∥

BMO ≤C
∥

∥ f
∥

∥

BMO for some constant C independent of f .
[

Hint: Let I0 be the middle third of I. Let I1, I2 be the middle thirds of I \ I0. Let I3,
I4, . . . , I8 be the middle thirds of I \ (I0 ∪ I1 ∪ I2), etc. Also let Jk be the reflection of
Ik with respect to the closest endpoint of I and set g = AvgIk

f on Jk for k > 1, g = f
on I, and zero otherwise.

]

7.2 Duality between H1 and BMO

The next main result we discuss about BMO is a certain remarkable duality rela-
tionship with the Hardy space H1. We show that BMO is the dual space of H1. This
means that every continuous linear functional on the Hardy space H1 can be real-
ized as integration against a fixed BMO function, where integration in this context
is an abstract operation, not necessarily given by an absolutely convergent integral.
Restricting our attention, however, to a dense subspace of H1 such as the space of
all finite sums of atoms, the use of the word integration is well justified. Indeed, for
an L2 atom for H1 a and a BMO function b, the integral
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∫

|a(x)b(x)|dx < ∞

converges absolutely, since a(x) is compactly supported and bounded and b(x) is
locally (square) integrable.

Definition 7.2.1. Denote by H1
0 (Rn) the set of all finite linear combinations of L2

atoms for H1(Rn). For b ∈ BMO(Rn) we define a linear functional Lb on H1
0 (Rn)

by setting

Lb(g) =
∫

Rn
g(x)b(x)dx , g ∈ H1

0 . (7.2.1)

Certainly the integral in (7.2.1) converges absolutely and is well defined in this case.
This definition is also valid for general functions g in H1(Rn) if the BMO function b
is bounded. Note that (7.2.1) remains unchanged if b is replaced by b+c, where c is
an additive constant; this makes this integral unambiguously defined for b ∈ BMO.

To extend the definition of Lb on the entire H1 for all functions b in BMO we
need to know that

∥

∥Lb
∥

∥

H1→C ≤Cn
∥

∥b
∥

∥

BMO , whenever b is bounded, (7.2.2)

a fact that will be proved momentarily. Assuming (7.2.2), take b ∈ BMO and let
bM(x) = bχ|b|≤M for M = 1,2,3, . . . . Since

∥

∥bM
∥

∥

BMO ≤ 3
∥

∥b
∥

∥

BMO, the sequence of
linear functionals {LbM}M lies in a multiple of the unit ball of (H1)∗ and there is a
subsequence LMj that converges weakly to a bounded linear functional ˜Lb on H1.
This means that for all f in H1(Rn) we have

LbMj
( f ) → ˜Lb( f )

as j → ∞. Observe that for g ∈ H1
0 we also have

LbMj
(g) → Lb(g) ,

and since each LbMj
satisfies (7.2.2), Lb is a bounded linear functional on H1

0 . Since

H1
0 is dense in H1, ˜Lb is the unique bounded extension of ˜Lb on H1.

Having set the definition of Lb, we proceed by showing the validity of (7.2.2).
Let b be a bounded BMO function. Given f in H1, find a sequence ak of L2 atoms
for H1 supported in cubes Qk such that

f =
∞

∑
k=1

λkak (7.2.3)

and
∞

∑
k=1

|λk| ≤ 2
∥

∥ f
∥

∥

H1 .

Since the series in (7.2.3) converges in H1, it must converge in L1, and then we have
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|Lb( f )| =
∣

∣

∣

∣

∫

Rn
f (x)b(x)dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∞

∑
k=1

λk

∫

Qk

ak(x)
(

b(x)−Avg
Qk

b
)

dx

∣

∣

∣

∣

≤
∞

∑
k=1

|λk|
∥

∥ak
∥

∥

L2 |Qk|
1
2

(

1
|Qk|

∫

Qk

∣

∣b(x)−Avg
Qk

b
∣

∣

2
dx

) 1
2

≤ 2
∥

∥ f
∥

∥

H1 B2,n
∥

∥b
∥

∥

BMO ,

where in the last step we used Corollary 7.1.8 and the fact that L2 atoms for H1

satisfy
∥

∥ak

∥

∥

L2 ≤ |Qk|−
1
2 . This proves (7.2.2) for bounded functions b in BMO.

We have proved that every BMO function b gives rise to a bounded linear func-
tional ˜Lb on H1(Rn) (from now on denoted by Lb) that satisfies

∥

∥Lb

∥

∥

H1→C ≤Cn
∥

∥b
∥

∥

BMO. (7.2.4)

The fact that every bounded linear functional on H1 arises in this way is the gist of
the equivalence of the next theorem.

Theorem 7.2.2. There exist finite constants Cn and C′
n such that the following state-

ments are valid:
(a) Given b ∈ BMO(Rn), the linear functional Lb is bounded on H1(Rn) with norm
at most Cn

∥

∥b
∥

∥

BMO.

(b) For every bounded linear functional L on H1 there exists a BMO function b such
that for all f ∈ H1

0 we have L( f ) = Lb( f ) and also
∥

∥b
∥

∥

BMO ≤C′
n

∥

∥Lb

∥

∥

H1→C .

Proof. We have already proved (a) and so it suffices to prove (b). Fix a bounded
linear functional L on H1(Rn) and also fix a cube Q. Consider the space L2(Q) of
all square integrable functions supported in Q with norm

∥

∥g
∥

∥

L2(Q) =
(
∫

Q
|g(x)|2 dx

)1
2

.

We denote by L2
0(Q) the closed subspace of L2(Q) consisting of all functions in

L2(Q) with mean value zero. We show that every element in L2
0(Q) is in H1(Rn)

and we have the inequality

∥

∥g
∥

∥

H1 ≤ cn|Q| 1
2
∥

∥g
∥

∥

L2 . (7.2.5)

To prove (7.2.5) we use the square function characterization of H1. We fix a
Schwartz function Ψ on Rn whose Fourier transform is supported in the annulus
1
2 ≤ |ξ | ≤ 2 and that satisfies (6.2.6) for all ξ �= 0 and we let Δ j(g) =Ψ2− j ∗ g. To

estimate the L1 norm of
(

∑ j |Δ j(g)|2
)1/2

over Rn, consider the part of the integral
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over 3
√

nQ and the integral over (3
√

nQ)c. First we use Hölder’s inequality and an
L2 estimate to prove that

∫

3
√

nQ

(

∑
j

|Δ j(g)(x)|2
) 1

2
dx ≤ cn|Q| 1

2
∥

∥g
∥

∥

L2 .

Now for x /∈ 3
√

nQ we use the mean value property of g to obtain

|Δ j(g)(x)| ≤
cn
∥

∥g
∥

∥

L2 2n j+ j|Q| 1
n + 1

2

(1 + 2 j|x− cQ|)n+2 , (7.2.6)

where cQ is the center of Q. Estimate (7.2.6) is obtained in a way similar to that we
obtained the corresponding estimate for one atom; see Theorem 6.6.9 for details.
Now (7.2.6) implies that

∫

(3
√

nQ)c

(

∑
j
|Δ j(g)(x)|2

) 1
2
dx ≤ cn|Q| 1

2
∥

∥g
∥

∥

L2 ,

which proves (7.2.5).
Since L2

0(Q) is a subspace of H1, it follows from (7.2.5) that the linear functional
L : H1 → C is also a bounded linear functional on L2

0(Q) with norm

∥

∥L
∥

∥

L2
0(Q)→C ≤ cn|Q|1/2

∥

∥L
∥

∥

H1→C . (7.2.7)

By the Riesz representation theorem for the Hilbert space L2
0(Q), there is an element

FQ in (L2
0(Q))∗ = L2(Q)/{constants} such that

L(g) =
∫

Q
FQ(x)g(x)dx, (7.2.8)

for all g ∈ L2
0(Q), and this FQ satisfies

∥

∥FQ
∥

∥

L2(Q) ≤
∥

∥L
∥

∥

L2
0(Q)→C . (7.2.9)

Thus for any cube Q in Rn, there is square integrable function FQ supported in Q
such that (7.2.8) is satisfied. We observe that if a cube Q is contained in another
cube Q′, then FQ differs from FQ′

by a constant on Q. Indeed, for all g ∈ L2
0(Q) we

have
∫

Q
FQ′

(x)g(x)dx = L(g) =
∫

Q
FQ(x)g(x)dx

and thus
∫

Q
(FQ′

(x)−FQ(x))g(x)dx = 0 .

Consequently,
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g →
∫

Q
(FQ′

(x)−FQ(x))g(x)dx

is the zero functional on L2
0(Q); hence FQ′ −FQ must be the zero function in the

space (L2
0(Q))∗, i.e., FQ′ −FQ is a constant on Q.

Let Qm = [−m,m]n for m = 1,2, . . . . We define a locally integrable function b(x)
on Rn by setting

b(x) = FQm(x)− 1
|Q1|

∫

Q1

FQm(t)dt (7.2.10)

whenever x ∈ Qm. We check that this definition is unambiguous. Let 1 ≤ � < m.
Then for x ∈ Q�, b(x) is also defined as in (7.2.10) with � in the place of m. The
difference of these two functions is

FQm −FQ� −Avg
Q1

(FQm −FQ�) = 0 ,

since the function FQm −FQ� is constant in the cube Q� (which is contained in Qm),
as indicated earlier.

Next we claim that there is a locally integrable function b on Rn such that for any
cube Q there is a constant CQ such that

FQ = b−CQ on Q. (7.2.11)

Indeed, given a cube Q pick the smallest m such that Q is contained in Qm and
let CQ = −AvgQ1

(FQm)+ D(Q,Qm), where D(Q,Qm) is the constant value of the
function FQm −FQ on Q.

We have now found a locally integrable function b such that for all cubes Q and
all g ∈ L2

0(Q) we have

∫

Q
b(x)g(x)dx =

∫

Q
(FQ(x)+CQ)g(x)dx =

∫

Q
FQ(x)g(x)dx = L(g) , (7.2.12)

as follows from (7.2.8) and (7.2.11). We conclude the proof by showing that b ∈
BMO(Rn). By (7.2.11), (7.2.9), and (7.2.7) we have

sup
Q

1
|Q|

∫

Q
|b(x)−CQ|dx = sup

Q

1
|Q|

∫

Q
|FQ(x)|dx

≤ sup
Q

|Q|−1|Q| 1
2
∥

∥FQ
∥

∥

L2(Q)

≤ sup
Q

|Q|− 1
2
∥

∥L
∥

∥

L2
0(Q)→C

≤ cn
∥

∥L
∥

∥

H1→C < ∞ .

Using Proposition 7.1.2 (3), we deduce that b ∈ BMO and
∥

∥b
∥

∥

BMO ≤ 2cn
∥

∥L
∥

∥

H1→C.
Finally, (7.2.12) implies that
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L(g) =
∫

Rn
b(x)g(x)dx = Lb(g)

for all g ∈ H1
0 (Rn), proving that the linear functional L coincides with Lb on a dense

subspace of H1. Consequently, L = Lb, and this concludes the proof of part (b). �

Exercises

7.2.1. Use Exercise 1.4.12(a) and (b) to deduce that
∥

∥b
∥

∥

BMO ≈ sup
‖ f‖H1≤1

∣

∣Lb( f )
∣

∣ ,

∥

∥ f
∥

∥

H1 ≈ sup
‖b‖BMO≤1

∣

∣Lb( f )
∣

∣ .

7.2.2. Suppose that a locally integrable function u is supported in a cube Q in Rn

and satisfies
∫

Q
u(x)g(x)dx = 0

for all square integrable functions g on Q with mean value zero. Show that u is
almost everywhere equal to a constant.

7.3 Nontangential Maximal Functions and Carleson Measures

Many properties of functions defined on Rn are related to corresponding properties
of associated functions defined on Rn+1

+ in a natural way. A typical example of
this situation is the relation between an Lp(Rn) function f and its Poisson integral
f ∗Pt or more generally f ∗Φt , where {Φt}t>0 is an approximate identity. Here Φ
is a Schwartz function on Rn with integral 1. A maximal operator associated to the
approximate identity { f ∗Φt}t>0 is

f → sup
t>0

| f ∗Φt | ,

which we know is pointwise controlled by a multiple of the Hardy–Littlewood max-
imal function M( f ). Another example of a maximal operator associated to the pre-
vious approximate identity is the nontangential maximal function

f → M∗( f ;Φ)(x) = sup
t>0

sup
|y−x|<t

|( f ∗Φt)(y)|.

To study nontangential behavior we consider general functions F defined on Rn+1
+

that are not necessarily given as an average of functions defined on Rn. Throughout
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this section we use capital letters to denote functions defined on Rn+1
+ . When we

write F(x,t) we mean that x ∈ Rn and t > 0.

7.3.1 Definition and Basic Properties of Carleson Measures

Definition 7.3.1. Let F be a measurable function on Rn+1
+ . For x in Rn let Γ (x) be

the cone with vertex x defined by

Γ (x) = {(y,t) ∈ Rn ×R+ : |y− x|< t}.

A picture of this cone is shown in Figure 7.1. The nontangential maximal function
of F is the function

F∗(x) = sup
(y,t)∈Γ (x)

|F(y,t)|

defined on Rn. This function is obtained by taking the supremum of the values of F
inside the cone Γ (x).

We remark that if F∗(x) = 0 for almost all x ∈ Rn, then F is identically equal to
zero on Rn+1

+ .

Fig. 7.1 The cone Γ (x) trun-
cated at height t .

x

|y - x| < t

Definition 7.3.2. Given a ball B = B(x0,r) in Rn we define the tent or cylindrical
tent over B to be the “cylindrical set”

T (B) = {(x,t) ∈ Rn+1
+ : x ∈ B, 0 < t ≤ r} .

For a cube Q in Rn we define the tent over Q to be the cube

T (Q) = Q× (0, �(Q)] .

A tent over a ball and over a cube are shown in Figure 7.2. A positive measure μ on
Rn+1

+ is called a Carleson measure if
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∥

∥μ
∥

∥

C
= sup

Q

1
|Q|μ(T (Q)) < ∞, (7.3.1)

where the supremum in (7.3.1) is taken over all cubes Q in Rn. The Carleson func-
tion of the measure μ is defined as

C (μ)(x) = sup
Q�x

1
|Q|μ(T (Q)), (7.3.2)

where the supremum in (7.3.2) is taken over all cubes in Rn containing the point x.
Observe that

∥

∥C (μ)
∥

∥

L∞ =
∥

∥μ
∥

∥

C
.

We also define
∥

∥μ
∥

∥

cylinder
C

= sup
B

1
|B|μ(T (B)) , (7.3.3)

where the supremum is taken over all balls B in Rn. One should verify that there
exist dimensional constants cn and Cn such that

cn
∥

∥μ
∥

∥

C
≤
∥

∥μ
∥

∥

cylinder
C

≤Cn
∥

∥μ
∥

∥

C

for all measures μ on Rn+1
+ , that is, a measure satisfies the Carleson condition (7.3.1)

with respect to cubes if and only if it satisfies the analogous condition (7.3.3) with
respect to balls. Likewise, the Carleson function C (μ) defined with respect to cubes
is comparable to C cylinder(μ) defined with respect to cylinders over balls.

B(x Q,r)0

r

r

 

Fig. 7.2 The tents over the ball B(x0, r) and over a cube Q in R2.

Examples 7.3.3. The Lebesgue measure on Rn+1
+ is not a Carleson measure. Indeed,

it is not difficult to see that condition (7.3.1) cannot hold for large balls.
Let L be a line in R2. For A measurable subsets of R2

+ define μ(A) to be the linear
Lebesgue measure of the set L∩A. Then μ is a Carleson measure on R2

+. Indeed,
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the linear measure of the part of a line inside the box [x0−r,x0 +r]×(0,r] is at most
equal to the diagonal of the box, that is,

√
5r.

Likewise, let P be an affine plane in Rn+1 and define a measure ν by setting
ν(A) to be the n-dimensional Lebesgue measure of the set A∩P for any A ⊆ Rn+1

+ .
A similar idea shows that ν is a Carleson measure on Rn+1

+ .

We now turn to the study of some interesting boundedness properties of functions
on Rn+1

+ with respect to Carleson measures.
A useful tool in this study is the Whitney decomposition of an open set in Rn.

This is a decomposition of a general open set Ω in Rn as a union of disjoint cubes
whose lengths are proportional to their distance from the boundary of the open set.
For a given cube Q in Rn, we denote by �(Q) its length.

Proposition 7.3.4. (Whitney decomposition) Let Ω be an open nonempty proper
subset of Rn. Then there exists a family of closed cubes {Q j} j such that

(a)
⋃

j Q j =Ω and the Q j’s have disjoint interiors;

(b)
√

n�(Q j) ≤ dist (Q j,Ω c) ≤ 4
√

n�(Q j);

(c) if the boundaries of two cubes Qj and Qk touch, then

1
4
≤ �(Q j)

�(Qk)
≤ 4;

(d) for a given Qj there exist at most 12n Qk’s that touch it.

The proof of Proposition 7.3.4 is given in Appendix J.

Theorem 7.3.5. There exists a dimensional constant Cn such that for all α > 0, all
measures μ ≥ 0 on Rn+1

+ , and all μ-measurable functions F on Rn+1
+ , we have

μ
(

{(x,t) ∈ Rn+1
+ : |F(x,t)| > α}

)

≤Cn

∫

{F∗>α}
C (μ)(x)dx. (7.3.4)

In particular, if μ is a Carleson measure, then

μ
(

{|F | > α}
)

≤Cn
∥

∥μ
∥

∥

C
|{F∗ > α}|.

Proof. We prove this theorem by working with the equivalent definition of Carleson
measures and Carleson functions using balls and cylinders over balls. As observed
earlier, these quantities are comparable to the corresponding quantities using cubes.

We begin by observing that for any function F the set Ωα = {F∗ > α} is open,
and in particular, F∗ is Lebesgue measurable. Indeed, if x0 ∈ Ωα , then there is a
(y0,t0) ∈ Rn+1

+ such that |F(y0,t0)| > α . If d0 is the distance from y0 to the sphere
formed by the intersection of the hyperplane t0 + Rn with the boundary of the cone
Γ (x0), then |x0 − y0| ≤ t0 −d0. It follows that the open ball B(x0,d0) is contained in
Ωα , since for z ∈ B(x0,d0) we have |z− y0| < t0, hence F∗(z) ≥ |F(y0, t0)| > α .
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Let {Qk} be the Whitney decomposition of the set Ωα . For each x ∈ Ωα , set
δα(x) = dist (x,Ω c

α). Then for z ∈ Qk we have

δα(z) ≤
√

n�(Qk)+ dist (Qk,Ω c
α) ≤ 5

√
n�(Qk) (7.3.5)

in view of Proposition 7.3.4 (b). For each Qk, let Bk be the smallest ball that contains
Qk. Then the radius of Bk is

√
n�(Qk)/2. Combine this observation with (7.3.5) to

obtain that
z ∈ Qk =⇒ B(z,δα(z)) ⊆ 12Bk.

This implies that
⋃

z∈Ωα
T
(

B(z,δα(z))
)

⊆
⋃

k

T (12Bk). (7.3.6)

Next we claim that
{|F| > α} ⊆

⋃

z∈Ωα
T
(

B(z,δα (z))
)

. (7.3.7)

Indeed, let (x,t) ∈ Rn+1
+ such that |F(x,t)| > α . Then by the definition of F∗ we

have that F∗(y) > α for all y ∈ Rn satisfying |x− y| < t. Thus B(x, t) ⊆ Ωα and so
δα(x) ≥ t. This gives that (x,t) ∈ T

(

B(x,δα(x))
)

, which proves (7.3.7).
Combining (7.3.6) and (7.3.7) we obtain

{|F| > α} ⊆
⋃

k

T (12Bk).

Applying the measure μ and using the definition of the Carleson function, we obtain

μ
(

{|F| > α}
)

≤ ∑
k

μ
(

T (12Bk)
)

≤ ∑
k

|12Bk| inf
x∈Qk

C cylinder(μ)(x)

≤ 12n∑
k

|Bk|
|Qk|

∫

Qk

C cylinder(μ)(x)dx

≤ Cn

∫

Ωα
C (μ)(x)dx ,

since |Bk| = 2−nnn/2vn|Qk|. This proves (7.3.4). �

Corollary 7.3.6. For any Carleson measure μ and every μ-measurable function F
on Rn+1

+ we have

∫

Rn+1
+

|F(x,t)|p dμ(x,t) ≤Cn
∥

∥μ
∥

∥

C

∫

Rn
(F∗(x))p dx

for all 0 < p < ∞.

Proof. Simply use Proposition 1.1.4 and the previous theorem. �
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A particular example of this situation arises when F(x,t) = f ∗Φt (x) for some
nice integrable function Φ . Here and in the sequel, Φt (x) = t−nΦ(t−1x). For in-
stance one may take Φt to be the Poisson kernel Pt .

Theorem 7.3.7. Let Φ be a function on Rn that satisfies for some 0 < C,δ < ∞,

|Φ(x)| ≤ C

(1 + |x|)n+δ . (7.3.8)

Let μ be a Carleson measure on Rn+1
+ . Then for every 1 < p <∞ there is a constant

Cp,n(μ) such that for all f ∈ Lp(Rn) we have

∫

Rn+1
+

|(Φt ∗ f )(x)|p dμ(x,t) ≤Cp,n(μ)
∫

Rn
| f (x)|p dx , (7.3.9)

where Cp,n(μ) ≤C(p,n)
∥

∥μ
∥

∥

C
. Conversely, suppose that Φ is nonnegative and sat-

isfies (7.3.8) and
∫

|x|≤1Φ(x)dx > 0. If μ is a measure on Rn+1
+ such that for some

1 < p < ∞ there is a constant Cp,n(μ) such that (7.3.9) holds for all f ∈ Lp(Rn),
then μ is a Carleson measure with norm at most a multiple of Cp,n(μ).

Proof. If μ is a Carleson measure, we may obtain (7.3.9) as a consequence of Corol-
lary 7.3.6. Indeed, for F(x,t) = (Φt ∗ f )(x) we have

F∗(x) = sup
t>0

sup
y∈Rn

|y−x|<t

|(Φt ∗ f )(y)| .

Using (7.3.8) and Corollary 2.1.12, this is easily seen to be pointwise controlled by
the Hardy–Littlewood maximal operator, which is Lp bounded. See also Exercise
7.3.4.

Conversely, if (7.3.9) holds, then we fix a ball B = B(x0,r) in Rn with center x0

and radius r > 0. Then for (x,t) in T (B) we have

(Φt ∗ χ2B)(x) =
∫

x−2B

Φt(y)dy ≥
∫

B(0,t)

Φt(y)dy =
∫

B(0,1)

Φ(y)dy = cn > 0 ,

since B(0,t) ⊆ x−2B(x0,r) whenever t ≤ r. Therefore, we have

μ(T (B)) ≤ 1
cp

n

∫

Rn+1
+

|(Φt ∗ χ2B)(x)|p dμ(x,t)

≤ Cp,n(μ)
cp

n

∫

Rn
|χ2B(x)|p dx

=
2nCp,n(μ)

cp
n

|B| .

This proves that μ is a Carleson measure with
∥

∥μ
∥

∥

C
≤ 2nc−p

n Cp,n(μ). �
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7.3.2 BMO Functions and Carleson Measures

We now turn to an interesting connection between BMO functions and Carleson
measures. We have the following.

Theorem 7.3.8. Let b be a BMO function on Rn and letΨ be an integrable function
with mean value zero on Rn that satisfies

|Ψ (x)| ≤ A(1 + |x|)−n−δ (7.3.10)

for some 0 < A,δ < ∞. Consider the dilations Ψt = t−nΨ(t−1x) and define the
Littlewood–Paley operators Δ j( f ) = f ∗Ψ2− j .
(a) Suppose that

sup
ξ∈Rn
∑
j∈Z

| ̂Ψ(2− jξ )|2 ≤ B2 < ∞ (7.3.11)

and let δ2− j(t) be Dirac mass at the point t = 2− j. Then there is a constant Cn,δ
such that

dμ(x,t) = ∑
j∈Z

|(Ψ2− j ∗ b)(x)|2 dxδ2− j(t)

is a Carleson measure on Rn+1
+ with norm at most Cn,δ (A + B)2

∥

∥b
∥

∥

2
BMO.

(b) Suppose that

sup
ξ∈Rn

∫ ∞

0
| ̂Ψ(tξ )|2 dt

t
≤ B2 < ∞ . (7.3.12)

Then the continuous version dν(x,t) of dμ(x,t) defined by

dν(x,t) = |(Ψt ∗ b)(x)|2 dx
dt
t

is a Carleson measure on Rn+1
+ with norm at most Cn,δ (A + B)2

∥

∥b
∥

∥

2
BMO for some

constant Cn,δ .
(c) Let δ ,A > 0. Suppose that {Kt}t>0 are functions on Rn ×Rn that satisfy

|Kt (x,y)| ≤
Atδ

(t + |x− y|)n+δ (7.3.13)

for all t > 0 and all x,y ∈ Rn. Let Rt be the linear operator

Rt( f )(x) =
∫

Rn
Kt(x,y) f (y)dy ,

which is well defined for all f ∈ ⋃1≤p≤∞Lp(Rn). Suppose that Rt(1) = 0 for all
t > 0 and that there is a constant B > 0 such that

∫ ∞

0

∫

Rn

∣

∣Rt( f )(x)
∣

∣

2 dxdt
t

≤ B
∥

∥ f
∥

∥

2
L2(Rn) (7.3.14)
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for all f ∈ L2(Rn). Then for all b in BMO the measure

∣

∣Rt(b)(x)
∣

∣

2 dxdt
t

is Carleson with norm at most a constant multiple of (A + B)2
∥

∥b
∥

∥

2
BMO.

We note that if in addition to (7.3.10), the functionΨ has mean value zero and
satisfies |∇Ψ(x)| ≤ A(1 + |x|)−n−δ , then (7.3.11) and (7.3.12) hold and therefore
conclusions (a) and (b) of Theorem 7.3.8 follow.

Proof. We prove (a). The measure μ is defined so that for every μ-integrable func-
tion F on Rn+1

+ we have

∫

Rn+1
+

F(x,t)dμ(x,t) = ∑
j∈Z

∫

Rn
|(Ψ2− j ∗ b)(x)|2F(x,2− j)dx. (7.3.15)

For a cube Q in Rn we let Q∗ be the cube with the same center and orientation whose
side length is 3

√
n�(Q), where �(Q) is the side length of Q. Fix a cube Q in Rn, take

F to be the characteristic function of the tent of Q, and split b as

b =
(

b−Avg
Q

b
)

χQ∗ +
(

b−Avg
Q

b
)

χ(Q∗)c + Avg
Q

b.

SinceΨ has mean value zero,Ψ2− j ∗AvgQ b = 0. Then (7.3.15) gives

μ(T (Q)) = ∑
2− j≤�(Q)

∫

Q
|Δ j(b)(x)|2 dx ≤ 2Σ1 + 2Σ2,

where

Σ1 = ∑
j∈Z

∫

Rn

∣

∣Δ j
(

(b−Avg
Q

b)χQ∗
)

(x)
∣

∣

2
dx,

Σ2 = ∑
2− j≤�(Q)

∫

Q

∣

∣Δ j
(

(b−Avg
Q

b)χ(Q∗)c
)

(x)
∣

∣

2
dx.

Using Plancherel’s theorem and (7.3.11), we obtain

Σ1 ≤ sup
ξ
∑
j∈Z

| ̂Ψ(2− jξ )|2
∫

Rn

∣

∣

(

(b−Avg
Q

b)χQ∗
)

̂(ξ )
∣

∣

2
dξ

≤ B2
∫

Q∗

∣

∣b(x)−Avg
Q

b
∣

∣

2
dx

≤ 2B2
∫

Q∗

∣

∣b(x)−Avg
Q∗

b
∣

∣

2
dx + 2A2|Q∗|

∣

∣Avg
Q∗

b−Avg
Q

b
∣

∣

2

≤ B2
∫

Q∗

∣

∣b(x)−Avg
Q∗

b
∣

∣

2
dx + cnB2

∥

∥b
∥

∥

2
BMO |Q|

≤ CnB2
∥

∥b
∥

∥

2
BMO |Q|
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in view of Proposition 7.1.5 (i) and Corollary 7.1.8. To estimate Σ2, we use the size
estimate of the functionΨ . We obtain

∣

∣

(

Ψ2− j ∗
(

b−Avg
Q

b
)

χ(Q∗)c
)

(x)
∣

∣≤
∫

(Q∗)c

A2− jδ
∣

∣b(y)−AvgQ b
∣

∣

(2− j + |x− y|)n+δ dy . (7.3.16)

But note that if cQ is the center of Q, then

2− j + |x− y| ≥ |y− x|
≥ |y− cQ|− |cQ − x|

≥ 1
2
|cQ − y|+ 3

√
n

4
�(Q)−|cQ− x|

≥ 1
2
|cQ − y|+ 3

√
n

4
�(Q)−

√
n

2
l(Q)

=
1
2

(

|cQ − y|+
√

n
2

�(Q)
)

when y ∈ (Q∗)c and x ∈ Q. Inserting this estimate in (7.3.16), integrating over Q,
and summing over j with 2− j ≤ �(Q), we obtain

Σ2 ≤ Cn ∑
2− jδ≤�(Q)

2−2 j
∫

Q

(

A
∫

Rn

∣

∣b(y)−AvgQ b
∣

∣

(�(Q)+ |cQ− y|)n+δ dy

)2

dx

≤ CnA2|Q|
(
∫

Rn

�(Q)δ
∣

∣b(y)−AvgQ b
∣

∣

(�(Q)+ |y− cQ|)n+δ dy

)2

≤ C′
n,δ |Q|

∥

∥b
∥

∥

2
BMO

in view of (7.1.5). This proves that

Σ1 +Σ2 ≤Cn,δ (A
2 + B2)|Q|

∥

∥b
∥

∥

2
BMO ,

which implies that μ(T (Q)) ≤Cn,δ (A + B)2
∥

∥b
∥

∥

2
BMO|Q|.

The proof of part (b) of the theorem is obtained in a similar fashion. Finally, part
(c) is a generalization of part (b) and is proved likewise. We sketch its proof. Write

b =
(

b−Avg
Q

b
)

χQ∗ +
(

b−Avg
Q

b
)

χ(Q∗)c + Avg
Q

b

and note that Rt(AvgQ b) = 0. We handle the term containing Rt
(

(b−AvgQ b)χQ∗
)

using an L2 estimate over Q∗ and condition (7.3.14), while for the term containing
Rt
(

(b−AvgQ b)χ(Q∗)c
)

we use an L1 estimate and condition (7.3.13). In both cases
we obtain the required conclusion in a way analogous to that in part (a). �
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Exercises

7.3.1. Let a j,b j be sequences of positive real numbers such that ∑ j b j < ∞. Define
a measure μ on Rn+1

+ by setting

μ(E) =∑
j

b j|E ∩{(x,a j) : x ∈ Rn}|,

where E is a subset of Rn+1
+ and | | denotes n-dimensional Lebesgue measure on the

affine planes t = a j. Show that μ is a Carleson measure with norm

∥

∥μ
∥

∥

cylinder
C

=
∥

∥μ
∥

∥

C
=∑

j

b j .

7.3.2. Let x0 ∈ Rn and μ = δ(x0,1) be the Dirac mass at the point (x0,1). Show that

μ is Carleson measure and compute
∥

∥μ
∥

∥

cylinder
C

and
∥

∥μ
∥

∥

C
. Which of these norms is

larger?

7.3.3. Define conical and hemispherical tents over balls in Rn as well as pyrami-

dal tents over cubes in Rn and define the expressions
∥

∥μ
∥

∥

cone
C

,
∥

∥μ
∥

∥

hemisphere
C

, and
∥

∥μ
∥

∥

pyramid
C

. Show that

∥

∥μ
∥

∥

cone
C

≈
∥

∥μ
∥

∥

hemisphere
C

≈
∥

∥μ
∥

∥

pyramid
C

≈
∥

∥μ
∥

∥

C
,

where all the implicit constants in the previous estimates depend only on the dimen-
sion.

7.3.4. Suppose that Φ has a radial, bounded, symmetrically decreasing integrable
majorant. Set F(x,t) = ( f ∗Φt)(x), where f is a locally integrable function on Rn.
Prove that

F∗(x) ≤CM( f )(x) ,

where M is the Hardy–Littlewood maximal operator and C is a constant that depends
only on the dimension.
[

Hint: If ϕ(|x|) is the claimed majorant of Φ(x), then the function ψ(|x|) = ϕ(0)
for |x| ≤ 1 and ψ(|x|) = ϕ(|x|−1) for |x| ≥ 1 is a majorant for the functionΨ(x) =
sup|u|≤1 |Φ(x−u)|.

]

7.3.5. Let F be a function on Rn+1
+ , let F∗ be the nontangential maximal function

derived from F , and let μ ≥ 0 be a measure on Rn+1
+ . Prove that

∥

∥F
∥

∥

Lr(Rn+1
+ ,μ) ≤C1/r

n

(
∫

Rn
C (μ)(x)F∗(x)r dx

)1/r

,

where Cn is the constant of Theorem 7.3.5 and 0 < r < ∞.
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7.3.6. (a) Given A a closed subset of Rn and 0 < γ < 1, define

A∗
γ =

{

x ∈ Rn : inf
r>0

|A∩B(x,r)|
|B(x,r)| ≥ γ

}

.

Show that A∗ is a closed subset of A and that it satisfies

|(A∗
γ )

c| ≤ 3n

1− γ |A
c| .

[

Hint: Consider the Hardy–Littlewood maximal function of χAc .
]

(b) For a function F on Rn+1
+ and 0 < a < ∞, set

F∗
a (x) = sup

t>0
sup

|y−x|<at
|F(y, t)| .

Let 0 < a < b < ∞ be given. Prove that for all λ > 0 we have

|{F∗
a > λ}| ≤ |{F∗

b > λ}| ≤ 3na−n(a + b)n|{F∗
a > λ}|.

7.3.7. Let μ be a Carleson measure on Rn+1
+ . Show that for any z0 ∈ Rn and t > 0

we have

∫∫

Rn×(0,t)

t

(|z− z0|2 + t2 + s2)
n+1

2

dμ(z,s) ≤
∥

∥μ
∥

∥

cylinder
C

π
n+1

2

Γ ( n+1
2 )

.

[

Hint: Begin by writing

t

(|z− z0|2 + t2 + s2)
n+1

2

= (n + 1)t
∫ ∞

Q

dr
rn+2 ,

where Q =
√

|z− z0|2 + t2 + s2. Apply Fubini’s theorem to estimate the required
expression by

t(n+1)
∫ ∞

t

∫

T
(

B(z0,
√

r2−t2 )
)

dμ(z,s)
dr

rn+2 ≤ t(n+1)vn
∥

∥μ
∥

∥

cylinder
C

∫ ∞

t
(r2 − t2)

n
2

dr
rn+2 ,

where vn is the volume of the unit ball in Rn. Reduce the last integral to a beta
function.

]

7.3.8. (Verbitsky [325] ) Let μ be a Carleson measure on Rn+1
+ . Show that for all

p > 2 there exists a dimensionless constant Cp such that

∫

Rn+1
+

|(Pt ∗ f )(x)|p dμ(x,t) ≤Cp
∥

∥μ
∥

∥

cylinder
C

∫

Rn
| f (x)|p dx .
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[

Hint: It suffices to prove that the operator f �→Pt ∗ f maps L2(Rn) to L2,∞(Rn+1
+ ,dμ)

with a dimensionless constant C, since then the conclusion follows by interpolation
with the corresponding L∞ estimate, which holds with constant 1. By duality and
Exercise 1.4.7 this is equivalent to showing that

∫

Rn

[
∫∫

E

Pt(x− y)dμ(y,t)
∫∫

E

Ps(x− z)dμ(z,s)
]

dx ≤Cμ(E)

for any set E in Rn+1
+ with μ(E) < ∞. Apply Fubini’s theorem, use the identity

∫

Rn
Pt(x− y)Ps(x− z)dx = Pt+s(y− z) ,

and consider the cases t ≤ s and s ≤ t.
]

7.4 The Sharp Maximal Function

In Section 7.1 we defined BMO as the space of all locally integrable functions on
Rn whose mean oscillation is at most a finite constant. In this section we introduce
a quantitative way to measure the mean oscillation of a function near any point.

7.4.1 Definition and Basic Properties of the Sharp Maximal
Function

The local behavior of the mean oscillation of a function is captured to a certain
extent by the sharp maximal function. This is a device that enables us to relate
integrability properties of a function to those of its mean oscillations.

Definition 7.4.1. Given a locally integrable function f on Rn, we define its sharp
maximal function M#( f ) as

M#( f )(x) = sup
Q�x

1
|Q|

∫

Q

∣

∣ f (t)−Avg
Q

f
∣

∣dt,

where the supremum is taken over all cubes Q in Rn that contain the given point x.

The sharp maximal function is an analogue of the Hardy–Littlewood maximal
function, but it has some advantages over it, especially in dealing with the endpoint
space L∞. The very definition of M#( f ) brings up a connection with BMO that is
crucial in interpolation. Precisely, we have

BMO(Rn) = { f ∈ L1
loc(R

n) : M#( f ) ∈ L∞(Rn)},
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and in this case
∥

∥ f
∥

∥

BMO =
∥

∥M#( f )
∥

∥

L∞ .

We summarize some properties of the sharp maximal function.

Proposition 7.4.2. Let f ,g be a locally integrable functions on Rn. Then

(1) M#( f ) ≤ 2Mc( f ), where Mc is the Hardy–Littlewood maximal operator with
respect to cubes in Rn.

(2) For all cubes Q in Rn we have

1
2

M#( f )(x) ≤ sup
x∈Q

inf
a∈C

1
|Q|

∫

Q
| f (y)−a|dy ≤ M#( f )(x).

(3) M#(| f |) ≤ 2M#( f ).

(4) We have M#( f + g)≤ M#( f )+ M#(g).

Proof. The proof of (1) is trivial. To prove (2) we fix ε > 0 and for any cube Q we
pick a constant aQ such that

1
|Q|

∫

Q
| f (y)−aQ|dy ≤ inf

a∈Q

1
|Q|

∫

Q
| f (y)−a|dy + ε .

Then

1
|Q|

∫

Q

∣

∣ f (y)−Avg
Q

f
∣

∣dy ≤ 1
|Q|

∫

Q
| f (y)−aQ|dy +

1
|Q|

∫

Q

∣

∣Avg
Q

f −aQ
∣

∣dy

≤ 1
|Q|

∫

Q
| f (y)−aQ|dy +

1
|Q|

∫

Q
| f (y)−aQ|dy

≤ 2 inf
a∈Q

1
|Q|

∫

Q
| f (y)−a|dy + 2ε .

Taking the supremum over all cubes Q in Rn, we obtain the first inequality in (2),
since ε > 0 was arbitrary. The other inequality in (2) is simple. The proofs of (3)
and (4) are immediate. �

We saw that M#( f ) ≤ 2Mc( f ), which implies that
∥

∥M#( f )
∥

∥

Lp ≤Cn p(p−1)−1
∥

∥ f
∥

∥

Lp (7.4.1)

for 1 < p < ∞. Thus the sharp function of an Lp function is also in Lp whenever
1 < p < ∞. The fact that the converse inequality is also valid is one of the main
results in this section. We obtain this estimate via a distributional inequality for the
sharp function called a good lambda inequality.
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7.4.2 A Good Lambda Estimate for the Sharp Function

A useful tool in obtaining the converse inequality to (7.4.1) is the dyadic maximal
function.

Definition 7.4.3. Given a locally integrable function f on Rn, we define its dyadic
maximal function Md( f ) by

Md( f )(x) = sup
Q�x

Q dyadic cube

1
|Q|

∫

Q
| f (t)|dt .

The supremum is taken over all dyadic cubes in Rn that contain a given point x.
Recalling the expectation operators Ek from Section 5.4, we have

Md( f )(x) = sup
k∈Z

Ek( f )(x) .

Obviously, one has the pointwise estimate

Md( f ) ≤ Mc( f ) (7.4.2)

for all locally integrable functions. This yields the boundedness of Md on Lp for
1 < p ≤ ∞ and the weak type (1,1) property of Md . More precise estimates on the
norm of Md can derived. In fact, in view of the result of Exercise 2.1.12, Md is of
weak type (1,1) with norm at most 1. By interpolation (precisely Exercise 1.3.3(a)),
it follows that Md maps Lp(Rn) to itself with norm at most

∥

∥Md
∥

∥

Lp(Rn)→Lp(Rn) ≤
p

p−1

when 1 < p < ∞.
One may wonder whether an estimate converse to (7.4.2) holds. But a quick ob-

servation shows that for a locally integrable function f that vanishes on certain open
sets, Md( f ) could have zeros, but Mc( f ) never vanishes. Therefore, there is no hope
for Md( f ) and Mc( f ) to be pointwise comparable. Although the functions Md( f )
and M( f ) are not pointwise comparable, we will show that they are comparable in
norm.

The next result provides an example of a good lambda distributional inequality.

Theorem 7.4.4. For all γ > 0, all λ > 0, and all locally integrable functions f on
Rn, we have the estimate
∣

∣

{

x ∈ Rn : Md( f )(x) > 2λ , M#( f )(x) ≤ γλ
}∣

∣≤ 2n γ
∣

∣

{

x ∈ Rn : Md( f )(x) > λ
}∣

∣.

Proof. We may suppose that the setΩλ = {x ∈ Rn : Md( f )(x) > λ} has finite mea-
sure; otherwise, there is nothing to prove. Then for each x ∈Ωλ there is a maximal
dyadic cube Qx that contains x such that
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1
|Qx|

∫

Qx
| f (y)|dy > λ ; (7.4.3)

otherwise, Ωλ would have infinite measure. Let Q j be the collection of all such
maximal dyadic cubes containing all x inΩλ , i.e., {Q j} j = {Qx : x∈Ωλ}. Maximal
dyadic cubes are disjoint; hence any two different Q j’s are disjoint; Moreover, we
note that if x,y ∈ Q j, then Q j = Qx = Qy. It follows that Ωλ =

⋃

j Q j. To prove the
required estimate, it suffices to show that for all Q j we have

∣

∣

{

x ∈ Q j : Md( f )(x) > 2λ , M#( f )(x) ≤ γλ
}∣

∣≤ 2nγ
∣

∣Q j
∣

∣ , (7.4.4)

for once (7.4.4) is established, the conclusion follows by summing on j.
We fix j and x ∈ Q j such that Md( f )(x) > 2λ . Then the supremum

Md( f )(x) = sup
R�x

1
|R|

∫

R
| f (y)|dy (7.4.5)

is taken over all dyadic cubes R that either contain Q j or are contained in Q j (since
Q j ∩R �= /0). If R � Q j, the maximality of Q j implies that (7.4.3) does not hold for
R; thus the average of | f | over R is at most λ . Thus if Md( f )(x) > 2λ , then the
supremum in (7.4.5) is attained for some dyadic cube R contained (not properly)
in Q j. Therefore, if x ∈ Q j and Md( f )(x) > 2λ , then we can replace f by f χQj in
(7.4.5) and we must have Md( f χQj )(x) > 2λ . We let Q′

j be the unique dyadic cube
of twice the side length of Q j. Therefore, for x ∈ Q j we have

Md

(

(

f −Avg
Q′

j

f
)

χQj

)

(x) ≥ Md
(

f χQj )(x)−
∣

∣Avg
Q′

j

f
∣

∣> 2λ −λ = λ ,

since |AvgQ′
j

f | ≤AvgQ′
j
| f | ≤ λ because of the maximality of Q j. We conclude that

∣

∣

{

x ∈ Q j : Md( f )(x) > 2λ
}∣

∣≤
∣

∣

∣

{

x ∈ Q j : Md
((

f −Avg
Q′

j

f
)

χQj

)

(x) > λ
}∣

∣

∣ , (7.4.6)

and using the fact that Md is of weak type (1,1) with constant 1, we control the last
expression in (7.4.6) by

1
λ

∫

Qj

∣

∣ f (y)−Avg
Q′

j

f
∣

∣dy ≤ 2n|Q j|
λ

1
|Q′

j|

∫

Q′
j

∣

∣ f (y)−Avg
Q′

j

f
∣

∣dy

≤ 2n|Q j|
λ

M#( f )(ξ j)

(7.4.7)

for all ξ j ∈ Q j. In proving (7.4.4) we may assume that for some ξ j ∈ Q j we have
M#( f )(ξ j) ≤ γλ ; otherwise, there is nothing to prove. For this ξ j, using (7.4.6) and
(7.4.7) we obtain (7.4.4). �

Good lambda inequalities can be used to obtain Lp bounds for quantities they
contain. For example, we use Theorem 7.4.4 to obtain the equivalence of the Lp
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norms of Md( f ) and M#( f ). Since M#( f ) is pointwise controlled by 2Mc( f ) and
∥

∥Mc( f )
∥

∥

Lp ≤C(p,n)
∥

∥ f
∥

∥

Lp ≤C(p,n)
∥

∥Md( f )
∥

∥

Lp ,

we have the estimate
∥

∥M#( f )
∥

∥

Lp(Rn) ≤ 2C(p,n)
∥

∥Md( f )
∥

∥

Lp(Rn)

for all f in Lp(Rn). The next theorem says that the converse estimate is valid.

Theorem 7.4.5. Let 0 < p0 <∞. Then for any p with p0 ≤ p <∞ there is a constant
Cn(p) such that for all functions f with Md( f ) ∈ Lp0(Rn) we have

∥

∥Md( f )
∥

∥

Lp(Rn) ≤Cn(p)
∥

∥M#( f )
∥

∥

Lp(Rn) . (7.4.8)

Proof. For a positive real number N we set

IN =
∫ N

0
pλ p−1

∣

∣

{

x ∈ Rn : Md( f )(x) > λ
}∣

∣dλ .

We note that IN is finite, since p ≥ p0 and it is bounded by

pN p−p0

p0

∫ N

0
p0λ p0−1

∣

∣

{

x ∈ Rn : Md( f )(x) > λ
}∣

∣dλ ≤ pN p−p0

p0

∥

∥Md( f )
∥

∥

p0
Lp0 < ∞ .

We now write

IN = 2p
∫ N

2

0
pλ p−1

∣

∣

{

x ∈ Rn : Md( f )(x) > 2λ
}∣

∣dλ

and we use Theorem 7.4.4 to obtain the following sequence of inequalities:

IN ≤ 2p
∫ N

2

0
pλ p−1

∣

∣

{

x ∈ Rn : Md( f )(x) > 2λ , M#( f )(x) ≤ γλ
}∣

∣dλ

+ 2p
∫ N

2

0
pλ p−1

∣

∣

{

x ∈ Rn : M#( f )(x) > γλ
}∣

∣dλ

≤ 2p2nγ
∫ N

2

0
pλ p−1

∣

∣

{

x ∈ Rn : Md( f )(x) > λ
}∣

∣dλ

+ 2p
∫ N

2

0
pλ p−1

∣

∣

{

x ∈ Rn : M#( f )(x) > γλ
}∣

∣dλ

≤ 2p2nγ IN +
2p

γ p

∫ Nγ
2

0
pλ p−1

∣

∣

{

x ∈ Rn : M#( f )(x) > λ
}∣

∣dλ .

At this point we pick a γ such that 2p2nγ = 1/2. Since IN is finite, we can subtract
from both sides of the inequality the quantity 1

2 IN to obtain
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IN ≤ 2p+12p(n+p+1)
∫

Nγ
2

0
pλ p−1

∣

∣

{

x ∈ Rn : M#( f )(x) > λ
}∣

∣dλ ,

from which we obtain (7.4.8) with Cn(p) = 2n+p+2+ 1
p letting N → ∞. �

Corollary 7.4.6. Let 0 < p0 <∞. Then for any p with p0 ≤ p <∞ and for all locally
integrable functions f with Md( f ) ∈ Lp0(Rn) we have

∥

∥ f
∥

∥

Lp(Rn) ≤Cn(p)
∥

∥M#( f )
∥

∥

Lp(Rn) , (7.4.9)

where Cn(p) is the constant in Theorem 7.4.5.

Proof. Since for every point in Rn there is a sequence of dyadic cubes shrinking to
it, the Lebesgue differentiation theorem yields that for almost every point x in Rn

the averages of the locally integrable function f over the dyadic cubes containing x
converge to f (x). Consequently,

| f | ≤ Md( f ) a.e.

Using this fact, the proof of (7.4.9) is immediate, since
∥

∥ f
∥

∥

Lp(Rn) ≤
∥

∥Md( f )
∥

∥

Lp(Rn) ,

and by Theorem 7.4.5 the latter is controlled by Cn(p)
∥

∥M#( f )
∥

∥

Lp(Rn). �

Estimate (7.4.9) provides the sought converse to (7.4.1).

7.4.3 Interpolation Using BMO

We continue this section by proving an interpolation result in which the space L∞ is
replaced by BMO. The sharp function plays a key role in the following theorem.

Theorem 7.4.7. Let 1 ≤ p0 < ∞. Let T be a linear operator that maps Lp0(Rn) to
Lp0(Rn) with bound A0, and L∞(Rn) to BMO(Rn) with bound A1. Then for all p
with p0 < p < ∞ there is a constant Cn,p such that for all f ∈ Lp we have

∥

∥T ( f )
∥

∥

Lp(Rn) ≤Cn,p,p0 A
p0
p

0 A
1− p0

p
1

∥

∥ f
∥

∥

Lp(Rn) . (7.4.10)

Remark 7.4.8. In certain applications, the operator T may not be a priori defined
on all of Lp0 + L∞ but only on some subspace of it. In this case one may state that
the hypotheses and the conclusion of the preceding theorem hold for a subspace of
these spaces.

Proof. We consider the operator
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S( f ) = M#(T ( f ))

defined for f ∈ Lp0 + L∞. It is easy to see that S is a sublinear operator. We prove
that S maps Lp0 to itself and L∞ to itself. For f ∈ Lp0 we have

∥

∥S( f )
∥

∥

Lp0 =
∥

∥M#(T ( f ))
∥

∥

Lp0 ≤ 2
∥

∥Mc(T ( f ))
∥

∥

Lp0

≤ Cn,p0

∥

∥T ( f )
∥

∥

Lp0 ≤Cn,p0A0
∥

∥ f
∥

∥

Lp0 ,

while for f ∈ L∞ one has
∥

∥S( f )
∥

∥

L∞ =
∥

∥M#(T ( f ))
∥

∥

L∞ =
∥

∥T ( f )
∥

∥

BMO ≤ A1
∥

∥ f
∥

∥

L∞ .

Interpolating between these estimates using Theorem 1.3.2, we deduce

∥

∥M#(T ( f ))
∥

∥

Lp =
∥

∥S( f )
∥

∥

Lp ≤Cp,p0 A
p0
p

0 A
1− p0

p
1

∥

∥ f
∥

∥

Lp

for all f ∈ Lp, where p0 < p <∞. Consider now a function h ∈ Lp ∩Lp0 . In the case
p0 > 1, Md(T (h)) ∈ Lp0 ; hence Corollary 7.4.6 is applicable and gives

∥

∥T (h)
∥

∥

Lp ≤Cn(p)Cp,p0 A
p0
p

0 A
1− p0

p
1

∥

∥h
∥

∥

Lp .

Density yields the same estimate for all f ∈ Lp(Rn). If p0 = 1, one applies the same
idea but needs the endpoint estimate of Exercise 7.4.6, since Md(T (h)) ∈ L1,∞. �

7.4.4 Estimates for Singular Integrals Involving the Sharp
Function

We use the sharp function to obtain pointwise estimates for singular integrals. These
enable us to recover previously obtained estimates for singular integrals, but also to
deduce a new endpoint boundedness result from L∞ to BMO.

Let us recall some facts from Chapter 4. Suppose that K is defined on Rn \ {0}
and satisfies

|K(x)| ≤ A1|x|−n , (7.4.11)

|K(x− y)−K(x)| ≤ A2|y|δ |x|−n−δ whenever |x| ≥ 2|y| > 0, (7.4.12)

sup
r<R<∞

∣

∣

∣

∫

r≤|x|≤R
K(x)dx

∣

∣

∣ ≤ A3 . (7.4.13)

Let W be a tempered distribution that coincides with K on Rn \{0} and let T be the
linear operator given by convolution with W .

Under these assumptions we have that T is L2 bounded with norm at most a
constant multiple of A1 +A2 +A3 (Theorem 4.4.1), and hence it is also Lp bounded
with a similar norm on Lp for 1 < p < ∞ (Theorem 4.3.3). Furthermore, under
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the preceding conditions, the maximal singular integral T (∗) is also bounded from
Lp(Rn) to itself for 1 < p < ∞ (Theorem 4.3.4).

Theorem 7.4.9. Let T be given by convolution with a distribution W that coincides
with a function K on Rn \ {0} satisfying (7.4.12). Assume that T has an extension
that is L2 bounded with a norm B. Then there is a constant Cn such that for any s > 1
the estimate

M#(T ( f ))(x) ≤Cn(A2 + B) max(s,(s−1)−1)M(| f |s) 1
s (x) (7.4.14)

is valid for all f in
⋃

s≤p<∞Lp and almost all x ∈ Rn.

Proof. In view of Proposition 7.4.2 (2), given any cube Q, it suffices to find a con-
stant a such that

1
|Q|

∫

Q
|T ( f )(y)−a|dy ≤Cs,n(A2 + B)M(| f |s) 1

s (x) (7.4.15)

for all x ∈ Q. To prove this estimate we employ a theme that we have seen several
times before. We write f = f 0

Q + f∞Q , where f 0
Q = f χ6

√
nQ and f∞Q = f χ(6

√
nQ)c . Here

6
√

nQ denotes the cube that is concentric with Q, has sides parallel to those of Q,
and has side length 6

√
n�(Q), where �(Q) is the side length of Q.

We now fix an f in
⋃

s≤p<∞Lp and we select a = T ( f∞Q )(x). Then a is finite for
almost all x ∈ Q. It follows that

1
|Q|

∫

Q
|T ( f )(y)−a|dy

≤ 1
|Q|

∫

Q
|T ( f 0

Q)(y)|dy +
1
|Q|

∫

Q
|T ( f∞Q )(y)−T ( f∞Q )(x)|dy . (7.4.16)

In view of Theorem 4.3.3, T maps Ls to Ls with norm at most a dimensional constant
multiple of max(s,(s−1)−1)(B + A2). The first term in (7.4.16) is controlled by

(

1
|Q|

∫

Q
|T ( f 0

Q)(y)|s dy

) 1
s

≤ Cn max(s,(s−1)−1)(B + A2)
(

1
|Q|

∫

Rn
| f 0

Q(y)|s dy

) 1
s

≤ C′
n max(s,(s−1)−1)(B + A2)M(| f |s) 1

s (x) .

To estimate the second term in (7.4.16), we first note that

∫

Q
|T ( f∞Q )(y)−T ( f∞Q )(x)|dy ≤

∫

Q

∣

∣

∣

∣

∫

(6
√

nQ)c

(

K(y− z)−K(x− z)
)

f (z)dz

∣

∣

∣

∣

dy .

We make a few geometric observations. Since both x and y are in Q, we have
|x− y| ≤

√
n�(Q). Also (see Figure 7.3), since z /∈ 6

√
nQ and x ∈ Q, we must have

|x− z| ≥ dist
(

Q,(6
√

nQ)c)≥ (3
√

n− 1
2
)�(Q) ≥ 2

√
n�(Q) ≥ 2|x− y| .
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Therefore, we have |x− z| ≥ 2|x− y|, and this allows us to conclude that

∣

∣K(y− z)−K(x− z)
∣

∣=
∣

∣K((x− z)− (x− y))−K(x− z)
∣

∣≤ A2
|x− y|δ
|x− z|n+δ

using condition (7.4.12). Using these observations, we bound the second term in
(7.4.16) by

1
|Q|

∫

Q

∫

(6
√

nQ)c

A2|x− y|δ
|x− z|n+δ | f (z)|dzdy ≤ Cn

A2

|Q|

∫

(6
√

nQ)c

�(Q)n+δ

|x− z|n+δ | f (z)|dz

≤ CnA2

∫

Rn

�(Q)δ

(�(Q)+ |x− z|)n+δ | f (z)|dz

≤ CnA2M( f )(x)

≤ CnA2(M(| f |s)(x)) 1
s ,

where we used the fact that |x− z| is at least �(Q) and Theorem 2.1.10. This proves
(7.4.15) and hence (7.4.14). �

Fig. 7.3 The cubes Q and
6
√

nQ. The distance d is
equal to (3

√
n− 1

2 )�(Q).

z

x

yQ

6 n

d

Q

.

.

.

The inequality (7.4.14) in Theorem 7.4.9 is noteworthy, since it provides a point-
wise estimate for T ( f ) in terms of a maximal function. This clearly strengthens the
Lp boundedness of T . As a consequence of this estimate, we deduce the following
result.

Corollary 7.4.10. Let T be given by convolution with a distribution W that coin-
cides with a function K on Rn \ {0} that satisfies (7.4.12). Assume that T has an
extension that is L2 bounded with a norm B. Then there is a constant Cn such that
the estimate

∥

∥T ( f )
∥

∥

BMO ≤Cn(A2 + B)
∥

∥ f
∥

∥

L∞ (7.4.17)

is valid for all f ∈ L∞
⋂
(
⋃

1≤p<∞Lp
)

.
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Proof. We take s = 2 in Theorem 7.4.9 and we observe that

∥

∥T ( f )
∥

∥

BMO =
∥

∥M#(T ( f ))
∥

∥

L∞ ≤Cn(A2 + B)
∥

∥M(| f |2) 1
2
∥

∥

L∞ ,

and the last expression is easily controlled by Cn(A2 + B)
∥

∥ f
∥

∥

L∞ . �

At this point we have not defined the action of T ( f ) when f lies merely in L∞; and
for this reason we restricted the functions f in Corollary 7.4.10 to be also in some
Lp. There is, however, a way to define T on L∞ abstractly via duality. Theorem 6.7.1
gives that T and thus also its adjoint T ∗ map H1 to L1. Then the adjoint operator
of T ∗ (i.e., T ) maps L∞ to BMO and is therefore well defined on L∞. In this way,
however, T ( f ) is not defined explicitly when f is in L∞. Such an explicit definition
is given in the next chapter in a slightly more general setting.

Remark 7.4.11. In the hypotheses of Theorem 7.4.9 we could have replaced the
condition that T maps L2 to L2 by the condition that T maps Lr to Lr,∞ with norm B
for some 1 < r <∞.

Exercises

7.4.1. Let 0 < q < ∞. Prove that for every p with q < p < ∞ there is a constant
Cn,p,q such that for all functions f on Rn with Md( f ) ∈ Lq(Rn) we have

∥

∥ f
∥

∥

Lp ≤Cn,p,q
∥

∥ f
∥

∥

1−θ
Lq

∥

∥ f
∥

∥

θ
BMO ,

where 1
p = 1−θ

q .

7.4.2. Let μ be a positive Borel measure on Rn.
(a) Show that the maximal operator

Md
μ( f )(x) = sup

Q�x
Q dyadic cube

1
μ(Q)

∫

Q
| f (t)|dμ(t)

maps L1(Rn,dμ) to L1,∞(Rn,dμ) with constant 1.
(b) For a μ-locally integrable function f , define the sharp maximal function with
respect to μ ,

M#
μ( f )(x) = sup

Q�x

1
μ(Q)

∫

Q

∣

∣

∣ f (t)−Avg
Q,μ

f
∣

∣

∣dμ(t),

where AvgQ,μ f denotes the average of f over Q with respect to μ . Assume that
μ is a doubling measure with doubling constant C(μ) [this means that μ(3Q) ≤
C(μ)μ(Q) for all cubes Q]. Prove that for all γ > 0, all λ > 0, and all μ-locally
integrable functions f on Rn we have the estimate

μ
({

x : Md
μ( f )(x) > 2λ , M#

μ( f )(x) ≤ γλ
})

≤C(μ)γ μ
({

x : Md
μ( f )(x) > λ

})

.
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[

Hint: Part (a): For any x in the set {x ∈ Rn : Md
μ( f )(x) > λ}, choose a maximal

dyadic cube Q = Q(x) such that
∫

Q | f (t)|dμ(t) > λμ(Q). Part (b): Mimic the proof
of Theorem 7.4.4.

]

7.4.3. Let 0 < p0 <∞ and let Md
μ and M#

μ be as in Exercise 7.4.2. Prove that for any
p with p0 ≤ p < ∞ there is a constant Cn(p,μ) such that for all locally integrable
functions f with Md

μ( f ) ∈ Lp0(Rn) we have

∥

∥Md
μ( f )

∥

∥

Lp(Rn,dμ) ≤Cn(p,μ)
∥

∥M#
μ( f )

∥

∥

Lp(Rn,dμ) .

7.4.4. We say that a function f on Rn is in BMOd (or dyadic BMO) if

∥

∥ f
∥

∥

BMOd
= sup

Qdyadic cube

1
|Q|

∫

Q

∣

∣ f (x)−Avg
Q

f
∣

∣dx < ∞ .

(a) Show that BMO is a proper subset of BMOd .
(b) Suppose that A is a finite constant and that a function f in BMOd satisfies

∣

∣Avg
Q1

f −Avg
Q2

f
∣

∣≤ A

for all adjacent dyadic cubes of the same length. Show that f is in BMO.
[

Hint: Consider first the case n = 1. Given an interval I, find adjacent dyadic inter-
vals of the same length I1 and I2 such that I � I1

⋃

I2 and |I1| ≤ |I| < 2|I1|.
]

7.4.5. Suppose that K is a function on Rn \ {0} that satisfies (7.4.11), (7.4.12), and
(7.4.13). Let η be a smooth function that vanishes in a neighborhood of the origin

and is equal to 1 in a neighborhood of infinity. For ε > 0 let K(ε)
η (x) = K(x)η(x/ε)

and let T (ε)
η be the operator given by convolution with K(ε)

η . Prove that for any
1 < s < ∞ there is a constant Cn,s such that for all p with s < p < ∞ and f in Lp we
have ∥

∥

∥sup
ε>0

M#(T (ε)
η ( f ))

∥

∥

∥

Lp(Rn)
≤Cn,s(A1 + A2 + A3)

∥

∥ f
∥

∥

Lp(Rn) .

[

Hint: Observe that the kernels K(ε)
η satisfy (7.4.11), (7.4.12), and (7.4.13) uni-

formly in ε > 0 and use Theorems 4.4.1 and 7.4.9.
]

7.4.6. Let 0 < p0 < ∞ and suppose that for some locally integrable function f we
have that Md( f ) lies in Lp0,∞(Rn). Show that for any p in (p0,∞) there exists a
constant Cn(p) such that

∥

∥ f
∥

∥

Lp(Rn) ≤
∥

∥Md( f )
∥

∥

Lp(Rn) ≤Cn(p)
∥

∥M#( f )
∥

∥

Lp(Rn) ,

where Cn(p) depends only on n and p.
[

Hint: With the same notation as in the proof of Theorem 7.4.5, use the hypothesis
∥

∥Md( f )
∥

∥

Lp0,∞ < ∞ to prove that IN < ∞ whenever p > p0. Then the arguments in
the proofs of Theorem 7.4.5 and Corollary 7.4.6 remain unchanged.

]
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7.4.7. Prove that the expressions

ΣN(x) =
N

∑
k=1

sin(2πkx)
k

are uniformly bounded in N and x. Then use Corollary 7.4.10 to prove that

sup
N≥1

∥

∥

∥

∥

N

∑
k=1

e2π ikx

k

∥

∥

∥

∥

BMO
≤C < ∞ .

Deduce that the limit of ΣN(x) as N → ∞ can be defined as an element of BMO.
[

Hint: Use that the Hilbert transform of sin(2πkx) is cos(2πkx). Also note that the

series ∑∞k=1
sin(2πkx)

k coincides with the periodic extension of the (bounded) function
= π( 1

2 − x) on [0,1).
]

7.5 Commutators of Singular Integrals with BMO Functions

The mean value zero property of H1(Rn) is often manifested when its elements are
paired with functions in BMO. It is therefore natural to expect that BMO can be
utilized to express and quantify the cancellation of expressions in H1. Let us be
specific through an example. We saw in Exercise 6.7.3 that the bilinear operator

( f ,g) �→ f H(g)+ H( f )g

maps L2(Rn)×L2(Rn) to H1(Rn); here H is the Hilbert transform. Pairing with a
BMO function b and using that Ht = −H, we obtain that

〈

f H(g)+ H( f )g , b
〉

=
〈

f , H(g)b−H(gb)
〉

,

and hence the operator g �→ H(g)b−H(gb) should be L2 bounded. This expression
H(g)b−H(gb) is called the commutator of H with the BMO function b. More
generally, we give the following definition.

Definition 7.5.1. The commutator of a singular integral operator T with a function
b is defined as

[b,T ]( f ) = bT ( f )−T (b f ) .

If the function b is locally integrable and has at most polynomial growth at infinity,
then the operation [b,T ] is well defined when acting on Schwartz functions f .

In view of the preceding remarks, the Lp boundedness of the commutator [b,T ]
for b in BMO exactly captures the cancellation property of the bilinear expression

( f ,g) �→ T ( f )g− f T t(g) .
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As in the case with the Hilbert transform, it is natural to expect that the commutator
[b,T ] of a general singular integral T is Lp bounded for all 1 < p < ∞. This fact
is proved in this section. Since BMO functions are unbounded in general, one may
surmise that the presence of the negative sign in the definition of the commutator
plays a crucial cancellation role.

We introduce some material needed in the study of the boundedness of the com-
mutator.

7.5.1 An Orlicz-Type Maximal Function

We can express the Lp norm (1 ≤ p < ∞) of a function f on a measure space X by

∥

∥ f
∥

∥

Lp(X) =
(
∫

X
| f |p dμ

)1
p

= inf
{

λ > 0 :
∫

X

∣

∣

∣

| f |
λ

∣

∣

∣

p
dμ ≤ 1

}

.

Motivated by the second expression, we may replace the function t p by a general
increasing convex function Φ(t). We give the following definition.

Definition 7.5.2. A Young’s function is a continuous increasing convex function Φ
on [0,∞) that satisfies Φ(0) = 0 and limt→∞Φ(t) = ∞. The Orlicz norm of a mea-
surable function f on a measure space (X ,μ) with respect to a Young’s function Φ
is defined as

∥

∥ f
∥

∥

Φ(L)(X ,μ) = inf
{

λ > 0 :
∫

X
Φ(| f |/λ )dμ ≤ 1

}

.

The Orlicz spaceΦ(L)(X ,μ) is then defined as the space of all measurable functions
f on X such that

∥

∥ f
∥

∥

Φ(L)(X ,μ) < ∞.

We are mostly concerned with the case in which the measure space X is a cube
in Rn with normalized Lebesgue measure |Q|−1dx. For a measurable function f on
a cube Q in Rn, the Orlicz norm of f is therefore

∥

∥ f
∥

∥

Φ(L)(Q, dx
|Q| )

= inf
{

λ > 0 :
1
|Q|

∫

Q
Φ(| f |/λ )dx ≤ 1

}

,

which is simply denoted by
∥

∥ f
∥

∥

Φ(L)(Q), since the measure is understood to be nor-
malized Lebesgue whenever the ambient space is a cube.

Since for C > 1 convexity gives Φ(t/C) ≤Φ(t)/C for all t ≥ 0, it follows that
∥

∥ f
∥

∥

CΦ(Q) ≤C
∥

∥ f
∥

∥

Φ(Q) , (7.5.1)

which implies that the norms with respect to Φ and CΦ are comparable.
A case of particular interest arises when Φ(t) = t log(e + t). This function is

pointwise comparable to t(1 + log+ t) for t ≥ 0. We make use in the sequel of a
certain maximal operator defined in terms of the corresponding Orlicz norm.



7.5 Commutators of Singular Integrals with BMO Functions 159

Definition 7.5.3. We define the Orlicz maximal operator

ML log(e+L)( f )(x) = sup
Q�x

∥

∥ f
∥

∥

L log(e+L)(Q),

where the supremum is taken over all cubes Q with sides parallel to the axes that
contain the given point x.

The boundedness properties of this maximal operator are a consequence of the
following lemma.

Lemma 7.5.4. There is a positive constant c(n) such that for any cube Q in Rn and
any nonnegative locally integrable function w, we have

∥

∥w
∥

∥

L log(e+L)(Q) ≤
c(n)
|Q|

∫

Q
Mc(w)dx , (7.5.2)

where Mc is the Hardy–Littlewood maximal operator with respect to cubes. Hence,
for some other dimensional constant c′(n) and all nonnegative w in L1

loc(R
n) the

inequality
ML log(e+L)(w)(x) ≤ c′(n)M2(w)(x) (7.5.3)

is valid, where M2 = M ◦M and M is the Hardy–Littlewood maximal operator.

Proof. Fix a cube Q in Rn with sides parallel to the axes. We introduce a maximal
operator associated with Q as follows:

MQ
c ( f )(x) = sup

R�x
R⊆Q

1
|R|

∫

R
| f (y)|dy ,

where the supremum is taken over cubes R in Rn with sides parallel to the axes.
The key estimate follows from the following local version of the reverse weak type
(1,1) estimate of Exercise 2.1.4(b). For each nonnegative function f on Rn and
α ≥ AvgQ f , we have

1
α

∫

Q∩{ f>α}
f dx ≤ 2n |{x ∈ Q : MQ

c ( f )(x) > α}| . (7.5.4)

Indeed, to prove (7.5.4), we apply Corollary 2.1.21 to the function f and the num-
ber α . With the notation of that corollary, we have Q \ (

⋃

j Q j) ⊆ { f ≤ α}. This

implies that Q∩{ f > α} ⊆⋃

j Q j, which is contained in {x ∈ Q : MQ
c ( f )(x) > α}.

Multiplying both sides of (2.1.20) by |Q j|, summing over all j, and using these
observations, we obtain (7.5.4).

Using the definition of ML log(e+L), (7.5.2) follows from the fact that for some
constant c > 1 independent of w we have

1
|Q|

∫

Q

w
λQ

log
(

e +
w
λQ

)

dμ ≤ 1, (7.5.5)
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where
λQ =

c
|Q|

∫

Q
Mc(w)dx = c Avg

Q
Mc(w).

We let f = w/λQ; by the Lebesgue differentiation theorem we have that 0 ≤
AvgQ f ≤ 1/c. Recall identity (1.1.7),

∫

X
φ( f )dν =

∫ ∞

0
φ ′(t)ν({x ∈ X : f (x) > t})dt ,

where ν ≥ 0, (X ,ν) is a measure space, and φ is an increasing continuously
differentiable function with φ(0) = 0. We take X = Q, dν = |Q|−1 f χQ dx, and
φ(t) = log(e + t)−1 to deduce

1
|Q|

∫

Q
f log(e + f )dx =

1
|Q|

∫

Q
f dx +

1
|Q|

∫ ∞

0

1
e + t

(
∫

Q∩{ f>t}
f dx

)

dt

= I0 + I1 + I2 ,

where

I0 =
1
|Q|

∫

Q
f dx ,

I1 =
1
|Q|

∫ AvgQ f

0

1
e + t

(
∫

Q∩{ f>t}
f dx

)

dt ,

I2 =
1
|Q|

∫ ∞

AvgQ f

1
e + t

(
∫

Q∩{ f>t}
f dx

)

dt .

We now clearly have that I0 = AvgQ f ≤ 1/c, while I1 ≤ (AvgQ f )2 ≤ 1/c2 . For I2

we use estimate (7.5.4). Indeed, one has

I2 =
1
|Q|

∫ ∞

AvgQ f

1
e + t

(
∫

Q∩{ f>t}
f dx

)

dt

≤ 2n

|Q|

∫ ∞

AvgQ f

t
e + t

|{x ∈ Q : MQ
c ( f )(x) > t}|dt

≤ 2n

|Q|

∫ ∞

0
|{x ∈ Q : MQ

c ( f )(x) > λ}|dλ

=
2n

|Q|

∫

Q
MQ

c ( f )dx

=
2n

|Q|

∫

Q
Mc(w)dx

1
λQ

=
2n

c

using the definition of λQ. Combining all the estimates obtained, we deduce that

I0 + I1 + I2 ≤
1
c

+
1
c2 +

2n

c
≤ 1 ,

provided c is large enough. �
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7.5.2 A Pointwise Estimate for the Commutator

For δ > 0, M#
δ denotes the following modification of the sharp maximal operator

introduced in Section 7.4:

M#
δ ( f ) = M#(| f |δ )1/δ .

It is often useful to work with the following characterization of M# [see Proposition
7.4.2 (2)]:

M#( f )(x) ≈ sup
Q�x

inf
c

1
|Q|

∫

Q
| f (y)− c|dy .

We also need the following version of the Hardy–Littlewood maximal operator:

Mε( f ) = M(| f |ε )1/ε .

The next lemma expresses the fact that commutators of singular integral op-
erators with BMO functions are pointwise controlled by the maximal function
M2 = M ◦M.

Lemma 7.5.5. Let T be a linear operator given by convolution with a tempered dis-
tribution on Rn that coincides with a function K(x) on Rn \ {0} satisfying (7.4.11),
(7.4.12), and (7.4.13). Let b be in BMO(Rn), and let 0 < δ < ε . Then there exists
a positive constant C = Cδ ,ε,n such that for any smooth function f with compact
support we have

M#
δ ([b,T ]( f )) ≤C

∥

∥b
∥

∥

BMO

{

Mε (T ( f ))+ M2( f )
}

. (7.5.6)

Proof. Fix a cube Q in Rn with sides parallel to the axes centered at the point x.

Since for 0 < δ < 1 we have
∣

∣|α|δ −|β |δ
∣

∣≤
∣

∣α−β
∣

∣

δ
for α,β ∈ R, it is enough to

show for some complex constant c = cQ that there exists C = Cδ > 0 such that

(

1
|Q|

∫

Q

∣

∣[b,T ]( f )(y)− c
∣

∣

δ
dy

)1
δ
≤C

∥

∥b
∥

∥

BMO

{

Mε(T ( f ))(x)+M2( f )(x)
}

. (7.5.7)

Denote by Q∗ the cube 5
√

nQ that has side length 5
√

n times the side length of Q
and the same center x as Q. Let f = f1 + f2, where f1 = f χQ∗ . For an arbitrary
constant a we write

[b,T ]( f ) = (b−a)T( f )−T ((b−a) f1)−T ((b−a) f2).

Selecting
c = Avg

Q
T ((b−a) f2) and a = Avg

Q∗
b ,

we can estimate the left-hand side of (7.5.7) by a multiple of L1 + L2 + L3, where
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L1 =

(

1
|Q|

∫

Q

∣

∣(b(y)−Avg
Q∗

b)T ( f )(y)
∣

∣

δ
dy

)1
δ

,

L2 =

(

1
|Q|

∫

Q

∣

∣T
(

(b−Avg
Q∗

b) f1
)

(y)
∣

∣

δ
dy

)1
δ

,

L3 =

(

1
|Q|

∫

Q

∣

∣T
(

(b−Avg
Q∗

b) f2
)

−Avg
Q

T
(

(b−Avg
Q∗

b) f2
)∣

∣

δ
dy

)1
δ

.

To estimate L1, we use Hölder’s inequality with exponents r and r′ for some
1 < r < ε/δ :

L1 ≤
(

1
|Q|

∫

Q

∣

∣b(y)−Avg
Q∗

b
∣

∣

δ r′
dy

) 1
δ r′ ( 1

|Q|

∫

Q
|T ( f )(y)|δ r dy

) 1
δ r

≤ C
∥

∥b
∥

∥

BMOMδ r(T ( f ))(x)

≤ C
∥

∥b
∥

∥

BMOMε(T ( f ))(x) ,

recalling that x is the center of Q. Since T : L1(Rn) → L1,∞(Rn) and 0 < δ < 1,
Kolmogorov’s inequality (Exercise 2.1.5) yields

L2 ≤ C
|Q|

∫

Q

∣

∣(b(y)−Avg
Q∗

b) f1(y)
∣

∣dy

=
C′

|Q∗|

∫

Q∗

∣

∣(b(y)−Avg
Q∗

b) f (y)
∣

∣dy

≤ 2C′∥
∥b−Avg

Q∗
b
∥

∥

(eL−1)(Q∗)

∥

∥ f
∥

∥

L log(1+L)(Q∗),

using Exercise 7.5.2(c).
For some 0 < γ < (2ne)−1, let Cn,γ > 2 be a constant larger than that appearing

on the right-hand side of the inequality in Corollary 7.1.7. We set c0 = Cn,γ −1 > 1.
We use (7.5.1) and we claim that

∥

∥b−Avg
Q∗

b
∥

∥

(eL−1)(Q∗) ≤ c0
∥

∥b−Avg
Q∗

b
∥

∥

c−1
0 (eL−1)(Q∗) ≤

c0

γ
∥

∥b
∥

∥

BMO. (7.5.8)

Indeed, the last inequality is equivalent to

1
|Q∗|

∫

Q∗
c−1

0

[

eγ|b(y)−AvgQ∗ b|/‖b‖BMO −1
]

dy ≤ 1,

which is a restatement of Corollary 7.1.7. We therefore conclude that

L2 ≤C
∥

∥b
∥

∥

BMOML log(1+L)( f )(x).
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Finally, we turn our attention to the term L3. Note that if z,y ∈ Q and w /∈ Q∗,
then |z−w| ≥ 2|z− y|. Using Fubini’s theorem and property (7.4.12) succesively,
we control L3 pointwise by

1
|Q|

∫

Q

∣

∣T
(

(b−Avg
Q∗

b) f2
)

(y)−Avg
Q

T
(

(b−Avg
Q∗

b) f2
)∣

∣dy

≤ 1
|Q|2

∫

Q

∫

Q

∫

Rn\Q∗
|K(y−w)−K(z−w)|

∣

∣(b(w)−Avg
Q∗

b) f (w)
∣

∣dwdzdy

≤ 1
|Q|2

∫

Q

∫

Q

∞

∑
j=0

∫

2 j+1Q∗\2 jQ∗

A2|y− z|δ
|z−w|n+δ

∣

∣b(w)−Avg
Q∗

b
∣

∣ | f (w)|dwdzdy

≤C A2

∞

∑
j=0

�(Q)δ

(2 j�(Q))n+δ

∫

2 j+1Q∗

∣

∣b(w)−Avg
Q∗

b
∣

∣ | f (w)|dw

≤C A2

( ∞

∑
j=0

2− jδ

(2 j�(Q))n

∫

2 j+1Q∗

∣

∣b(w)− Avg
2 j+1Q∗

b
∣

∣ | f (w)|dw

+
∞

∑
j=0

2− jδ ∣
∣ Avg

2 j+1Q∗
b−Avg

Q∗
b
∣

∣

1
(2 j�(Q))n

∫

2 j+1Q∗
| f (w)|dw

)

≤C′A2

∞

∑
j=0

2− jδ∥
∥b− Avg

2 j+1Q∗
b
∥

∥

(eL−1)(2 j+1Q∗)

∥

∥ f
∥

∥

L log(1+L)(2 j+1Q∗)

+C′A2
∥

∥b
∥

∥

BMO

∞

∑
j=1

j

2 jδ M( f )(x)

≤C′′ A2
∥

∥b
∥

∥

BMOML log(1+L)( f )(x)+C′′A2
∥

∥b
∥

∥

BMO M( f )(x)

≤C′′′A2
∥

∥b
∥

∥

BMOM2( f )(x),

where we have used inequality (7.5.8), Lemma 7.5.4, and the simple estimate
∣

∣

∣ Avg
2 j+1Q∗

b−Avg
Q∗

b
∣

∣

∣≤Cn j
∥

∥b
∥

∥

BMO

of Exercise 7.1.5. �

7.5.3 Lp Boundedness of the Commutator

We note that if f has compact support and b is in BMO, then b f lies in Lq(Rn)
for all q < ∞ and therefore T (b f ) is well defined whenever T is a singular integral
operator. Likewise, [b,T ] is a well defined operator on C ∞0 for all b in BMO.

Having obtained the crucial Lemma 7.5.5, we now pass to an important result
concerning its Lp boundedness.
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Theorem 7.5.6. Let T be as in Lemma 7.5.5. Then for any 1 < p < ∞ there exists a
constant C = Cp,n such that for all smooth functions with compact support f and all
BMO functions b, the following estimate is valid:

∥

∥[b,T ]( f )
∥

∥

Lp(Rn) ≤C
∥

∥b
∥

∥

BMO

∥

∥ f
∥

∥

Lp(Rn). (7.5.9)

Consequently, the linear operator

f �→ [b,T ]( f )

admits a bounded extension from Lp(Rn) to Lp(Rn) for all 1 < p < ∞ with norm at
most a multiple of

∥

∥b
∥

∥

BMO.

Proof. Using the inequality of Theorem 7.4.4, we obtain for functions g, with |g|δ
locally integrable,

∣

∣{Md(|g|δ )
1
δ > 2

1
δ λ}∩{M#

δ(g) ≤ γλ}
∣

∣≤ 2n γδ
∣

∣{Md(|g|δ )
1
δ > λ}

∣

∣ (7.5.10)

for all λ ,γ,δ > 0. Then a repetition of the proof of Theorem 7.4.5 yields the second
inequality:

∥

∥M(|g|δ ) 1
δ
∥

∥

Lp ≤Cn
∥

∥Md(|g|δ )
1
δ
∥

∥

Lp ≤Cn(p)
∥

∥M#
δ (g)

∥

∥

Lp (7.5.11)

for all p ∈ (p0,∞), provided Md(|g|δ )
1
δ ∈ Lp0(Rn) for some p0 > 0.

For the following argument, it is convenient to replace b by the bounded function

bk(x) =

⎧

⎪

⎨

⎪

⎩

k if b(x) < k,

b(x) if −k ≤ b(x) ≤ k,

−k if b(x) > −k,

which satisfies
∥

∥bk
∥

∥

BMO ≤
∥

∥b
∥

∥

BMO for any k > 0; see Exercise 7.1.4.
For given 1 < p < ∞, select p0 such that 1 < p0 < p. Given a smooth function

with compact support f , we note that the function bk f lies in Lp0 ; thus T (bk f )
also lies in Lp0 . Likewise, bkT ( f ) also lies in Lp0 . Since Mδ is bounded on Lp0 for
0 < δ < 1, we conclude that

∥

∥Mδ ([bk,T ]( f ))
∥

∥

Lp0 ≤Cδ
(∥

∥Mδ (bkT ( f ))
∥

∥

Lp0 +
∥

∥Mδ (T (bk f ))
∥

∥

Lp0

)

< ∞ .

This allows us to obtain (7.5.11) with g = [bk,T ]( f ). We now turn to Lemma 7.5.5,
in which we pick 0 < δ < ε < 1. Taking Lp norms on both sides of (7.5.6) and using
(7.5.11) with g = [bk,T ]( f ) and the boundedness of Mε , T , and M2 on Lp(Rn), we
deduce the a priori estimate (7.5.9) for smooth functions with compact support f
and the truncated BMO functions bk.

The Lebesgue dominated convergence theorem gives that bk → b in L2 of every
compact set and, in particular, in L2(supp f ). It follows that bk f → b f in L2 and
therefore T (bk f ) → T (b f ) in L2 by the boundedness of T on L2. We deduce that
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for some subsequence of integers k j, T (bkj f ) → T (b f ) a.e. For this subsequence
we have [bkj ,T ]( f ) → [b,T ]( f ) a.e. Letting j → ∞ and using Fatou’s lemma, we
deduce that (7.5.9) holds for all BMO functions b and smooth functions f with
compact support.

Since smooth functions with compact support are dense in Lp, it follows that the
commutator admits a bounded extension on Lp that satisfies (7.5.9). �

We refer to Exercise 7.5.4 for an analogue of Theorem 7.5.6 when p = 1.

Exercises

7.5.1. Use Jensen’s inequality to show that M is pointwise controlled by ML log(1+L).

7.5.2. (a) (Young’s inequality for Orlicz spaces ) Let ϕ be a continuous, real-valued,
strictly increasing function defined on [0,∞) such that ϕ(0) = 0 and limt→∞ ϕ(t) =
∞. Let ψ = ϕ−1 and for x ∈ [0,∞) define

Φ(x) =
∫ x

0
ϕ(t)dt , Ψ(x) =

∫ x

0
ψ(t)dt .

Show that for s,t ∈ [0,∞) we have

st ≤Φ(s)+Ψ(t) .

(b) (cf. Exercise 4.2.3 ) Choose a suitable function ϕ in part (a) to deduce for s, t in
[0,∞) the inequality

st ≤ (t + 1) log(t + 1)− t + es− s−1 ≤ t log(t + 1)+ es−1 .

(c) (Hölder’s inequality for Orlicz spaces ) Deduce the inequality
∣

∣

〈

f ,g
〉∣

∣≤ 2
∥

∥ f
∥

∥

Φ(L)

∥

∥g
∥

∥

Ψ(L) .

[

Hint: Give a geometric proof distinguishing the cases t > ϕ(s) and t ≤ ϕ(s). Use

that for u ≥ 0 we have
∫ u

0 ϕ(t)dt +
∫ ϕ(u)

0 ψ(s)ds = uϕ(u).
]

7.5.3. Let T be as in Lemma 7.5.5. Show that there is a constant Cn < ∞ such that
for all f ∈ Lp(Rn) and g ∈ Lp′(Rn) we have

∥

∥T ( f )g− f T t(g)
∥

∥

H1(Rn) ≤C
∥

∥ f
∥

∥

Lp(Rn)

∥

∥g
∥

∥

Lp′ (Rn) .

In other words, show that the bilinear operator ( f ,g) �→ T ( f )g − f T t(g) maps
Lp(Rn)×Lp′(Rn) to H1(Rn).

7.5.4. (Pérez [260] ) Let Φ(t) = t log(1 + t). Then there exists a positive constant
C, depending on the BMO constant of b, such that for any smooth function with
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compact support f the following is valid:

sup
α>0

1

Φ( 1
α )

∣

∣

{∣

∣[b,T ]( f )
∣

∣ > α
}∣

∣≤C sup
α>0

1

Φ( 1
α )

∣

∣

{

M2( f ) > α
}∣

∣ .

7.5.5. Let R1, R2 be the Riesz transforms in R2. Show that there is a constant C <∞
such that for all square integrable functions g1, g2 on R2 the following is valid:

∥

∥R1(g1)R2(g2)−R1(g2)R2(g1)
∥

∥

H1 ≤Cp
∥

∥g1‖L2

∥

∥g2‖L2 .

[

Hint: Consider the pairing
〈

g1,R2([b,R1](g2))−R1([b,R2](g2))
〉

with b ∈ BMO.
]

7.5.6. (Coifman, Lions, Meyer, and Semmes [78] ) Use Exercise 7.5.5 to prove that
the Jacobian Jf of a map f = ( f1, f2) : R2 → R2,

Jf = det

(

∂1 f1 ∂2 f1

∂1 f2 ∂2 f2

)

,

lies in H1(R2) whenever f1, f2 ∈ L̇2
1(R

2).
[

Hint: Set g j = Δ1/2( f j).
]

7.5.7. LetΦ(t) = t(1+ log+ t)α , where 0 ≤ α <∞. Let T be a linear (or sublinear)
operator that maps Lp0(Rn) to Lp0,∞(Rn) with norm B for some 1 < p0 ≤∞ and also
satisfies the following weak type Orlicz estimate: for all functions f in Φ(L),

|{x ∈ Rn : |T ( f )(x)| > λ}| ≤ A
∫

Rn
Φ
( | f (x)|
λ

)

dx ,

for some A < ∞ and all λ > 0. Prove that T is bounded from Lp(Rn) to itself,
whenever 1 < p < p0.
[

Hint: Set f λ = f χ| f |>λ and fλ = f − f λ . When p0 < ∞, estimate |{|T ( f )| > 2λ}|
by |{|T ( f λ )|> λ}|+ |{|T ( fλ )|> λ}| ≤ A

∫

| f |>λ Φ
( | f (x)|
λ
)

dx+Bp0
∫

| f |≤λ
| f (x)|p0

λ p0 dx.

Multiply by p, integrate with respect to the measure λ p−1dλ from 0 to infinity, apply
Fubini’s theorem, and use that

∫ 1
0 Φ(1/λ )λ p−1 dλ <∞ to deduce that T maps Lp to

Lp,∞. When p0 =∞, use that |{|T ( f )| > 2Bλ}| ≤ |{|T ( f λ )| > Bλ}| and argue as in
the case p0 < ∞. Boundedness from Lp to Lp follows by applying Theorem 1.3.2.

]

HISTORICAL NOTES

The space of functions of bounded mean oscillation first appeared in the work of John and
Nirenberg [177] in the context of nonlinear partial differential equations that arise in the study of
minimal surfaces. Theorem 7.1.6 was obtained by John and Nirenberg [177]. The relationship of
BMO functions and Carleson measures is due to Fefferman and Stein [130]. For a variety of issues
relating BMO to complex function theory one may consult the book of Garnett [142]. The duality
of H1 and BMO (Theorem 7.2.2) was announced by Fefferman in [124], but its first proof appeared
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in the article of Fefferman and Stein [130]. This article actually contains two proofs of this result.
The proof of Theorem 7.2.2 is based on the atomic decomposition of H1, which was obtained
subsequently. An alternative proof of the duality between H1 and BMO was given by Carleson
[57]. Dyadic BMO (Exercise 7.4.4) in relation to BMO is studied in Garnett and Jones [144]. The
same authors studied the distance in BMO to L∞ in [143].

Carleson measures first appeared in the work of Carleson [53] and [54]. Corollary 7.3.6 was
first proved by Carleson, but the proof given here is due to Stein. The characterization of Carleson
measures in Theorem 7.3.8 was obtained by Carleson [53]. A theory of balayage for studying BMO
was developed by Varopoulos [323]. The space BMO can also be characterized in terms Carleson
measures via Theorem 7.3.8. The converse of Theorem 7.3.8 (see Fefferman and Stein [130]) states
that if the functionΨ satisfies a nondegeneracy condition and | f ∗Ψt |2 dxdt

t is a Carleson measure,
then f must be a BMO function. We refer to Stein [292] (page 159) for a proof of this fact, which
uses a duality idea related to tent spaces. The latter were introduced by Coifman, Meyer, and Stein
[83] to systematically study the connection between square functions and Carleson measures.

The sharp maximal function was introduced by Fefferman and Stein [130], who first used it to
prove Theorem 7.4.5 and derive interpolation for analytic families of operators when one endpoint
space is BMO. Theorem 7.4.7 provides the main idea why L∞ can be replaced by BMO in this con-
text. The fact that L2-bounded singular integrals also map L∞ to BMO was independently obtained
by Peetre [254], Spanne [286], and Stein [290]. Peetre [254] also observed that translation-invariant
singular integrals (such as the ones in Corollary 7.4.10) actually map BMO to itself. Another inter-
esting property of BMO is that it is preserved under the action of the Hardy–Littlewood maximal
operator. This was proved by Bennett, DeVore, and Sharpley [19]; see also the almost simultaneous
proof of Chiarenza and Frasca [60]. The decomposition of open sets given in Proposition 7.3.4 is
due to Whitney [331].

An alternative characterization of BMO can be obtained in terms of commutators of singular
integrals. Precisely, we have that the commutator [b,T ]( f ) is Lp bounded for 1 < p < ∞ if and
only if the function b is in BMO. The sufficiency of this result (Theorem 7.5.6) is due to Coifman,
Rochberg, and Weiss [85], who used it to extend the classical theory of H p spaces to higher di-
mensions. The necessity was obtained by Janson [176], who also obtained a simpler proof of the
sufficiency. The exposition in Section 7.5 is based on the article of Pérez [260]. This approach is
not the shortest available, but the information derived in Lemma 7.5.5 is often useful; for instance,
it is used in the substitute of the weak type (1,1) estimate of Exercise 7.5.4. The inequality (7.5.3)
in Lemma 7.5.4 can be reversed as shown by Pérez and Wheeden [263]. Weighted Lp estimates for
the commutator in terms of the double iteration of the Hardy–Littlewood maximal operator can be
deduced as a consequence of Lemma 7.5.5; see the article of Pérez [261].

Orlicz spaces were introduced by Birbaum and Orlicz [26] and furher elaborated by Orlicz
[251], [252]. For a modern treatment one may consult the book of Rao and Ren [269]. Bounded
mean oscillation with Orlicz norms was considered by Strömberg [297].

The space of functions of vanishing mean oscillation (V MO) was introduced by Sarason [277]
as the set of integrable functions f on T1 satisfying limδ→0 supI: |I|≤δ |I|−1 ∫

I | f −AvgI f |dx = 0.

This space is the closure in the BMO norm of the subspace of BMO(T1) consisting of all uniformly
continuous functions on T1. One may define V MO(Rn) as the space of functions on Rn that satisfy
limδ→0 supQ: |Q|≤δ |Q|−1 ∫

Q | f −AvgQ f |dx = 0, limN→∞ supQ:�(Q)≥N |Q|−1 ∫

Q | f −AvgQ f |dx = 0,

and limR→∞ supQ:Q∩B(0,R)= /0 |Q|−1 ∫

Q | f −AvgQ f |dx = 0; here I denotes intervals in T1 and Q
cubes in Rn. Then V MO(Rn) is the closure of the the space of continuous functions that vanish at
infinity in the BMO(Rn) norm. One of the imporant features of V MO(Rn) is that it is the predual of
H1(Rn), as was shown by Coifman and Weiss [86]. As a companion to Corollary 7.4.10, singular
integral operators can be shown to map the space of continuous functions that vanish at infinity
into V MO. We refer to the article of Dafni [101] for a short and elegant exposition of these results
as well as for a local version of the V MO-H1 duality.



Chapter 8
Singular Integrals of Nonconvolution Type

Up to this point we have studied singular integrals given by convolution with cer-
tain tempered distributions. These operators commute with translations. We are now
ready to broaden our perspective and study a class of more general singular integrals
that are not necessarily translation invariant. Such operators appear in many places
in harmonic analysis and partial differential equations. For instance, a large class of
pseudodifferential operators falls under the scope of this theory.

This broader point of view does not necessarily bring additional complications
in the development of the subject except at one point, the study of L2 boundedness,
where Fourier transform techniques are lacking. The L2 boundedness of convolution
operators is easily understood via a careful examination of the Fourier transform of
the kernel, but for nonconvolution operators different tools are required in this study.
The main result of this chapter is the derivation of a set of necessary and sufficient
conditions for nonconvolution singular integrals to be L2 bounded. This result is
referred to as the T (1) theorem and owes its name to a condition expressed in terms
of the action of the operator T on the function 1.

An extension of the T (1) theorem, called the T (b) theorem, is obtained in Section
8.6 and is used to deduce the L2 boundedness of the Cauchy integral along Lipschitz
curves. A variant of the T (b) theorem is also used in the boundedness of the square
root of a divergence form elliptic operator discussed in Section 8.7.

8.1 General Background and the Role of BMO

We begin by recalling the notion of the adjoint and transpose operator. One may
choose to work with either a real or a complex inner product on pairs of functions.
For f ,g complex-valued functions with integrable product, we denote the real inner
product by

〈

f ,g
〉

=
∫

Rn
f (x)g(x)dx .

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 8,
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This notation is suitable when we think of f as a distribution acting on a test function
g. We also have the complex inner product

〈

f |g
〉

=
∫

Rn
f (x)g(x)dx ,

which is an appropriate notation when we think of f and g as elements of a Hilbert
space over the complex numbers. Now suppose that T is a linear operator bounded
on Lp. Then the adjoint operator T ∗ of T is uniquely defined via the identity

〈

T ( f ) |g
〉

=
〈

f |T ∗(g)
〉

for all f in Lp and g in Lp′ . The transpose operator Tt of T is uniquely defined via
the identity

〈

T ( f ),g
〉

=
〈

f ,Tt(g)
〉

=
〈

Tt(g), f
〉

for all functions f in Lp and g in Lp′ . The name transpose comes from matrix theory,
where if At denotes the transpose of a complex n× n matrix A, then we have the
identity

〈

Ax,y
〉

=
n

∑
j=1

(Ax) j y j = Ax · y = x ·Aty =
n

∑
j=1

x j (Aty) j =
〈

x,Aty
〉

for all column vectors x = (x1, . . . ,xn), y = (y1, . . . ,yn) in Cn. We may easily check
the following intimate relationship between the transpose and the adjoint of a linear
operator T :

T ∗( f ) = Tt( f ) ,

indicating that they have almost interchangeable use. However, in many cases, it is
convenient to avoid complex conjugates and work with the transpose operator for
simplicity. Observe that if a linear operator T has kernel K(x,y), that is,

T ( f )(x) =
∫

K(x,y) f (y)dy ,

then the kernel of Tt is Kt(x,y) = K(y,x) and that of T ∗ is K∗(x,y) = K(y,x).
An operator is called self-adjoint if T = T ∗ and self-transpose if T = Tt . For

example, the operator iH, where H is the Hilbert transform, is self-adjoint but not
self-transpose, and the operator with kernel i(x+ y)−1 is self-transpose but not self-
adjoint.

8.1.1 Standard Kernels

The singular integrals we study in this chapter have kernels that satisfy size and
regularity properties similar to those encountered in Chapter 4 for convolution-type
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Calderón–Zygmund operators. Let us be specific and introduce the relevant back-
ground. We consider functions K(x,y) defined on Rn ×Rn \ {(x,x) : x ∈ Rn} that
satisfy for some A > 0 the size condition

|K(x,y)| ≤ A
|x− y|n (8.1.1)

and for some δ > 0 the regularity conditions

|K(x,y)−K(x′,y)| ≤ A |x− x′|δ
(|x− y|+ |x′ − y|)n+δ , (8.1.2)

whenever |x− x′| ≤ 1
2 max

(

|x− y|, |x′ − y|
)

and

|K(x,y)−K(x,y′)| ≤ A |y− y′|δ
(|x− y|+ |x− y′|)n+δ , (8.1.3)

whenever |y− y′| ≤ 1
2 max

(

|x− y|, |x− y′|
)

.

Remark 8.1.1. Observe that if

|x− x′| ≤ 1
2

max
(

|x− y|, |x′ − y|
)

,

then
max

(

|x− y|, |x′ − y|
)

≤ 2 min
(

|x− y|, |x′ − y|
)

,

implying that the numbers |x− y| and |x′ − y| are comparable. This fact is useful in
specific calculations.

Another important observation is that if (8.1.1) holds and we have

|∇xK(x,y)|+ |∇yK(x,y)| ≤ A
|x− y|n+1

for all x �= y, then K is in SK(1,4n+1A).

Definition 8.1.2. Functions on Rn × Rn \ {(x,x) : x ∈ Rn} that satisfy (8.1.1),
(8.1.2), and (8.1.3) are called standard kernels with constants δ ,A. The class of all
standard kernels with constants δ ,A is denoted by SK(δ ,A). Given a kernel K(x,y)
in SK(δ ,A), we observe that the functions K(y,x) and K(y,x) are also in SK(δ ,A).
These functions have special names. The function

Kt(x,y) = K(y,x)

is called the transpose kernel of K, and the function

K∗(x,y) = K(y,x)

is called the adjoint kernel of K.
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Example 8.1.3. The function K(x,y) = |x− y|−n defined away from the diagonal of
Rn ×Rn is in SK(1,n4n+1). Indeed, for

|x− x′| ≤ 1
2

max
(

|x− y|, |x′ − y|
)

the mean value theorem gives

∣

∣ |x− y|−n−|x′ − y|−n
∣

∣≤ n|x− x′|
|θ − y|n+1

for some θ that lies on the line segment joining x and x′. But then we have |θ −y| ≥
1
2 max

(

|x− y|, |x′ − y|
)

, which gives (8.1.2) with A = n4n+1.

Remark 8.1.4. The previous example can be modified to give that if K(x,y) satisfies

|∇xK(x,y)| ≤ A′|x− y|−n−1

for all x �= y in Rn, then K(x,y) also satisfies (8.1.2) with δ = 1 and A controlled by
a constant multiple of A′. Likewise, if

|∇yK(x,y)| ≤ A′|x− y|−n−1

for all x �= y in Rn, then K(x,y) satisfies (8.1.3) with with δ = 1 and A bounded by
a multiple of A′.

We are interested in standard kernels K that can be extended to tempered distribu-
tions on Rn ×Rn. We begin by observing that given a standard kernel K(x,y), there
may not exist a tempered distribution W on Rn ×Rn that coincides with the given
K(x,y) on Rn ×Rn \{(x,x) : x ∈ Rn}. For example, the function K(x,y) = |x−y|−n

does not admit such an extension; see Exercise 8.1.2.
We are concerned with kernels K(x,y) in SK(δ ,A) for which there are tempered

distributions W on Rn×Rn that coincide with K on Rn×Rn\{(x,x) : x ∈ Rn}. This
means that the convergent integral representation

〈

W,F
〉

=
∫

Rn

∫

Rn
K(x,y)F(x,y)dxdy (8.1.4)

is valid whenever the Schwartz function F on Rn ×Rn is supported away from the
diagonal {(x,x) : x ∈ Rn}. Note that the integral in (8.1.4) is well defined and ab-
solutely convergent whenever F is a Schwartz function that vanishes in a neighbor-
hood of the set {(x,x) : x∈Rn}. Also observe that there may be several distributions
W coinciding with a fixed function K(x,y). In fact, if W is such a distribution, then
so is W +δx=y, where δx=y denotes Lebesgue measure on the diagonal of R2n. (This
is some sort of a Dirac distribution.)

We now consider continuous linear operators

T : S (Rn) → S ′(Rn)
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from the space of Schwartz functions S (Rn) to the space of all tempered distribu-
tions S ′(Rn). By the Schwartz kernel theorem (see Hörmander [168, p. 129]), for
such an operator T there is a distribution W in S ′(R2n) that satisfies

〈

T ( f ),ϕ
〉

=
〈

W, f ⊗ϕ
〉

when f ,ϕ ∈ S (Rn) , (8.1.5)

where ( f ⊗ϕ)(x,y) = f (x)ϕ(y). Furthermore, as a consequence of the same theo-
rem, there exist constants C,N,M such that for all f ,g ∈ S (Rn) we have

|
〈

T ( f ),g
〉

| = |
〈

W, f ⊗g
〉

| ≤C

[

∑
|α |,|β |≤N

ρα ,β ( f )
][

∑
|α |,|β |≤M

ρα ,β (g)
]

, (8.1.6)

where ρα ,β (ϕ) = supx∈Rn |∂αx (xβϕ)(x)| is the set of seminorms for the topology in
S . A distribution W that satisfies (8.1.5) and (8.1.6) is called a Schwartz kernel.

We study continuous linear operators T : S (Rn) → S ′(Rn) whose Schwartz
kernels coincide with standard kernels K(x,y) on Rn ×Rn \ {(x,x) : x ∈ Rn}. This
means that (8.1.5) admits the absolutely convergent integral representation

〈

T ( f ),ϕ
〉

=
∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dxdy (8.1.7)

whenever f and ϕ are Schwartz functions whose supports do not intersect.
We make some remarks concerning duality in this context. Given a continuous

linear operator T : S (Rn) → S ′(Rn) with a Schwartz kernel W , we can define
another distribution Wt as follows:

〈

Wt ,F
〉

=
〈

W,Ft〉,

where Ft(x,y) = F(y,x). This means that for all f ,ϕ ∈ S (Rn) we have
〈

W, f ⊗ϕ
〉

=
〈

Wt ,ϕ⊗ f
〉

.

It is a simple fact that the transpose operator Tt of T , which satisfies
〈

T (ϕ), f
〉

=
〈

Tt( f ),ϕ
〉

(8.1.8)

for all f ,ϕ in S (Rn), is the unique continuous linear operator from S (Rn) to
S ′(Rn) whose Schwartz kernel is the distribution Wt , that is, we have

〈

Tt( f ),ϕ
〉

=
〈

T (ϕ), f
〉

=
〈

W,ϕ⊗ f
〉

=
〈

Wt , f ⊗ϕ
〉

. (8.1.9)

We now observe that a large class of standard kernels admits extensions to tem-
pered distributions W on R2n.

Example 8.1.5. Suppose that K(x,y) satisfies (8.1.1) and (8.1.2) and is antisymmet-
ric, in the sense that

K(x,y) = −K(y,x)



174 8 Singular Integrals of Nonconvolution Type

for all x �= y in Rn. Then K also satisfies (8.1.3), and moreover, there is a distribution
W on R2n that extends K on Rn ×Rn.

Indeed, define

〈

W,F
〉

= lim
ε→0

∫∫

|x−y|>ε

K(x,y)F(x,y)dydx (8.1.10)

for all F in the Schwartz class of R2n. In view of antisymmetry, we may write

∫∫

|x−y|>ε

K(x,y)F(x,y)dydx =
1
2

∫∫

|x−y|>ε

K(x,y)
(

F(x,y)−F(y,x)
)

dydx .

Using (8.1.1), the observation that

|F(x,y)−F(y,x)| ≤ 2 |x− y|
(1 + |x|2 + |y|2)n+1 sup

(x,y)∈R2n

∣

∣

∣∇x,y

(

(1+ |x|2 + |y|2)n+1F(x,y)
)∣

∣

∣ ,

and the fact that the preceding supremum is controlled by a finite sum of Schwartz
seminorms of F , it follows that the limit in (8.1.10) exists and gives a tempered
distribution on R2n. We can therefore define an operator T : S (Rn) → S ′(Rn)
with kernel W as follows:

〈

T ( f ),ϕ
〉

= lim
ε→0

∫∫

|x−y|>ε

K(x,y) f (x)ϕ(y)dydx.

Example 8.1.6. Let A be a Lipschitz function on R. This means that it satisfies the
estimate |A(x)−A(y)| ≤ L|x−y| for some L <∞ and all x,y ∈ R. For x,y ∈ R, x �= y,
we let

K(x,y) =
1

x− y + i(A(x)−A(y))
(8.1.11)

and we observe that K(x,y) is a standard kernel in SK(1,4+4L). The details are left
to the reader. Note that the kernel K defined in (8.1.11) is antisymmetric.

Example 8.1.7. Let the function A be as in the previous example. For each integer
m ≥ 1 we set

Km(x,y) =
(

A(x)−A(y)
x− y

)m 1
x− y

, x,y ∈ R . (8.1.12)

Clearly, Km is an antisymmetric function. To see that each Km is a standard kernel,
we use the simple fact that

max
(

|∇xKm(x,y)|, |∇yKm(x,y)|
)

≤ (2m+ 1)Lm

|x− y|2
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and the observation made in Remark 8.1.1. It follows that Km lies in SK(δ ,C) with
δ = 1 and C = 16(2m + 1)Lm. The linear operator with kernel (π i)−1Km is called
the mth Calderón commutator.

8.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators
associated with them.

Definition 8.1.8. Let 0 < δ ,A < ∞ and K in SK(δ ,A). A continuous linear operator
T from S (Rn) to S ′(Rn) is said to be associated with K if it satisfies

T ( f )(x) =
∫

Rn
K(x,y) f (y)dy (8.1.13)

for all f ∈ C ∞0 and x not in the support of f . If T is associated with K, then the
Schwartz kernel W of T coincides with K on Rn ×Rn \ {(x,x) : x ∈ Rn}.

If T is associated with K and admits a bounded extension on L2(Rn), that is, it
satisfies

∥

∥T ( f )
∥

∥

L2 ≤ B
∥

∥ f
∥

∥

L2 (8.1.14)

for all f ∈ S (Rn), then T is called a Calderón–Zygmund operator associated with
the standard kernel K. In this case we use the same notation for the L2 extension.

In the sequel we denote by CZO(δ ,A,B) the class of all Calderón–Zygmund
operators associated with standard kernels in SK(δ ,A) that admit L2 bounded ex-
tensions with norm at most B.

We make the point that there may be several Calderón–Zygmund operators as-
sociated with a given standard kernel K. For instance, we may check that the zero
operator and the identity operator have the same kernel K(x,y) = 0. We investigate
connections between any two such operators in Proposition 8.1.11. Next we discuss
the important fact that once an operator T admits an extension that is L2 bounded,
then (8.1.13 ) holds for all f that are bounded and compactly supported whenever x
does not lie in its support.

Proposition 8.1.9. Let T be an element of CZO(δ ,A,B) associated with a standard
kernel K. Then for all f in L∞ with compact support and every x /∈ supp f we have
the absolutely convergent integral representation

T ( f )(x) =
∫

Rn
K(x,y) f (y)dy . (8.1.15)

Proof. Identity (8.1.15) can be deduced from the fact that whenever f and ϕ are
bounded and compactly supported functions that satisfy

dist (suppϕ ,supp f ) > 0, (8.1.16)
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then we have the integral representation
∫

Rn
T ( f )(x)ϕ(x)dx =

∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dydx. (8.1.17)

To see this, given f and ϕ as previously, select f j,ϕ j ∈ C ∞0 such that ϕ j are uni-
formly bounded and supported in a small neighborhood of the support of ϕ , ϕ j → ϕ
in L2 and almost everywhere, f j → f in L2 and almost everywhere, and

dist (suppϕ j,supp f j) ≥
1
2

dist (suppϕ ,supp f ) > 0

for all j. Because of (8.1.7), identity (8.1.17) is valid for the functions f j and ϕ j in
place of f and ϕ . By the boundedness of T , it follows that T ( f j) converges to T ( f )
in L2 and thus

∫

Rn
T ( f j)(x)ϕ j(x)dx →

∫

Rn
T ( f )(x)ϕ(x)dx.

Now write f jϕ j − fϕ = ( f j − f )ϕ j + f (ϕ j −ϕ) and observe that

∫

Rn

∫

Rn
K(x,y) f (y)(ϕ j(x)−ϕ(x))dydx → 0 ,

since it is controlled by a multiple of
∥

∥T ( f )
∥

∥

L2

∥

∥ϕ j −ϕ
∥

∥

L2 , while

∫

Rn

∫

Rn
K(x,y)( f j(y)− f (y))ϕ j(x)dydx → 0 ,

since it is controlled by a multiple of sup j

∥

∥Tt(ϕ j)
∥

∥

L2

∥

∥ f j − f
∥

∥

L2 . This gives that

∫

Rn

∫

Rn
K(x,y) f j(y)ϕ j(x)dydx →

∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dydx

as j → ∞, which proves the validity of (8.1.17). �

We now define truncated kernels and operators.

Definition 8.1.10. Given a kernel K in SK(δ ,A) and ε > 0, we define the truncated
kernel

K(ε)(x,y) = K(x,y)χ|x−y|>ε .

Given a continuous linear operator T from S (Rn) to S ′(Rn) and ε > 0, we define
the truncated operator T (ε) by

T (ε)( f )(x) =
∫

Rn
K(ε)(x,y) f (y)dy

and the maximal singular operator associated with T as follows:

T (∗)( f )(x) = sup
ε>0

∣

∣T (ε)( f )(x)
∣

∣ .
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Note that both T (ε) and T (∗) are well defined for f in
⋃

1≤p<∞Lp(Rn).

We investigate a certain connection between the boundedness of T and the
boundedness of the family {T (ε)}ε>0 uniformly in ε > 0.

Proposition 8.1.11. Let K be a kernel in SK(δ ,A) and let T in CZO(δ ,A,B) be
associated with K. For ε > 0, let T (ε) be the truncated operators obtained from T.
Assume that there exists a constant B′ < ∞ such that

sup
ε>0

∥

∥T (ε)∥
∥

L2→L2 ≤ B′. (8.1.18)

Then there exists a linear operator T0 defined on L2(Rn) such that

(1) The Schwartz kernel of T0 coincides with K on

Rn ×Rn \ {(x,x) : x ∈ Rn}.

(2) For some subsequence ε j ↓ 0, we have

∫

Rn
T (ε j)( f )(x)g(x)dx →

∫

Rn
(T0 f )(x)g(x)dx

as j → ∞ for all f ,g in L2(Rn) .
(3) T0 is bounded on L2(Rn) with norm

∥

∥T0
∥

∥

L2→L2 ≤ B′.

(4) There exists a measurable function b on Rn with
∥

∥b
∥

∥

L∞ ≤ B + B′ such that

T ( f )−T0( f ) = b f ,

for all f ∈ L2(Rn).

Proof. Consider the Banach space X = B(L2,L2) of all bounded linear operators
from L2(Rn) to itself. Then X is isomorphic to B((L2)∗,(L2)∗)∗, which is a dual
space. Since the unit ball of a dual space is weak∗ compact, and the operators T (ε)

lie in a multiple of this unit ball, the Banach–Alaoglu theorem gives the existence
of a sequence ε j ↓ 0 such that T (ε j) converges to some T0 in the weak∗ topology of
B(L2,L2) as j → ∞. This means that

∫

Rn
T (ε j)( f )(x)g(x)dx →

∫

Rn
T0( f )(x)g(x)dx (8.1.19)

for all f ,g in L2(Rn) as j → ∞. This proves (2). The L2 boundedness of T0 is a
consequence of (8.1.19), hypothesis (8.1.18), and duality, since

∥

∥T0( f )
∥

∥

L2 ≤ sup
‖g‖L2≤1

limsup
j→∞

∣

∣

∣

∣

∫

Rn
T (ε j)( f )(x)g(x)dx

∣

∣

∣

∣

≤ B′∥
∥ f
∥

∥

L2 .
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This proves (3). Finally, (1) is a consequence of the integral representation
∫

Rn
T (ε j)( f )(x)g(x)dx =

∫

Rn

∫

Rn
K(ε j)(x,y) f (y)dyg(x)dx,

whenever f , g are Schwartz functions with disjoint supports, by letting j → ∞.
We finally prove (4). We first observe that if g is a bounded function with compact

support and Q is an open cube in Rn, we have

(T (ε) −T)(gχQ)(x) = χQ(x)(T (ε) −T)(g)(x) , (8.1.20)

whenever x /∈ ∂Q and ε is small enough. Indeed, take first x /∈ Q; then x is not in the
support of gχQ. Note that since gχQ is bounded and has compact support, we can use
the integral representation formula (8.1.15) obtained in Proposition 8.1.9. Then we
have that for ε < dist (x,supp gχQ), the left-hand side in (8.1.20) is zero. Moreover,
for x ∈ Q, we have that x does not lie in the support of gχQc , and again because of
(8.1.15) we obtain (T (ε) −T )(gχQc)(x) = 0 whenever ε < dist (x,supp gχQc). This
proves (8.1.20) for all x not in the boundary ∂Q of Q. Taking weak limits in (8.1.20)
as ε → 0, we obtain that

(T0 −T )(gχQ) = χQ (T0 −T)(g) a.e. (8.1.21)

for all open cubes Q in Rn. By linearity we extend (8.1.21) to simple functions.
Using the fact that T0 −T is L2 bounded and a simple density argument, we obtain

(T0 −T)(g f ) = f (T0 −T )(g) a.e. (8.1.22)

whenever f is in L2 and g is bounded and has compact support. If B(0, j) is the open
ball with center 0 and radius j on Rn, when j ≤ j′ we have

(T0 −T)(χB(0, j)) = (T0 −T )(χB(0, j)χB(0, j′)) = χB(0, j) (T0 −T)(χB(0, j′)) .

Therefore, the sequence of functions (T0 − T )(χB(0, j)) satisfies the “consistency”
property

(T0 −T)(χB(0, j)) = (T0 −T)(χB(0, j′)) in B(0, j)

when j ≤ j′. It follows that there exists a well defined function b such that

b = (T0 −T )(χB(0, j)) a.e. in B(0, j) .

Applying (8.1.22) with f supported in B(0, j) and g = χB(0, j), we obtain

(T0 −T )( f ) = (T0 −T )( f χB(0, j)) = f (T0 −T )(χB(0, j)) = f b a.e.,

from which it follows that (T0−T )( f ) = b f for all f ∈ L2. Since the norm of T −T0

on L2 is at most B + B′, it follows that the norm of the linear map f �→ b f from L2

to itself is at most B + B′. From this we obtain that
∥

∥b
∥

∥

L∞ ≤ B + B′. �



8.1 General Background and the Role of BMO 179

Remark 8.1.12. We show in the next section (cf. Corollary 8.2.4) that if a Calderón–
Zygmund operator maps L2 to L2, then so do all of its truncations T (ε) uniformly in
ε > 0. By Proposition 8.1.11, there exists a linear operator T0 that has the form

T0( f )(x) = lim
j→∞

∫

|x−y|>ε j

K(x,y) f (y)dy ,

where the limit is taken in the weak topology of L2, so that T is equal to T0 plus a
bounded function times the identity operator.

We give a special name to operators of this form.

Definition 8.1.13. Suppose that for a given T in CZO(δ ,A,B) there is a sequence
ε j of positive numbers that tends to zero as j → ∞ such that for all f ∈ L2(Rn),

T (ε j)( f ) → T ( f )

weakly in L2. Then T is called a Calderón–Zygmund singular integral operator.
Thus Calderón–Zygmund singular integral operators are special kinds of Calderón–
Zygmund operators. The subclass of CZO(δ ,A,B) consisting of all Calderón–
Zygmund singular integral operators is denoted by CZSIO(δ ,A,B).

In view of Proposition 8.1.11 and Remark 8.1.12, a Calderón–Zygmund operator
is equal to a Calderón–Zygmund singular integral operator plus a bounded function
times the identity operator. For this reason, the study of Calderón–Zygmund oper-
ators is equivalent to the study of Calderón–Zygmund singular integral operators,
and in almost all situations it suffices to restrict attention to the latter.

8.1.3 Calderón–Zygmund Operators Acting on Bounded Functions

We are now interested in defining the action of a Calderón–Zygmund operator T on
bounded and smooth functions. To achieve this we first need to define the space of
special test functions D0.

Definition 8.1.14. Recall the space D(Rn) = C ∞0 (Rn) of all smooth functions with
compact support on Rn. We define D0(Rn) to be the space of all smooth functions
with compact support and integral zero. We equip D0(Rn) with the same topology
as the space D(Rn) (cf. Definition 2.3.1). The dual space of D0(Rn) under this
topology is denoted by D ′

0(R
n). This is a space of distributions larger than D ′(Rn).

Example 8.1.15. BMO functions are examples of elements of D ′
0(R

n). Indeed,
given b ∈ BMO(Rn), for any compact set K there is a constant CK =

∥

∥b
∥

∥

L1(K) such
that

∣

∣

∣

∣

∫

Rn
b(x)ϕ(x)dx

∣

∣

∣

∣

≤CK
∥

∥ϕ
∥

∥

L∞
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for any ϕ ∈ D0(Rn). Moreover, observe that the preceding integral remains un-
changed if the BMO function b is replaced by b + c, where c is a constant.

Definition 8.1.16. Let T be a continuous linear operator from S (Rn) to S ′(Rn)
that satisfies (8.1.5) for some distribution W that coincides with a standard kernel
K(x,y) satisfying (8.1.1), (8.1.2), and (8.1.3). Given f bounded and smooth, we
define an element T ( f ) of D ′

0(R
n) as follows: For a given ϕ in D0(Rn), select η in

C ∞0 with 0 ≤ η ≤ 1 and equal to 1 in a neighborhood of the support of ϕ . Since T
maps S to S ′, the expression T ( fη) is a tempered distribution, and its action on
ϕ is well defined. We define the action of T ( f ) on ϕ via

〈

T ( f ),ϕ
〉

=
〈

T ( fη),ϕ
〉

+
∫

Rn

[
∫

Rn
K(x,y)ϕ(x)dx

]

f (y)(1−η(y))dy , (8.1.23)

provided we make sense of the double integral as an absolutely convergent integral.
To do this, we pick x0 in the support of ϕ and we split the y-integral in (8.1.23)
into the sum of integrals over the regions I0 = {y ∈ Rn : |x− x0| > 1

2 |x0 − y|} and
I∞ = {y ∈ Rn : |x− x0| ≤ 1

2 |x0 − y|}. By the choice of η we must necessarily have
dist (supp η ,supp ϕ) > 0, and hence the part of the double integral in (8.1.23) when
y is restricted to I0 is absolutely convergent in view of (8.1.1). For y ∈ I∞ we use
the mean value property of ϕ to write the expression inside the square brackets in
(8.1.23) as

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx .

With the aid of (8.1.2) we deduce the absolute convergence of the double integral in
(8.1.23) as follows:
∫∫

|y−x0|≥2|x−x0|
|K(x,y)−K(x0,y)| |ϕ(x)|(1−η(y)) | f (y)|dxdy

≤
∫

Rn
A|x− x0|δ

∫

|y−x0|≥2|x−x0|
|x0 − y|−n−δ | f (y)|dy |ϕ(x)|dx

≤ A
ωn−1

δ 2δ
∥

∥ϕ
∥

∥

L1

∥

∥ f
∥

∥

L∞ < ∞ .

This completes the definition of T ( f ) as an element of D ′
0 when f ∈ C ∞ ∩L∞

but leaves two points open. We need to show that this definition is independent of η
and secondly that whenever f is a Schwartz function, the distribution T ( f ) defined
in (8.1.23) coincides with the original element of S ′(Rn) given in Definition 8.1.8.

Remark 8.1.17. We show that the definition of T ( f ) is independent of the choice
of the function η . Indeed, if ζ is another function satisfying 0 ≤ ζ ≤ 1 that is also
equal to 1 in a neighborhood of the support of ϕ , then f (η−ζ ) and ϕ have disjoint
supports, and by (8.1.7) we have the absolutely convergent integral realization

〈

T ( f (η − ζ )),ϕ
〉

=
∫

Rn

∫

Rn
K(x,y) f (y)(η − ζ )(y)dyϕ(x)dx .
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It follows that the expression in (8.1.23) coincides with the corresponding expres-
sion obtained when η is replaced by ζ .

Next, if f is a Schwartz function, then both η f and (1−η) f are Schwartz func-
tions; by the linearity of T one has

〈

T ( f ),ϕ
〉

=
〈

T (η f ),ϕ
〉

+
〈

T ((1−η) f ),ϕ
〉

,
and by (8.1.7) the second expression can be written as the double absolutely con-
vergent integral in (8.1.23), since ϕ and (1−η) f have disjoint supports. Thus the
distribution T ( f ) defined in (8.1.23) coincides with the original element of S ′(Rn)
given in Definition 8.1.8.

Remark 8.1.18. When T has a bounded extension that maps L2 to itself, we may
define T ( f ) for all f ∈ L∞(Rn), not necessarily smooth. Simply observe that under
this assumption, the expression T ( fη) is a well defined L2 function and thus

〈

T ( fη),ϕ
〉

=
∫

Rn
T ( fη)(x)ϕ(x)dx

is given by an absolutely convergent integral for all ϕ ∈ D0.
Finally, observe that although

〈

T ( f ),ϕ
〉

is defined for f in L∞ and ϕ in D0, this
definition is valid for all square integrable functions ϕ with compact support and
integral zero; indeed, the smoothness of ϕ was never an issue in the definition of
〈

T ( f ),ϕ
〉

.

In summary, if T is a Calderón–Zygmund operator and f lies in L∞(Rn), then
T ( f ) has a well defined action

〈

T ( f ),ϕ
〉

on square integrable functions ϕ with
compact support and integral zero. This action satisfies

∣

∣

〈

T ( f ),ϕ
〉∣

∣≤
∥

∥T ( fη)
∥

∥

L2

∥

∥ϕ‖L2 +Cn,δ A
∥

∥ϕ
∥

∥

L1

∥

∥ f
∥

∥

L∞ < ∞ . (8.1.24)

In the next section we show that in this case, T ( f ) is in fact an element of BMO.

Exercises

8.1.1. Suppose that K is a function defined away from the diagonal on Rn ×Rn that
satisfies for some δ > 0 the condition

|K(x,y)−K(x′,y)| ≤ A′ |x− x′|δ
|x− y|n+δ

whenever |x − x′| ≤ 1
2 |x − y|. Prove that K satisfies (8.1.2) with constant A =

( 5
2 )n+δA′. Obtain an analogous statement for condition (8.1.3).

8.1.2. Prove that there does not exist a tempered distribution W on R2n that extends
the function |x− y|−n defined on R2n \ {(x,x) : x ∈ Rn}.
[

Hint: Apply such a distribution to a positive smooth bump that does not vanish at
the origin.

]
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8.1.3. Let ϕ(x) be a smooth radial function that is equal to 1 when |x| ≥ 1 and van-
ishes when |x| ≤ 1

2 . Prove that if K lies in SK(δ ,A), then all the smooth truncations

K(ε)
ϕ (x,y) = K(x,y)ϕ( x−y

ε ) lie in SK(δ ,cA) for some c > 0 independent of ε > 0.

8.1.4. Suppose that A is a Lipschitz map from Rn to Rm. This means that there
exists a constant L such that |A(x)−A(y)| ≤ L|x− y| for all x,y ∈ Rn. Suppose that
F is a C ∞ odd function defined on Rm. Show that the kernel

K(x,y) =
1

|x− y|n F

(

A(x)−A(y)
|x− y|

)

is in SK(1,C) for some C > 0.

8.1.5. Extend the result of Proposition 8.1.11 to the case that the space L2 is re-
placed by Lq for some 1 < q < ∞.

8.1.6. Observe that for an operator T as in Definition 8.1.16, the condition T (1) = 0
is equivalent to the statement that for all ϕ smooth with compact support and integral
zero we have

∫

Rn T t(ϕ)(x)dx = 0. A similar statement holds for Tt .

8.1.7. Suppose that K(x,y) is continuous, bounded, and nonnegative on Rn ×Rn

and satisfies
∫

Rn K(x,y)dy = 1 for all x ∈ Rn. Define a linear operator T by setting
T ( f )(x) =

∫

Rn K(x,y) f (y)dy for f ∈ L1(Rn).
(a) Suppose that h is a continuous and integrable function on Rn that has a global
minimum [i.e., there exists x0 ∈ Rn such that h(x0)≤ h(x) for all x ∈ Rn]. If we have

T (h)(x) = h(x)

for all x ∈ Rn, prove that h is a constant function.
(b) Show that T preserves the set of integrable functions that are bounded below by
a fixed constant.
(c) Suppose that T (T ( f )) = f for some everywhere positive and continuous function
f on Rn. Show that T ( f ) = f .
[

Hint: Part (c): Let L(x,y) be the kernel of T ◦T . Show that

∫

Rn
L(x,y)

f (y)
f (x)

T ( f )(y)
f (y)

dy =
T ( f )(x)

f (x)

and conclude by part (a) that T ( f )(y)
f (y) is a constant.

]

8.2 Consequences of L2 Boundedness

Calderón–Zygmund singular integral operators admit L2 bounded extensions. As in
the case of convolution operators, L2 boundedness has several consequences. In this
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section we are concerned with consequences of the L2 boundedness of Calderón–
Zygmund singular integral operators. Throughout the entire discussion, we assume
that K(x,y) is a kernel defined away from the diagonal in R2n that satisfies the
standard size and regularity conditions (8.1.1), (8.1.2), and (8.1.3). These conditions
may be relaxed; see the exercises at the end of this section.

8.2.1 Weak Type (1,1) and Lp Boundedness of Singular Integrals

We begin by proving that operators in CZO(δ ,A,B) are bounded from L1 to weak
L1. This result is completely analogous to that in Theorem 4.3.3.

Theorem 8.2.1. Assume that K(x,y) is in SK(δ ,A) and let T be an element of
CZO(δ ,A,B) associated with the kernel K. Then T has a bounded extension that
maps L1(Rn) to L1,∞(Rn) with norm

∥

∥T
∥

∥

L1→L1,∞ ≤Cn(A + B),

and also maps Lp(Rn) to itself for 1 < p < ∞ with norm
∥

∥T
∥

∥

Lp→Lp ≤Cn max(p,(p−1)−1)(A + B),

where Cn is a dimensional constant.

Proof. The proof of this theorem is a reprise of the argument of the proof of Theo-
rem (4.3.3). Fix α > 0 and let f be in L1(Rn). Since T ( f ) may not be defined when
f is a general integrable function, we take f to be a Schwartz class function. Once
we obtain a weak type (1,1) estimate for Schwartz functions, it is only a matter of
density to extend it to all f in L1.

We apply the Calderón–Zygmund decomposition to f at height γα , where γ is a
positive constant to be chosen later. Write f = g+b, where b =∑ j b j and conditions
(1)–(6) of Theorem 4.3.1 are satisfied with the constant α replaced by γα . Since we
are assuming that f is Schwartz function, it follows that each bad function b j is
bounded and compactly supported. Thus T (b j) is an L2 function, and when x is not
in the support of b j we have the integral representation

T (b j)(x) =
∫

Qj

b j(y)K(x,y)dy

in view of Proposition 8.1.9.
As usual, we denote by �(Q) the side length of a cube Q. Let Q∗

j be the unique
cube with sides parallel to the axes having the same center as Q j and having side
length

�(Q∗
j) = 2

√
n�(Q j) .

We have
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|{x ∈ Rn : |T ( f )(x)| > α}|

≤
∣

∣

∣

{

x ∈ Rn : |T (g)(x)| > α
2

}∣

∣

∣+
∣

∣

∣

{

x ∈ Rn : |T (b)(x)| > α
2

}∣

∣

∣

≤ 22

α2

∥

∥T (g)
∥

∥

2
L2 +

∣

∣

∣

⋃

j

Q∗
j

∣

∣

∣+
∣

∣

∣

{

x /∈
⋃

j

Q∗
j : |T (b)(x)| > α

2

}∣

∣

∣

≤ 22

α2 B2
∥

∥g
∥

∥

2
L2 +∑

j

|Q∗
j |+

2
α

∫

(
⋃

j Q∗
j )

c
|T (b)(x)|dx

≤ 22

α2 2nB2(γα)
∥

∥ f
∥

∥

L1 +(2
√

n)n

∥

∥ f
∥

∥

L1

γα
+

2
α ∑j

∫

(Q∗
j )

c
|T (b j)(x)|dx

≤
(

(2n+1Bγ)2

2nγ
+

(2
√

n)n

γ

)
∥

∥ f
∥

∥

L1

α
+

2
α ∑j

∫

(Q∗
j )

c
|T (b j)(x)|dx .

It suffices to show that the last sum is bounded by some constant multiple of
∥

∥ f
∥

∥

L1 .
Let y j be the center of the cube Q j. For x ∈ (Q∗

j)
c, we have |x− y j| ≥ 1

2�(Q∗
j) =√

n�(Q j). But if y ∈ Q j we have |y− y j| ≤
√

n�(Q j)/2; thus |y− y j| ≤ 1
2 |x− y j|,

since the diameter of a cube is equal to
√

n times its side length. We now estimate
the last displayed sum as follows:

∑
j

∫

(Q∗
j )

c
|T (b j)(x)|dx = ∑

j

∫

(Q∗
j )

c

∣

∣

∣

∣

∫

Qj

b j(y)K(x,y)dy

∣

∣

∣

∣

dx

= ∑
j

∫

(Q∗
j )

c

∣

∣

∣

∣

∫

Qj

b j(y)
(

K(x,y)−K(x,y j)
)

dy

∣

∣

∣

∣

dx

≤ ∑
j

∫

Qj

|b j(y)|
∫

(Q∗
j )

c
|K(x,y)−K(x,y j)|dxdy

≤ ∑
j

∫

Qj

|b j(y)|
∫

|x−y j |≥2|y−y j |
|K(x,y)−K(x,y j)|dxdy

≤ A2∑
j

∫

Qj

|b j(y)|dy

= A2∑
j

∥

∥b j
∥

∥

L1

≤ A22n+1
∥

∥ f
∥

∥

L1 .

Combining the facts proved and choosing γ = B−1, we deduce a weak type (1,1)
estimate for T ( f ) when f is in the Schwartz class. We obtain that T has a bounded
extension from L1 to L1,∞ with bound at most Cn(A+B). The Lp result for 1 < p < 2
follows by interpolation and Exercise 1.3.2. The result for 2 < p < ∞ follows by
duality; one uses here that the dual operator Tt has a kernel Kt(x,y) = K(y,x) that
satisfies the same estimates as K, and by the result just proved, it is also bounded on
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Lp for 1 < p < 2 with norm at most Cn(A + B). Thus T must be bounded on Lp for
2 < p < ∞ with norm at most a constant multiple of A + B. �

Consequently, for operators T in CZO(δ ,A,B) and Lp functions f , 1≤ p <∞, the
expressions T ( f ) make sense as Lp (or L1,∞ when p = 1) functions. The following
result addresses the question whether these functions can be expressed as integrals.

Proposition 8.2.2. Let T be an operator in CZO(δ ,A,B) associated with a kernel
K. Then for g ∈ Lp(Rn), 1 ≤ p < ∞, the following absolutely convergent integral
representation is valid:

T (g)(x) =
∫

Rn
K(x,y)g(y)dy (8.2.1)

for almost all x ∈ Rn \ supp g, provided that supp g � Rn.

Proof. Set gk(x) = g(x)χ|g(x)|≤kχ|x|≤k. These are Lp functions with compact support
that is contained in the support of g. Also, the gk converge to g in Lp as k → ∞. In
view of Proposition 8.1.9, for every k we have

T (gk)(x) =
∫

Rn
K(x,y)gk(y)dy

for all x ∈ Rn \supp g. Since T maps Lp to Lp (or to weak L1 when p = 1), it follows
that T (gk) converges to T (g) in weak Lp and hence in measure. By Proposition
1.1.9, a subsequence of T (gk) converges to T (g) almost everywhere. On the other
hand, for x ∈ Rn \ supp g we have

∫

Rn
K(x,y)gk(y)dy →

∫

Rn
K(x,y)g(y)dy

when k → ∞, since the absolute value of the difference is bounded by B
∥

∥gk −g
∥

∥

Lp ,

which tends to zero. The constant B is the Lp′ norm of the function |x− y|−n−δ on
the support of g; one has |x− y| ≥ c > 0 for all y in the support of g and thus B <∞.
Therefore T (gk)(x) converges a.e. to both sides of the identity (8.2.1) for x not in
the support of g. This concludes the proof of this identity. �

8.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is an analogous boundedness result to Theorem
8.2.1 concerning the maximal singular integral operator T (∗). We note that given
f in Lp(Rn) for some 1 ≤ p < ∞, the expression T (∗)( f )(x) is well defined for all
x ∈ Rn. This is a simple consequence of estimate (8.1.1) and Hölder’s inequality.

Theorem 8.2.3. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Let r ∈ (0,1). Then there is a constant C(n,r) such that
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|T (∗)( f )(x)| ≤C(n,r)
[

M(|T ( f )|r)(x) 1
r +(A + B)M( f )(x)

]

(8.2.2)

is valid for all functions in
⋃

1≤p<∞Lp(Rn). Also, there exist dimensional constants
Cn,C′

n such that

∥

∥T (∗)( f )
∥

∥

L1,∞(Rn) ≤ C′
n(A + B)

∥

∥ f
∥

∥

L1(Rn) , (8.2.3)
∥

∥T (∗)( f )
∥

∥

Lp(Rn) ≤ Cn(A + B)max(p,(p−1)−1)
∥

∥ f
∥

∥

Lp(Rn) , (8.2.4)

for all 1 ≤ p < ∞ and all f in Lp(Rn).

Estimate (8.2.2) is referred to as Cotlar’s inequality.

Proof. We fix r so that 0 < r < 1 and f ∈ Lp(Rn) for some p satisfying 1 ≤ p < ∞.
To prove (8.2.2), we also fix ε > 0 and we set f ε,x0 = f χB(x,ε) and f ε,x∞ = f χB(x,ε)c .
Since x /∈ supp f ε,x∞ whenever |x− y| ≥ ε , using Proposition 8.2.2 we can write

T ( f ε,x∞ )(x) =
∫

Rn
K(x,y) f ε,x∞ (y)dy =

∫

|x−y|≥ε
K(x,y) f (y)dy = T (ε)( f )(x) .

In view of (8.1.2), for z ∈ B(x, ε2 ) we have |z− x| ≤ 1
2 |x− y| whenever |x− y| ≥ ε

and thus

|T ( f ε,x∞ )(x)−T ( f ε,x∞ )(z)| =
∣

∣

∣

∣

∫

|x−y|≥ε

(

K(z,y)−K(x,y)
)

f (y)dy

∣

∣

∣

∣

≤ |z− x|δ
∫

|x−y|≥ε

A | f (y)|
(|x− y|+ |y− z|)n+δ dy

≤
(ε

2

)δ ∫

|x−y|≥ε

A | f (y)|
(|x− y|+ ε/2)n+δ dy

≤ Cn,δ AM( f )(x) ,

where the last estimate is a consequence of Theorem 2.1.10. We conclude that for
all z ∈ B(x, ε2 ) we have

|T (ε)( f )(x)| = |T ( f ε,x∞ )(x)|
≤ |T ( f ε∞)(x)−T ( f ε,x∞ )(z)|+ |T ( f ε,x∞ )(z)|
≤ Cn,δ AM( f )(x)+ |T ( f ε,x0 )(z)|+ |T ( f )(z)| .

(8.2.5)

For 0 < r < 1 it follows from (8.2.5) that for z ∈ B(x, ε2 ) we have

|T (ε)( f )(x)|r ≤Cr
n,δ Ar M( f )(x)r + |T ( f ε,x0 )(z)|r + |T ( f )(z)|r . (8.2.6)

Integrating over z ∈ B(x, ε2 ), dividing by |B(x, ε2 )|, and raising to the power 1
r , we

obtain
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|T (ε)( f )(x)| ≤ 3
1
r

[

Cn,δ AM( f )(x)+
(

1
|B(x, ε2 )|

∫

B(x, ε2 )
|T ( f ε,x0 )(z)|rdz

)1
r

+ M(|T ( f )|r)(x) 1
r

]

.

Using Exercise 2.1.5, we estimate the middle term on the right-hand side of the
preceding equation by

(

1
|B(x, ε2 )|

∥

∥T
∥

∥

r
L1→L1,∞

1− r
|B(x, ε2 )|1−r

∥

∥ f ε,x0

∥

∥

r
L1

)1
r

≤Cn,r (A + B)M( f )(x) .

This proves (8.2.2).
We now use estimate (8.2.2) to show that T is Lp bounded and of weak type

(1,1). To obtain the weak type (1,1) estimate for T (∗) we need to use that the Hardy–
Littlewood maximal operator maps Lp,∞ to Lp,∞ for all 1 < p < ∞. See Exercise
2.1.13. We also use the trivial fact that for all 0 < p,q < ∞ we have

∥

∥| f |q
∥

∥

Lp,∞ =
∥

∥ f
∥

∥

q
Lpq,∞ .

Take any r < 1 in (8.2.2). Then we have

∥

∥M(|T ( f )|r) 1
r
∥

∥

L1,∞ =
∥

∥M(|T ( f )|r)
∥

∥

1
r

L
1
r ,∞

≤ Cn,r
∥

∥|T ( f )|r
∥

∥

1
r

L
1
r ,∞

= Cn,r
∥

∥T ( f )
∥

∥

L1,∞

≤ ˜Cn,r(A + B)
∥

∥ f
∥

∥

L1 ,

where we used the weak type (1,1) bound for T in the last estimate.
To obtain the Lp boundedness of T (∗) for 1 < p < ∞, we use the same argument

as before. We fix r = 1
2 . Recall that the maximal function is bounded on L2p with

norm at most 3
n

2p 2p
2p−1 ≤ 2 ·3 n

2 [see (2.1.5)]. We have

∥

∥M(|T ( f )| 1
2 )2
∥

∥

Lp =
∥

∥M(|T ( f )| 1
2 )
∥

∥

2
L2p

≤
(

3
n

2p 2p
2p−1

)2∥
∥|T ( f )| 1

2
∥

∥

2
L2p

≤ 4 ·3n
∥

∥T ( f )
∥

∥

Lp

≤ Cn max( 1
p−1 , p)(A + B)

∥

∥ f
∥

∥

Lp ,

where we used the Lp boundedness of T in the last estimate. �

We end this section with two corollaries, the first of which confirms a fact men-
tioned in Remark 8.1.12.
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Corollary 8.2.4. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Then there exists a dimensional constant Cn such that

sup
ε>0

∥

∥T (ε)∥
∥

L2→L2 ≤Cn
(

A +
∥

∥T
∥

∥

L2→L2

)

.

Corollary 8.2.5. Let K be in SK(δ ,A) and let T = limε j→0 T (ε j) be an element of
CZSIO(δ ,A,B) associated with K. Then for 1 ≤ p <∞ and all f ∈ Lp(Rn) we have
that

T (ε j)( f ) → T ( f )

almost everywhere.

Proof. Using (8.1.1), (8.1.2), and (8.1.3), we see that the alleged convergence holds
(everywhere) for smooth functions with compact support. The general case follows
from Theorem 8.2.3 and Theorem 2.1.14. �

8.2.3 H1 → L1 and L∞→ BMO Boundedness of Singular Integrals

Theorem 8.2.6. Let T be an element of CZO(δ ,A,B). Then T has an extension that
maps H1(Rn) to L1(Rn). Precisely, there is a constant Cn,δ such that

∥

∥T
∥

∥

H1→L1 ≤Cn,δ
(

A +
∥

∥T
∥

∥

L2→L2

)

.

Proof. The proof is analogous to that of Theorem 6.7.1. Let B =
∥

∥T
∥

∥

L2→L2 . We
start by examining the action of T on L2 atoms for H1. Let f = a be such an atom,
supported in a cube Q. Let cQ be the center of Q and let Q∗ = 2

√
nQ. We write

∫

Rn
|T (a)(x)|dx =

∫

Q∗
|T (a)(x)|dx +

∫

(Q∗)c
|T (a)(x)|dx (8.2.7)

and we estimate each term separately. We have

∫

Q∗
|T (a)(x)|dx ≤ |Q∗| 1

2

(
∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ B|Q∗| 1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ B|Q∗| 1
2 |Q|− 1

2

= CnB ,

where we used property (b) of atoms in Definition 6.6.8. Now observe that if x /∈ Q∗

and y ∈ Q, then

|y− cQ| ≤
1
2
|x− cQ| ;
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hence x− y stays away from zero and T (a)(x) can be expressed as a convergent
integral by Proposition 8.2.2. We have

∫

(Q∗)c
|T (a)(x)|dx =

∫

(Q∗)c

∣

∣

∣

∫

Q
K(x,y)a(y)dy

∣

∣

∣dx

=
∫

(Q∗)c

∣

∣

∣

∫

Q

(

K(x,y)−K(x,cQ)
)

a(y)dy
∣

∣

∣dx

≤
∫

Q

∫

(Q∗)c

∣

∣K(x,y)−K(x,cQ)
∣

∣dx |a(y)|dy

≤
∫

Q

∫

(Q∗)c

A|y− cQ|δ
|x− cQ|n+δ dx |a(y)|dy

≤ C′
n,δ A

∫

Q
|a(y)|dy

≤ C′
n,δ A|Q| 1

2
∥

∥a
∥

∥

L2

≤ C′
n,δA|Q| 1

2 |Q|− 1
2

= C′
n,δA .

Combining this calculation with the previous one and inserting the final conclusions
in (8.2.7), we deduce that L2 atoms for H1 satisfy

∥

∥T (a)
∥

∥

L1 ≤Cn,δ (A + B) . (8.2.8)

To pass to general functions in H1, we use Theorem 6.6.10 to write an f ∈ H1 as

f =
∞

∑
j=1
λ ja j ,

where the series converges in H1, the a j are L2 atoms for H1, and

∥

∥ f
∥

∥

H1 ≈
∞

∑
j=1

|λ j| . (8.2.9)

Since T maps L1 to weak L1 by Theorem 8.2.1, T ( f ) is already a well defined L1,∞

function. We plan to prove that

T ( f ) =
∞

∑
j=1
λ jT (a j) a.e. (8.2.10)

Note that the series in (8.2.10) converges in L1 and defines an integrable function
almost everywhere. Once (8.2.10) is established, the required conclusion (6.7.5)
follows easily by taking L1 norms in (8.2.10) and using (8.2.8) and (8.2.9).

To prove (8.2.10), we use that T is of weak type (1,1). For a given μ > 0 we
have
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∣

∣

{∣

∣T ( f )−
∞

∑
j=1
λ jT (a j)

∣

∣> μ
}∣

∣

≤
∣

∣

{∣

∣T ( f )−
N

∑
j=1
λ jT (a j)

∣

∣> μ/2
}∣

∣+
∣

∣

{∣

∣

∞

∑
j=N+1

λ jT (a j)
∣

∣> μ/2
}∣

∣

≤ 2
μ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

L1
+

2
μ

∥

∥

∥

∞

∑
j=N+1

λ jT (a j)
∥

∥

∥

L1

≤ 2
μ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

H1
+

2
μ

Cn,δ (A + B)
∞

∑
j=N+1

|λ j| .

Since ∑N
j=1λ ja j converges to f in H1 and ∑∞j=1 |λ j| < ∞, both terms in the sum

converge to zero as N → ∞. We conclude that

∣

∣

{∣

∣T ( f )−
∞

∑
j=1

λ jT (a j)
∣

∣> μ
}∣

∣= 0

for all μ > 0, which implies (8.2.10). �

Theorem 8.2.7. Let T be in CZO(δ ,A,B). Then for any bounded function f , the
distribution T ( f ) can be identified with a BMO function that satisfies

∥

∥T ( f )
∥

∥

BMO ≤C′
n,δ (A + B)

∥

∥ f
∥

∥

L∞ , (8.2.11)

where Cn,δ is a constant.

Proof. Let L2
0,c be the space of all square integrable functions with compact support

and integral zero on Rn. This space is contained in H1(Rn) (cf. Exercise 6.4.3) and
contains the set of finite sums of L2 atoms for H1, which is dense in H1 (cf. Exercise
6.6.5); thus L2

0,c is dense in H1. Recall that for f ∈ L∞, T ( f ) has a well defined action
〈

T ( f ),ϕ
〉

on functions ϕ in L2
0,c that satisfies (8.1.24).

Suppose we have proved the identity

〈

T ( f ),ϕ
〉

=
∫

Rn
Tt(ϕ)(x) f (x)dx , (8.2.12)

for all bounded functions f and all ϕ in L2
0,c. Since such a ϕ is in H1, Theorem

8.2.6 yields that Tt(ϕ) is in L1, and consequently, the integral in (8.2.12) converges
absolutely. Assuming (8.2.12) and using Theorem 8.2.6 we obtain that

∣

∣

〈

T ( f ),ϕ
〉∣

∣≤
∥

∥Tt(ϕ)
∥

∥

L1

∥

∥ f
∥

∥

L∞ ≤Cn,δ (A + B)
∥

∥ϕ
∥

∥

H1

∥

∥ f
∥

∥

L∞ .

We conclude that L(ϕ) =
〈

T ( f ),ϕ
〉

is a bounded linear functional on L2
0,c with

norm at most Cn,δ (A+B)
∥

∥ f
∥

∥

L∞ . Obviously, L has a bounded extension on H1 with
the same norm. By Theorem 7.2.2 there exists a BMO function b f that satisfies
∥

∥b f
∥

∥

BMO ≤C′
n

∥

∥L
∥

∥

H1→C such that the linear functional L has the form Lb f (using the
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notation of Theorem 7.2.2). In other words, the distribution T ( f ) can be identified
with a BMO function that satisfies (8.2.11) with Cn,δ = C′

nCn,δ , i.e.,

∥

∥T ( f )
∥

∥

BMO ≤C′
nCn,δ (A + B)

∥

∥ f
∥

∥

L∞ .

We return to the proof of identity (8.2.12). Pick a smooth function with compact
support η that satisfies 0 ≤ η ≤ 1 and is equal to 1 in a neighborhood of the support
of ϕ . We write the right-hand side of (8.2.12) as
∫

Rn
T t(ϕ)η f dx +

∫

Rn
T t(ϕ)(1−η) f dx =

〈

T (η f ),ϕ
〉

+
∫

Rn
Tt(ϕ)(1−η) f dx .

In view of Definition 8.1.16, to prove (8.2.12) it will suffice to show that
∫

Rn
Tt(ϕ)(1−η) f dx =

∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx(1−η(y)) f (y)dy ,

where x0 lies in the support of ϕ . But the inner integral above is absolutely conver-
gent and equal to

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx =
∫

Rn
Kt(y,x)ϕ(x)dx = Tt(ϕ)(y) ,

since y /∈ supp ϕ , by Proposition 8.1.9. Thus (8.2.12) is valid. �

Exercises

8.2.1. Let T : S (Rn) → S ′(Rn) be a continuous linear operator whose Schwartz
kernel coincides with a function K(x,y) on Rn ×Rn minus its diagonal. Suppose
that the function K(x,y) satisfies

sup
R>0

∫

R≤|x−y|≤2R
|K(x,y)|dy ≤ A <∞ .

(a) Show that the previous condition is equivalent to

sup
R>0

1
R

∫

|x−y|≤R
|x− y| |K(x,y)|dy ≤ A′ < ∞

by proving that A′ ≤ A ≤ 2A′.
(b) For ε > 0, let T (ε) be the truncated linear operators with kernels K(ε)(x,y) =
K(x,y)χ|x−y|>ε . Show that T (ε)( f ) is well defined for Schwartz functions.
[

Hint: Consider the annuli ε2 j ≤ |x| ≤ ε2 j+1 for j ≥ 0.
]

8.2.2. Let T be as in Exercise 8.2.1. Prove that the limit T (ε)( f )(x) exists for all f
in the Schwartz class and for almost all x ∈ Rn as ε → 0 if and only if the limit
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lim
ε→0

∫

ε<|x−y|<1
K(x,y)dy

exists for almost all x ∈ Rn.

8.2.3. Let K(x,y) be a function defined away from the diagonal in R2n that satisfies

sup
R>0

∫

R≤|x−y|≤2R
|K(x,y)|dy ≤ A < ∞

and also Hörmander’s condition

sup
y,y′∈Rn

y�=y′

∫

|x−y|≥2|y−y′|
|K(x,y)−K(x,y′)|dx ≤ A′′ < ∞ .

Show that all the truncations K(ε)(x,y) also satisfy Hörmander’s condition uni-
formly in ε > 0 with a constant A + A”.

8.2.4. Let T be as in Exercise 8.2.1 and assume that T maps Lr(Rn) to itself for
some 1 < r ≤ ∞.
(a) Assume that K(x,y) satisfies Hörmander’s condition, Then T has an extension
that maps L1(Rn) to L1,∞(Rn) with norm

∥

∥T
∥

∥

L1→L1,∞ ≤Cn(A + B),

and therefore T maps Lp(Rn) to itself for 1 < p < r with norm
∥

∥T
∥

∥

Lp→Lp ≤Cn(p−1)−1(A + B),

where Cn is a dimensional constant.
(b) Assuming that Kt(x,y)= K(y,x) satisfies Hörmander’s condition, prove that T
maps Lp(Rn) to itself for r < p < ∞ with norm

∥

∥T
∥

∥

Lp→Lp ≤Cn p(A + B),

where Cn is independent of p.

8.2.5. Show that estimate (8.2.2) also holds when r = 1.
[

Hint: Estimate (8.2.6) holds when r = 1. For fixed ε > 0, take 0 < b < |T (ε)( f )(x)|
and define Bε1(x) = B(x, ε2 ) ∩ {|T ( f )| > b

3}, Bε2(x) = B(x, ε2 ) ∩ {|T ( f ε,x0 )| > b
3},

and Bε3(x) = B(x, ε2 ) if Cn,δM( f )(x) > b
3 and empty otherwise. Then |B(x, ε2 )| ≤

|Bε1(x)|+ |Bε2(x)|+ |Bε3(x)|. Use the weak type (1,1) property of T to show that b ≤
C(n)

(

M(|T ( f )|)(x)+M( f )(x)
)

, and take the supremum over all b < |T (ε)( f )(x)|.
]

8.2.6. Prove that if | f | log+ | f | is integrable over a ball, then T (∗)( f ) is integrable
over the same ball.
[

Hint: Use the behavior of the norm of T (∗) on Lp as p → 1 and use Exercise 1.3.7.
]
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8.3 The T (1) Theorem

We now turn to one of the main results of this chapter, the so-called T (1) theorem.
This theorem gives necessary and sufficient conditions for linear operators T with
standard kernels to be bounded on L2(Rn). In this section we obtain several such
equivalent conditions. The name of theorem T (1) is due to the fact that one of the
conditions that we derive is expressed in terms of properties of the distribution T (1),
which was introduced in Definition 8.1.16.

8.3.1 Preliminaries and Statement of the Theorem

We begin with some preliminary facts and definitions.

Definition 8.3.1. A normalized bump is a smooth function ϕ supported in the ball
B(0,10) that satisfies

|(∂αx ϕ)(x)| ≤ 1

for all multi-indices |α| ≤ 2 [ n
2 ]+ 2, where [x] denotes here the integer part of x.

Observe that every smooth function supported inside the ball B(0,10) is a con-
stant multiple of a normalized bump. Also note that if a normalized bump is sup-
ported in a compact subset of B(0,10), then small translations of it are also normal-
ized bumps.

Given a function f on Rn, R > 0, and x0 ∈ Rn, we use the notation fR to denote
the function fR(x) = R−n f (R−1x) and τx0( f ) to denote the function τx0( f )(x) =
f (x− x0). Thus

τx0( fR)(y) = fR(y− x0) = R−n f
(

R−1(y− x0)
)

.

Set N = [ n
2 ]+ 1. Using that all derivatives up to order 2N of normalized bumps are

bounded by 1, we easily deduce that for all x0 ∈ Rn, all R > 0, and all normalized
bumps ϕ we have the estimate

Rn
∫

Rn

∣

∣ ̂τx0(ϕR)(ξ )
∣

∣dξ

=
∫

Rn

∣

∣ϕ̂(ξ )
∣

∣dξ

=
∫

Rn

∣

∣

∣

∣

∫

Rn
ϕ(y)e−2π iy·ξ dy

∣

∣

∣

∣

dξ

=
∫

Rn

∣

∣

∣

∣

∫

Rn
(I−Δ

)N(ϕ)(y)e−2π iy·ξ dy

∣

∣

∣

∣

dξ
(1 + 4π2|ξ |2)N

≤ Cn ,

(8.3.1)

since |(∂αx ϕ)(x)| ≤ 1 for all multi-indices α with |α| ≤ [ n
2 ]+ 1, and Cn is indepen-
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dent of the bump ϕ . Here I−Δ denotes the operator

(I −Δ)(ϕ) = ϕ+
n

∑
j=1

∂ 2ϕ
∂x2

j

.

Definition 8.3.2. We say that a continuous linear operator

T : S (Rn) → S ′(Rn)

satisfies the weak boundedness property (WBP) if there is a constant C such that for
all f and g normalized bumps and for all x0 ∈ Rn and R > 0 we have

|
〈

T (τx0( fR)),τx0(gR)
〉

| ≤CR−n. (8.3.2)

The smallest constant C in (8.3.2) is denoted by
∥

∥T
∥

∥

W B.

Note that
∥

∥τx0( fR)
∥

∥

L2 =
∥

∥ f
∥

∥

L2 R−n/2 and thus if T has a bounded extension from
L2(Rn) to itself, then T satisfies the weak boundedness property with bound

∥

∥T
∥

∥

W B ≤ 10nvn
∥

∥T
∥

∥

L2→L2 ,

where vn is the volume of the unit ball in Rn.
We now state one of the main theorems in this chapter.

Theorem 8.3.3. Let T be a continuous linear operator from S (Rn) to S ′(Rn)
whose Schwartz kernel coincides with a function K on Rn ×Rn \ {(x,x) : x ∈ Rn}
that satisfies (8.1.1), (8.1.2), and (8.1.3) for some 0 < δ ,A < ∞. Let K(ε) and T (ε)

be the usual truncated kernel and operator for ε > 0. Assume that there exists a
sequence ε j ↓ 0 such that for all f ,g ∈ S (Rn) we have

〈

T (ε j)( f ),g
〉

→
〈

T ( f ),g
〉

. (8.3.3)

Consider the assertions:

(i) The following statement is valid:

B1 = sup
B

sup
ε>0

[
∥

∥T (ε)(χB)
∥

∥

L2

|B| 1
2

+

∥

∥(T (ε))t(χB)
∥

∥

L2

|B| 1
2

]

< ∞ ,

where the first supremum is taken over all balls B in Rn.

(ii) The following statement is valid:

B2 = sup
ε,N,x0

[

1
Nn

∫

B(x0,N)

∣

∣

∣

∣

∫

|x−y|<N

K(ε)(x,y)dy

∣

∣

∣

∣

2

dx

+
1

Nn

∫

B(x0,N)

∣

∣

∣

∣

∫

|x−y|<N

K(ε)(y,x)dy

∣

∣

∣

∣

2

dx

]1
2

< ∞ ,
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where the supremum is taken over all 0 < ε < N < ∞ and all x0 ∈ Rn.

(iii) The following statement is valid:

B3 = sup
ϕ

sup
x0∈Rn

sup
R>0

R
n
2

[

∥

∥T (τx0(ϕR))
∥

∥

L2 +
∥

∥Tt(τx0(ϕR))
∥

∥

L2

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ .

(iv) The operator T satisfies the weak boundedness property and the distributions
T (1) and Tt(1) coincide with BMO functions, that is,

B4 =
∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO +
∥

∥T
∥

∥

WB < ∞ .

(v) For every ξ ∈ Rn the distributions T (e2π i(·)·ξ ) and Tt(e2π i(·)·ξ ) coincide with
BMO functions such that

B5 = sup
ξ∈Rn

∥

∥T (e2π i(·)·ξ )
∥

∥

BMO + sup
ξ∈Rn

∥

∥Tt(e2π i(·)·ξ )
∥

∥

BMO < ∞ .

(vi) The following statement is valid:

B6 = sup
ϕ

sup
x0∈Rn

sup
R>0

Rn
[

∥

∥T (τx0(ϕR))
∥

∥

BMO +
∥

∥Tt(τx0(ϕR))
∥

∥

BMO

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ .

Then assertions (i)–(vi) are all equivalent to each other and to the L2 boundedness
of T , and we have the following equivalence of the previous quantities:

cn,δ (A + B j) ≤
∥

∥T
∥

∥

L2→L2 ≤Cn,δ (A + B j),

for all j ∈ {1,2,3,4,5,6}, for some constants cn,δ ,Cn,δ that depend only on the
dimension n and on the parameter δ > 0.

Remark 8.3.4. Condition (8.3.3) says that the operator T is the weak limit of a se-
quence of its truncations. We already know that if T is bounded on L2, then it must be
equal to an operator that satisfies (8.3.3) plus a bounded function times the identity
operator. (See Proposition 8.1.11.) Therefore, it is not a serious restriction to assume
this. See Remark 8.3.6 for a version of Theorem 8.3.3 in which this assumption is
not imposed. However, the reader should always keep in mind the following patho-
logical situation: Let K be a function on Rn ×Rn \ {(x,x) : x ∈ Rn} that satisfies
condition (ii) of the theorem. Then nothing prevents the Schwartz kernel W of T
from having the form

W = K(x,y)+ h(x)δx=y,

where h(x) is an unbounded function and δx=y is Lebesgue measure on the subspace
x = y. In this case, although the T (ε)’s are uniformly bounded on L2, T cannot be L2

bounded, since h is not a bounded function.
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Before we begin the lengthy proof of this theorem, we state a lemma that we
need.

Lemma 8.3.5. Under assumptions (8.1.1), (8.1.2), and (8.1.3), there is a constant
Cn such that for all normalized bumps ϕ we have

sup
x0∈Rn

∫

|x−x0|≥20R

∣

∣

∣

∣

∫

Rn
K(x,y)τx0(ϕR)(y)dy

∣

∣

∣

∣

2

dx ≤ CnA2

Rn . (8.3.4)

Proof. Note that the interior integral in (8.3.4) is absolutely convergent, since
τx0(ϕR) is supported in the ball B(x0,10R) and x lies in the complement of the dou-
ble of this ball. To prove (8.3.4), simply observe that since |K(x,y)| ≤ A|x− y|−n,
we have that

|T (τx0(ϕR))(x)| ≤ CnA
|x− x0|n

whenever |x− x0| ≥ 20R. The estimate follows easily. �

8.3.2 The Proof of Theorem 8.3.3

This subsection is dedicated to the proof of Theorem 8.3.3.

Proof. The proof is based on a series of steps. We begin by showing that condition
(iii) implies condition (iv).

(iii) =⇒ (iv)

Fix a C ∞0 function φ with 0 ≤ φ ≤ 1, supported in the ball B(0,4), and equal to
1 on the ball B(0,2). We consider the functions φ(·/R) that tend to 1 as R → ∞ and
we show that T (1) is the weak limit of the functions T (φ(·/R)). This means that for
all g ∈ D ′

0 (smooth functions with compact support and integral zero) one has

〈

T (φ(·/R)),g
〉

→
〈

T (1),g
〉

(8.3.5)

as R→∞. To prove (8.3.5) we fix a C ∞0 function η that is equal to one on the support
of g. Then we write
〈

T (φ(·/R)),g
〉

=
〈

T (ηφ(·/R)),g
〉

+
〈

T ((1−η)φ(·/R)),g
〉

=
〈

T (ηφ(·/R)),g
〉

+
∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))φ(y/R)dydx ,

where x0 is a point in the support of g. There exists an R0 > 0 such that for R ≥ R0,
φ(·/R) is equal to 1 on the support of η , and moreover the expressions
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∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))φ(y/R)dydx

converge to
∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))dydx

as R → ∞ by the Lebesgue dominated convergence theorem. Using Definition
8.1.16, we obtain the validity of (8.3.5).

Next we observe that the functions φ(·/R) are in L2, since φ(x/R) = R−nφR(x),
and by hypothesis (iii), φR are in L2. We show that

∥

∥T (φ(·/R))
∥

∥

BMO ≤Cn,δ (A + B3) (8.3.6)

uniformly in R > 0. Once (8.3.6) is established, then the sequence {T (φ(·/ j))}∞j=1

lies in a multiple of the unit ball of BMO = (H1)∗, and by the Banach–Alaoglou
theorem, there is a subsequence of the positive integers R j such that T (φ(·/R j))
converges weakly to an element b in BMO. This means that

〈

T (φ(·/R j)),g
〉

→
〈

b,g
〉

(8.3.7)

as j →∞ for all g ∈ D0. Using (8.3.5), we conclude that T (1) can be identified with
the BMO function b, and as a consequence of (8.3.6) it satisfies

∥

∥T (1)
∥

∥

BMO ≤Cn,δ (A + B3) .

In a similar fashion, we identify Tt(1) with a BMO function with norm satisfying
∥

∥Tt(1)
∥

∥

BMO ≤Cn,δ (A + B3) .

We return to the proof of (8.3.6). We fix a ball B = B(x0,r) with radius r > 0
centered at x0 ∈ Rn. If we had a constant cB such that

1
|B|

∫

B
|T (φ(·/R))(x)− cB|dx ≤ cn,δ B3 (8.3.8)

for all R > 0, then property (3) in Proposition 7.1.2 (adapted to balls) would yield
(8.3.6). Obviously, (8.3.8) is a consequence of the two estimates

1
|B|

∫

B
|T
[

φ( ·−x0
r )φ( ·

R )
]

(x)|dx ≤ cn B3 , (8.3.9)

1
|B|

∫

B

∣

∣T
[

(1−φ( ·−x0
r ))φ( ·

R )
]

(x)−T
[

(1−φ( ·−x0
r ))φ( ·

R )
]

(x0)
∣

∣dx ≤ cn

δ
A . (8.3.10)

We bound the double integral in (8.3.10) by

1
|B|

∫

B

∫

|y−x0|≥2r
|K(x,y)−K(x0,y)|φ(y/R)dydx , (8.3.11)
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since 1−φ((y− x0)/r) = 0 when |y− x0| ≤ 2r. Since |x− x0| ≤ r ≤ 1
2 |y− x0|, con-

dition (8.1.2) gives that (8.3.11) holds with cn = ωn−1 = |Sn−1|.
It remains to prove (8.3.9). It is easy to verify that there is a constant C0 =

C0(n,φ) such that for 0 < ε ≤ 1 and for all a ∈ Rn the functions

C−1
0 φ(ε(x + a))φ(x), C−1

0 φ(x)φ(−a + εx) (8.3.12)

are normalized bumps. The important observation is that with a = x0/r we have

φ( x
R )φ( x−x0

r ) = rnτx0

[(

φ
(

r
R(·+ a)

)

φ(·)
)

r

]

(x) (8.3.13)

= Rn
(

φ(·)φ
(

−a + R
r (·)

)

)

R
(x), (8.3.14)

and thus in either case r ≤ R or R ≤ r, one may express the product φ( x
R )φ( x−x0

r ) as
a multiple of a translation of an L1-dilation of a normalized bump.

Let us suppose that r ≤ R. In view of (8.3.13) we write

T
[

φ( ·−x0
r )φ( ·

R )
]

(x) = C0 rnT
[

τx0(ϕr)
]

(x)

for some normalized bump ϕ . Using this fact and the Cauchy–Schwarz inequality,
we estimate the expression on the left in (8.3.9) by

C0 rn/2

|B| 1
2

rn/2
(
∫

B
|T
[

τx0(ϕr)
]

(x)|2 dx

) 1
2

≤ C0 rn/2

|B| 1
2

B3 = cn B3 ,

where the first inequality follows by applying hypothesis (iii).
We now consider the case R ≤ r. In view of (8.3.14) we write

T
[

φ( ·−x0
r )φ( ·

R )
]

(x) = C0 RnT
(

ϕR
)

(x)

for some other normalized bump ϕ . Using this fact and the Cauchy–Schwarz in-
equality, we estimate the expression on the left in (8.3.9) by

C0 Rn/2

|B| 1
2

Rn/2
(
∫

B
|T (ζR)(x)|2 dx

) 1
2

≤ C0 Rn/2

|B| 1
2

B3 ≤ cn B3

by applying hypothesis (iii) and recalling that R ≤ r. This proves (8.3.9).
To finish the proof of (iv), we need to prove that T satisfies the weak boundedness

property. But this is elementary, since for all normalized bumps ϕ and ψ and all
x ∈ Rn and R > 0 we have

∣

∣

〈

T (τx(ψR)),τx(ϕR)
〉∣

∣ ≤
∥

∥T (τx(ψR))
∥

∥

L2

∥

∥τx(ϕR)
∥

∥

L2

≤ B3R− n
2
∥

∥τx(ϕR)
∥

∥

L2

≤CnB3R−n.
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This gives
∥

∥T
∥

∥

W B ≤CnB3, which implies the estimate B4 ≤Cn,δ (A + B3) and con-
cludes the proof of the fact that condition (iii) implies (iv).

(iv) =⇒ (L2 boundedness of T )

We now assume condition (iv) and we present the most important step of the
proof, establishing the fact that T has an extension that maps L2(Rn) to itself. The
assumption that the distributions T (1) and Tt(1) coincide with BMO functions leads
to the construction of Carleson measures that provide the key tool in the bounded-
ness of T .

We pick a smooth radial functionΦ with compact support that is supported in the
ball B(0, 1

2 ) and that satisfies
∫

RnΦ(x)dx = 1. For t > 0 we defineΦt(x) = t−nΦ( x
t ).

Since Φ is a radial function, the operator

Pt( f ) = f ∗Φt (8.3.15)

is self-transpose. The operator Pt is a continuous analogue of S j = ∑k≤ jΔk, where
the Δ j’s are the Littlewood–Paley operators.

We now fix a Schwartz function f whose Fourier transform is supported away
from a neighborhood of the origin. We discuss an integral representation for T ( f ).
We begin with the facts, which can be found in Exercises 8.3.1 and 8.3.2, that

T ( f ) = lim
s→0

P2
s T P2

s ( f ) ,

0 = lim
s→∞

P2
s TP2

s ( f ) ,

where the limits are interpreted in the topology of S ′(Rn). Thus, with the use of
the fundamental theorem of calculus and the product rule, we are able to write

T ( f ) = lim
s→0

P2
s T P2

s ( f )− lim
s→∞

P2
s T P2

s ( f )

= − lim
ε→0

∫ 1
ε

ε
s

d
ds

(

P2
s T P2

s

)

( f )
ds
s

= − lim
ε→0

∫ 1
ε

ε

[

s

(

d
ds

P2
s

)

T P2
s ( f )+ P2

s

(

Ts
d
ds

P2
s

)

( f )
]

ds
s

. (8.3.16)

For a Schwartz function g we have
(

s
d
ds

P2
s (g)

)

̂

(ξ ) = ĝ(ξ )s
d
ds
̂Φ(sξ )2

= ĝ(ξ ) ̂Φ(sξ )
(

2sξ ·∇ ̂Φ(sξ )
)

= ĝ(ξ )
n

∑
k=1

̂Ψk(sξ )̂Θk(sξ )

=
n

∑
k=1

(

˜Qk,sQk,s(g)
)

̂(ξ ) =
n

∑
k=1

(

Qk,s
˜Qk,s(g)

)

̂(ξ ) ,
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where for 1≤ k≤ n,̂Ψk(ξ )= 2ξk
̂Φ(ξ ),̂Θk(ξ )= ∂k

̂Φ(ξ ) and Qk,s, ˜Qk,s are operators
defined by

Qk,s(g) = g ∗ (Ψk)s , ˜Qk,s(g) = g ∗ (Θk)s ;

here (Θk)s(x) = s−nΘk(s−1x) and (Ψk)s are defined similarly. Observe thatΨk and
Θk are smooth odd bumps supported in B(0, 1

2 ) and have integral zero. SinceΨk and

Θk are odd, they are anti-self-transpose, meaning that (Qk,s)t = −Qk,s and ( ˜Qk,s)t =
− ˜Qk,s. We now write the expression in (8.3.16) as

− lim
ε→0

n

∑
k=1

[
∫ 1

ε

ε
˜Qk,sQk,sTPsPs( f )

ds
s

+
∫ 1

ε

ε
PsPsT Qk,s

˜Qk,s( f )
ds
s

]

, (8.3.17)

where the limit converges in S ′(Rn). We set

Tk,s = Qk,sTPs ,

and we observe that the operator PsTQk,s is equal to −((Tt)k,s)t .
Recall the notation τx(h)(z) = h(z− x). In view of identity (2.3.21) and the con-

vergence of the Riemann sums to the integral defining f ∗Φs in the topology of S
(see the proof of Theorem 2.3.20), we deduce that the operator Tk,s has kernel

Kk,s(x,y)=−
〈

T (τy(Φs)),τx((Ψk)s)
〉

=−
〈

Tt(τx((Ψk)s)),τy(Φs)
〉

. (8.3.18)

Likewise, the operator −(Tt)t
k,s has kernel

〈

Tt(τx(Φs)),τy((Ψk)s)
〉

=
〈

T (τy((Ψk)s)),τx(Φs)
〉

.

For 1 ≤ k ≤ n we need the following facts regarding the kernels of these operators:
∣

∣

〈

T (τx((Ψk)s)),τy(Φs)
〉∣

∣ ≤ Cn,δ
(∥

∥T
∥

∥

W B + A
)

ps(x− y) , (8.3.19)
∣

∣

〈

Tt(τx((Ψk)s)),τy(Φs)
〉∣

∣ ≤ Cn,δ
(∥

∥T
∥

∥

W B + A
)

ps(x− y) , (8.3.20)

where

pt(u) =
1
tn

1

(1 + | u
t |)n+δ

is the L1 dilation of the function p(u) = (1 + |u|)−n−δ .
To prove (8.3.20), we consider the following two cases: If |x− y| ≤ 5s, then the

weak boundedness property gives

∣

∣

〈

T (τy(Φs)),τx((Ψk)s)
〉∣

∣=
∣

∣

〈

T (τx((τ
y−x

s (Φ))s)),τx((Ψk)s)
〉∣

∣≤
Cn
∥

∥T
∥

∥

W B

sn ,

since bothΨk and τ
y−x

s (Φ) are multiples of normalized bumps. Notice here that both
of these functions are supported in B(0,10), since 1

s |x−y| ≤ 5. This estimate proves
(8.3.20) when |x− y| ≤ 5s.
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We now turn to the case |x− y| ≥ 5s. Then the functions τy(Φs) and τx((Ψk)s)
have disjoint supports and so we have the integral representation

〈

Tt(τx((Ψk)s)),τy(Φs)
〉

=
∫

Rn

∫

Rn
Φs(v− y)K(u,v)(Ψk)s(u− x)dudv .

Using thatΨk has mean value zero, we can write the previous expression as
∫

Rn

∫

Rn
Φs(v− y)

(

K(u,v)−K(x,v)
)

(Ψk)s(u− x)dudv .

We observe that |u− x| ≤ s and |v− y| ≤ s in the preceding double integral. Since
|x− y| ≥ 5s, this makes |u− v| ≥ |x− y| − 2s ≥ 3s, which implies that |u− x| ≤
1
2 |u− v|. Using (8.1.2), we obtain

|K(u,v)−K(x,v)| ≤ A|x−u|δ
(|u− v|+ |x− v|)n+δ ≤Cn,δA

sδ

|x− y|n+δ ,

where we used the fact that |u− v| ≈ |x− y|. Inserting this estimate in the double
integral, we obtain (8.3.20). Estimate (8.3.19) is proved similarly.

At this point we drop the dependence of Qk,s and ˜Qk,s on the index k, since we
can concentrate on one term of the sum in (8.3.17). We have managed to express
T ( f ) as a finite sum of operators of the form

∫ ∞

0

˜QsTsPs( f )
ds
s

(8.3.21)

and of the form
∫ ∞

0
PsTs ˜Qs( f )

ds
s

, (8.3.22)

where the preceding integrals converge in S ′(Rn) and the Ts’s have kernels Ks(x,y),
which are pointwise dominated by a constant multiple of

(A + B4)ps(x− y) .

It suffices to obtain L2 bounds for an operator of the form (8.3.21) with constant
at most a multiple of A + B4. Then by duality the same estimate also holds for
the operators of the form (8.3.22). We make one more observation. Using (8.3.18)
(recall that we have dropped the indices k), we obtain

Ts(1)(x) =
∫

Rn
Ks(x,y)dy = −

〈

Tt(τx(Ψs)),1
〉

= −(Ψs ∗T (1))(x) , (8.3.23)

where all integrals converge absolutely.
We can therefore concentrate on the L2 boundedness of the operator in (8.3.21).

We pair this operator with a Schwartz function g and we use the convergence of the
integral in S ′ and the property ( ˜Qs)t = − ˜Qs to obtain
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〈
∫ ∞

0

˜QsTsPs( f )
ds
s

,g
〉

=
∫ ∞

0

〈

˜QsTsPs( f ),g
〉 ds

s
= −

∫ ∞

0

〈

TsPs( f ), ˜Qs(g)
〉 ds

s
.

The intuition here is as follows: Ts is an averaging operator at scale s and Ps( f ) is
essentially constant on that scale. Therefore, the expression TsPs( f ) must look like
Ts(1)Ps( f ). To be precise, we introduce this term and try to estimate the error that
occurs. We have

TsPs( f ) = Ts(1)Ps( f )+
[

TsPs( f )−Ts(1)Ps( f )
]

. (8.3.24)

We estimate the terms that arise from this splitting. Recalling (8.3.23), we write
∣

∣

∣

∣

∫ ∞

0

〈

(Ψs ∗T (1))Ps( f ), ˜Qs(g)
〉 ds

s

∣

∣

∣

∣

(8.3.25)

≤
(
∫ ∞

0

∥

∥Ps( f )(Ψs ∗T(1))
∥

∥

2
L2

ds
s

)1
2
(
∫ ∞

0

∥

∥ ˜Qs(g)
∥

∥

2
L2

ds
s

)1
2

=
∥

∥

∥

∥

(
∫ ∞

0

∣

∣Ps( f )(Ψs ∗T (1))
∣

∣

2 ds
s

)1
2
∥

∥

∥

∥

L2

∥

∥

∥

∥

(
∫ ∞

0

∣

∣ ˜Qs(g)
∣

∣

2 ds
s

)1
2
∥

∥

∥

∥

L2
. (8.3.26)

Since T (1) is a BMO function, |(Ψs∗T (1))(x)|2dx ds
s is a Carleson measure on Rn+1

+ .
Using Theorem 7.3.8 and the Littlewood–Paley theorem (Exercise 5.1.4), we obtain
that (8.3.26) is controlled by

Cn
∥

∥T (1)
∥

∥

BMO

∥

∥ f
∥

∥

L2

∥

∥g
∥

∥

L2 ≤CnB4
∥

∥ f
∥

∥

L2

∥

∥g
∥

∥

L2 .

This gives the sought estimate for the first term in (8.3.24). For the second term in
(8.3.24) we have
∣

∣

∣

∣

∫ ∞

0

∫

Rn
˜Qs(g)(x)

[

TsPs( f )−Ts(1)Ps( f )
]

(x)dx
ds
s

∣

∣

∣

∣

≤
(
∫ ∞

0

∫

Rn
| ˜Qs(g)(x)|2 dx

ds
s

)1
2
(
∫ ∞

0

∫

Rn
|(TsPs( f )−Ts(1)Ps( f ))(x)|2 dx

ds
s

)1
2

≤Cn
∥

∥g
∥

∥

L2

(
∫ ∞

0

∫

Rn

∣

∣

∣

∣

∫

Rn
Ks(x,y)[Ps( f )(y)−Ps( f )(x)]dy

∣

∣

∣

∣

2

dx
ds
s

)1
2

≤Cn(A + B4)
∥

∥g
∥

∥

L2

(
∫ ∞

0

∫

Rn

∫

Rn
ps(x− y)

∣

∣Ps( f )(y)−Ps( f )(x)
∣

∣

2
dydx

ds
s

)1
2

,

where in the last estimate we used the fact that the measure pt(x− y)dy is a mul-
tiple of a probability measure. It suffices to estimate the last displayed square root.
Changing variables u = x− y and applying Plancherel’s theorem, we express this
square root as
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(
∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣

∣Ps( f )(y)−Ps( f )(y + u)
∣

∣

2
dudy

ds
s

)1
2

=
(
∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣

∣ ̂Φ(sξ )− ̂Φ(sξ )e2π iu·ξ ∣
∣

2∣
∣ ̂f (ξ )

∣

∣

2
dudξ

ds
s

)1
2

≤
(
∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣

∣ ̂Φ(sξ )
∣

∣

2
4π

δ
2 |u| δ2 |ξ | δ2

∣

∣ ̂f (ξ )
∣

∣

2
dudξ

ds
s

)1
2

= 2π
δ
4

(
∫

Rn

∫ ∞

0

(
∫

Rn
ps(u)

∣

∣
u
s

∣

∣

δ
2 du

)

∣

∣ ̂Φ(sξ )
∣

∣

2|sξ | δ2 ds
s

∣

∣ ̂f (ξ )
∣

∣

2
dξ
)1

2

,

and we claim that this last expression is bounded by Cn,δ
∥

∥ f
∥

∥

L2 . Indeed, we first

bound the quantity
∫

Rn ps(u)
∣

∣
u
s

∣

∣

δ/2
du by a constant, and then we use the estimate

∫ ∞

0

∣

∣ ̂Φ(sξ )
∣

∣

2|sξ | δ2 ds
s

=
∫ ∞

0

∣

∣ ̂Φ(se1)
∣

∣

2
s
δ
2

ds
s

≤C′
n,δ < ∞

and Plancherel’s theorem to obtain the claim. [Here e1 = (1,0, . . . ,0).] Taking g to
be an arbitrary Schwartz function with L2 norm at most 1 and using duality, we
deduce the estimate

∥

∥T ( f )
∥

∥

L2 ≤ Cn,δ (A + B4)
∥

∥ f
∥

∥

L2 for all Schwartz functions f
whose Fourier transform does not contain a neighborhood of the origin. Such func-
tions are dense in L2(Rn) (cf. Exercise 5.2.9) and thus T admits an extension on L2

that satisfies
∥

∥T
∥

∥

L2→L2 ≤Cn,δ (A + B4).

(L2 boundedness of T ) =⇒ (v)

If T has an extension that maps L2 to itself, then by Theorem 8.2.7 we have

B5 ≤Cn,δ
(

A +
∥

∥T
∥

∥

L2→L2

)

< ∞.

Thus the boundedness of T on L2 implies condition (v).

(v) =⇒ (vi)

At a formal level the proof of this fact is clear, since we can write a normalized
bump as the inverse Fourier transform of its Fourier transform and interchange the
integrations with the action of T to obtain

T (τx0(ϕR)) =
∫

Rn

̂τx0(ϕR)(ξ )T (e2π iξ ·( ·))dξ . (8.3.27)

The conclusion follows by taking BMO norms. To make identity (8.3.27) precise
we provide the following argument.

Let us fix a normalized bump ϕ and a smooth and compactly supported function
g with mean value zero. We pick a smooth function η with compact support that is
equal to 1 on the double of a ball containing the support of g and vanishes off the
triple of that ball. Define ηk(ξ ) = η(ξ/k) and note that ηk tends pointwise to 1 as
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k → ∞. Observe that ηkτx0(ϕR) converges to τx0(ϕR) in S (Rn) as k → ∞, and by
the continuity of T we obtain

lim
k→∞

〈

T (ηkτx0(ϕR)),g
〉

=
〈

T (τx0(ϕR)),g
〉

.

The continuity and linearity of T also allow us to write

〈

T (τx0(ϕR)),g
〉

= lim
k→∞

∫

Rn

̂τx0(ϕR)(ξ )
〈

T
(

ηke2π iξ ·( ·)),g
〉

dξ . (8.3.28)

Let W be the Schwartz kernel of T . By (8.1.5) we have
〈

T (ηke2π iξ ·( ·)),g
〉

=
〈

W,g⊗ηke2π iξ ·( ·)〉. (8.3.29)

Using (8.1.6), we obtain that the expression in (8.3.29) is controlled by a finite sum
of L∞ norms of derivatives of the function

g(x)ηk(y)e2π iξ ·y

on some compact set (that depends on g). Then for some M > 0 and some constant
C(g) depending on g, we have that this sum of L∞ norms of derivatives is controlled
by

C(g)(1 + |ξ |)M

uniformly in k ≥ 1. Since ̂τx0(ϕR) is integrable, the Lebesgue dominated conver-
gence theorem allows us to pass the limit inside the integrals in (8.3.28) to obtain

〈

T (τx0(ϕR)),g
〉

=
∫

Rn

̂τx0(ϕR)(ξ )
〈

T
(

e2π iξ ·( ·)),g
〉

dξ .

We now use assumption (v). The distributions T
(

e2π iξ ·( ·)) coincide with BMO func-
tions whose norm is at most B5. It follows that

∣

∣

〈

T (τx0(ϕR)),g
〉∣

∣ ≤
∥

∥ ̂τx0(ϕR)
∥

∥

L1 sup
ξ∈Rn

∥

∥T
(

e2π iξ ·( ·))∥
∥

BMO

∥

∥g
∥

∥

H1

≤ CnB5R−n
∥

∥g
∥

∥

H1 ,

(8.3.30)

where the constant Cn is independent of the normalized bump ϕ in view of (8.3.1).
It follows from (8.3.30) that

g �→
〈

T (τx0(ϕR)),g
〉

is a bounded linear functional on BMO with norm at most a multiple of B5R−n. It
follows from Theorem 7.2.2 that T (τx0(ϕR)) coincides with a BMO function that
satisfies

Rn
∥

∥T (τx0(ϕR))
∥

∥

BMO ≤CnB5.

The same argument is valid for Tt , and this shows that
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B6 ≤Cn,δ (A + B5)

and concludes the proof that (v) implies (vi).

(vi) =⇒ (iii)

We fix x0 ∈ Rn and R > 0. Pick z0 in Rn such that |x0 − z0| = 40R. Then if
|y− x0| ≤ 10R and |x− z0| ≤ 20R we have

10R ≤ |z0−x0|− |x−z0|− |y−x0|
≤ |x−y|
≤ |x−z0|+ |z0−x0|+ |x0−y| ≤ 70R .

From this it follows that when |x− z0| ≤ 20R we have
∣

∣

∣

∣

∫

|y−x0|≤10R
K(x,y)τx0(ϕR)(y)dy

∣

∣

∣

∣

≤
∫

10R≤|x−y|≤70R
|K(x,y)| dy

Rn ≤
Cn,δA

Rn

and thus
∣

∣

∣ Avg
B(z0,20R)

T (τx0(ϕR))
∣

∣

∣≤
Cn,δA

Rn , (8.3.31)

where AvgB g denotes the average of g over B. Because of assumption (vi), the BMO
norm of the function T (τx0(ϕR)) is bounded by a multiple of B6R−n, a fact used in
the following sequence of implications. We have
∥

∥T (τx0(ϕR))
∥

∥

L2(B(x0,20R))

≤
∥

∥

∥T (τx0(ϕR))− Avg
B(x0,20R)

T (τx0(ϕR))
∥

∥

∥

L2(B(x0,20R))

+ v
1
2
n (20R)

n
2

∣

∣

∣ Avg
B(x0,20R)

T (τx0(ϕR))− Avg
B(z0,20R)

T (τx0(ϕR))
∣

∣

∣

+ v
1
2
n (20R)

n
2

∣

∣

∣ Avg
B(z0,20R)

T (τx0(ϕR))
∣

∣

∣

≤ Cn,δ

(

R
n
2
∥

∥T (τx0(ϕR))
∥

∥

BMO + R
n
2
∥

∥T (τx0(ϕR))
∥

∥

BMO + R− n
2 A
)

≤ Cn,δR− n
2
(

B6 + A
)

,

where we used (8.3.31) and Exercise 7.1.6. Now we have that
∥

∥T (τx0(ϕR))
∥

∥

L2(B(x0,20R)c) ≤Cn,δAR− n
2

in view of Lemma 8.3.5. Since the same computations apply to Tt , it follows that

R
n
2
(∥

∥T (τx0(ϕR))
∥

∥

L2 +
∥

∥Tt(τx0(ϕR))
∥

∥

L2

)

≤Cn,δ (A + B6) , (8.3.32)
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which proves that B3 ≤Cn,δ (A+B6) and hence (iii). This concludes the proof of the
fact that (vi) implies (iii)

We have now completed the proof of the following equivalence of statements:
(

L2 boundedness of T
)

⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi). (8.3.33)

(i) ⇐⇒ (ii)

We show that the quantities A + B1 and A + B2 are controlled by constant multi-
ples of each other. Let us set

Iε,N(x) =
∫

ε<|x−y|<N

K(x,y)dy and It
ε,N(x) =

∫

ε<|x−y|<N

Kt(x,y)dy .

We work with a ball B(x0,N). Observe that

Iε,N(x)−T (ε)(χB(x0,N))(x) =
∫

ε<|x−y|<N

K(x,y)dy−
∫

ε<|x−y|
|x0−y|<N

K(x,y)dy

= −
∫

Sε,N(x,x0)
K(x,y)dy,

(8.3.34)

where Sε,N(x,x0) is the set of all y ∈ Rn that satisfy ε < |x− y| and |x0 − y| < N but
do not satisfy ε < |x− y|< N. But observe that when |x0 − x|< N, then

Sε,N(x,x0) ⊆ {y ∈ Rn : N ≤ |x− y|< 2N}. (8.3.35)

Using (8.3.34), (8.3.35), and (8.1.1), we obtain

∣

∣Iε,N(x)−T (ε)(χB(x0,N))(x)
∣

∣≤
∫

N≤|x−y|≤2N

|K(x,y)|dy ≤ (ωn−1 log2)A (8.3.36)

whenever |x0 − x|< N. It follows that

∥

∥Iε,N −T (ε)(χB(x0,N))
∥

∥

L2(B(x0,N)) ≤Cn AN
n
2 ,

and similarly, it follows that
∥

∥It
ε,N − (T (ε))t(χB(x0,N))

∥

∥

L2(B(x0,N)) ≤Cn AN
n
2 .

These two estimates easily imply the equivalence of conditions (i) and (ii).

We now consider the following condition analogous to (iii):
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(iii)′ B′
3 = sup

ϕ
sup

x0∈Rn
sup
ε>0
R>0

R
n
2

[

∥

∥T (ε)(τx0(ϕR))
∥

∥

L2 +
∥

∥(T (ε))t(τx0(ϕR))
∥

∥

L2

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ . We continue by
showing that this condition is a consequence of (ii).

(ii) =⇒ (iii)′

More precisely, we prove that B′
3 ≤Cn,δ (A+B2). To prove (iii)′, fix a normalized

bump ϕ , a point x0 ∈ Rn, and R > 0. Also fix x ∈ Rn with |x− x0| ≤ 20R. Then we
have

T (ε)(τx0(ϕR))(x) =
∫

ε<|x−y|≤30R
K(ε)(x,y)τx0(ϕR)(y)dx = U1(x)+U2(x),

where

U1(x) =
∫

ε<|x−y|≤30R
K(x,y)

(

τx0(ϕR)(y)− τx0(ϕR)(x)
)

dy,

U2(x) = τx0(ϕR)(x)
∫

ε<|x−y|≤30R
K(x,y)dy.

But we have that |τx0(ϕR)(y)− τx0(ϕR)(x)| ≤CnR−1−n|x− y|; thus we obtain

|U1(x)| ≤CnAR−n

on B(x0,20R); hence
∥

∥U1
∥

∥

L2(B(x0,20R)) ≤CnAR− n
2 . Condition (ii) gives that

∥

∥U2
∥

∥

L2(B(x0,20R)) ≤ R−n
∥

∥Iε,30R
∥

∥

L2(B(x0,30R)) ≤ B2(30R)
n
2 R−n .

Combining these two, we obtain
∥

∥T (ε)(τx0(ϕR))
∥

∥

L2(B(x0,20R)) ≤Cn(A + B2)R− n
2 (8.3.37)

and likewise for (T (ε))t . It follows from Lemma 8.3.5 that

∥

∥T (ε)(τx0 (ϕR))
∥

∥

L2(B(x0,20R)c) ≤Cn,δAR− n
2 ,

which combined with (8.3.37) gives condition (iii)′ with constant

B′
3 ≤Cn,δ (A + B2).

This concludes the proof that condition (ii) implies (iii)′.

(iii)′ =⇒ [T (ε) : L2 → L2 uniformly in ε > 0]

For ε > 0 we introduce the smooth truncations T (ε)
ζ of T by setting
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T (ε)
ζ ( f )(x) =

∫

Rn
K(x,y)ζ ( x−y

ε ) f (y)dy ,

where ζ (x) is a smooth function that is equal to 1 for |x| ≥ 1 and vanishes for |x| ≤ 1
2 .

We observe that
∣

∣T (ε)
ζ ( f )−T (ε)( f )

∣

∣≤Cn AM( f ) ; (8.3.38)

thus the uniform boundedness of T (ε) on L2 is equivalent to the uniform bound-

edness of T (ε)
ζ . In view of Exercise 8.1.3, the kernels of the operators T (ε)

ζ lie in

SK(δ ,cA) uniformly in ε > 0 (for some constant c). Moreover, because of (8.3.38),

we see that the operators T (ε)
ζ satisfy (iii)′ with constant CnA + B′

3. The point to be
noted here is that condition (iii) for T (with constant B3) is identical to condition
(iii)′ for the operators T (ε)

ζ uniformly in ε > 0 (with constant CnA + B′
3).

A careful examination of the proof of the implications

(iii) =⇒ (iv) =⇒ (L2 boundedness of T )

reveals that all the estimates obtained depend only on the constants B3, B4, and A,
but not on the specific operator T . Therefore, these estimates are valid for the opera-

tors T (ε)
ζ that satisfy condition (iii)′. This gives the uniform boundedness of the T (ε)

ζ
on L2(Rn) with bounds at most a constant multiple of A+B′

3. The same conclusion
also holds for the operators T (ε).

[T (ε) : L2 → L2 uniformly in ε > 0] =⇒ (i)

This implication holds trivially.

We have now established the following equivalence of statements:

(i) ⇐⇒ (ii) ⇐⇒ (iii)′ ⇐⇒ [T (ε) : L2 → L2 uniformly in ε > 0] (8.3.39)

(iii) ⇐⇒ (iii)′

Finally, we link the sets of equivalent conditions (8.3.33) and (8.3.39). We first
observe that (iii)′ implies (iii). Indeed, using duality and (8.3.3), we obtain

∥

∥T (τx0(ϕR))
∥

∥

L2 = sup
h∈S

‖h‖L2≤1

∣

∣

∣

∣

∫

Rn
T (τx0(ϕR))(x)h(x)dx

∣

∣

∣

∣

≤ sup
h∈S

‖h‖L2≤1

limsup
j→∞

∣

∣

∣

∣

∫

Rn
T (ε j)(τx0(ϕR))(x)h(x)dx

∣

∣

∣

∣

≤ B′
3R− n

2 ,
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which gives B3 ≤B′
3. Thus under assumption (8.3.3), (ii) implies (iii) and as we have

shown, (iii) implies the boundedness of T on L2. But in view of Corollary 8.2.4, the
boundedness of T on L2 implies the boundedness of T (ε) on L2 uniformly in ε > 0,
which implies (iii)′.

This completes the proof of the equivalence of the six statements (i)–(vi) in such
a way that

∥

∥T
∥

∥

L2→L2 ≈ (A + B j)

for all j ∈ {1,2,3,4,5,6}. The proof of the theorem is now complete. �
Remark 8.3.6. Suppose that condition (8.3.3) is removed from the hypothesis of
Theorem 8.3.3. Then the given proof of Theorem 8.3.3 actually shows that (i) and
(ii) are equivalent to each other and to the statement that the T (ε)’s have bounded
extensions on L2(Rn) that satisfy

sup
ε>0

∥

∥T (ε)∥
∥

L2→L2 < ∞ .

Also, without hypothesis (8.3.3), conditions (iii), (iv), (v), and (vi) are equivalent to
each other and to the statement that T has an extension that maps L2(Rn) to L2(Rn).

8.3.3 An Application

We end this section with one application of the T (1) theorem. We begin with the
following observation.

Corollary 8.3.7. Let K be a standard kernel that is antisymmetric, i.e., it satisfies
K(x,y) = −K(y,x) for all x �= y. Then a linear continuous operator T associated
with K is L2 bounded if and only if T (1) is in BMO.

Proof. In view of Exercise 8.3.3, T automatically satisfies the weak boundedness
property. Moreover, Tt =−T . Therefore, the three conditions of Theorem 8.3.3 (iv)
reduce to the single condition T (1) ∈ BMO. �
Example 8.3.8. Let us recall the kernels Km of Example 8.1.7. These arise in the
expansion of the kernel in Example 8.1.6 in geometric series

1
x− y + i(A(x)−A(y))

=
1

x− y

∞

∑
m=0

(

i
A(x)−A(y)

x− y

)m

(8.3.40)

when L = supx�=y
|A(x)−A(y)|

|x−y| < 1. The operator with kernel (iπ)−1Km(x,y), i.e.,

Cm( f )(x) =
1
π i

lim
ε→0

∫

|x−y|>ε

(

A(x)−A(y)
x− y

)m 1
x− y

f (y)dy , (8.3.41)

is called the mth Calderón commutator. We use the T (1) theorem to show that the
operators Cm are L2 bounded.



210 8 Singular Integrals of Nonconvolution Type

We show that there exists a constant R > 0 such that for all m ≥ 0 we have
∥

∥Cm
∥

∥

L2→L2 ≤ RmLm . (8.3.42)

We prove (8.3.42) by induction. We note that (8.3.42) is trivially true when m = 0,
since C0 = −iH, where H is the Hilbert transform.

Assume that (8.3.42) holds for a certain m. We show its validity for m+1. Recall
that Km is a kernel in SK(1,16(2m+ 1)Lm) by the discussion in Example 8.1.7. We
need the following estimate proved in Theorem 8.2.7:

∥

∥Cm
∥

∥

L∞→BMO ≤C2
[

16(2m+ 1)Lm +
∥

∥Cm
∥

∥

L2→L2

]

, (8.3.43)

which holds for some absolute constant C2.
We start with the following consequence of Theorem 8.3.3:
∥

∥Cm+1
∥

∥

L2→L2 ≤C1
[∥

∥Cm+1(1)
∥

∥

BMO +
∥

∥(Cm+1)t(1)
∥

∥

BMO +
∥

∥Cm+1
∥

∥

WB

]

, (8.3.44)

valid for some absolute constant C1. The key observation is that

Cm+1(1) = Cm(A′) , (8.3.45)

for which we refer to Exercise 8.3.4. Here A′ denotes the derivative of A, which
exists almost everywhere, since Lipschitz functions are differentiable almost every-
where. Note that the kernel of Cm is antisymmetric; consequently, (Cm)t = −Cm

and Exercise 8.3.3 gives that
∥

∥Cm
∥

∥

W B ≤C3 16(2m+ 1)Lm for some other absolute
constant C3. Using all these facts we deduce from (8.3.44) that

∥

∥Cm+1
∥

∥

L2→L2 ≤C1
[

2
∥

∥Cm(A′)
∥

∥

BMO +C3 16(2m+ 3)Lm+1] .

Using (8.3.43) and the fact that
∥

∥A′∥
∥

L∞ ≤ L we obtain that

∥

∥Cm+1
∥

∥

L2→L2 ≤C1

[

2C2 L
{

16(2m+ 1)Lm +
∥

∥Cm
∥

∥

L2→L2

}

+C3 16(2m+ 3)Lm+1
]

.

Combining this estimate with the induction hypothesis (8.3.42), we obtain
∥

∥Cm+1(1)
∥

∥

BMO ≤ Rm+1Lm+1,

provided that R is chosen so that

Rm+1 > 96C1C2(2m+ 1) ,
R > 6C1C2 ,

Rm+1 > 48C1C3(2m+ 3)

for all m ≥ 0. Such an R exists independent of m. This completes the proof of
(8.3.42) by induction.
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Exercises

8.3.1. Let T be a continuous linear operator from S (Rn) to S ′(Rn) and let f be
in S (Rn). Let Pt be as in (8.3.15).
(a) Show that Pt( f ) converges to f in S (Rn) as t → 0.
(b) Conclude that T Pt( f ) → T ( f ) in S ′(Rn) as t → 0.
(c) Conclude that PtTPt( f ) → T ( f ) in S ′(Rn) as t → 0.
(d) Observe that (a)–(c) are also valid if Pt is replaced by P2

t .
[

Hint: Part (a): Use that gk → g in S if and only if ĝk → ĝ in S .
]

8.3.2. Let T and Pt be as in Exercise 8.3.1 and let f be a Schwartz function whose
Fourier transform vanishes in a neighborhood of the origin.
(a) Show that Pt( f ) converges to 0 in S (Rn) as t → ∞.
(b) Conclude that T Pt( f ) → 0 in S ′(Rn) as t → ∞.
(c) Conclude that PtTPt( f ) → 0 in S ′(Rn) as t → ∞.
(d) Observe that (a)–(c) are also valid if Pt is replaced by P2

t .
[

Hint: Part (a): Use the hint in Exercise 8.3.1 and the observation that | ̂Φ(tξ )̂f (ξ )| ≤
C (1 + tc0)−1|̂f (ξ )| if ̂f is supported outside the ball B(0,c0). Part (c): Pair with
a Schwartz function g and use part (a) and the fact that all Schwartz seminorms
of Pt(g) are bounded uniformly in t > 0. To prove the latter you may need that
all Schwartz seminorms of Pt(g) are bounded uniformly in t > 0 if and only if all

Schwartz seminorms of ̂Pt(g) are bounded uniformly in t > 0.
]

8.3.3. (a) Prove that every linear operator T from S (Rn) to S ′(Rn) associated
with an antisymmetric kernel in SK(δ ,A) satisfies the weak boundedness property.
Precisely, for some dimensional constant Cn we have

∥

∥T
∥

∥

W B ≤CnA .

(b) Conclude that for some c < ∞, the Calderón commutators satisfy
∥

∥Cm
∥

∥

WB ≤ c16(2m+ 1)Lm .

[

Hint: Write
〈

T (τx0( fR)),τx0 (gR)
〉

as

1
2

∫

Rn

∫

Rn
K(x,y)

(

τx0( fR)(y)τx0(gR)(x)− τx0( fR)(x)τx0 (gR)(y)
)

dydx

and use the mean value theorem.
]

8.3.4. Prove identity (8.3.45). This identity is obvious by a formal integration by
parts, but to prove it properly, one should interpret things in the sense of distribu-
tions.

8.3.5. Suppose that a standard kernel K(x,y) has the form k(x−y) for some function
k on Rn\{0}. Suppose that k extends to a tempered distribution on Rn whose Fourier
transform is a bounded function. Let T be a continuous linear operator from S (Rn)
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to S ′(Rn) associated with K.
(a) Identify the functions T (e2π iξ ·()) and Tt(e2π iξ ·()) and restrict to ξ = 0 to obtain
T (1) and Tt(1).
(b) Use Theorem 8.3.3 to obtain the L2 boundedness of T .
(c) What are H(1) and Ht(1) equal to when H is the Hilbert transform?

8.3.6. (A. Calderón ) Let A be a Lipschitz function on R. Use expansion (8.3.40)
and estimate (8.3.42) to show that the operator

CA( f )(x) =
1
π i

lim
ε→0

∫

|x−y|>ε

f (y)dy
x− y + i(A(x)−A(y))

is bounded on L2(R) when
∥

∥A′∥
∥

L∞ < R−1, where R satisfies (8.3.43).

8.3.7. Prove that condition (i) of Theorem 8.3.3 is equivalent to the statement that

sup
Q

sup
ε>0

(
∥

∥T (ε)(χQ)
∥

∥

L2

|Q| 1
2

+

∥

∥(T (ε))t(χQ)
∥

∥

L2

|Q| 1
2

)

= B′
1 < ∞ ,

where the first supremum is taken over all cubes Q in Rn.
[

Hint: You may repeat the argument in the equivalence (i) ⇐⇒ (ii) replacing the
ball B(x0,N) by a cube centered at x0 with side length N.

]

8.4 Paraproducts

In this section we study a useful class of operators called paraproducts. Their name
suggests they are related to products; in fact, they are “half products” in some sense
that needs to be made precise. Paraproducts provide interesting examples of non-
convolution operators with standard kernels whose L2 boundedness was discussed
in the Section 8.3. They have found use in many situations, including a proof of the
main implication in Theorem 8.3.3. This proof is discussed in the present section.

8.4.1 Introduction to Paraproducts

Throughout this section we fix a Schwartz radial functionΨ whose Fourier trans-
form is supported in the annulus 1

2 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

̂Ψ (2− jξ ) = 1, when ξ ∈ Rn \ {0}. (8.4.1)

Associated with thisΨ we define the Littlewood–Paley operator Δ j( f ) = f ∗Ψ2− j ,
whereΨt(x) = t−nΨ(t−1x). Using (8.4.1), we easily obtain
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∑
j∈Z
Δ j = I, (8.4.2)

where (8.4.2) is interpreted as an identity on Schwartz functions with mean value
zero. See Exercise 8.4.1. Note that by construction, the functionΨ is radial and thus
even. This makes the operator Δ j equal to its transpose.

We now observe that in view of the properties ofΨ , the function

ξ �→ ∑
j≤0

̂Ψ(2− jξ ) (8.4.3)

is supported in |ξ | ≤ 2, and is equal to 1 when 0 < |ξ | ≤ 1
2 . But ̂Ψ(0) = 0, which

implies that the function in (8.4.3) also vanishes at the origin. We can easily fix
this discontinuity by introducing the Schwartz function whose Fourier transform is
equal to

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.

Definition 8.4.1. We define the partial sum operator S j as

S j = ∑
k≤ j

Δk. (8.4.4)

In view of the preceding discussion, S j is given by convolution with Φ2− j , that is,

S j( f )(x) = ( f ∗Φ2− j)(x), (8.4.5)

and the expression in (8.4.5) is well defined for all f in
⋃

1≤p≤∞Lp(Rn). Since Φ is
a radial function by construction, the operator S j is self-transpose.

Similarly, Δ j(g) is also well defined for all g in
⋃

1≤p≤∞Lp(Rn). Moreover, since
Δ j is given by convolution with a function with mean value zero, it also follows that
Δ j(b) is well defined when b ∈ BMO(Rn). See Exercise 8.4.2 for details.

Definition 8.4.2. Given a function g on Rn, we define the paraproduct operator Pg

as follows:
Pg( f ) = ∑

j∈Z
Δ j(g)S j−3( f ) = ∑

j∈Z
∑

k≤ j−3

Δ j(g)Δk( f ), (8.4.6)

for f in L1
loc(R

n). It is not clear for which functions g and in what sense the series in
(8.4.6) converges even when f is a Schwartz function. One may verify that the series
in (8.4.6) converges absolutely almost everywhere when g is a Schwartz function
with mean value zero; in this case, by Exercise 8.4.1 the series ∑ jΔ j(g) converges
absolutely (everywhere) and S j( f ) is uniformly bounded by the Hardy–Littlewood
maximal function M( f ), which is finite almost everywhere.

One of the main goals of this section is to show that the series in (8.4.6) converges
in L2 when f is in L2(Rn) and g is a BMO function.
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The name paraproduct is derived from the fact that Pg( f ) is essentially “half”
the product of f g. Namely, in view of the identity in (8.4.2) the product f g can be
written as

f g =∑
j
∑
k

Δ j( f )Δk(g) .

Restricting the summation of the indices to k < j defines an operator that corre-
sponds to “half” the product of f g. It is only for minor technical reasons that we
take k ≤ j−3 in (8.4.6).

The main feature of the paraproduct operator Pg is that it is essentially a sum

of orthogonal L2 functions. Indeed, the Fourier transform of the function ̂Δ j(g) is
supported in the set

{ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1} ,

while the Fourier transform of the function ̂S j−3( f ) is supported in the set

⋃

k≤ j−3

{ξ ∈ Rn : 2k−1 ≤ |ξ | ≤ 2k+1} .

This implies that the Fourier transform of the function Δ j(g)S j−3( f ) is supported
in the algebraic sum

{ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1}+{ξ ∈ Rn : |ξ | ≤ 2 j−2} .

But this sum is contained in the set

{ξ ∈ Rn : 2 j−2 ≤ |ξ | ≤ 2 j+2} , (8.4.7)

and the family of sets in (8.4.7) is “almost disjoint” as j varies. This means that
every point in Rn belongs to at most four annuli of the form (8.4.7). Therefore, the
paraproduct Pg( f ) can be written as a sum of functions h j such that the families
{h j : j ∈ 4Z + r} are mutually orthogonal in L2, for all r ∈ {0,1,2,3}. This or-
thogonal decomposition of the paraproduct has as an immediate consequence its L2

boundedness when g is an element of BMO.

8.4.2 L2 Boundedness of Paraproducts

The following theorem is the main result of this subsection.

Theorem 8.4.3. For fixed b ∈ BMO(Rn) and f ∈ L2(Rn) the series

∑
| j|≤M

Δ j(b)S j−3( f )

converges in L2 as M → ∞ to a function that we denote by Pb( f ). The operator Pb

thus defined is bounded on L2(Rn), and there is a dimensional constant Cn such that
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for all b ∈ BMO(Rn) we have
∥

∥Pb

∥

∥

L2→L2 ≤Cn
∥

∥b
∥

∥

BMO.

Proof. The proof of this result follows by putting together some of the powerful
ideas developed in Chapter 7. First we define a measure on Rn+1

+ by setting

dμ(x,t) = ∑
j∈Z

|Δ j(b)(x)|2 dxδ2−( j−3)(t) .

By Theorem 7.3.8 we have that μ is a Carleson measure on Rn+1
+ whose norm is

controlled by a constant multiple of
∥

∥b
∥

∥

2
BMO. Now fix f ∈ L2(Rn) and recall that

Φ(x) = ∑r≤0Ψ2−r(x). We define a function F(x,t) on Rn+1
+ by setting

F(x,t) = (Φt ∗ f )(x) .

Observe that F(x,2−k) = Sk( f )(x) for all k ∈ Z. We estimate the L2 norm of a finite
sum of terms of the form Δ j(b)S j−3( f ). For M,N ∈Z+ with M≥N we have

∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

Δ j(b)(x)S j−3( f )(x)
∣

∣

∣

∣

2

dx

=
∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

∣

∣

2

dξ .

(8.4.8)

It is a simple fact that every ξ ∈ Rn belongs to at most four annuli of the form
(8.4.7). It follows that at most four terms in the last sum in (8.4.8) are nonzero. Thus

∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

∣

∣

2

dξ

≤ 4 ∑
N≤| j|≤M

∫

Rn

∣

∣

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

2
dξ

≤ 4∑
j∈Z

∫

Rn

∣

∣Δ j(b)(x)S j−3( f )(x)
∣

∣

2
dx

= 4
∫

Rn

∣

∣F(x,t)
∣

∣

2
dμ(x,t)

≤ Cn
∥

∥b
∥

∥

2
BMO

∫

Rn
F∗(x)2 dx,

(8.4.9)

where we used Corollary 7.3.6 in the last inequality.
Next we note that the nontangential maximal function F∗ of F is controlled by the

Hardy–Littlewood maximal function of f . Indeed, since Φ is a Schwartz function,
we have
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F∗(x) ≤Cn sup
t>0

sup
|y−x|<t

∫

Rn

1
tn

| f (z)|
(1 + |z−y|

t )n+1
dz . (8.4.10)

Now break the previous integral into parts such that |z− y| ≥ 3t and |z− y| ≤ 3t.
In the first case we have |z− y| ≥ |z− x| − t ≥ 1

2 |z− x|, and the last inequality is
valid, since |z− x| ≥ |z− y| − t ≥ 2t. Using this estimate together with Theorem
2.1.10 we obtain that this part of the integral is controlled by a constant multiple
of M( f )(x). The part of the integral in (8.4.10) where |z− y| ≤ 3t is controlled by
the integral over the larger set |z− x| ≤ 4t, and since the denominator in (8.4.10) is
always bounded by 1, we also obtain that this part of the integral is controlled by a
constant multiple of M( f )(x). We conclude that

∫

Rn
F∗(x)2 dx ≤Cn

∫

Rn
M( f )(x)2 dx ≤Cn

∫

Rn
| f (x)|2 dx. (8.4.11)

Combining (8.4.9) and (8.4.11), we obtain the estimate

4∑
j∈Z

∫

Rn
|
(

Δ j(b)S j−3( f )
)

̂(ξ )|2 dξ ≤Cn
∥

∥b
∥

∥

2
BMO

∥

∥ f
∥

∥

2
L2 < ∞.

This implies that given ε > 0, we can find an N0 > 0 such that

M ≥ N ≥ N0 =⇒ ∑
N≤| j|≤M

∫

Rn

∣

∣

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

2
dξ < ε.

But recall from (8.4.8) and (8.4.9) that

∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

Δ j(b)(x)S j−3( f )(x)
∣

∣

∣

∣

2

dx ≤ 4 ∑
N≤| j|≤M

∫

Rn

∣

∣

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

2
dξ .

We conclude that the sequence
{

∑
| j|≤M

Δ j(b)S j−3( f )
}

M

is Cauchy in L2(Rn), and therefore it converges in L2 to a function Pb( f ). The bound-
edness of Pb on L2 follows from the sequence of inequalities already proved. �

8.4.3 Fundamental Properties of Paraproducts

Having established the L2 boundedness of paraproducts, we turn to some proper-
ties that they possess. First we study their kernels. Paraproducts are not operators
of convolution type but are more general integral operators of the form discussed
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in Section 8.1. We show that the kernel of Pb is a tempered distribution Lb that
coincides with a standard kernel on Rn ×Rn \ {(x,x) : x ∈ Rn}.

First we study the kernel of the operator f �→ Δ j(b)S j−3( f ) for any j ∈ Z. We
have that

Δ j(b)(x)S j−3( f )(x) =
∫

Rn
L j(x,y) f (y)dy,

where Lj is the integrable function

Lj(x,y) = (b ∗Ψ2− j)(x)2( j−3)nΦ(2 j−3(x− y)).

Next we can easily verify the following size and regularity estimates for Lj:

|Lj(x,y)| ≤ Cn
∥

∥b
∥

∥

BMO

2n j

(1 + 2 j|x− y|)n+1 , (8.4.12)

|∂αx ∂βy L j(x,y)| ≤ Cn,α ,β ,N

∥

∥b
∥

∥

BMO

2 j(n+|α |+|β |)

(1 + 2 j|x− y|)n+1+N , (8.4.13)

for all multi-indices α and β and all N ≥ |α|+ |β |.
It follows from (8.4.12) that when x �= y the series

∑
j∈Z

Lj(x,y) (8.4.14)

converges absolutely and is controlled in absolute value by

Cn
∥

∥b
∥

∥

BMO ∑
j∈Z

2n j

(1 + 2 j|x− y|)n+1 ≤
C′

n

∥

∥b
∥

∥

BMO

|x− y|n .

Similarly, by taking N ≥ |α|+ |β |, it can be shown that the series

∑
j∈Z
∂αx ∂

β
y L j(x,y) (8.4.15)

converges absolutely when x �= y and is controlled in absolute value by

Cn,α ,β ,N

∥

∥b
∥

∥

BMO ∑
j∈Z

2 j(n+|α |+|β )

(1 + 2 j|x− y|)n+1+N ≤
C′

n,α ,β
∥

∥b
∥

∥

BMO

|x− y|n+|α |+|β |

for all multi-indices α and β .
The Schwartz kernel of Pb is a distribution Wb on R2n. It follows from the pre-

ceding discussion that the distribution Wb coincides with the function

Lb(x,y) = ∑
j∈Z

Lj(x,y)

on Rn ×Rn \ {(x,x) : x ∈ Rn}, and also that the function Lb satisfies the estimates
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|∂αx ∂βy Lb(x,y)| ≤
C′

n,α ,β
∥

∥b
∥

∥

BMO

|x− y|n+|α |+|β | (8.4.16)

away from the diagonal x = y.
We note that the transpose of the operator Pb is formally given by the identity

Pt
b( f ) = ∑

j∈Z
S j−3( fΔ j(b)).

As remarked in the previous section, the kernel of the operator Pt
b is a distribution

Wt
b that coincides with the function

Lt
b(x,y) = Lb(y,x)

away from the diagonal of R2n. It is trivial to observe that Lt
b satisfies the same size

and regularity estimates (8.4.16) as Lb. Moreover, it follows from Theorem 8.4.3
that the operator Pt

b is bounded on L2(Rn) with norm at most a multiple of the BMO
norm of b.

We now turn to two important properties of paraproducts. In view of Definition
8.1.16, we have a meaning for Pb(1) and Pt

b(1), where Pb is the paraproduct operator.
The first property we prove is that Pb(1) = b. Observe that this statement is trivially
valid at a formal level, since S j(1) = 1 for all j and ∑ jΔ j(b) = b. The second
property is that Pt

b(1) = 0. This is also trivially checked at a formal level, since
S j−3(Δ j(b)) = 0 for all j, as a Fourier transform calculation shows. We make both
of these statements precise in the following proposition.

Proposition 8.4.4. Given b ∈ BMO(Rn), let Pb be the paraproduct operator defined
as in (8.4.6). Then the distributions Pb(1) and Pt

b(1) coincide with elements of BMO.
Precisely, we have

Pb(1) = b and Pt
b(1) = 0. (8.4.17)

Proof. Let ϕ be an element of D0(Rn). Find a uniformly bounded sequence of
smooth functions with compact support {ηN}∞N=1 that converges to the function
1 as N → ∞. Without loss of generality assume that all the functions ηN are equal
to 1 on the ball B(y0,3R), where B(y0,R) is a ball that contains the support of ϕ . As
we observed in Remark 8.1.17, the definition of Pb(1) is independent of the choice
of sequence ηN , so we have the following identity for all N ≥ 1:

〈

Pb(1),ϕ
〉

=
∫

Rn
∑
j∈Z
Δ j(b)(x)S j−3(ηN)(x)ϕ(x)dx

+
∫

Rn

[
∫

Rn
Lb(x,y)ϕ(x)dx

]

(1−ηN(y))dy.

(8.4.18)

Since ϕ has mean value zero, we can subtract the constant Lb(y0,y) from Lb(x,y)
in the integral inside the square brackets in (8.4.18). Then we estimate the absolute
value of the double integral in (8.4.18) by
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∫

|y−y0|≥3R

∫

|x−y0|≤R
A

|y0 − x|
|y0 − y|n+1 |1−ηN(y)| |ϕ(x)|dxdy ,

which tends to zero as N → ∞ by the Lebesgue dominated convergence theorem.
It suffices to prove that the first integral in (8.4.18) tends to

∫

Rn b(x)ϕ(x)dx as
N → ∞. Let us make some preliminary observations. Since the Fourier transform of
the product Δ j(b)S j−3(ηN) is supported in the annulus

{ξ ∈ Rn : 2 j−2 ≤ |ξ | ≤ 2 j+2}, (8.4.19)

we may introduce a smooth and compactly supported function ̂Z(ξ ) such that for
all j ∈ Z the function ̂Z(2− jξ ) is equal to 1 on the annulus (8.4.19) and vanishes
outside the annulus {ξ ∈ Rn : 2 j−3 ≤ |ξ | ≤ 2 j+3}. Let us denote by Q j the operator
given by multiplication on the Fourier transform by the function ̂Z(2− jξ ).

Note that S j(1) is well defined and equal to 1 for all j. This is because Φ has
integral equal to 1. Also, the duality identity

∫

f S j(g)dx =
∫

gS j( f )dx (8.4.20)

holds for all f ∈ L1 and g ∈ L∞. For ϕ in D0(Rn) we have
∫

Rn
∑
j∈Z
Δ j(b)S j−3(ηN)ϕ dx

= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ηN)ϕ dx (series converges in L2 and ϕ ∈ L2)

= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ηN)Q j(ϕ)dx

[

̂Q j(ϕ) = ϕ̂ on the

support of
(

(Δ j(b)S j−3(ηN)
)

̂

]

= ∑
j∈Z

∫

Rn
ηN S j−3

(

Δ j(b)Q j(ϕ)
)

dx (duality)

=
∫

Rn
ηN ∑

j∈Z
S j−3

(

Δ j(b)Q j(ϕ)
)

dx (series converges in L1 and ηN ∈ L∞).

We now explain why the last series of the foregoing converges in L1. Since ϕ is in
D0(Rn), Exercise 8.4.1 gives that the series ∑ j∈Z Q j(ϕ) converges in L1. Since S j

preserves L1 and
sup

j

∥

∥Δ j(b)
∥

∥

L∞ ≤Cn
∥

∥b
∥

∥

BMO

by Exercise 8.4.2, it follows that the series ∑ j∈Z S j−3
(

Δ j(b)Q j(ϕ)
)

also converges
in L1.

We now use the Lebesgue dominated convergence theorem to obtain that the
expression
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∫

Rn
ηN ∑

j∈Z
S j−3

(

Δ j(b)Q j(ϕ)
)

dx

converges as N → ∞ to
∫

Rn
∑
j∈Z

S j−3
(

Δ j(b)Q j(ϕ)
)

dx

= ∑
j∈Z

∫

Rn
S j−3

(

Δ j(b)Q j(ϕ)
)

dx (series converges in L1)

= ∑
j∈Z

∫

Rn
S j−3(1)Δ j(b)Q j(ϕ)dx (in view of (8.4.20))

= ∑
j∈Z

∫

Rn
Δ j(b)Q j(ϕ)dx (since S j−3(1) = 1)

= ∑
j∈Z

∫

Rn
Δ j(b)ϕ dx

(

̂Q j(ϕ) = ϕ̂ on support ̂Δ j(b)
)

= ∑
j∈Z

〈

b,Δ j(ϕ)
〉

(duality)

=
〈

b,∑
j∈Z
Δ j(ϕ)

〉

(series converges in H1, b ∈ BMO)

=
〈

b,ϕ
〉

(Exercise 8.4.1(a)).

Regarding the fact that the series ∑ jΔ j(ϕ) converges in H1, we refer to Exercise
8.4.1. We now obtain that the first integral in (8.4.18) tends to

〈

b,ϕ
〉

as N → ∞. We
have therefore proved that

〈

Pb(1),ϕ
〉

=
〈

b,ϕ
〉

for all ϕ in D0(Rn). In other words, we have now identified Pb(1) as an element of
D ′

0 with the BMO function b.
For the transpose operator Pt

b we observe that we have the identity

〈

Pt
b(1),ϕ

〉

=
∫

Rn
∑
j∈Z

St
j−3

(

Δ j(b)ηN
)

(x)ϕ(x)dx

+
∫

Rn

∫

Rn
Lt

b(x,y)(1−ηN(y))ϕ(x)dydx .

(8.4.21)

As before, we can use the Lebesgue dominated convergence theorem to show that
the double integral in (8.4.21) tends to zero. As for the first integral in (8.4.21), we
have the identity

∫

Rn
Pt

b(ηN)ϕ dx =
∫

Rn
ηN Pb(ϕ)dx .

Since ϕ is a multiple of an L2-atom for H1, Theorem 8.2.6 gives that Pb(ϕ) is an L1

function. The Lebesgue dominated convergence theorem now implies that
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∫

Rn
ηN Pb(ϕ)dx →

∫

Rn
Pb(ϕ) dx =

∫

Rn
∑
j∈Z
Δ j(b)S j−3(ϕ)dx

as N →∞. The required conclusion would follow if we could prove that the function
Pb(ϕ) has integral zero. Since Δ j(b) and S j−3(ϕ) have disjoint Fourier transforms,
it follows that

∫

Rn
Δ j(b)S j−3(ϕ)dx = 0

for all j in Z. But the series

∑
j∈Z
Δ j(b)S j−3(ϕ) (8.4.22)

defining Pb(ϕ) converges in L2 and not necessarily in L1, and for this reason we
need to justify the interchange of the following integrals:

∫

Rn
∑
j∈Z
Δ j(b)S j−3(ϕ)dx = ∑

j∈Z

∫

Rn
Δ j(b)S j−3(ϕ)dx . (8.4.23)

To complete the proof, it suffices to show that when ϕ is in D0(Rn), the series in
(8.4.22) converges in L1. To prove this, pick a ball B(y0,R) that contains the support
of ϕ . The series in (8.4.22) converges in L2(3B) and hence converges in L1(3B). It
remains to prove that it converges in L1((3B)c). For a fixed x ∈ (3B)c and a finite
subset F of Z, we have

∑
j∈F

∫

Rn
L j(x,y)ϕ(y)dy = ∑

j∈F

∫

B

(

Lj(x,y)−Lj(x,y0)
)

ϕ(y)dy . (8.4.24)

Using estimates (8.4.13), we obtain that the expression in (8.4.24) is controlled by
a constant multiple of

∫

B
∑
j∈F

|y− y0|2n j2 j

(1 + 2 j|x− y0|)n+2 |ϕ(y)|dy ≤ c
1

|x− y0|n+1

∫

Rn
|y− y0| |ϕ(y)|dy.

Integrating this estimate with respect to x ∈ (3B)c, we obtain that

∑
j∈F

∥

∥Δ j(b)S j−3(ϕ)
∥

∥

L1((3B)c) ≤Cn
∥

∥ϕ
∥

∥

L1 < ∞

for all finite subsets F of Z. This proves that the series in (8.4.22) converges in L1.
We have now proved that 〈Pt

b(1),ϕ〉 = 0 for all ϕ ∈ D0(Rn). This shows that the
distribution Pt

b(1) is a constant function, which is of course identified with zero if
considered as an element of BMO. �

Remark 8.4.5. The boundedness of Pb on L2 is a consequence of Theorem 8.3.3,
since hypothesis (iv) is satisfied. Indeed, Pb(1) = b, Pt

b(1) = 0 are both BMO func-
tions, and see Exercise 8.4.4 for a sketch of a proof of the estimate

∥

∥Pb
∥

∥

WB ≤
Cn
∥

∥b
∥

∥

BMO. This provides another proof of the fact that
∥

∥Pb
∥

∥

L2→L2 ≤ Cn
∥

∥b
∥

∥

BMO,
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bypassing Theorem 8.3.3. We use this result to obtain a different proof of the main
direction in the T (1) theorem in the next section.

Exercises

8.4.1. Let f ∈ S (Rn) have mean value zero, and consider the series

∑
j∈Z
Δ j( f ) .

(a) Show that this series converges to f absolutely everywhere.
(b) Show that this series converges in L1.
(b) Show that this series converges in H1.
[

Hint: To obtain convergence in L1 for j ≥ 0 use the estimate
∥

∥Δ j( f )
∥

∥

L1 ≤
2− j ∫

Rn
∫

Rn 2 jn|Ψ(2 jy)| |2 jy| |(∇ f )(x− θy)|dydx for some θ in [0,1] and consider
the cases |x| ≥ 2|y| and |x| ≤ 2|y|. When j ≤ 0 use the simple identity f ∗Ψ2− j =
( f2 j ∗Ψ)2− j and reverse the roles of f andΨ . To show convergence in H1, use that
∥

∥Δ j(ϕ)
∥

∥

H1 ≈
∥

∥(∑k |ΔkΔ j(ϕ)|2) 1
2
∥

∥

L1 and that only at most three terms in the square
function are nonzero.

]

8.4.2. Without appealing to the H1-BMO duality theorem, prove that there is a di-
mensional constant Cn such that for all b ∈ BMO(Rn) we have

sup
j∈Z

∥

∥Δ j(b)
∥

∥

L∞ ≤Cn
∥

∥b
∥

∥

BMO.

8.4.3. (a) Show that for all 1 < p,q,r < ∞ with 1
p + 1

q = 1
r there is a constant Cpqr

such that for all Schwartz functions f ,g on Rn we have
∥

∥Pg( f )
∥

∥

Lr ≤Cpqr
∥

∥ f
∥

∥

Lp

∥

∥g
∥

∥

Lq .

(b) Obtain the same conclusion for the bilinear operator

˜Pg( f ) =∑
j
∑
k≤ j

Δ j(g)Δk( f ) .

[

Hint: Part (a): Estimate the Lr norm using duality. Part (b): Use part (a).
]

8.4.4. (a) Let f be a normalized bump (see Definition 8.3.1). Prove that
∥

∥Δ j( fR)
∥

∥

L∞ ≤C(n,Ψ)min
(

2− jR−(n+1),2n j)

for all R > 0. Then interpolate between L1 and L∞ to obtain

∥

∥Δ j( fR)
∥

∥

L2 ≤C(n,Ψ)min
(

2−
j
2 R− n+1

2 ,2
n j
2

)

.
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(b) Observe that the same result is valid for the operators Q j as defined in Proposi-
tion 8.4.4. Conclude that for some constant Cn we have

∑
j∈Z

∥

∥Q j(gR)
∥

∥

L2 ≤CnR− n
2 .

(c) Show that there is a constant Cn such that for all normalized bumps f and g we
have

∣

∣

〈

Pb(τx0( fR)),τx0 (gR)
〉∣

∣≤CnR−n
∥

∥b
∥

∥

BMO .
[

Hint: Part (a): Use the cancellation of the functions f andΨ . Part (c): Write

〈

Pb(τx0( fR)),τx0(gR)
〉

=∑
j

∫

Rn
S j−3[Δ j(τ−x0(b))Q j(gR)] fR dx .

Apply the Cauchy–Schwarz inequality, and use the boundedness of S j−3 on L2,
Exercise 8.4.2, and part (b).

]

8.4.5. (Continuous paraproducts ) (a) Let Φ and Ψ be Schwartz functions on Rn

with
∫

RnΦ(x)dx = 1 and
∫

RnΨ(x)dx = 0. For t > 0 define operators Pt( f ) =Φt ∗ f
and Qt( f ) =Ψt ∗ f . Let b ∈ BMO(Rn) and f ∈ L2(Rn). Show that the limit

lim
ε→0
N→∞

∫ N

ε
Qt
(

Qt(b)Pt( f )
) dt

t

converges in L2(Rn) and defines an operatorΠb( f ) that satisfies
∥

∥Πb

∥

∥

L2→L2 ≤Cn
∥

∥b
∥

∥

BMO

for some dimensional constant Cn.
(b) Under the additional assumption that

lim
ε→0
N→∞

∫ N

ε
Q2

t
dt
t

= I ,

identify Πb(1) and Πb(b).
[

Hint: Suitably adapt the proofs of Theorem 8.4.3 and Proposition 8.4.4.
]

8.5 An Almost Orthogonality Lemma and Applications

In this section we discuss an important lemma regarding orthogonality of operators
and some of its applications.

It is often the case that a linear operator T is given as an infinite sum of other lin-
ear operators Tj such that the Tj’s are uniformly bounded on L2. This sole condition
is not enough to imply that the sum of the Tj’s is also L2 bounded, although this is
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often the case. Let us consider, for instance, the linear operators {Tj} j∈Z given by
convolution with the smooth functions e2π i jt on the circle T1. Each Tj can be written
as Tj( f ) = (̂f ⊗ δ j)∨, where ̂f is the sequence of Fourier coefficients of f ; here δ j

is the infinite sequence consisting of zeros everywhere except at the jth entry, in
which it has 1, and ⊗ denotes term-by-term multiplication of infinite sequences. It
follows that each operator Tj is bounded on L2(T1) with norm 1. Moreover, the sum
of the Tj’s is the identity operator, which is also L2 bounded with norm 1.

It is apparent from the preceding discussion that the crucial property of the Tj’s
that makes their sum bounded is their orthogonality. In the preceding example we
have TjTk = 0 unless j = k. It turns out that this orthogonality condition is a bit too
strong, and it can be weakened significantly.

8.5.1 The Cotlar–Knapp–Stein Almost Orthogonality Lemma

The next result provides a sufficient orthogonality criterion for boundedness of sums
of linear operators on a Hilbert space.

Lemma 8.5.1. Let {Tj} j∈Z be a family of operators mapping a Hilbert space H to
itself. Assume that there is a a function γ : Z → R+ such that

∥

∥T ∗
j Tk
∥

∥

H→H +
∥

∥TjT
∗

k

∥

∥

H→H ≤ γ( j− k) (8.5.1)

for all j,k in Z. Suppose that

A = ∑
j∈Z

√

γ( j) < ∞ .

Then the following three conclusions are valid:

(i) For all finite subsets Λ of Z we have
∥

∥

∥∑
j∈Λ

Tj

∥

∥

∥

H→H
≤ A.

(ii) For all x ∈ H we have

∑
j∈Z

∥

∥Tj(x)
∥

∥

2
H ≤ A2

∥

∥x
∥

∥

2
H .

(iii) For all x ∈ H the sequence ∑| j|≤N Tj(x) converges to some T (x) as N → ∞ in
the norm topology of H. The linear operator T defined in this way is bounded
from H to H with norm

∥

∥T
∥

∥

H→H ≤ A.

Proof. As usual we denote by S∗ the adjoint of a linear operator S. It is a simple fact
that any bounded linear operator S : H → H satisfies

∥

∥S
∥

∥

2
H→H =

∥

∥SS∗
∥

∥

H→H . (8.5.2)
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See Exercise 8.5.1. By taking j = k in (8.5.1) and using (8.5.2), we obtain
∥

∥Tj
∥

∥

H→H ≤
√

γ(0) (8.5.3)

for all j ∈ Z. It also follows from (8.5.2) that if an operator S is self-adjoint, then
∥

∥S
∥

∥

2
H→H =

∥

∥S2
∥

∥

H→H , and more generally,

∥

∥S
∥

∥

m
H→H =

∥

∥Sm
∥

∥

H→H (8.5.4)

for m that are powers of 2. Now observe that the linear operator
(

∑
j∈Λ

Tj

)(

∑
j∈Λ

T ∗
j

)

is self-adjoint. Applying (8.5.2) and (8.5.4) to this operator, we obtain

∥

∥

∥∑
j∈Λ

Tj

∥

∥

∥

2

H→H
=
∥

∥

∥

[(

∑
j∈Λ

Tj

)(

∑
j∈Λ

T ∗
j

)]m∥
∥

∥

1
m

H→H
, (8.5.5)

where m is a power of 2. We now expand the mth power of the expression in (8.5.5).
So we write the right side of the identity in (8.5.5) as

∥

∥

∥ ∑
j1,··· , j2m∈Λ

Tj1T ∗
j2 · · ·Tj2m−1T ∗

j2m

∥

∥

∥

1
m

H→H
, (8.5.6)

which is controlled by

(

∑
j1,··· , j2m∈Λ

∥

∥Tj1T ∗
j2 · · ·Tj2m−1T ∗

j2m

∥

∥

H→H

) 1
m

. (8.5.7)

We estimate the expression inside the sum in (8.5.7) in two different ways. First we
group j1 with j2, j3 with j4, . . . , j2m−1 with j2m and we apply (8.5.3) and (8.5.1) to
control this expression by

γ( j1 − j2)γ( j3 − j4) · · ·γ( j2m−1 − j2m).

Grouping j2 with j3, j4 with j5, . . . , j2m−2 with j2m−1 and leaving j1 and j2m alone,
we also control the expression inside the sum in (8.5.7) by

√

γ(0)γ( j2 − j3)γ( j4 − j5) · · ·γ( j2m−2 − j2m−1)
√

γ(0) .

Taking the geometric mean of these two estimates, we obtain the following bound
for (8.5.7):

(

∑
j1,..., j2m∈Λ

√

γ(0)
√

γ( j1 − j2)
√

γ( j2 − j3) · · ·
√

γ( j2m−1 − j2m)
) 1

m

.
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Summing first over j1, then over j2, and finally over j2m−1, we obtain the estimate

γ(0)
1

2m A
2m−1

m

(

∑
j2m∈Λ

1

) 1
m

for (8.5.7). Using (8.5.5), we conclude that

∥

∥∑
j∈Λ

Tj
∥

∥

2
H→H ≤ γ(0)

1
2m A

2m−1
m |Λ | 1

m ,

and letting m → ∞, we obtain conclusion (i) of the proposition.
To prove (ii) we use the Rademacher functions r j of Appendix C.1. These func-

tions are defined for nonnegative integers j, but we can reindex them so that the
subscript j runs through the integers. The fundamental property of these functions
is their orthogonality, that is,

∫ 1
0 r j(ω)rk(ω)dω = 0 when j �= k. Using the fact that

the norm
∥

∥ ·
∥

∥

H comes from an inner product, for every finite subsetΛ of Z and x in
H we obtain

∫ 1

0

∥

∥

∥∑
j∈Λ

r j(ω)Tj(x)
∥

∥

∥

2

H
dω

= ∑
j∈Λ

∥

∥Tj(x)
∥

∥

2
H +

∫ 1

0
∑

j,k∈Λ
j �=k

r j(ω)rk(ω)
〈

Tj(x),Tk(x)
〉

H dω

= ∑
j∈Λ

∥

∥Tj(x)
∥

∥

2
H .

(8.5.8)

For any fixed ω ∈ [0,1] we now use conclusion (i) of the proposition for the oper-
ators r j(ω)Tj , which also satisfy assumption (8.5.1), since r j(ω) = ±1. We obtain
that

∥

∥

∥∑
j∈Λ

r j(ω)Tj(x)
∥

∥

∥

2

H
≤ A2

∥

∥x
∥

∥

2
H ,

which, combined with (8.5.8), gives conclusion (ii).
We now prove (iii). First we show that given x ∈ H the sequence

{ N

∑
j=−N

Tj(x)
}

N

is Cauchy in H. Suppose that this is not the case. This means that there is some
ε > 0 and a subsequence of integers 1 ≤ N1 < N2 < N3 < · · · such that

∥

∥˜Tk(x)
∥

∥

H ≥ ε , (8.5.9)

where we set
˜Tk(x) = ∑

Nk≤| j|<Nk+1

Tj(x).
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For any fixedω ∈ [0,1], apply conclusion (i) to the operators S j = rk(ω)Tj whenever
Nk ≤ | j| < Nk+1, since these operators clearly satisfy hypothesis (8.5.1). Taking
N1 ≤ | j| ≤ NK+1, we obtain

∥

∥

∥

K

∑
k=1

rk(ω) ∑
Nk≤| j|<Nk+1

Tj(x)
∥

∥

∥

H
=
∥

∥

∥

K

∑
k=1

rk(ω)˜Tk(x)
∥

∥

∥

H
≤ A

∥

∥x
∥

∥

H .

Squaring and integrating this inequality with respect to ω in [0,1], and using (8.5.8)
with ˜Tk in the place of Tk and {1,2, . . . ,K} in the place of Λ , we obtain

K

∑
k=1

∥

∥˜Tk(x)
∥

∥

2
H ≤ A2

∥

∥x
∥

∥

2
H .

But this clearly contradicts (8.5.9) as K → ∞.
We conclude that every sequence

{

∑N
j=−N Tj(x)

}

N is Cauchy in H and thus it
converges to Tx for some linear operator T . In view of conclusion (i), it follows that
T is a bounded operator on H with norm at most A. �
Remark 8.5.2. At first sight, it appears strange that the norm of the operator T is
independent of the norm of every piece Tj and depends only on the quantity A in
(8.5.1). But as observed in the proof, if we take j = k in (8.5.1), we obtain

∥

∥Tj
∥

∥

2
H→H =

∥

∥TjT
∗
j

∥

∥

H→H ≤ γ(0) ≤ A2 ;

thus the norm of each individual Tj is also controlled by the constant A.
We also note that there wasn’t anything special about the role of the index set Z

in Lemma 8.5.1. Indeed, the set Z can be replaced by any countable group, such as
Zk for some k. For instance, see Theorem 8.5.7, in which the index set is Z2n. See
also Exercises 8.5.7 and 8.5.8, in which versions of Lemma 8.5.1 are given with no
group structure on the set of indices.

8.5.2 An Application

We now discuss an application of the almost orthogonality lemma just proved con-
cerning sums of nonconvolution operators on L2(Rn). We begin with the following
version of Theorem 8.3.3, in which it is assumed that T (1) = Tt(1) = 0.

Proposition 8.5.3. Suppose that Kj(x,y) are functions on Rn ×Rn indexed by j ∈ Z
that satisfy

|Kj(x,y)| ≤
A2n j

(1 + 2 j|x− y|)n+δ , (8.5.10)

|Kj(x,y)−Kj(x,y′)| ≤ A2γ j2n j|y− y′|γ , (8.5.11)

|Kj(x,y)−Kj(x′,y)| ≤ A2γ j2n j|x− x′|γ , (8.5.12)
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for some 0 < A,γ,δ < ∞ and all x,y,x′,y′ ∈ Rn. Suppose also that
∫

Rn
Kj(z,y)dz = 0 =

∫

Rn
Kj(x,z)dz , (8.5.13)

for all x,y ∈ Rn and all j ∈ Z. For j ∈ Z define integral operators

Tj( f )(x) =
∫

Rn
Kj(x,y) f (y)dy

for f ∈ L2(Rn). Then the series

∑
j∈Z

Tj( f )

converges in L2 to some T ( f ) for all f ∈ L2(Rn), and the linear operator T defined
in this way is L2 bounded.

Proof. It is a consequence of (8.5.10) that the kernels Kj are in L1(dy) uniformly
in x ∈ Rn and j ∈ Z and hence the operators Tj map L2(Rn) to L2(Rn) uniformly
in j. Our goal is to show that the sum of the Tj’s is also bounded on L2(Rn). We
achieve this using the orthogonality considerations of Lemma 8.5.1. To be able to
use Lemma 8.5.1, we need to prove (8.5.1). Indeed, we show that for all k, j ∈ Z we
have

∥

∥TjT
∗

k

∥

∥

L2→L2 ≤C A2 2−
1
4
δ

n+δ min(γ,δ )| j−k| , (8.5.14)
∥

∥T ∗
j Tk

∥

∥

L2→L2 ≤C A2 2−
1
4
δ

n+δ min(γ,δ )| j−k| , (8.5.15)

for some 0 < C = Cn,γ,δ < ∞. We prove only (8.5.15), since the proof of (8.5.14)
is similar. In fact, since the kernels of Tj and T ∗

j satisfy similar size, regularity,
and cancellation estimates, (8.5.15) is directly obtained from (8.5.14) when Tj are
replaced by T ∗

j .
It suffices to prove (8.5.15) under the extra assumption that k ≤ j. Once (8.5.15)

is established under this assumption, taking j ≤ k yields

∥

∥T ∗
j Tk

∥

∥

L2→L2 =
∥

∥(T ∗
k Tj)∗

∥

∥

L2→L2 =
∥

∥T ∗
k Tj
∥

∥

L2→L2 ≤C A22−
1
2 min(γ,δ )| j−k|,

thus proving (8.5.15) also under the assumption j ≤ k.
We therefore take k ≤ j in the proof of (8.5.15). Note that the kernel of T ∗

j Tk is

Ljk(x,y) =
∫

Rn
Kj(z,x)Kk(z,y)dz.

We prove that

sup
x∈Rn

∫

Rn
|Lk j(x,y)|dy ≤ C A2 2−

1
4
δ

n+δ min(γ,δ )|k− j| , (8.5.16)

sup
y∈Rn

∫

Rn
|Lk j(x,y)|dx ≤ C A2 2−

1
4
δ

n+δ min(γ,δ )|k− j| . (8.5.17)
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Once (8.5.16) and (8.5.17) are established, (8.5.15) follows directly from the classi-
cal Schur lemma in Appendix I.1.

We need to use the following estimate, valid for k ≤ j:

∫

Rn

2n j min(1,(2k|u|)γ)
(1 + 2 j|u|)n+δ du ≤Cn,δ2−

1
2 min(γ,δ )( j−k). (8.5.18)

Indeed, to prove (8.5.18), we observe that by changing variables we may assume
that j = 0 and k ≤ 0. Taking r = k− j ≤ 0, we establish (8.5.18) as follows:

∫

Rn

min(1,(2r|u|)γ )
(1 + |u|)n+δ du ≤

∫

Rn

min
(

1,(2r|u|) 1
2 min(γ,δ ))

(1 + |u|)n+δ du

≤
∫

|u|≤2−r

(2r|u|) 1
2 min(γ,δ )

(1 + |u|)n+δ du +
∫

|u|≥2−r

1

(1 + |u|)n+δ du

≤ 2
1
2 min(γ,δ )r

∫

Rn

1

(1 + |u|)n+ δ
2

du +
∫

|u|≥2−r

1

|u|n+δ du

≤ Cn,δ
[

2
1
2 min(γ,δ )r + 2δ r]

≤ Cn,δ 2−
1
2 min(γ,δ )|r| ,

We now obtain estimates for Ljk in the case k ≤ j. Using (8.5.13), we write

|Ljk(x,y)| =
∣

∣

∣

∣

∫

Rn
Kk(z,y)Kj(z,x)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn

[

Kk(z,y)−Kk(x,y)
]

Kj(z,x)dz

∣

∣

∣

∣

≤ A2
∫

Rn
2nk min(1,(2k|x− z|)γ) 2n j

(1 + 2 j|z− x|)n+δ dz

≤ C A2 2kn 2−
1
2 min(γ,δ )( j−k)

using estimate (8.5.18). Combining this estimate with

|Ljk(x,y)| ≤
∫

Rn
|Kj(z,x)| |Kk(z,y)|dz ≤ C A22kn

(1 + 2k|x− y|)n+δ ,

which follows from (8.5.10) and the result in Appendix K.1 (since k ≤ j), yields

|Ljk(x,y)| ≤Cn,γ,δ A2 2−
1
2
δ/2
n+δ min(γ,δ )( j−k) 2kn

(1 + 2k|x− y|)n+ δ
2

,

which easily implies (8.5.16) and (8.5.17). This concludes the proof of the
proposition. �
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8.5.3 Almost Orthogonality and the T (1) Theorem

We now give an important application of the proposition just proved. We re-prove
the difficult direction of the T (1) theorem proved in Section 8.3. We have the fol-
lowing:

Theorem 8.5.4. Let K be in SK(δ ,A) and let T be a continuous linear operator
from S (Rn) to S ′(Rn) associated with K. Assume that

∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO +
∥

∥T
∥

∥

W B = B4 < ∞ .

Then T extends to bounded linear operator on L2(Rn) with norm at most a constant
multiple of A + B4.

Proof. Consider the paraproduct operators PT(1) and PTt(1) introduced in the previ-
ous section. Then, as we showed in Proposition 8.4.4, we have

PT(1)(1) = T (1), (PT(1))t(1) = 0,
PTt(1)(1) = Tt(1), (PTt(1))t(1) = 0.

Let us define an operator

L = T −PT(1)− (PTt(1))
t .

Using Proposition 8.4.4, we obtain that

L(1) = Lt(1) = 0.

In view of (8.4.16), we have that L is an operator whose kernel satisfies the estimates
(8.1.1), (8.1.2), and (8.1.3) with constants controlled by a dimensional constant mul-
tiple of

A +
∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO .

Both of these numbers are controlled by A + B4. We also have
∥

∥L
∥

∥

W B ≤ Cn
(∥

∥T
∥

∥

W B +
∥

∥PT(1)
∥

∥

L2→L2 +
∥

∥(PTt (1))
t
∥

∥

L2→L2

)

≤ Cn
(∥

∥T
∥

∥

W B +
∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO

)

≤ Cn(A + B4) ,

which is a very useful fact.
Next we introduce operators Δ j and S j; one should be cautious as these are not

the operators Δ j and S j introduced in Section 8.4 but rather discrete analogues of
those introduced in the proof of Theorem 8.3.3. We pick a smooth radial real-valued
function Φ with compact support contained in the unit ball B(0, 1

2 ) that satisfies
∫

RnΦ(x)dx = 1 and we define

Ψ(x) =Φ(x)−2−nΦ( x
2 ). (8.5.19)
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Notice thatΨ has mean value zero. We define

Φ2− j (x) = 2n jΦ(2 jx) and Ψ2− j(x) = 2n jΨ(2 jx)

and we observe that both Φ and Ψ are supported in B(0,1) and are multiples of
normalized bumps. We then define Δ j to be the operator given by convolution with
the functionΨ2− j and S j the operator given by convolution with the function Φ2− j .
In view of identity (8.5.19) we have that Δ j = S j −S j−1. Notice that

S jLS j = S j−1LS j−1 +Δ jLS j + S j−1LΔ j ,

which implies that for all integers N < M we have

SMLSM−SN−1LSN−1 =
M

∑
j=N

(

S jLS j −S j−1LS j−1
)

=
M

∑
j=N

Δ jLS j−
M

∑
j=N

S j−1LΔ j.

(8.5.20)

Until the end of the proof we fix a Schwartz function f whose Fourier trans-
form vanishes in a neighborhood of the origin; such functions are dense in L2; see
Exercise 5.2.9. We would like to use Proposition 8.5.3 to conclude that

sup
M∈Z

sup
N<M

∥

∥SMLSM( f )−SN−1LSN−1( f )
∥

∥

L2 ≤Cn(A2 + B4)
∥

∥ f
∥

∥

L2 (8.5.21)

and that SMLSM( f )−SN−1LSN−1( f ) → ˜L( f ) in L2 as M → ∞ and N →−∞. Once
these statements are proved, we deduce that ˜L( f ) = L( f ). To see this, it suffices to
prove that SMLSM( f )−SN−1LSN−1( f ) converges to L( f ) weakly in L2. Indeed, let
g be another Schwartz function. Then

〈

SMLSM( f )−SN−1LSN−1( f ),g
〉

−
〈

L( f ),g
〉

=
〈

SMLSM( f )−L( f ),g
〉

−
〈

SN−1LSN−1( f ),g
〉

. (8.5.22)

We first prove that the first term in (8.5.22) tends to zero as M → ∞. Indeed,
〈

SMLSM( f )−L( f ),g
〉

=
〈

LSM( f ),SMg
〉

−
〈

L( f ),g
〉

=
〈

L(SM( f )− f ),SM(g)
〉

+
〈

L( f ),SM(g)−g
〉

,

and both terms converge to zero, since SM( f )− f → 0 and SM(g)− g tend to zero
in S , L is continuous from S to S ′, and all Schwartz seminorms of SM(g) are
bounded uniformly in M; see also Exercise 8.3.1.

The second term in (8.5.22) is
〈

SN−1LSN−1( f ),g
〉

=
〈

LSN−1( f ),SN−1(g)
〉

. Since
̂f is supported away from the origin, SN( f ) → 0 in S as N → −∞; see Exer-
cise 8.3.2. By the continuity of L, LSN−1( f ) → 0 in S ′, and since all Schwartz
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seminorms of SN−1(g) are bounded uniformly in N, we conclude that the term
〈

LSN−1( f ),SN−1(g)
〉

tends to zero as N →−∞. We thus deduce that ˜L( f ) = L( f ).
It remains to prove (8.5.21). We now define

Lj = Δ jLS j and L′
j = S j−1LΔ j

for j ∈ Z. In view of identity (2.3.21) and the convergence of the Riemann sums
to the integral defining f ∗Φ2− j in the topology of S (see the proof of Theorem
2.3.20), we have

(

L( f ∗Φ2− j)∗Ψ2− j

)

(x) =
∫

Rn

〈

L(τy(Φ2− j)),τx(Ψ2− j)
〉

f (y)dy,

where τy(g)(u) = g(u− y). Thus the kernel Kj of Lj is

Kj(x,y) =
〈

L(τy(Φ2− j )),τx(Ψ2− j)
〉

and the kernel K′
j of L′

j is

K′
j(x,y) =

〈

L(τy(Ψ2− j)),τx(Φ2−( j−1) )
〉

.

We plan to prove that

|Kj(x,y)|+ 2− j|∇Kj(x,y)| ≤Cn(A + B4)2n j(1 + 2 j|x− y|)−n−δ , (8.5.23)

noting that an analogous estimate holds for K′
j(x,y). Once (8.5.23) is established,

Exercise 8.5.2 and the conditions

Lj(1) = Δ jLS j(1) = Δ jL(1) = 0 , L′
j(1) = S j−1LΔ j(1) = 0 ,

yield the hypotheses of Proposition 8.5.3. Recalling (8.5.20), the conclusion of this
proposition yields (8.5.21).

To prove (8.5.23) we quickly repeat the corresponding argument from the proof
of Theorem 8.3.3. We consider the following two cases: If |x− y| ≤ 5 ·2− j, then the
weak boundedness property gives

∣

∣〈L(τy(Φ2− j )),τx(Ψ2− j)〉
∣

∣ =
∣

∣〈L(τx(τ2 j(y−x)(Φ)2− j )),τx(Ψ2− j)〉
∣

∣

≤ Cn
∥

∥L
∥

∥

WB2 jn,

sinceΨ and τ2 j(y−x)(Φ), whose support is contained in B(0, 1
2)+B(0,5)⊆ B(0,10),

are multiples of normalized bumps. This proves the first of the two estimates in
(8.5.23) when |x− y| ≤ 5 ·2− j.

We now turn to the case |x − y| ≥ 5 · 2− j. Then the functions τy(Φ2− j ) and
τx(Ψ2− j) have disjoint supports, and so we have the integral representation

Kj(x,y) =
∫

Rn

∫

Rn
Φ2− j (v− y)K(u,v)Ψ2− j(u− x)dudv .
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Using thatΨ has mean value zero, we can write the previous expression as
∫

Rn

∫

Rn
Φ2− j(v− y)

(

K(u,v)−K(x,v)
)

Ψ2− j(u− x)dudv .

We observe that |u− x| ≤ 2− j and |v− y| ≤ 2− j in the preceding integral. Since
|x− y| ≥ 5 · 2− j, this makes |u− v| ≥ |x− y|− 2 · 2− j ≥ 2 · 2− j, which implies that
|u− x| ≤ 1

2 |u− v|. Using the regularity condition (8.1.2), we deduce

|K(u,v)−K(x,v)| ≤ A
|x−u|δ
|u− v|n+δ ≤Cn,δA

2− jδ

|x− y|n+δ .

Inserting this estimate in the preceding double integral, we obtain the first estimate
in (8.5.23). The second estimate in (8.5.23) is proved similarly. �

8.5.4 Pseudodifferential Operators

We now turn to another elegant application of Lemma 8.5.1 regarding pseudodiffer-
ential operators. We first introduce pseudodifferential operators.

Definition 8.5.5. Let m ∈ R and 0 < ρ ,δ ≤ 1. A C ∞ function σ(x,ξ ) on Rn ×Rn is
called a symbol of class Sm

ρ ,δ if for all multi-indices α and β there is a constant Bα ,β
such that

|∂αx ∂
β
ξ σ(x,ξ )| ≤ Bα ,β (1 + |ξ |)m−ρ |β |+δ |α | . (8.5.24)

For σ ∈ Sm
ρ ,δ , the linear operator

Tσ ( f )(x) =
∫

Rn
σ(x,ξ )̂f (ξ )e2π ix·ξ dξ

initially defined for f in S (Rn) is called a pseudodifferential operator with symbol
σ(x,ξ ).

Example 8.5.6. The paraproduct Pb introduced in the previous section is a pseudo-
differential operator with symbol

σb(x,ξ ) = ∑
j∈Z
Δ j(b)(x) ̂Ψ (2− jξ ) . (8.5.25)

It is not hard to see that the symbol σb satisfies

|∂αx ∂
β
ξ σb(x,ξ )| ≤ Bα ,β |ξ |−|β |+|α | (8.5.26)

for all multi-indices α and β . Indeed, every differentiation in x produces a factor
of 2 j, while every differentiation in ξ produces a factor of 2− j. But since ̂Ψ is
supported in 1

2 · 2 j ≤ |ξ | ≤ 2 · 2 j, it follows that |ξ | ≈ 2 j, which yields (8.5.26).



234 8 Singular Integrals of Nonconvolution Type

It follows that σb is not in any of the classes Sm
ρ ,δ introduced in Definition 8.5.5.

However, if we restrict the indices of summation in (8.5.25) to j ≥ 0, then |ξ | ≈
1 + |ξ | and we obtain a symbol of class S0

1,1. Note that not all symbols in S0
1,1 give

rise to bounded operators on L2. See Exercise 8.5.6.
An example of a symbol in Sm

0,0 is (1 + |ξ |2) 1
2 (m+it) when m, t ∈ R.

We do not plan to embark on a systematic study of pseudodifferential operators
here, but we would like to study the L2 boundedness of symbols of class S0

0,0.

Theorem 8.5.7. Suppose that a symbol σ belongs to the class S0
0,0. Then the pseu-

dodifferential operator Tσ with symbolσ , initially defined on S (Rn), has a bounded
extension on L2(Rn).

Proof. In view of Plancherel’s theorem, it suffices to obtain the L2 boundedness of
the linear operator

˜Tσ ( f )(x) =
∫

Rn
σ(x,ξ ) f (ξ )e2π ix·ξ dξ . (8.5.27)

We fix a nonnegative smooth function ϕ(ξ ) supported in a small multiple of the unit
cube Q0 = [0,1]n (say in [− 1

9 , 10
9 ]n) that satisfies

∑
j∈Zn

ϕ(x− j) = 1 , x ∈ Rn . (8.5.28)

For j,k ∈ Zn we define symbols

σ j,k(x,ξ ) = ϕ(x− j)σ(x,ξ )ϕ(ξ − k)

and corresponding operators Tj,k given by (8.5.27) in which σ(x,ξ ) is replaced by
σ j,k(x,ξ ). Using (8.5.28), we obtain that

˜Tσ = ∑
j,k∈Zn

Tj,k ,

where the double sum is easily shown to converge in the topology of S (Rn). Our
goal is to show that for all N ∈ Z+ we have

∥

∥T ∗
j,kTj′,k′

∥

∥

L2→L2 ≤CN(1 + | j− j′|+ |k− k′|)−2N , (8.5.29)
∥

∥Tj,kT ∗
j′,k′
∥

∥

L2→L2 ≤CN(1 + | j− j′|+ |k− k′|)−2N , (8.5.30)

where CN depends on N and n but is independent of j, j′,k,k′.
We note that

T ∗
j,kTj′,k′( f )(x) =

∫

Rn
Kj,k, j′,k′(x,y) f (y)dy ,

where
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Kj,k, j′,k′(x,y) =
∫

Rn
σ j,k(z,x)σ j′,k′(z,y)e

2π i(y−x)·z dz . (8.5.31)

We integrate by parts in (8.5.31) using the identity

e2π iz·(y−x) =
(I−Δz)N(e2π iz·(y−x))
(1 + 4π2|x− y|2)N ,

and we obtain the pointwise estimate

ϕ(x− k)ϕ(y− k′)
(1 + 4π2|x− y|2)N

∣

∣(I −Δz)N(ϕ(z− j)σ(z,x)σ(z,y)ϕ(z− j′))
∣

∣

for the integrand in (8.5.31). The support property of ϕ forces | j− j′| ≤ cn for some
dimensional constant cn; indeed, cn = 2

√
n suffices. Moreover, all derivatives of σ

and ϕ are controlled by constants, and ϕ is supported in a cube of finite measure.
We also have 1 + |x− y| ≈ 1 + |k− k′|. It follows that

|Kj,k, j′ ,k′(x,y)| ≤

⎧

⎨

⎩

CNϕ(x− k)ϕ(y− k′)
(1 + |k− k′|)2N when | j− j′| ≤ cn,

0 otherwise.

We can rewrite the preceding estimates in a more compact (and symmetric) form as

|Kj,k, j′,k′(x,y)| ≤
Cn,Nϕ(x− k)ϕ(y− k′)

(1 + | j− j′|+ |k− k′|)2N ,

from which we easily obtain that

sup
x∈Rn

∫

Rn
|Kj,k, j′ ,k′(x,y)|dy ≤ Cn,N

(1 + | j− j′|+ |k− k′|)2N , (8.5.32)

sup
y∈Rn

∫

Rn
|Kj,k, j′,k′(x,y)|dx ≤ Cn,N

(1 + | j− j′|+ |k− k′|)2N . (8.5.33)

Using the classical Schur lemma in Appendix I.1, we obtain that

∥

∥T ∗
j,kTj′,k′

∥

∥

L2→L2 ≤
Cn,N

(1 + | j− j′|+ |k− k′|)2N ,

which proves (8.5.29). Since ρ = δ = 0, the roles of the variables x and ξ are sym-
metric, and (8.5.30) can be proved in exactly the same way as (8.5.29). The almost
orthogonality Lemma 8.5.1 now applies, since

∑
j,k∈Zn

√

1
(1 + | j|+ |k|)2N ≤ ∑

j∈Zn
∑

k∈Zn

1

(1 + | j|)N
2

1

(1 + |k|)N
2

< ∞

for N ≥ 2n + 2, and the boundedness of ˜Tσ on L2 follows. �
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Remark 8.5.8. The reader may want to check that the argument in Theorem 8.5.7
is also valid for symbols of the class S0

ρ ,ρ whenever 0 < ρ < 1.

Exercises

8.5.1. Prove that any bounded linear operator S : H → H satisfies

∥

∥S
∥

∥

2
H→H =

∥

∥SS∗
∥

∥

H→H .

8.5.2. Show that if a family of kernels Kj satisfy (8.5.10) and

|∇xKj(x,y)|+ |∇yKj(x,y)| ≤
A2(n+1) j

(1 + 2 j|x− y|)n+δ

for all x,y ∈ Rn, then conditions (8.5.11) and (8.5.12) hold with γ = 1.

8.5.3. Prove the boundedness of the Hilbert transform using Lemma 8.5.1 and with-
out using the Fourier transform.
[

Hint: Pick a smooth function η supported in [1/2,2] such that ∑ j∈Zη(2− jx) = 1
for x �= 0 and set Kj(x) = x−1η(2− j|x|) and Hj( f ) = f ∗Kj. Note that H∗

j =−Hj. Es-
timate

∥

∥HkHj
∥

∥

L2→L2 by
∥

∥Kk ∗Kj
∥

∥

L1 ≤
∥

∥Kk ∗Kj
∥

∥

L∞ |supp (Kk ∗Kj)|. When j < k, use
the mean value property of Kj and that

∥

∥K′
k

∥

∥

L∞ ≤C2−2k to obtain that
∥

∥Kk ∗Kj
∥

∥

L∞ ≤
C2−2k+ j. Conclude that

∥

∥HkHj
∥

∥

L2→L2 ≤C2−| j−k|.
]

8.5.4. For a symbol σ(x,ξ ) in S0
1,0, let k(x,z) denote the inverse Fourier transform

(evaluated at z) of the function σ(x, ·) with x fixed. Show that for all x ∈ Rn, the
distribution k(x, ·) coincides with a smooth function away from the origin in Rn

that satisfies the estimates

|∂αx ∂βz k(x,z)| ≤Cα ,β |z|−n−|β | ,

and conclude that the kernels K(x,y) = k(x,x−y) are well defined and smooth func-
tions away from the diagonal in R2n that belong to SK(1,A) for some A > 0. Con-
clude that pseudodifferential operators with symbols in S0

1,0 are associated with stan-
dard kernels.
[

Hint: Consider the distribution (∂ γσ(x, ·))∨ = (−2π iz)γk(x, ·). Since ∂ γξ σ(x,ξ )
is integrable in ξ when |γ| ≥ n + 1, it follows that k(x, ·) coincides with a smooth
function on Rn\{0}. Next, set σ j(x,ξ ) =σ(x,ξ ) ̂Ψ (2− jξ ), whereΨ is as in Section
8.4 and k j the inverse Fourier transform of σ j in z. For |γ| = M use that

(−2π iz)γ∂αx ∂
β
ξ k j(x,z) =

∫

Rn
∂ γξ
(

(2π iξ )β∂αx σ j(x,ξ )
)

22π iξ ·z dξ

to obtain |∂αx ∂
β
ξ k j(x,z)| ≤ BM,α ,β2 jn2 j|α |(2 jn|z|)−M and sum over j ∈ Z.

]
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8.5.5. Prove that pseudodifferential operators with symbols in S0
1,0 that have com-

pact support in x are elements of CZO(1,A,B) for some A,B > 0.
[

Hint: Write

Tσ ( f )(x) =
∫

Rn

(
∫

Rn
σ̂(a,ξ )̂f (ξ )e2π ix·ξ dξ

)

e2π ix·a da ,

where σ̂(a,ξ ) denotes the Fourier transform of σ(x,ξ ) in the variable x. Use inte-
gration by parts to obtain supξ |σ̂(a,ξ )| ≤CN(1 + |a|)−N and pass the L2 norm in-
side the integral in a to obtain the required conclusion using the translation-invariant
case.

]

8.5.6. Let η̂(ξ ) be a smooth bump on R that is supported in 2−
1
2 ≤ |ξ | ≤ 2

1
2 and is

equal to 1 on 2−
1
4 ≤ |ξ | ≤ 2

1
4 . Let

σ(x,ξ ) =
∞

∑
k=1

e−2π i2kxη̂(2−kξ ) .

Show that σ is an element of S0
1,1 on the line but the corresponding pseudodifferen-

tial operator Tσ is not L2 bounded.
[

Hint: To see the latter statement, consider the sequence of functions fN(x) =

∑N
k=5

1
k e2π i2kxh(x), where h(x) is a Schwartz function whose Fourier transform

is supported in the set |ξ | ≤ 1
4 . Show that

∥

∥ fN
∥

∥

L2 ≤ C
∥

∥h
∥

∥

L2 but
∥

∥Tσ ( fN)
∥

∥

L2 ≥
c logN

∥

∥h
∥

∥

L2 for some positive constants c,C.
]

8.5.7. Prove conclusions (i) and (ii) of Lemma 8.5.1 if hypothesis (8.5.1) is replaced
by

∥

∥T ∗
j Tk
∥

∥

H→H +
∥

∥TjT
∗

k

∥

∥

H→H ≤ Γ ( j,k) ,

where Γ is a nonnegative function on Z×Z such that

sup
j
∑
k∈Z

√

Γ ( j,k) = A < ∞ .

8.5.8. Let {Tt}t∈R+ be a family of operators mapping a Hilbert space H to itself.
Assume that there is a function γ : R+×R+ → R+∪{0} satisfying

Aγ = sup
t>0

∫ ∞

0

√

γ(t,s)
ds
s

< ∞

such that
∥

∥T ∗
t Ts
∥

∥

H→H +
∥

∥TtT
∗

s

∥

∥

H→H ≤ γ(t,s)

for all t,s in R+. [An example of a function with Aγ < ∞ is γ(t,s) = min
(

s
t ,

t
s

)ε
for

some ε > 0.] Then prove that for all 0 < ε < N we have

∥

∥

∥

∫ N

ε
Tt

dt
t

∥

∥

∥

H→H
≤ Aγ .
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8.6 The Cauchy Integral of Calderón and the T (b) Theorem

The Cauchy integral is almost as old as complex analysis itself. In the classical
theory of complex analysis, if Γ is a curve in C and f is a function on the curve, the
Cauchy integral of f is given by

1
2π i

∫

Γ

f (ζ )
ζ − z

dζ .

One situation in which this operator appears is the following: If Γ is a closed simple
curve (i.e., a Jordan curve), Ω+ is the interior connected component of C \Γ , Ω−
is the exterior connected component of C\Γ , and f is a smooth complex function
on Γ , is it possible to find analytic functions F+ on Ω+ and F− on Ω−, respectively,
that have continuous extensions on Γ such that their difference is equal to the given
f on Γ ? It turns out that a solution of this problem is given by

F+(w) =
1

2π i

∫

Γ

f (ζ )
ζ −w

dζ , w ∈Ω+ ,

and

F−(w) =
1

2π i

∫

Γ

f (ζ )
ζ −w

dζ , w ∈Ω− .

We are would like to study the case in which the Jordan curve Γ passes through
infinity, in particular, when it is the graph of a Lipschitz function on R. In this case
we compute the boundary limits of F+ and F− and we see that they give rise to a
very interesting operator on the curve Γ . To fix notation we let

A : R → R

be a Lipschitz function. This means that there is a constant L > 0 such that for all
x,y ∈ R we have |A(x)−A(y)| ≤ L|x− y|. We define a curve

γ : R → C

by setting
γ(x) = x + iA(x)

and we denote by
Γ = {γ(x) : x ∈ R} (8.6.1)

the graph of γ . Given a smooth function f on Γ we set

F(w) =
1

2π i

∫

Γ

f (ζ )
ζ −w

dζ , w ∈ C\Γ . (8.6.2)

We now show that for z ∈ Γ , both F(z+ iδ ) and F(z− iδ ) have limits as δ ↓ 0,
and these limits give rise to an operator on the curve Γ that we would like to study.
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8.6.1 Introduction of the Cauchy Integral Operator along a
Lipschitz Curve

For a smooth function f on the curve Γ and z ∈ Γ we define the Cauchy integral of
f at z as

CΓ ( f )(z) = lim
ε→0+

1
π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ , (8.6.3)

assuming that f (ζ ) has some decay as |ζ | → ∞. The latter assumption makes the
integral in (8.6.3) converge when |Reζ −Rez| ≥ 1. The fact that the limit in (8.6.3)
exists as ε → 0 for almost all z ∈ Γ is shown in the next proposition.

Proposition 8.6.1. Let Γ be as in (8.6.1). Let f (ζ ) be a smooth function on Γ that
has decay as |ζ | → ∞. Given f , we define a function F as in (8.6.2) related to f .
Then the limit in (8.6.3) exists as ε→ 0 for almost all z ∈ Γ and gives rise to a well
defined operator CΓ ( f ) acting on such functions f . Moreover, for almost all z ∈ Γ
we have that

lim
δ↓0

F(z+ iδ ) =
1
2

CΓ ( f )(z)− 1
2

f (z) , (8.6.4)

lim
δ↓0

F(z− iδ ) =
1
2

CΓ ( f )(z)+
1
2

f (z) . (8.6.5)

Proof. We show first that the limit in (8.6.3) exists as ε→ 0. For z∈Γ and 0 < ε < 1
we write

1
π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )dζ
ζ − z

=
1
π i

∫

ζ∈Γ
|Reζ−Rez|>1

f (ζ )dζ
ζ − z

+
1
π i

∫

ζ∈Γ
ε≤|Reζ−Rez|≤1

( f (ζ )− f (z))dζ
ζ − z

+
f (z)
π i

∫

ζ∈Γ
ε≤|Reζ−Rez|≤1

dζ
ζ − z

.

(8.6.6)

By the smoothness of f , the middle term of the sum in (8.6.6) has a limit as ε → 0.
We therefore study the third (last) term of this sum.

We consider two branches of the complex logarithm: first logupper(z) defined for
z in C\ {0} minus the negative imaginary axis normalized so that logupper(1) = 0;
this logarithm satisfies logupper(i) = π i

2 and logupper(−1) = π i. Second, loglower(z)
defined for z in C \ {0} minus the positive imaginary axis normalized so that
loglower(1) = 0; this logarithm satisfies loglower(−i)=− π i

2 and loglower(−1)=−π i.
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Let τ = Re z and t = Reζ ; then z = γ(τ) = τ+ iA(τ) and ζ = γ(t). The function
A is Lipschitz and thus differentiable almost everywhere; consequently, the function
γ(τ) = τ + iA(τ) is differentiable a.e. in τ ∈ R. Moreover, γ ′(τ) = 1 + iA′(τ) �= 0
whenever γ is differentiable at τ . Fix a τ = Rez at which γ is differentiable.

We rewrite the last term in the sum in (8.6.6) as

∫ 1

ε

γ ′(t)
γ(t + τ)− γ(τ) dt +

∫ −ε

−1

γ ′(t)
γ(t + τ)− γ(τ) dt . (8.6.7)

The curve t �→ γ(t +τ)− γ(τ) = t + i(A(t +τ)−A(τ)) lies in the complex plane mi-
nus a small angle centered at the origin that does not contain the negative imaginary
axis. Using the upper branch of the logarithm, we evaluate (8.6.7) as

f (z)
π i

[

logupper

(

γ(1 + τ)− γ(τ)
)

− logupper

(

γ(ε+ τ)− γ(τ)
)

− logupper

(

γ(−1 + τ)− γ(τ)
)

+ logupper

(

γ(−ε+ τ)− γ(τ)
)

]

= logupper

(

γ(τ − ε)− γ(τ)
)

− logupper

(

γ(ε + τ)− γ(τ)
)

= logupper

γ(τ− ε)− γ(τ)
ε

γ(ε+ τ)− γ(τ)
ε

.

This expression converges to logupper

(

− γ ′(τ)
γ ′(τ)

)

= logupper(−1) = iπ as ε→ 0. Thus
the limit in (8.6.6), and hence in (8.6.3), exists as ε→ 0 for almost all z on the curve.
Hence CΓ ( f ) is a well defined operator whenever f is a smooth function with decay
at infinity.

We proceed with the proof of (8.6.4). For fixed δ > 0 and 0 < ε < 1 we write

F(z+ iδ ) =
1

2π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z− iδ

dζ

+
1

2π i

∫

ζ∈Γ
|Reζ−Rez|≤ε

f (ζ )− f (z)
ζ − z− iδ

dζ

+ f (z)
1

2π i

∫

ζ∈Γ
|Reζ−Rez|≤ε

1
ζ − z− iδ

dζ .

(8.6.8)

With τ = Rez, the last term in the sum in (8.6.8) is equal to

∫ 1

ε

γ ′(t)
γ(t + τ)− (γ(τ)+ iδ )

dt +
∫ −ε

−1

γ ′(t)
γ(t + τ)− (γ(τ)+ iδ )

dt . (8.6.9)
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Since δ > 0, the curve γ(t +τ)−(γ(τ)+ iδ ) lies below the curve t �→ γ(t +τ)−γ(τ)
and therefore outside a small angle centered at the origin that does not contain the
positive imaginary axis. In this region, loglower is an analytic branch of the loga-
rithm. Evaluation of (8.6.9) yields

f (z)
2π i

loglower
γ(ε+ τ)− γ(τ)− iδ
γ(−ε+ τ)− γ(τ)− iδ

.

So, taking limits as δ ↓ 0 in (8.6.8), we obtain that

lim
δ↓0

F(z+ iδ ) =
1

2π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ

+
1

2π i

∫

ζ∈Γ
|Reζ−Rez|≤ε

f (ζ )− f (z)
ζ − z

dζ +
f (z)
2π i

loglower
γ(τ+ ε)− γ(τ)
γ(τ− ε)− γ(τ) ,

(8.6.10)

in which z = γ(τ) = τ+ iA(τ) and both integrals converge absolutely.
Up until this point, ε ∈ (0,1) was arbitrary and we may let it tend to zero. In doing

so we first observe that the middle integral in (8.6.10) tends to zero because of the
smoothness of f . But for almost all τ ∈ R, the limit as ε → 0 of the logarithm in

(8.6.10) is equal to loglower(−
γ ′(τ)
γ ′(τ) ) = loglower(−1) = −π i. From this we conclude

that for almost all z ∈ Γ we have

lim
δ↓0

F(z+ iδ ) = lim
ε→0

1
2π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ + f (z)
1

2π i
(−π i) , (8.6.11)

which proves (8.6.4).
The only difference in the proof of (8.6.5) is that logupper is replaced by loglower,

and for this reason (−π i) should be replaced by π i in (8.6.11). �

Remark 8.6.2. If we let F+ be the restriction of F on the region above the graph Γ
and let F− be the restriction of F on the region below the graph Γ , we have that F+
and F− have continuous extensions on Γ , and moreover,

F+−F− = − f ,

where f is the given smooth function on the curve. We also note that the argument
given in Proposition 8.6.1 does not require f to be smoother than C 1.
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8.6.2 Resolution of the Cauchy Integral and Reduction of Its L2

Boundedness to a Quadratic Estimate

Having introduced the Cauchy integral CΓ as an operator defined on smooth func-
tions on the graph Γ of a Lipschitz function A, we turn to some of its properties. We
are mostly interested in obtaining an a priori L2 estimate for CΓ . Before we achieve
this goal, we make some observations. First we can write CΓ as

CΓ (H)(x + iA(x)) = lim
ε→0

1
π i

∫

|x−y|>ε

H(y + iA(y))(1 + iA′(y))
y + iA(y)− x− iA(x)

dy , (8.6.12)

where the integral is over the real line and H is a function on the curve Γ . (Recall
that Lipschitz functions are differentiable almost everywhere.) To any function H
on Γ we can associate a function h on the line R by setting

h(y) = H(y + iA(y)) .

We have that
∫

Γ
|H(y)|2 dy =

∫

R
|h(y)|2(1 + |A′(y)|2) 1

2 dy ≈
∫

R
|h(y)|2 dy

for some constants that depend on the Lipschitz constant L of A. Therefore, the
boundedness of the operator in (8.6.12) is equivalent to that of the operator

CΓ (h)(x) = lim
ε→0

1
π i

∫

|x−y|>ε

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))

dy (8.6.13)

acting on Schwartz functions h on the line. It is this operator that we concentrate on
in the remainder of this section. We recall that (see Example 8.1.6) the function

1
y− x + i(A(y)−A(x))

defined on R×R\{(x,x) : x ∈ R} is a standard kernel in SK(1,cL) for some c > 0.
We note that this is not the case with the kernel

1 + iA′(y)
y− x + i(A(y)−A(x))

, (8.6.14)

for conditions (8.1.2) and (8.1.3) fail for this kernel, since the function 1 + iA′ does
not possess any smoothness. [Condition (8.1.1) trivially holds for the function in
(8.6.14).] We note, however, that the Lp boundedness of the operator in (8.6.13) is
equivalent to that of
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˜CΓ (h)(x) = lim
ε→0

1
π i

∫

|x−y|>ε

h(y)
y− x + i(A(y)−A(x))

dy , (8.6.15)

since the function 1 + iA′ is bounded above and below and can be absorbed in h.
Therefore, the L2 boundedness of CΓ is equivalent to that of ˜CΓ , which has a kernel
that satisfies standard estimates. This equivalence, however, is not as useful in the
approach we take in the sequel. We choose to work with the operator CΓ , in which
the appearance of the term 1 + iA′(y) plays a crucial cancellation role.

In the proof of Theorem 8.3.3 we used a resolution of an operator T with standard
kernel of the form

∫ ∞

0
PsTsQs

ds
s

,

where Ps and Qs are nice averaging operators that approximate the identity and
the zero operator, respectively. Our goal is to achieve a similar resolution for the
operator CΓ defined in (8.6.13). To achieve this, for every s > 0 we introduce the
auxiliary operator

CΓ (h)(x;s) =
1
π i

∫

R

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))+ is

dy (8.6.16)

defined for Schwartz functions h on the line. We make two preliminary observations
regarding this operator: For almost all x ∈ R we have

lim
s→∞

CΓ (h)(x;s) = 0 , (8.6.17)

lim
s→0

CΓ (h)(x;s) = CΓ (h)(x)+ h(x) . (8.6.18)

Identity (8.6.17) is trivial. To obtain (8.6.18), for a fixed ε > 0 we write

CΓ (h)(x;s) =
1
π i

∫

|x−y|>ε

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))+ is

dy

+
1
π i

∫

|x−y|≤ε

(h(y)−h(x))(1 + iA′(y))
y− x + i(A(y)−A(x))+ is

dy

+ h(x)
1
π i

logupper
ε+ i(A(x + ε)−A(x))+ is
−ε+ i(A(x− ε)−A(x))+ is

,

(8.6.19)

where logupper denotes the analytic branch of the complex logarithm defined in the
proof of Proposition 8.6.1. We used this branch of the logarithm, since for s > 0,
the graph of the function y �→ y + i(A(y + x)−A(x))+ is lies outside a small angle
centered at the origin that contains the negative imaginary axis.

We now take successive limits first as s → 0 and then as ε → 0 in (8.6.19). We
obtain that
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lim
s→0

CΓ (h)(x;s) = lim
ε→0

1
π i

∫

|x−y|>ε

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))

dy

+ h(x) lim
ε→0

1
π i

logupper
ε+ i(A(x + ε)−A(x))
−ε+ i(A(x− ε)−A(x))

.

Since this expression inside the logarithm tends to −1 as ε→ 0, this logarithm tends
to π i, and this concludes the proof of (8.6.18).

We now consider the second derivative in s of the auxiliary operator CΓ (h)(x;s).

∫ ∞

0
s2 d2

ds2 CΓ (h)(x;s)
ds
s

=
∫ ∞

0
s

d2

ds2 CΓ (h)(x;s)ds

= lim
s→∞

s
d
ds

CΓ (h)(x;s)− lim
s→0

s
d
ds

CΓ (h)(x;s)−
∫ ∞

0

d
ds

CΓ (h)(x;s)ds

= 0−0 + lim
s→0

CΓ (h)(x;s)− lim
s→∞

CΓ (h)(x;s)

= CΓ (h)(x)+ h(x) ,

where we used integration by parts, the fact that for almost all x ∈ R we have

lim
s→∞

s
d
ds

CΓ (h)(x;s) = lim
s→0

s
d
ds

CΓ (h)(x;s) = 0 , (8.6.20)

and identities (8.6.17) and (8.6.18) whenever h is a Schwartz function. One may
consult Exercise 8.6.2 for a proof of the identities in (8.6.20). So we have succeeded
in writing the operator CΓ (h)+h as an average of smoother operators. Precisely, we
have shown that for h ∈ S (R) we have

CΓ (h)(x)+ h(x) =
∫ ∞

0
s2 d2

ds2 CΓ (h)(x;s)
ds
s

, (8.6.21)

and it remains to understand what the operator

d2

ds2 CΓ (h)(x;s) = CΓ (h)′′(x;s)

really is. Differentiating (8.6.16) twice, we obtain

CΓ (h)(x)+ h(x) =
∫ ∞

0
s2CΓ (h)′′(x;s)

ds
s

= 4
∫ ∞

0
s2CΓ (h)′′(x;2s)

ds
s

= − 8
π i

∫ ∞

0

∫

R

s2h(y)(1 + iA′(y))
(y− x + i(A(y)−A(x))+ 2is)3 dy

ds
s

= − 8
π i

∫ ∞

0

∫

Γ

s2H(ζ )
(ζ − z+ 2is)3 dζ

ds
s

,
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where in the last step we set z = x + iA(x), H(z) = h(x), and we switched to com-
plex integration over the curve Γ . We now use the following identity from complex
analysis. For ζ ,z ∈ Γ we have

1
(ζ − z+ 2is)3 = − 1

4π i

∫

Γ

1
(ζ −w+ is)2

1
(w− z+ is)2 dw , (8.6.22)

for which we refer to Exercise 8.6.3. Inserting this identity in the preceding expres-
sion for CΓ (h)(x)+ h(x), we obtain

CΓ (h)(x)+ h(x) = − 2
π2

∫ ∞

0

[
∫

Γ

s
(w− z+ is)2

(
∫

Γ

s H(ζ )
(ζ −w+ is)2 dζ

)

dw

]

ds
s

,

recalling that z = x + iA(x). Introducing the linear operator

Θs(h)(x) =
∫

R
θs(x,y)h(y)dy , (8.6.23)

where
θs(x,y) =

s
(y− x + i(A(y)−A(x))+ is)2 , (8.6.24)

we may therefore write

CΓ (h)(x)+ h(x) = − 2
π2

∫ ∞

0
Θs
(

(1 + iA′)Θs
(

(1 + iA′)h
))

(x)
ds
s

. (8.6.25)

We also introduce the multiplication operator

Mb(h) = bh,

which enables us to write (8.6.25) in a more compact form as

CΓ (h) = −h− 2
π2

∫ ∞

0
ΘsM1+iA′ΘsM1+iA′(h)

ds
s

. (8.6.26)

This gives us the desired resolution of the operator CΓ . It suffices to obtain an L2

estimate for the integral expression in (8.6.26). Using duality, we write

〈
∫ ∞

0
ΘsM1+iA′ΘsM1+iA′(h)

ds
s

,g
〉

=
∫ ∞

0

〈

M1+iA′ΘsM1+iA′(h),Θ t
s(g)

〉 ds
s

,

which is easily bounded by

√

1 + L2
∫ ∞

0

∥

∥ΘsM1+iA′(h)
∥

∥

L2

∥

∥Θ t
s(g)

∥

∥

L2

ds
s

≤
√

1 + L2

(
∫ ∞

0

∥

∥ΘsM1+iA′(h)
∥

∥

2
L2

ds
s

)1
2
(
∫ ∞

0

∥

∥Θs(g)
∥

∥

2
L2

ds
s

)1
2

.

We have now reduced matters to the following estimate:
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(
∫ ∞

0

∥

∥Θs(h)
∥

∥

2
L2

ds
s

)1
2

≤C
∥

∥h
∥

∥

L2 . (8.6.27)

We derive (8.6.27) as a consequence of Theorem 8.6.6 discussed in Section 8.6.4.

8.6.3 A Quadratic T (1) Type Theorem

We review what we have achieved so far and we introduce definitions that place
matters into a new framework.

For the purposes of the subsequent exposition we can switch to Rn, since there
are no differences from the one-dimensional argument. Suppose that for all s > 0,
there is a family of functions θs defined on Rn ×Rn such that

|θs(x,y)| ≤
1
sn

A
(

1 + |x−y|
s

)n+δ (8.6.28)

and

|θs(x,y)−θs(x,y′)| ≤
A
sn

|y− y′|γ
sγ

(8.6.29)

for all x,y,y′ ∈ Rn and some 0 < γ,δ ,A < ∞. LetΘs be the operator with kernel θs,
that is,

Θs(h)(x) =
∫

Rn
θs(x,y)h(y)dy , (8.6.30)

which is well defined for all h in
⋃

1≤p≤∞Lp(Rn) in view of (8.6.28).
At this point we observe that both (8.6.28) and (8.6.29) hold for the θs defined

in (8.6.24) with γ = δ = 1 and A a constant multiple of L. We leave the details of
this calculation to the reader but we note that (8.6.29) can be obtained quickly using
the mean value theorem. Our goal is to figure out under what additional conditions
on Θs the quadratic estimate (8.6.27) holds. If we can find such a condition that is
easily verifiable for the Θs associated with the Cauchy integral, this will conclude
the proof of its L2 boundedness.

We first consider a simple condition that implies the quadratic estimate (8.6.27).

Theorem 8.6.3. For s > 0, let θs be a family of kernels satisfying (8.6.28) and
(8.6.29) and let Θs be the linear operator whose kernel is θs. Suppose that for all
s > 0 we have

Θs(1) = 0 . (8.6.31)

Then there is a constant Cn,δ such that for all f ∈ L2 we have

(
∫ ∞

0

∥

∥Θs( f )
∥

∥

2
L2

ds
s

)1
2

≤Cn,δA
∥

∥ f
∥

∥

L2 . (8.6.32)
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We note that condition (8.6.31) is not satisfied for the operators Θs associated
with the Cauchy integral as defined in (8.6.23). However, Theorem 8.6.3 gives us
an idea of what we are looking for, something like the action of Θs on a specific
function. We also observe that condition (8.6.31) is “basically” saying thatΘ(1) =
0, where

Θ =
∫ ∞

0
Θs

ds
s

.

Proof. We introduce Littlewood–Paley operators Qs given by convolution with a
smooth functionΨs = 1

snΨ( ·s ) whose Fourier transform is supported in the annulus
s/2 ≤ |ξ | ≤ 2s that satisfies

∫ ∞

0
Q2

s
ds
s

= lim
ε→0
N→∞

∫ N

ε
Q2

s
ds
s

= I , (8.6.33)

where the limit is taken in the sense of distributions and the identity holds in
S ′(Rn)/P . This identity and properties ofΘt imply the operator identity

Θt =Θt

∫ ∞

0
Q2

s
ds
s

=
∫ ∞

0
ΘtQ

2
s

ds
s

.

The key fact is the following estimate:

∥

∥ΘtQs
∥

∥

L2→L2 ≤ ACn,Ψ min
(s

t
,

t
s

)ε
, (8.6.34)

which holds for some ε = ε(γ,δ ,n) > 0. [Recall that A, γ , and δ are as in (8.6.28)
and (8.6.29).] Assuming momentarily estimate (8.6.34), we can quickly prove The-
orem 8.6.3 using duality. Indeed, let us take a function G(x,t) such that

∫ ∞

0

∫

Rn
|G(x,t)|2 dx

dt
t
≤ 1 . (8.6.35)

Then we have
∫ ∞

0

∫

Rn
G(x,t)Θt( f )(x)dx

dt
t

=
∫ ∞

0

∫

Rn
G(x,t)

∫ ∞

0
ΘtQ

2
s ( f )(x)

ds
s

dx
dt
t

=
∫ ∞

0

∫ ∞

0

∫

Rn
G(x,t)ΘtQ

2
s ( f )(x)dx

dt
t

ds
s

≤
(
∫ ∞

0

∫ ∞

0

∫

Rn
|G(x,t)|2dx min

( s
t
,

t
s

)ε dt
t

ds
s

)1
2

×
(
∫ ∞

0

∫ ∞

0

∫

Rn
|ΘtQs(Qs( f ))(x)|2 dx min

( s
t
,

t
s

)−ε dt
t

ds
s

)1
2

.

But we have the estimate
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sup
t>0

∫ ∞

0
min

(s
t
,

t
s

)ε ds
s

≤Cε ,

which, combined with (8.6.35), yields that the first term in the product of the two
preceding square functions is controlled by

√
Cε . Using this fact and (8.6.34), we

write
∫ ∞

0

∫

Rn
G(x,t)Θt( f )(x)dx

dt
t

≤
√

Cε

(
∫ ∞

0

∫ ∞

0

∫

Rn
|ΘtQs(Qs( f ))(x)|2 dx min

(s
t
,

t
s

)−ε dt
t

ds
s

)1
2

≤ A
√

Cε

(
∫ ∞

0

∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx min

(s
t
,

t
s

)2ε
min

( s
t
,

t
s

)−ε dt
t

ds
s

)1
2

≤ A
√

Cε

(
∫ ∞

0

∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx min

(s
t
,

t
s

)ε dt
t

ds
s

)1
2

≤Cε A

(
∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx

ds
s

)1
2

≤ Cn,εA
∥

∥ f
∥

∥

L2 ,

where in the last step we used the continuous version of Theorem 5.1.2 (cf. Exercise
5.1.4). Taking the supremum over all functions G(x, t) that satisfy (8.6.35) yields
estimate (8.6.32).

It remains to prove (8.6.34). What is crucial here is that both Θt and Qs satisfy
the cancellation conditionsΘt(1) = 0 and Qs(1) = 0. The proof of estimate (8.6.34)
is similar to that of estimates (8.5.14) and (8.5.15) in Proposition 8.5.3. Using ideas
from the proof of Proposition 8.5.3, we quickly dispose of the proof of (8.6.34).

The kernel ofΘtQs is seen easily to be

Lt,s(x,y) =
∫

Rn
θt(x,z)Ψs(z− y)dz .

Notice that the function (y,z) �→Ψs(z− y) satisfies (8.6.28) with δ = 1 and A = CΨ
and satisfies

|Ψs(z− y)−Ψs(z′ − y)| ≤ CΨ
sn

|z− z′|
s

for all z,z′,y ∈ Rn for some CΨ < ∞. We prove that

sup
x∈Rn

∫

Rn
|Lt,s(x,y)|dy ≤ CΨ A min

( t
s
,

s
t

) 1
4

min(δ ,1)
n+min(δ ,1) min(γ,δ ,1)

, (8.6.36)

sup
y∈Rn

∫

Rn
|Lt,s(x,y)|dx ≤ CΨ A min

( t
s
,

s
t

) 1
4

min(δ ,1)
n+min(δ ,1) min(γ,δ ,1)

. (8.6.37)
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Once (8.6.36) and (8.6.37) are established, (8.6.34) follows directly from the lemma
in Appendix I.1 with ε = 1

4
min(δ ,1)

n+min(δ ,1) min(γ,δ ,1).
We begin by observing that when s ≤ t we have the estimate

∫

Rn

s−n min(2,(t−1|u|)γ)
(1 + s−1|u|)n+1 du ≤Cn

(s
t

) 1
2 min(γ,1)

. (8.6.38)

Also when t ≤ s we have the analogous estimate

∫

Rn

t−n min(2,s−1|u|)
(1 + t−1|u|)n+δ du ≤Cn

( t
s

) 1
2 min(δ ,1)

. (8.6.39)

Both (8.6.38) and (8.6.39) are trivial reformulations or consequences of (8.5.18).
We now take s ≤ t and we use that Qs(1) = 0 for all s > 0 to obtain

|Lt,s(x,y)| =
∣

∣

∣

∣

∫

Rn
θt(x,z)Ψs(z− y)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn

[

θt(x,z)−θt(x,y)
]

Ψs(z− y)dz

∣

∣

∣

∣

≤ C A
∫

Rn

min(2,(t−1|z− y|)γ)
tn

s−n

(1 + s−1|z− y|)n+1 dz

≤ C′
n A

1
tn

(s
t

) 1
2 min(γ,1)

≤ C′
n A min

(1
t
,

1
s

)n
min

( t
s
,

s
t

) 1
2 min(γ,δ ,1)

using estimate (8.6.38). Similarly, using (8.6.39) and the hypothesis thatΘt(1) = 0
for all t > 0, we obtain for t ≤ s,

|Lt,s(x,y)| =
∣

∣

∣

∣

∫

Rn
θt(x,z)Ψs(z− y)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn
θt(x,z)

[

Ψs(z− y)−Ψs(x− y)
]

dz

∣

∣

∣

∣

≤ xC A
∫

Rn

t−n

(1 + t−1|x− z|)n+δ
min(2,s−1|x− z|)

sn dz

≤ C′
n A

1
sn

( t
s

) 1
2 min(δ ,1)

≤ C′
n A min

(1
t
,

1
s

)n
min

( t
s
,

s
t

) 1
2 min(γ,δ ,1)

.

Combining the estimates for |Lt,s(x,y)| in the preceding cases t ≤ s and s ≤ t with
the estimate
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|Lt,s(x,y)| ≤
∫

Rn
|θt(x,z)| |Ψs(z− y)|dz ≤

C Amin( 1
t ,

1
s )

n

(

1 + min( 1
t ,

1
s )|x− y|

)n+min(δ ,1) ,

which is a consequence of the result in Appendix K.1, gives

|Lt,s(x,y)| ≤
C min( t

s ,
s
t )

1
2 min(γ,δ ,1)(1−β )Amin( 1

t ,
1
s )

n

(

(

1 + min( 1
t ,

1
s )|x− y|

)n+min(δ ,1)
)β

for any 0 < β < 1. Choosing β = (n+ 1
2 min(δ ,1))(n+min(δ ,1))−1 and integrating

over x or y yields (8.6.36) and (8.6.37), respectively, and thus concludes the proof
of estimate (8.6.34). �

We end this subsection with a small generalization of the previous theorem that
follows by an examination of its proof. The simple details are left to the reader.

Corollary 8.6.4. For s > 0 letΘs be linear operators that are uniformly bounded on
L2(Rn) by a constant B. LetΨ be a Schwartz function whose Fourier transform is
supported in the annulus 1/2 ≤ |x| ≤ 2 such that the Littlewood–Paley operator Qs

given by convolution with Ψs(x) = s−nΨ (s−1x) satisfies (8.6.33). Suppose that for
some Cn,Ψ ,A,ε < ∞,

∥

∥ΘtQs
∥

∥

L2→L2 ≤ ACn,Ψ min
(s

t
,

t
s

)ε
(8.6.40)

is satisfied for all t,s > 0. Then there is a constant Cn,Ψ ,ε such that for all f ∈ L2(Rn)
we have

(
∫ ∞

0

∥

∥Θs( f )
∥

∥

2
L2

ds
s

)1
2

≤Cn,Ψ ,ε(A + B)
∥

∥ f
∥

∥

L2 .

8.6.4 A T (b) Theorem and the L2 Boundedness of the Cauchy
Integral

The operators Θs defined in (8.6.23) and (8.6.24) that appear in the resolution of
the Cauchy integral operator CΓ do not satisfy the conditionΘs(1) = 0 of Theorem
8.6.3. It turns out that a certain variant of this theorem is needed for the purposes of
the application we have in mind, the L2 boundedness of the Cauchy integral operator.
This variant is a quadratic type T (b) theorem discussed in this subsection. Before
we state the main theorem, we need a definition.

Definition 8.6.5. A bounded complex-valued function b on Rn is said to be accretive
if there is a constant c0 > 0 such that Reb(x) ≥ c0 for almost all x ∈ Rn.

The following theorem is the main result of this section.
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Theorem 8.6.6. Let θs be a complex-valued function on Rn × Rn that satisfies
(8.6.28) and (8.6.29), and let Θs be the linear operator in (8.6.30) whose kernel
is θs. If there is an accretive function b such that

Θs(b) = 0 (8.6.41)

for all s > 0, then there is a constant Cn(b) such that the estimate

(
∫ ∞

0

∥

∥Θs( f )
∥

∥

2
L2

ds
s

)1
2

≤Cn(b)
∥

∥ f
∥

∥

L2 (8.6.42)

holds for all f ∈ L2.

Corollary 8.6.7. The Cauchy integral operator CΓ maps L2(R) to itself.

The corollary is a consequence of Theorem 8.6.6. Indeed, the crucial and impor-
tant cancellation property

Θs(1 + iA′) = 0 (8.6.43)

is valid for the accretive function 1 + iA′, when Θs and θs are as in (8.6.23) and
(8.6.24). To prove (8.6.43) we simply note that

Θs(1 + iA′)(x) =
∫

R

s(1 + iA′(y))dy
(y− x + i(A(y)−A(x))+ is)2

=
[

−s
y− x + i(A(y)−A(x))+ is

]y=+∞

y=−∞

= 0−0 = 0 .

This condition plays exactly the role of (8.6.31), which may fail in general. The
necessary “internal cancellation” of the family of operators Θs is exactly captured
by the single condition (8.6.43).

It remains to prove Theorem 8.6.6.

Proof. We fix an approximation of the identity operator, such as

Ps( f )(x) =
∫

Rn
Φs(x− y) f (y)dy ,

whereΦs(x) = s−nΦ(s−1x), andΦ is a nonnegative Schwartz function with integral
1. Then Ps is a nice positive averaging operator that satisfies Ps(1) = 1 for all s > 0.
The key idea is to decompose the operatorΘs as

Θs =
(

Θs −MΘs(1)Ps
)

+ MΘs(1)Ps , (8.6.44)

where MΘs(1) is the operator given by multiplication by Θs(1). We begin with the
first term in (8.6.44), which is essentially an error term. We simply observe that

(

Θs −MΘs(1)Ps
)

(1) =Θs(1)−Θs(1)Ps(1) =Θs(1)−Θs(1) = 0 .
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Therefore, Theorem 8.6.3 is applicable once we check that the kernel of the operator
Θs −MΘs(1)Ps satisfies (8.6.28) and (8.6.29). But these are verified easily, since the
kernels of both Θs and Ps satisfy these estimates and Θs(1) is a bounded function
uniformly in s. The latter statement is a consequence of condition (8.6.28).

We now need to obtain the required quadratic estimate for the term MΘs(1)Ps.
With the use of Theorem 7.3.7, this follows once we prove that the measure

∣

∣Θs(1)(x)
∣

∣

2 dxds
s

is Carleson. It is here that we use condition (8.6.41). SinceΘs(b) = 0 we have

Ps(b)Θs(1) =
(

Ps(b)Θs(1)−ΘsPs(b)
)

+
(

ΘsPs(b)−Θs(b)
)

. (8.6.45)

Suppose we could show that the measures

∣

∣Θs(b)(x)−ΘsPs(b)(x)
∣

∣

2 dxds
s

, (8.6.46)

∣

∣ΘsPs(b)(x)−Ps(b)(x)Θs(1)(x)
∣

∣

2 dxds
s

, (8.6.47)

are Carleson. Then it would follow from (8.6.45) that the measure

∣

∣Ps(b)(x)Θs(1)(x)
∣

∣

2 dxds
s

is also Carleson. Using the accretivity condition on b and the positivity of Ps we
obtain

∣

∣Ps(b)
∣

∣≥ RePs(b) = Ps(Reb) ≥ Ps(c0) = c0,

from which it follows that |Θs(1)(x)|2 ≤ c−2
0 |Ps(b)(x)Θs(1)(x)|2. Thus the measure

|Θs(1)(x)|2dxds/s must be Carleson.
Therefore, the proof will be complete if we can show that both measures (8.6.46)

and (8.6.47) are Carleson. Theorem 7.3.8 plays a key role here.
We begin with the measure in (8.6.46). First we observe that the kernel

Ls(x,y) =
∫

Rn
θs(x,z)Φs(z− y)dz

of ΘsPs satisfies (8.6.28) and (8.6.29). The verification of (8.6.28) is a straightfor-
ward consequence of the estimate in Appendix K.1, while (8.6.29) follows easily
from the mean value theorem. It follows that the kernel of

Rs =Θs −ΘsPs

satisfies the same estimates. Moreover, it is easy to see that Rs(1) = 0 and thus
the quadratic estimate (8.6.32) holds for Rs in view of Theorem 8.6.3. Therefore,
the hypotheses of Theorem 7.3.8(c) are satisfied, and this gives that the measure in
(8.6.46) is Carleson.
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We now continue with the measure in (8.6.47). Here we set

Ts( f )(x) =ΘsPs( f )(x)−Ps( f )(x)Θs(1)(x) .

The kernel of Ts is Ls(x,y)−Θs(1)(x)Φs(x − y), which clearly satisfies (8.6.28)
and (8.6.29), sinceΘs(1)(x) is a bounded function uniformly in s > 0. We also ob-
serve that Ts(1) = 0. Using Theorem 8.6.3, we conclude that the quadratic estimate
(8.6.32) holds for Ts. Therefore, the hypotheses of Theorem 7.3.8(c) are satisfied;
hence the measure in (8.6.46) is Carleson. �

We conclude by observing that if we attempt to replace Θs with ˜Θs =ΘsM1+iA′

in the resolution identity (8.6.26), then ˜Θs(1) = 0 would hold, but the kernel of ˜Θs

would not satisfy the regularity estimate (8.6.29). The whole purpose of Theorem
8.6.6 was to find a certain balance between regularity and cancellation.

Exercises

8.6.1. Given a function H on a Lipschitz graph Γ , we associate a function h on the
line by setting h(t) = H(t + iA(t)) . Prove that for all 0 < p <∞ we have

∥

∥h
∥

∥

p
Lp(R) ≤

∥

∥H
∥

∥

p
Lp(Γ ) ≤

√

1 + L2
∥

∥h
∥

∥

p
Lp(R) ,

where L is the Lipschitz constant of the defining function A of the graph Γ .

8.6.2. Let A : R →R satisfy |A(x)−A(y)| ≤ L|x−y| for all x,y ∈ R for some L > 0.
Also, let h be a Schwartz function on R.
(a) Show that for all s > 0 and x,y ∈ R we have

s2 + |x− y|2
|x− y|2 + |A(x)−A(y)+ s|2 ≤ 4L2 + 2 .

(b) Use the Lebesgue dominated convergence theorem to prove that

∫

|x−y|>
√

s

s(1 + iA′(y))h(y)
(y− x + i(A(y)−A(x))+ is)2 dy → 0

as s → 0.
(c) Integrate directly to show that as s → 0,

∫

|x−y|≤
√

s

s(1 + iA′(y))
(y− x + i(A(y)−A(x))+ is)2 dy → 0

for every point x at which A is differentiable.
(d) Use part (a) and the Lebesgue dominated convergence theorem to show that as
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s → 0,
∫

|x−y|≤
√

s

s(1 + iA′(y))(h(y)−h(x))
(y− x + i(A(y)−A(x))+ is)2 dy → 0 .

(e) Use part (a) and the Lebesgue dominated convergence theorem to show that as
s → ∞,

∫

R

s(1 + iA′(y))h(y)
(y− x + i(A(y)−A(x))+ is)2 dy → 0 .

Conclude the validity of the statements in (8.6.20) for almost all x ∈ R.

8.6.3. Prove identity (8.6.22).
[

Hint: Write the identity in (8.6.22) as

−2
((ζ + is)− (z− is))3 =

1
2π i

∫

Γ

1
(w−(z−is))2

(w− (ζ + is))2 dw

and interpret it as Cauchy’s integral formula for the derivative of the analytic func-
tion w �→ (w− (z− is))−2 defined on the region above Γ . If Γ were a closed curve
containing ζ + is but not z− is, then the previous assertion would be immediate. In
general, consider a circle of radius R centered at the point ζ + is and the region UR

inside this circle and above Γ . See Figure 8.1. Integrate over the boundary of UR

and let R → ∞.
]

.

.
.
.

Fig. 8.1 The region UR inside the circle and above the curve.

8.6.4. Given an accretive function b, define a pseudo-inner product

〈

f ,g
〉

b =
∫

Rn
f (x)g(x)b(x)dx
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on L2. For an interval I, set bI =
∫

I b(x)dx. Let IL denote the left half of a dyadic

interval I and let IR denote its right half. For a complex number z, let z
1
2 = e

1
2 logright z,

where logright is the branch of the logarithm defined on the complex plane minus the
negative real axis normalized so that logright 1 = 0 [and logright(±i) = ± π

2 i]. Show
that the family of functions

hI =
−1

b(I)
1
2

(

b(IR)
1
2

b(IL)
1
2

χIL −
b(IL)

1
2

b(IR)
1
2

χIR

)

,

where I runs over all dyadic intervals, is an orthonormal family on L2(R) with re-
spect to the preceding inner product. (This family of functions is called a pseudo-
Haar basis associated with b.)

8.6.5. Let I = (a,b) be a dyadic interval and let 3I be its triple. For a given x ∈ R,
let

dI(x) = min
(

|x−a|, |x−b|, |x− a+b
2 |
)

.

Show that there exists a constant C such that

∣

∣CΓ (hI)(x)
∣

∣≤C |I|− 1
2 log

10|I|
|x−dI(x)|

whenever x ∈ 3I and also

∣

∣CΓ (hI)(x)
∣

∣≤ C |I| 3
2

|x−dI(x)|2

for x /∈ 3I. In the latter case, dI(x) can be any of a,b, a+b
2 .

8.6.6. (Semmes [281] ) We say that a bounded function b is para-accretive if for all
s > 0 there is a linear operator Rs with kernel satisfying (8.6.28) and (8.6.29) such
that |Rs(b)| ≥ c0 for all s > 0. LetΘs and Ps be as in Theorem 8.6.6.
(a) Prove that

∣

∣Rs(b)(x)−Rs(1)(x)Ps(b)(x)
∣

∣

2 dxds
s

is a Carleson measure.
(b) Use the result in part (a) and the fact that sups>0 |Rs(1)| ≤ C to obtain that
χΩ (x,s)dxds/s is a Carleson measure, where

Ω =
{

(x,s) : |Ps(b)(x)| ≤ c0

2

(

sup
s>0

|Rs(1)|)−1
}

.

(c) Conclude that the measure
∣

∣Θs(1)(x)
∣

∣

2
dxds/s is Carleson, thus obtaining a gen-

eralization of Theorem 8.6.6 for para-accretive functions.

8.6.7. Using the operator ˜Cγ defined in (8.6.15), obtain that CΓ is of weak type
(1,1) and bounded on Lp(R) for all 1 < p < ∞.
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8.7 Square Roots of Elliptic Operators

In this section we prove an L2 estimate for the square root of a divergence form
second-order elliptic operator on Rn. This estimate is based on an approach in the
spirit of the T (b) theorem discussed in the previous section. However, matters here
are significantly more complicated for two main reasons: the roughness of the vari-
able coefficients of the aforementioned elliptic operator and the higher-dimensional
nature of the problem.

8.7.1 Preliminaries and Statement of the Main Result

For ξ = (ξ1, . . . ,ξn) ∈ Cn we denote its complex conjugate (ξ1, . . . ,ξn) by ξ . More-
over, for ξ ,ζ ∈ Cn we use the inner product notation

ξ ·ζ =
n

∑
k=1

ξk ζk .

Throughout this section, A = A(x) is an n×n matrix of complex-valued L∞ func-
tions, defined on Rn, that satisfies the ellipticity (or accretivity) conditions for some
0 < λ ≤Λ < ∞, that

λ |ξ |2 ≤ Re (A(x)ξ ·ξ ) ,
|A(x)ξ ·ζ | ≤ Λ |ξ | |ζ | ,

(8.7.1)

for all x ∈ Rn and ξ ,ζ ∈ Cn. We interpret an element ξ of Cn as a column vector in
Cn when the matrix A acts on it.

Associated with such a matrix A, we define a second-order divergence form op-
erator

L( f ) = −div(A∇ f ) =
n

∑
j=1
∂ j
(

(A∇ f ) j
)

, (8.7.2)

which we interpret in the weak sense whenever f is a distribution.
The accretivity condition (8.7.1) enables us to define a square root operator

L1/2 =
√

L so that the operator identity L =
√

L
√

L holds. The square root oper-
ator can be written in several ways, one of which is

√
L( f ) =

16
π

∫ +∞

0
(I + t2L)−3t3L2( f )

dt
t

. (8.7.3)

We refer the reader to Exercise 8.7.3 for the existence of the square root operator
and the validity of identity (8.7.3).

An important problem in the subject is to determine whether the estimate
∥

∥

√
L( f )

∥

∥

L2 ≤Cn,λ ,Λ
∥

∥∇ f
∥

∥

L2 (8.7.4)
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holds for functions f in a dense subspace of the homogeneous Sobolev space
L̇2

1(R
n), where Cn,λ ,Λ is a constant depending only on n, λ , and Λ . Once (8.7.4)

is known for a dense subspace of L̇2
1(R

n), then it can be extended to the entire space
by density. The main purpose of this section is to discuss a detailed proof of the
following result.

Theorem 8.7.1. Let L be as in (8.7.2). Then there is a constant Cn,λ ,Λ such that for
all smooth functions f with compact support, estimate (8.7.4) is valid.

The proof of this theorem requires certain estimates concerning elliptic operators.
These are presented in the next subsection, while the proof of the theorem follows
in the remaining four subsections.

8.7.2 Estimates for Elliptic Operators on Rn

The following lemma provides a quantitative expression for the mean decay of the
resolvent kernel.

Lemma 8.7.2. Let E and F be two closed sets of Rn and set

d = dist (E,F) ,

the distance between E and F. Then for all complex-valued functions f supported
in E and all vector-valued functions �f supported in E, we have

∫

F
|(I + t2L)−1( f )(x)|2 dx ≤ Ce−c d

t

∫

E
| f (x)|2 dx , (8.7.5)

∫

F
|t∇(I + t2L)−1( f )(x)|2 dx ≤ Ce−c d

t

∫

E
| f (x)|2 dx , (8.7.6)

∫

F
|(I + t2L)−1(t div�f )(x)|2 dx ≤ Ce−c d

t

∫

E
|�f (x)|2 dx , (8.7.7)

where c = c(λ ,Λ), C = C(n,λ ,Λ) are finite constants.

Proof. It suffices to obtain these inequalities whenever d ≥ t > 0. Let us set ut =
(I + t2L)−1( f ). For all v ∈ L2

1(R
n) we have

∫

Rn
utvdx + t2

∫

Rn
A∇ut ·∇vdx =

∫

Rn
f vdx .

Let η be a nonnegative smooth function with compact support that does not meet E
and that satisfies ‖η‖L∞ = 1. Taking v = ut η2 and using that f is supported in E ,
we obtain

∫

Rn
|ut |2η2 dx + t2

∫

Rn
A∇ut ·∇ut η2 dx = −2t2

∫

Rn
A(η∇ut) ·ut∇η dx .
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Using (8.7.1) and the inequality 2ab ≤ ε|a|2 + ε−1|b|2, we obtain for all ε > 0,
∫

Rn
|ut |2η2 dx +λ t2

∫

Rn
|∇ut |2 η2 dx

≤ Λεt2
∫

Rn
|∇ut |2 η2 dx +Λε−1t2

∫

Rn
|ut |2|∇η |2 dx ,

and this reduces to

∫

Rn
|ut |2|η |2 dx ≤ Λ

2t2

λ

∫

Rn
|ut |2|∇η |2 dx (8.7.8)

by choosing ε = λ
Λ . Replacing η by ekη −1 in (8.7.8), where

k =

√
λ

2Λ t‖∇η‖L∞
,

yields
∫

Rn
|ut |2|ekη −1|2 dx ≤ 1

4

∫

Rn
|ut |2|ekη |2 dx . (8.7.9)

Using that |ekη −1|2 ≥ 1
2 |ekη |2 −1, we obtain

∫

Rn
|ut |2|ekη |2 dx ≤ 4

∫

Rn
|ut |2 dx ≤ 4C

∫

E
| f |2 dx ,

where in the last estimate we use the uniform boundedness of (I + t2L)−1 on L2(Rn)
(Exercise 8.7.2). If, in addition, we have η = 1 on F , then

|ek|2
∫

F
|ut |2 dx ≤

∫

Rn
|ut |2|ekη |2 dx ,

and picking η so that ‖∇η‖L∞ ≈ 1/d, we conclude (8.7.5).
Next, choose ε = λ/2Λ and η as before to obtain

∫

F
|t∇ut |2 dx ≤

∫

Rn
|t∇ut |2η2 dx

≤ 2Λ2t2

λ

∫

Rn
|ut |2|∇η |2 dx

≤ Ct2d−2e−c d
t

∫

E
| f |2 dx ,

which gives (8.7.6). Finally, (8.7.7) is obtained by duality from (8.7.6) applied to
L∗ = −div(A∗∇) when the roles of E and F are interchanged. �

Lemma 8.7.3. Let Mf be the operator given by multiplication by a Lipschitz func-
tion f . Then there is a constant C that depends only on n, λ , and Λ such that

∥

∥

[

(I + t2L)−1,Mf
]∥

∥

L2→L2 ≤Ct
∥

∥∇ f
∥

∥

L∞ (8.7.10)
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and
∥

∥∇
[

(I + t2L)−1,Mf
]∥

∥

L2→L2 ≤C
∥

∥∇ f
∥

∥

L∞ (8.7.11)

for all t > 0. Here [T,S] = TS−ST is the commutator of the operators T and S.

Proof. Set �b = A∇ f , �d = At∇ f and note that the operators given by pointwise
multiplication by these vectors are L2 bounded with norms at most a multiple of
C
∥

∥∇ f
∥

∥

L∞ . Write

[

(I + t2L)−1,Mf
]

= −(I + t2L)−1[(I + t2L),Mf
]

(I + t2L)−1

= −(I + t2L)−1t2(div�b+ �d ·∇)(1 + t2L)−1 .

The uniform L2 boundedness of (I + t2L)−1 t∇(I + t2L)−1 and (I + t2L)−1t div on
L2 (see Exercise 8.7.2) implies (8.7.10). Finally, using the L2 boundedness of the
operator t2∇(I + t2L)−1div yields (8.7.11). �

Next we have a technical lemma concerning the mean square deviation of f from
(I + t2L)−1.

Lemma 8.7.4. There exists a constant C depending only on n, λ , andΛ such that for
all Q cubes in Rn with sides parallel to the axes, for all t ≤ �(Q), and all Lipschitz
functions f on Rn we have

1
|Q|

∫

Q
|(I + t2L)−1( f )− f |2 dx ≤ Ct2

∥

∥∇ f
∥

∥

2
L∞ , (8.7.12)

1
|Q|

∫

Q
|∇((I + t2L)−1( f )− f )|2 dxx ≤ C

∥

∥∇ f
∥

∥

2
L∞ . (8.7.13)

Proof. We begin by proving (8.7.12), while we omit the proof of (8.7.13), since it is
similar. By a simple rescaling, we may assume that �(Q) = 1 and that ‖∇ f‖L∞ = 1.
Set Q0 = 2Q (i.e., the cube with the same center as Q with twice its side length) and
write Rn as a union of cubes Qk of side length 2 with disjoint interiors and sides
parallel to the axes. Lemma 8.7.2 implies that

(I + t2L)−1(1) = 1

in the sense that
lim

R→∞
(I + t2L)−1(ηR) = 1

in L2
loc(R

n), where ηR(x) = η(x/R) and η is a smooth bump function with η ≡ 1
near 0. Hence, we may write

(I + t2L)−1( f )(x)− f (x) = ∑
k∈Zn

(I + t2L)−1(( f − f (x))χQk )(x) = ∑
k∈Zn

gk(x) .

The term for k = 0 in the sum is [(I + t2L)−1,Mf ](χQ0)(x). Hence, its L2(Q) norm
is controlled by Ct

∥

∥χQ0

∥

∥

L2 by (8.7.10). The terms for k �= 0 are dealt with using the
further decomposition
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gk(x) = (I + t2L)−1(( f − f (xk))χQk)(x)+ ( f (xk)− f (x))(I + t2L)−1(χQk)(x) ,

where xk is the center of Qk. Applying Lemma 8.7.2 for (I + t2L)−1 on the sets
E = Qk and F = Q and using that f is a Lipschitz function, we obtain

∫

Q
|gk|2 dx ≤Ct2e−c

|xk |
t
∥

∥χQk

∥

∥

2
L2 = Ct2e−c

|xk|
t 2n|Q| .

The desired bound on the L2(Q) norm of (I + t2L)−1( f )− f follows from these
estimates, Minkowski’s inequality, and the fact that t ≤ 1 = �(Q). �

8.7.3 Reduction to a Quadratic Estimate

We are given a divergence form elliptic operator as in (8.7.2) with ellipticity con-
stants λ and Λ in (8.7.1). Our goal is to obtain the a priori estimate (8.7.4) for
functions f in some dense subspace of L̇2

1(R
n).

To obtain this estimate we need to resolve the operator
√

L as an average of
simpler operators that are uniformly bounded from L̇2

1(R
n) to L2(Rn). In the sequel

we use the following resolution of the square root:

√
L( f ) =

16
π

∫ ∞

0
(I + t2L)−3t3L2( f )

dt
t

,

in which the integral converges in L2(Rn) for f ∈ C ∞0 (Rn). Take g ∈ C ∞0 (Rn) with
‖g‖L2 = 1. Using duality and the Cauchy–Schwarz inequality, we can control the

quantity
∣

∣

〈√
L( f ) |g

〉∣

∣

2
by

256
π2

(
∫ ∞

0

∥

∥(I + t2L)−1tL( f )
∥

∥

2
2

dt
t

)(
∫ ∞

0

∥

∥Vt(g)
∥

∥

2
L2

dt
t

)

, (8.7.14)

where we set
Vt = t2L∗(I + t2L∗)−2 .

Here L∗ is the adjoint operator to L and note that the matrix corresponding to L∗

is the conjugate-transpose matrix A∗ of A (i.e., the transpose of the matrix whose
entries are the complex conjugates of the matrix A). We explain why the estimate

∫ ∞

0

∥

∥Vt(g)
∥

∥

2
L2

dt
t
≤C

∥

∥g
∥

∥

2
L2 (8.7.15)

is valid. Fix a real-valued functionΨ ∈ C ∞0 (Rn) with mean value zero normalized
so that

∫ ∞

0
| ̂Ψ(sξ )|2 ds

s
= 1
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for all ξ ∈ Rn and define Ψs(x) = 1
snΨ ( x

s ). Throughout the proof, Qs denotes the
operator

Qs(h) = h ∗Ψs . (8.7.16)

Obviously we have
∫ ∞

0

∥

∥Qs(g)
∥

∥

2
L2

ds
s

=
∥

∥g
∥

∥

2
L2

for all L2 functions g.
We obtain estimate (8.7.15) as a consequence of Corollary 8.6.4 applied to the

operators Vt that have uniform (in t) bounded extensions on L2(Rn). To apply Corol-
lary 8.6.4, we need to check that condition (8.6.40) holds forΘt = Vt . Since

VtQs = −(I + t2L∗)−2t2divA∗∇Qs ,

we have

∥

∥VtQs
∥

∥

L2→L2 ≤
∥

∥(I + t2L∗)−2t2divA∗∥
∥

L2→L2

∥

∥∇Qs
∥

∥

L2→L2 ≤ c
t
s
, (8.7.17)

with C depending only on n, λ , and Λ . ChooseΨ = Δϕ with ϕ ∈ C ∞0 (Rn) radial so
that in particular,Ψ = div�h. This yields Qs = sdiv�Rs with �Rs uniformly bounded;
hence

∥

∥VtQs
∥

∥

L2→L2 ≤
∥

∥t2L∗(I + t2L∗)−2div
∥

∥

L2→L2

∥

∥s�Rs
∥

∥

L2→L2 ≤ c
s
t
, (8.7.18)

with C depending only on n, λ , and Λ .
Combining (8.7.17) and (8.7.18) proves (8.6.40) with Θt = Vt . Hence Corollary

8.6.4 is applicable and (8.7.15) follows.
Therefore, the second integral on the right-hand side of (8.7.14) is bounded, and

estimate (8.7.4) is reduced to proving

∫ ∞

0

∥

∥(I + t2L)−1tL( f )
∥

∥

2
2

dt
t
≤C

∫

Rn
|∇ f |2 dx (8.7.19)

for all f ∈ C ∞0 (Rn).

8.7.4 Reduction to a Carleson Measure Estimate

Our next goal is to reduce matters to a Carleson measure estimate. We first intro-
duce some notation to be used throughout. For Cn-valued functions �f = ( f1, . . . , fn)
define

Zt (�f ) = −
n

∑
k=1

n

∑
j=1

(I + t2L)−1t∂ j(a j,k fk) .
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In short, we write Zt = −(I + t2L)−1t divA. With this notation, we reformulate
(8.7.19) as

∫ ∞

0

∥

∥Zt(∇ f )
∥

∥

2
2

dt
t
≤C

∫

Rn
|∇ f |2 dx . (8.7.20)

Also, define

γt(x) = Zt(1)(x) =
(

−
n

∑
j=1

(I + t2L)−1t ∂ j(a j,k)(x)
)

1≤k≤n
,

where 1 is the n×n identity matrix and the action of Zt on 1 is columnwise.
The reduction to a Carleson measure estimate and to a T (b) argument requires

the following inequality:

∫

Rn

∫ ∞

0
|γt(x) ·P2

t (∇g)(x)−Zt(∇g)(x)|2 dxdt
t

≤C
∫

Rn
|∇g|2 dx, (8.7.21)

where C depends only on n, λ , and Λ . Here, Pt denotes the operator

Pt(h) = h ∗ pt , (8.7.22)

where pt(x) = t−n p(t−1x) and p denotes a nonnegative smooth function supported
in the unit ball of Rn with integral equal to 1. To prove this, we need to handle
Littlewood–Paley theory in a setting a bit more general than the one encountered in
the previous section.

Lemma 8.7.5. For t > 0, let Ut be integral operators defined on L2(Rn) with mea-
surable kernels Lt(x,y). Suppose that for some m > n and for all y ∈ Rn and t > 0
we have

∫

Rn

(

1 +
|x− y|

t

)2m

|Lt(x,y)|2 dx ≤ t−n. (8.7.23)

Assume that for any ball B(y,t), Ut has a bounded extension from L∞(Rn) to
L2(B(y, t)) such that for all f in L∞(Rn) and y ∈ Rn we have

1
tn

∫

B(y,t)
|Ut( f )(x)|2 dx ≤

∥

∥ f
∥

∥

2
L∞ . (8.7.24)

Finally, assume that Ut(1) = 0 in the sense that

Ut(χB(0,R)) → 0 in L2(B(y,t)) (8.7.25)

as R → ∞ for all y ∈ Rn and t > 0.
Let Qs and Pt be as in (8.7.16) and (8.7.22), respectively. Then for some α > 0

and C depending on n and m we have

∥

∥UtPtQs
∥

∥

L2→L2 ≤C min
( t

s
,

s
t

)α
(8.7.26)

and also
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∥

∥UtQs
∥

∥

L2→L2 ≤C
( t

s

)α
, t ≤ s . (8.7.27)

Proof. We begin by observing that U∗
t Ut has a kernel Kt(x,y) given by

Kt(x,y) =
∫

Rn
Lt(z,x)Lt(z,y)dz .

The simple inequality (1 + a + b) ≤ (1 + a)(1 + b) for a,b > 0 combined with

the Cauchy–Schwarz inequality and (8.7.23) yield that
(

1 + |x−y|
t

)m
|Kt(x,y)| is

bounded by

∫

Rn

(

1 +
|x− z|

t

)m

|Lt(z,x)| |Lt (z,y)|
(

1 +
|z− y|

t

)m

dy ≤ t−n .

We conclude that

|Kt(x,y)| ≤
1
tn

(

1 +
|x− y|

t

)−m

. (8.7.28)

Hence U∗
t Ut is bounded on all Lp, 1 ≤ p ≤ +∞, and in particular, for p = 2. Since

L2 is a Hilbert space, it follows that Ut is bounded on L2(Rn) uniformly in t > 0.
For s ≤ t we use that

∥

∥Ut
∥

∥

L2→L2 ≤ B < ∞ and basic estimates to deduce that

∥

∥UtPtQs
∥

∥

L2→L2 ≤ B
∥

∥PtQs
∥

∥

L2→L2 ≤C B
( s

t

)α
.

Next, we consider the case t ≤ s. Since Pt has an integrable kernel, and the kernel
of U∗

t Ut satisfies (8.7.28), it follows that Wt = U∗
t UtPt has a kernel that satisfies a

similar estimate. If we prove that Wt(1) = 0, then we can deduce from standard
arguments that when t ≤ s we have

∥

∥WtQs
∥

∥

L2→L2 ≤C
( t

s

)2α
(8.7.29)

for 0 < α < m−n. This would imply the required estimate (8.7.26), since

∥

∥UtPtQs
∥

∥

2
L2→L2 =

∥

∥Q∗
s PtU

∗
t UtPtQs

∥

∥

L2→L2 ≤C
∥

∥U∗
t UtPtQs

∥

∥

L2→L2 .

We have that Wt(1) =U∗
t Ut(1). Suppose that a function ϕ in L2(Rn) is compactly

supported. Then ϕ is integrable over Rn and we have
〈

U∗
t Ut(1) |ϕ

〉

= lim
R→∞

〈

U∗
t Ut(χB(0,R)) |ϕ

〉

= lim
R→∞

〈

Ut(χB(0,R)) |Ut (ϕ)
〉

.

We have

〈

Ut(χB(0,R)) |Ut(ϕ)
〉

=
∫

Rn

∫

Rn
Ut(χB(0,R))(x)Ut(x,y)ϕ(y)dydx ,

and this is in absolute value at most a constant multiple of
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(

t−n
∫

Rn

∫

Rn

(

1 +
|x− y|

t

)−2m

|Ut(χB(0,R))(x)|2|ϕ(y)|dydx

)1
2
∥

∥ϕ
∥

∥

1
2
L1

by (8.7.23) and the Cauchy–Schwarz inequality for the measure |ϕ(y)|dydx. Using
a covering in the x variable by a family of balls B(y + ckt,t), k ∈ Zn, we deduce
easily that the last displayed expression is at most

Cϕ

(

∑
k∈Zn

∫

Rn
(1 + |k|)−2mcR(y,k)|ϕ(y)|dy

)1
2

,

where Cϕ is a constant that depends on ϕ and

cR(y,k) = t−n
∫

B(y+ckt,t)
|Ut(χB(0,R))(x)|2 dx .

Applying the dominated convergence theorem and invoking (8.7.24) and (8.7.25) as
R → ∞, we conclude that

〈

U∗
t Ut(1) |ϕ

〉

= 0. The latter implies that U∗
t Ut(1) = 0.

The same conclusion follows for Wt , since Pt(1) = 1.
To prove (8.7.27) when t ≤ s we repeat the previous argument with Wt = U∗

t Ut .
Since Wt(1) = 0 and Wt has a nice kernel, it follows that (8.7.29) holds. Thus

∥

∥UtQs
∥

∥

2
L2→L2 =

∥

∥Q∗
sU∗

t UtQs
∥

∥

L2→L2 ≤C
∥

∥U∗
t UtQs

∥

∥

L2→L2 ≤C
( t

s

)2α
.

This concludes the proof of the lemma. �

Lemma 8.7.6. Let Pt be as in Lemma 8.7.5. Then the operator Ut defined by
Ut(�f )(x) = γt(x) ·Pt(�f )(x)−ZtPt(�f )(x) satisfies

∫ ∞

0

∥

∥UtPt (�f )
∥

∥

2
L2

dt
t
≤C

∥

∥�f
∥

∥

2
L2 ,

where C depends only on n, λ , andΛ . Here the action of Pt on �f is componentwise.

Proof. By the off-diagonal estimates of Lemma 8.7.2 for Zt and the fact that p has
support in the unit ball, it is simple to show that there is a constant C depending on
n, λ , and Λ such that for all y ∈ Rn,

1
tn

∫

B(y,t)
|γt(x)|2 dx ≤C (8.7.30)

and that the kernel of C−1Ut satisfies the hypotheses in Lemma 8.7.5. The conclu-
sion follows from Corollary 8.6.4 applied to UtPt . �

We now return to (8.7.21). We begin by writing

γt(x) ·P2
t (∇g)(x)−Zt(∇g)(x) = UtPt(∇g)(x)+ Zt(P2

t − I)(∇g)(x) ,
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and we prove (8.7.21) for each term that appears on the right. For the first term we
apply Lemma 8.7.6. Since Pt commutes with partial derivatives, we may use that

∥

∥Zt∇
∥

∥

L2→L2 =
∥

∥(I + t2L)−1t L
∥

∥

L2→L2 ≤Ct−1 ,

and therefore we obtain for the second term
∫

Rn

∫ ∞

0
|Zt(P2

t − I)(∇g)(x)|2 dxdt
t

≤ C2
∫

Rn

∫ ∞

0
|(P2

t − I)(g)(x)|2 dt
t3 dx

≤ C2c(p)
∥

∥∇g
∥

∥

2
2

by Plancherel’s theorem, where C depends only on n, λ , and Λ . This concludes the
proof of (8.7.21).

Lemma 8.7.7. The required estimate (8.7.4) follows from the Carleson measure es-
timate

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x)|2

dxdt
t

< ∞ , (8.7.31)

where the supremum is taken over all cubes in Rn with sides parallel to the axes.

Proof. Indeed, (8.7.31) and Theorem 7.3.7 imply

∫

Rn

∫ ∞

0
|P2

t (∇g)(x) · γt(x)|2
dxdt

t
≤C

∫

Rn
|∇g|2 dx,

and together with (8.7.21) we deduce that (8.7.20) holds. �

Next we introduce an auxiliary averaging operator. We define a dyadic averaging
operator SQ

t as follows:

SQ
t (�f )(x) =

(

1
|Q′

x|

∫

Q′
x

�f (y)dy

)

χQ′
x
(x) ,

where Q′
x is the unique dyadic cube contained in Q that contains x and satisfies

1
2�(Q′

x) < t ≤ �(Q′
x). Notice that SQ

t is a projection, i.e., it satisfies SQ
t SQ

t = SQ
t . We

have the following technical lemma concerning SQ
t .

Lemma 8.7.8. For some C depending only on n, λ , and Λ , we have

∫

Q

∫ �(Q)

0
|γt(x) · (SQ

t −P2
t )(�f )(x)|2 dxdt

t
≤C

∫

Rn
|�f |2 dx . (8.7.32)

Proof. We actually obtain a stronger version of (8.7.32) in which the t-integration
on the left is taken over (0,+∞). Let Qs be as in (8.7.16). Set Θt = γt · (SQ

t −P2
t ).

The proof of (8.7.32) is based on Corollary 8.6.4 provided we show that for some
α > 0,

∥

∥ΘtQs
∥

∥

L2→L2 ≤C min
( t

s
,

s
t

)α
.
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Suppose first that t ≤ s. Notice thatΘt(1) = 0, and thus (8.7.25) holds. With the
aid of (8.7.30), we observe thatΘt satisfies the hypotheses (8.7.23) and (8.7.24) of
Lemma 8.7.5. Conclusion (8.7.27) of this lemma yields that for some α > 0 we have

∥

∥ΘtQs
∥

∥

L2→L2 ≤C
( t

s

)α
.

We now turn to the case s ≤ t. Since the kernel of Pt is bounded by ct−nχ|x−y|≤t ,
condition (8.7.30) yields that γtPt is uniformly bounded on L2 and thus

∥

∥γtP2
t Qs

∥

∥

L2→L2 ≤C
∥

∥PtQs
∥

∥

L2→L2 ≤C′ s
t
.

It remains to consider the case s ≤ t for the operator Ut = γt · SQ
t . We begin by

observing that Ut is L2 bounded uniformly in t > 0; this follows from a standard
U∗

t Ut argument using condition (8.7.23). Secondly, as already observed, SQ
t is an

orthogonal projection. Therefore, we have
∥

∥(γt ·SQ
t )Qs

∥

∥

L2→L2 ≤
∥

∥(γt ·SQ
t )SQ

t Qs
∥

∥

L2→L2

≤
∥

∥SQ
t Qs

∥

∥

L2→L2

≤
∥

∥SQ
t

∥

∥

L2→L̇2
α

∥

∥Qs
∥

∥

L̇2
α→L2

≤ C sα t−α .

The last inequality follows from the facts that for any α in (0, 1
2 ), Qs maps the

homogeneous Sobolev space L̇2
α to L2 with norm at most a multiple of C sα and

that the dyadic averaging operator SQ
t maps L2(Rn) to L̇2

α(Rn) with norm Ct−α .
The former of these statements is trivially verified by taking the Fourier transform,
while the latter statement requires some explanation.

Fix anα ∈ (0, 1
2) and take h,g∈L2(Rn). Also fix j ∈Z such that 2− j−1 ≤ t < 2− j.

We then have

〈

SQ
t (−Δ)

α
2 (h),g

〉

= ∑
Jj,k�Q

〈

(−Δ)
α
2 (h),χJj,k (x)(Avg

Jj,k

g)
〉

,

where Jj,k =∏n
r=1[2

− jkr,2− j(kr + 1)) and k = (k1, . . . ,kn). It follows that

〈

SQ
t (−Δ)

α
2 (h),g

〉

= ∑
Jj,k�Q

〈

h,
(

Avg
Jj,k

g
)

(−Δ)
α
2 (χJj,k )(x)

〉

=
〈

h , ∑
Jj,k�Q

2α j(Avg
Jj,k

g
)

(−Δ)
α
2 (χ[0,1)n)(2 j(·)− k)

〉

.

Set χα = (−Δ)
α
2 (χ[0,1)n). We estimate the L2 norm of the preceding sum. We have
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∫

Rn

∣

∣

∣ ∑
Jj,k�Q

2α j(Avg
Jj,k

g
)

χα(2 jx− k)
∣

∣

∣

2
dx

= 22α j−n j
∫

Rn

∣

∣

∣ ∑
Jj,k�Q

(

Avg
Jj,k

g
)

χα(x− k)
∣

∣

∣

2
dx

= 22α j−n j
∫

Rn

∣

∣

∣ ∑
Jj,k�Q

e−2π ik·ξ(Avg
Jj,k

g
)

∣

∣

∣

2
|χ̂α(ξ )|2 dξ

= 22α j−n j
∫

[0,1]n

∣

∣

∣ ∑
Jj,k�Q

e−2π ik·ξ(Avg
Jj,k

g
)

∣

∣

∣

2

∑
l∈Zn

|χ̂α(ξ + l)|2 dξ

≤ 22α j−n j
∫

[0,1]n

∣

∣

∣ ∑
Jj,k�Q

e−2π ik·ξ(Avg
Jj,k

g
)

∣

∣

∣

2
dξ sup

ξ∈[0,1]n
∑

l∈Zn

|χ̂α(ξ + l)|2

= 22α j−n j ∑
k∈Zn

∣

∣Avg
Jj,k

g
∣

∣

2
C(n,α)2 ,

where we used Plancherel’s identity on the torus (Proposition 3.1.16) and we set

C(n,α)2 = sup
ξ∈[0,1]n

∑
l∈Zn

|χ̂α(ξ + l)|2 .

Since

χ̂α(ξ ) = |ξ |α
n

∏
r=1

1− e−2π iξr

2π iξr
,

it follows that C(n,α) < ∞ when 0 < α < 1
2 . In this case we conclude that

∣

∣

〈

SQ
t (−Δ)

α
2 (h),g

〉∣

∣ ≤ C(n,α)
∥

∥h
∥

∥

L22 jα
(

2−n j ∑
k∈Zn

∣

∣Avg
Jj,k

g
∣

∣

2
) 1

2

≤ C′∥
∥h
∥

∥

L2 t−α
∥

∥g
∥

∥

L2 ,

and this implies that
∥

∥SQ
t

∥

∥

L2→L̇2
α
≤Ct−α and hence the required conclusion. �

8.7.5 The T (b) Argument

To obtain (8.7.31), we adapt the T (b) theorem of the previous section for square
roots of divergence form elliptic operators. We fix a cube Q with center cQ, an
ε ∈ (0,1), and a unit vector w in Cn. We define a scalar-valued function

f εQ,w = (1 +(ε�(Q))2L)−1(ΦQ ·w) , (8.7.33)

where
ΦQ(x) = x− cQ .
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We begin by observing that the following estimates are consequences of Lemma
8.7.4:

∫

5Q
| f εQ,w −ΦQ ·w|2 dx ≤C1ε2�(Q)2|Q| (8.7.34)

and
∫

5Q
|∇( f εQ,w −ΦQ ·w)|2 dx ≤C2|Q| , (8.7.35)

where C1,C2 depend on n, λ , Λ and not on ε , Q, and w. It is important to observe
that the constants C1,C2 are independent of ε .

The proof of (8.7.31) follows by combining the next two lemmas. The rest of this
section is devoted to their proofs.

Lemma 8.7.9. There exists an ε > 0 depending on n, λ , Λ , and a finite set F of
unit vectors in Cn whose cardinality depends on ε and n, such that

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x)|2

dxdt
t

≤C ∑
w∈F

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x) · (SQ

t ∇ f εQ,w)(x)|2 dxdt
t

,

where C depends only on ε , n, λ , andΛ . The suprema are taken over all cubes Q in
Rn with sides parallel to the axes.

Lemma 8.7.10. For C depending only on n, λ , Λ , and ε > 0, we have

∫

Q

∫ �(Q)

0

∣

∣γt(x) · (SQ
t ∇ f εQ,w)(x)

∣

∣

2 dxdt
t

≤C|Q|. (8.7.36)

We begin with the proof of Lemma 8.7.10, which is the easiest of the two.

Proof of Lemma 8.7.10. Pick a smooth bump function XQ localized on 4Q
and equal to 1 on 2Q with

∥

∥XQ
∥

∥

L∞ + �(Q)
∥

∥∇XQ
∥

∥

L∞ ≤ cn. By Lemma 8.7.5 and
estimate (8.7.21), the left-hand side of (8.7.36) is bounded by

C
∫

Rn

∣

∣∇(XQ f εQ,w)
∣

∣

2
dx + 2

∫

Q

∫ �(Q)

0

∣

∣γt(x) · (P2
t ∇(XQ f εQ,w))(x)

∣

∣

2 dxdt
t

≤C
∫

Rn

∣

∣∇(XQ f εQ,w)
∣

∣

2
dx + 4

∫

Q

∫ �(Q)

0

∣

∣(Zt∇(XQ f εQ,w))(x)
∣

∣

2 dxdt
t

.

It remains to control the last displayed expression by C|Q|.
First, it follows easily from (8.7.34) and (8.7.35) that

∫

Rn
|∇(XQ f εQ,w)|2 dx ≤C|Q| ,

where C is independent of Q and w (but it may depend on ε). Next, we write



8.7 Square Roots of Elliptic Operators 269

Zt∇(XQ f εQ,w) = W 1
t +W2

t +W3
t ,

where

W 1
t = (I + t2L)−1t

(

XQL( f εQ,w)
)

,

W 2
t = −(I + t2L)−1t

(

div(A f εQ,w∇XQ)
)

,

W 3
t = −(I + t2L)−1t

(

A∇ f εQ,w ·∇XQ
)

,

and we use different arguments to treat each term W j
t .

To handle W 1
t , observe that

L( f εQ,w) =
f εQ,w −ΦQ ·w
ε2�(Q)2 ,

and therefore it follows from (8.7.34) that
∫

Rn
|XQL( f εQ,w)|2 ≤C|Q|(ε�(Q))−2 ,

where C is independent of Q and w. Using the (uniform in t) boundedness of the
operator (I + t2L)−1 on L2(Rn), we obtain

∫

Q

∫ �(Q)

0

∣

∣W 1
t (x)

∣

∣

2 dxdt
t

≤
∫ �(Q)

0

C|Q| t2

(ε�(Q))2

dt
t
≤ C|Q|
ε2 ,

which establishes the required quadratic estimate for W 1
t .

To obtain a similar quadratic estimate for W 2
t , we apply Lemma 8.7.2 for the

operator (I + t2L)−1t div with sets F = Q and E = supp( f εQ,w∇XQ) ⊆ 4Q\2Q. We
obtain that

∫

Q

∫ �(Q)

0
|W 2

t (x)|2 dxdt
t

≤C
∫ �(Q)

0
e−

�(Q)
ct

dt
t

∫

4Q\2Q
|A f εQ,w∇XQ|2 dx .

The first integral on the right provides at most a constant factor, while we handle the
second integral by writing

f εQ,w = ( f εQ,w −ΦQ ·w)+ΦQ ·w .

Using (8.7.34) and the facts that
∥

∥∇XQ
∥

∥

L∞ ≤ cn�(Q)−1 and that |ΦQ| ≤ cn�(Q) on
the support of XQ, we obtain that

∫

4Q\2Q
|A f εQ,w∇XQ|2 dx ≤C |Q| ,

where C depends only on n, λ , and Λ . This yields the required result for W 2
t .

To obtain a similar estimate for W 3
t , we use the (uniform in t) boundedness of

(I + t2L)−1 on L2(Rn) (Exercise 8.7.2) to obtain that



270 8 Singular Integrals of Nonconvolution Type

∫

Q

∫ �(Q)

0
|W 3

t (x)|2 dxdt
t

≤C
∫ �(Q)

0
t2 dt

t

∫

4Q\2Q
|A∇ f εQ,w ·∇XQ|2 dx .

But the last integral is shown easily to be bounded by C|Q| by writing f εQ,w, as in
the previous case, and using (8.7.35) and the properties of XQ and ΦQ. Note that C
here depends only on n, λ , and Λ . This concludes the proof of Lemma 8.7.10. �

8.7.6 The Proof of Lemma 8.7.9

It remains to prove Lemma 8.7.9. The main ingredient in the proof of Lemma 8.7.9
is the following proposition, which we state and prove first.

Proposition 8.7.11. There exists an ε > 0 depending on n, λ , and Λ , and η =
η(ε) > 0 such that for each unit vector w in Cn and each cube Q with sides parallel
to the axes, there exists a collection S ′

w = {Q′} of nonoverlapping dyadic subcubes
of Q such that

∣

∣

∣

⋃

Q′∈S ′
w

Q′
∣

∣

∣≤ (1−η)|Q| , (8.7.37)

and moreover, if S ′′
w is the collection of all dyadic subcubes of Q not contained in

any Q′ ∈ S ′
w, then for any Q′′ ∈ S ′′

w we have

1
|Q′′|

∫

Q′′
Re(∇ f εQ,w(y) ·w)dy ≥ 3

4
(8.7.38)

and
1

|Q′′|

∫

Q′′
|∇ f εQ,w(y)|2 dy ≤ (4ε)−2. (8.7.39)

Proof. We begin by proving the following crucial estimate:
∣

∣

∣

∣

∫

Q
(1−∇ f εQ,w(x) ·w)dx

∣

∣

∣

∣

≤Cε
1
2 |Q|, (8.7.40)

where C depends on n, λ , and Λ , but not on ε , Q, and w. Indeed, we observe that

∇(ΦQ ·w)(x) ·w = |w|2 = 1 ,

so that
1−∇ f εQ,w(x) ·w =∇gεQ,w(x) ·w ,

where we set
gεQ,w(x) =ΦQ(x) ·w− f εQ,w(x) .

Next we state another useful lemma, whose proof is postponed until the end of
this subsection.
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Lemma 8.7.12. There exists a constant C = Cn such that for all h ∈ L̇2
1 we have

∣

∣

∣

∣

∫

Q
∇h(x)dx

∣

∣

∣

∣

≤C�(Q)
n−1

2

(
∫

Q
|h(x)|2 dx

) 1
4
(
∫

Q
|∇h(x)|2 dx

) 1
4

.

Applying Lemma 8.7.12 to the function gεQ,w, we deduce (8.7.40) as a conse-
quence of (8.7.34) and (8.7.35).

We now proceed with the proof of Proposition 8.7.11. First we deduce from
(8.7.40) that

1
|Q|

∫

Q
Re(∇ f εQ,w(x) ·w)dx ≥ 7

8
,

provided that ε is small enough. We also observe that as a consequence of (8.7.35)
we have

1
|Q|

∫

Q
|∇ f εQ,w(x)|2 dx ≤C3 ,

where C3 is independent of ε . Now we perform a stopping-time decomposition to
select a collection S ′

w of dyadic subcubes of Q that are maximal with respect to
either one of the following conditions:

1
|Q′|

∫

Q′
Re (∇ f εQ,w(x) ·w)dx , ≤ 3

4
(8.7.41)

1
|Q′|

∫

Q′
|∇ f εQ,w(x)|2 dx ≥ (4ε)−2 . (8.7.42)

This is achieved by subdividing Q dyadically and by selecting those cubes Q′ for
which either (8.7.41) or (8.7.42) holds, subdividing all the nonselected cubes, and
repeating the procedure. The validity of (8.7.38) and (8.7.39) now follows from the
construction and (8.7.41) and (8.7.42).

It remains to establish (8.7.37). Let B1 be the union of the cubes in S ′
w for which

(8.7.41) holds. Also, let B2 be the union of those cubes in S ′
w for which (8.7.42)

holds. We then have ∣

∣

∣

⋃

Q′∈S ′
w

Q′
∣

∣

∣≤ |B1|+ |B2| .

The fact that the cubes in S ′
w do not overlap yields

|B2| ≤ (4ε)2
∫

Q
|∇ f εQ,w(x)|2 dx ≤ (4ε)2C3|Q|.

Setting bεQ,w(x) = 1−Re(∇ f εQ,w(x) ·w), we also have

|B1| ≤ 4∑
∫

Q′
bεQ,w dx = 4

∫

Q
bεQ,w dx−4

∫

Q\B1

bεQ,w dx , (8.7.43)

where the sum is taken over all cubes Q′ that comprise B1. The first term on the right
in (8.7.43) is bounded above by Cε

1
2 |Q| in view of (8.7.40). The second term on the
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right in (8.7.43) is controlled in absolute value by

4|Q\B1|+ 4|Q\B1|
1
2 (C3|Q|) 1

2 ≤ 4|Q\B1|+ 4C3ε
1
2 |Q|+ ε− 1

2 |Q\B1| .

Since |Q\B1| = |Q|− |B1|, we obtain

(5 + ε−
1
2 )|B1| ≤ (4 +Cε

1
2 + ε−

1
2 )|Q| ,

which yields |B1| ≤ (1− ε 1
2 + o(ε

1
2 ))|Q| if ε is small enough. Hence

|B| ≤ (1−η(ε))|Q|

with η(ε) ≈ ε 1
2 for small ε . This concludes the proof of Proposition 8.7.11. �

Next, we need the following simple geometric fact.

Lemma 8.7.13. Let w,u,v be in Cn such that |w| = 1 and let 0 < ε ≤ 1 be such that

|u− (u ·w)w| ≤ ε |u ·w| , (8.7.44)

Re(v ·w) ≥ 3
4

, (8.7.45)

|v| ≤ (4ε)−1 . (8.7.46)

Then we have |u| ≤ 4 |u · v|.

Proof. It follows from (8.7.45) that

3
4 |u ·w| ≤ |(u ·w)(v ·w)| . (8.7.47)

Moreover, (8.7.44) and the triangle inequality imply that

|u| ≤ (1 + ε)|u ·w| ≤ 2 |u ·w| . (8.7.48)

Also, as a consequence of (8.7.44) and (8.7.46), we obtain

|(u− (u ·w)w) · v| ≤ 1
4 |u ·w| . (8.7.49)

Finally, using (8.7.47) and (8.7.49) together with the triangle inequality, we deduce
that

|u · v| ≥ |(u ·w)(v ·w)|− |(u− (u ·w)w) · v| ≥ ( 3
4 −

1
4 ) |u ·w| ≥ 1

4 |u| ,

where in the last inequality we used (8.7.48). �

We now proceed with the proof of Lemma 8.7.9. We fix an ε > 0 to be chosen
later and we choose a finite number of cones Cw indexed by a finite set F of unit
vectors w in Cn defined by

Cw =
{

u ∈ Cn : |u− (u ·w)w| ≤ ε |u ·w|
}

, (8.7.50)
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so that
Cn =

⋃

w∈F

Cw .

Note that the size of the set F can be chosen to depend only on ε and the dimension
n.

It suffices to show that for each fixed w∈F we have a Carleson measure estimate
for γt,w(x) ≡ χCw(γt(x))γt (x), where χCw denotes the characteristic function of Cw.
To achieve this we define

Aw ≡ sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdt

t
, (8.7.51)

where the supremum is taken over all cubes Q in Rn with sides parallel to the axes.
By truncating γt,w(x) for t small and t large, we may assume that this quantity is
finite. Once an a priori bound independent of these truncations is obtained, we can
pass to the limit by monotone convergence to deduce the same bound for γt,w(x).

We now fix a cube Q and let S ′′
w be as in Proposition 8.7.11. We pick Q′′ in S ′′

w
and we set

v =
1

|Q′′|

∫

Q′′
∇ f εQ,w(y)dy ∈ Cn.

It is obvious that statements (8.7.38) and (8.7.39) in Proposition 8.7.11 yield condi-
tions (8.7.45) and (8.7.46) of Lemma 8.7.13. Set u = γt,w(x) and note that if x ∈ Q′′

and 1
2�(Q′′) < t ≤ �(Q′′), then v = SQ

t (∇ f εQ,w)(x); hence

∣

∣γt,w(x)
∣

∣≤ 4
∣

∣γt,w(x) ·SQ
t (∇ f εQ,w)(x)

∣

∣≤ 4
∣

∣γt(x) ·SQ
t (∇ f εQ,w)(x)

∣

∣ (8.7.52)

from Lemma 8.7.13 and the definition of γt,w(x).
We partition the Carleson region Q× (0, �(Q)] as a union of boxes Q′ × (0, �(Q′)]

for Q′ in S ′
w and Whitney rectangles Q′′ × ( 1

2�(Q′′), �(Q′′)] for Q′′ in S ′′
w . This

allows us to write

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdt

t
= ∑

Q′∈S ′
w

∫

Q′

∫ �(Q′)

0
|γt,w(x)|2 dxdt

t

+ ∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q′′)

|γt,w(x)|2 dxdt
t

.

First observe that

∑
Q′∈S ′

w

∫

Q′

∫ �(Q′)

0
|γt,w(x)|2 dxdt

t
≤ ∑

Q′∈S ′
w

Aw|Q′|Aw(1−η)|Q| .

Second, using (8.7.52), we obtain
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∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q′′)

|γt,w(x)|2 dxdt
t

≤ 16 ∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q′′)

|γt(x) ·SQ
t (∇ f εQ,w)(x)|2 dxdt

t

≤ 16
∫

Q

∫ �(Q)

0
|γt(x) ·SQ

t (∇ f εQ,w)(x)|2 dxdt
t

.

Altogether, we obtain the bound

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdt

t

≤ Aw(1−η)|Q|+ 16
∫

Q

∫ �(Q)

0
|γt(x) ·SQ

t (∇ f εQ,w)(x)|2 dxdt
t

.

We divide by |Q|, we take the supremum over all cubes Q with sides parallel to
the axes, and we use the definition and the finiteness of Aw to obtain the required
estimate

Aw ≤ 16η−1 sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x) ·SQ

t (∇ f εQ,w)(x)|2 dxdt
t

,

thus concluding the proof of the lemma. �

We end by verifying the validity of Lemma 8.7.12 used earlier.

Proof of Lemma 8.7.12. For simplicity we may take Q to be the cube [−1,1]n.
Once this case is established, the case of a general cube follows by translation and
rescaling. Set

M =
(
∫

Q
|h(x)|2 dx

)1
2

, M′ =
(
∫

Q
|∇h(x)|2 dx

)1
2

.

If M ≥ M′, there is nothing to prove, so we may assume that M < M′. Take t ∈ (0,1)
and ϕ ∈ C ∞0 (Q) with ϕ(x) = 1 when dist (x,∂Q)≥ t and 0 ≤ ϕ ≤ 1, ‖∇ϕ‖L∞ ≤C/t,
C = C(n); here the distance is taken in the L∞ norm of Rn. Then

∫

Q
∇h(x)dx =

∫

Q
(1−ϕ(x))∇h(x)dx−

∫

Q
h(x)∇ϕ(x)dx ,

and the Cauchy–Schwarz inequality yields
∣

∣

∣

∣

∫

Q
∇h(x)dx

∣

∣

∣

∣

≤C(M′ t
1
2 + Mt−

1
2 ) .

Choosing t = M/M′, we conclude the proof of the lemma. �
The proof of Theorem 8.7.1 is now complete. �
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Exercises

8.7.1. Let A and L be as in the statement of Theorem 8.7.1.
(a) Consider the generalized heat equation

∂u
∂ t

−div(A∇u) = 0

on Rn+1
+ with initial condition u(0,x) = u0. Assume a uniqueness theorem for solu-

tions of these equations to obtain that the solution of the equation in part (a) is

u(t,x) = e−tL(u0).

(b) Take u0 = 1 to deduce the identity

e−tL(1) = 1

for all t > 0. Conclude that the family of {e−tL}t>0 is an approximate identity, in the
sense that

lim
t→0

e−tL = I.

8.7.2. Let L be as in (8.7.2). Show that the operators

L1 = (I + t2L)−1 ,

L2 = t∇(I + t2L)−1 ,

L3 = (I + t2L)−1t div

are bounded on L2(Rn) uniformly in t with bounds depending only on n, λ , and Λ .
[

Hint: The L2 boundedness of L3 follows from that of L2 via duality and integra-
tion by parts. To prove the L2 boundedness of L1 and L2, let ut = (I + t2L)−1( f ).
Then ut + t2L(ut) = f , which implies

∫

Rn |ut |2 dx + t2 ∫

Rn ut L(ut)dx =
∫

Rn ut f dx.
The definition of L and integration by parts yield

∫

Rn |ut |2 dx + t2 ∫

Rn A∇ut∇ut dx =
∫

Rn ut f dx. Apply the ellipticity condition to bound the left side of this identity from
below by

∫

Rn |ut |2 dx +λ
∫

Rn |t∇ut |2 dx. Also
∫

Rn ut f dx is at most ε−1 ∫

Rn | f |2 dx +
ε
∫

Rn |ut |2 dx by the Cauchy–Schwarz inequality. Choose ε small enough to com-
plete the proof when

∥

∥ut
∥

∥

L2 < ∞. In the case
∥

∥ut
∥

∥

L2 = ∞, multiply the identity
ut + t2L(ut) = f by utηR, where ηR is a suitable cutoff localized in a ball B(0,R),
and use the idea of Lemma 8.7.2. Then let R → ∞.

]

8.7.3. Let L be as in the proof of Theorem 8.7.1.
(a) Show that for all t > 0 we have

(I + t2L2)−2 =
∫ ∞

0
e−u(I+t2L)udu

by checking the identities
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∫ ∞

0
(I + t2L)2e−u(I+t2L)udu =

∫ ∞

0
e−u(I+t2L)(I + t2L)2udu = I .

(b) Prove that the operator

T =
4
π

∫ ∞

0
L(I + t2L)−2 dt

satisfies T T = L.
(c) Conclude that the operator

S =
16
π

∫ +∞

0
t3L2(I + t2L)−3 dt

t

satisfies SS = L, that is, S is the square root of L. Moreover, all the integrals converge
in L2(Rn) when restricted to functions in f ∈ C ∞0 (Rn).
[

Hint: Part (a): Write (I + t2L)e−u(I+t2L) = − d
du(e−u(I+t2L)), apply integration by

parts twice, and use Exercise 8.7.1. Part (b): Write the integrand as in part (a) and
use the identity

∫ ∞

0

∫ ∞

0
e−(ut2+vs2)LL2 dt ds =

π
4

(uv)−
1
2

∫ ∞

0
e−r2LL2 2r dr.

Set ρ = r2 and use e−ρLL = d
dρ (e−ρL). Part (c): Show that T = S using an integration

by parts starting with the identity L = d
dt (tL).

]

8.7.4. Suppose that μ is a measure on Rn+1
+ . For a cube Q in Rn we define the tent

T (Q) of Q as the set Q× (0, �(Q)). Suppose that there exist two positive constants
α < 1 and β such that for all cubes Q in Rn there exist subcubes Q j of Q with
disjoint interiors such that

1.
∣

∣

∣Q\⋃ j Q j

∣

∣

∣> α |Q|,

2. μ
(

T (Q)\⋃ j T (Q j)
)

≤ β |Q|.

Then μ is a Carleson measure with constant

∥

∥μ
∥

∥

C
≤ β
α

.

[

Hint: We have

μ(T (Q)) ≤ μ
(

T (Q)\
⋃

j

T (Q j)
)

+∑
j

μ(T (Q j))

≤ β |Q|+
∥

∥μ
∥

∥

C∑
j

|Q j| ,
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and the last expression is at most (β +(1−α)
∥

∥μ
∥

∥

C
)|Q|. Assuming that

∥

∥μ
∥

∥

C
<

∞, we obtain the required conclusion. In general, approximate the measure by a
sequence of truncated measures.

]

HISTORICAL NOTES

Most of the material in Sections 8.1 and 8.2 has been in the literature since the early develop-
ment of the subject. Theorem 8.2.7 was independently obtained by Peetre [254], Spanne [286], and
Stein [290].

The original proof of the T (1) theorem obtained by David and Journé [103] stated that if T (1),
T t(1) are in BMO and T satisfies the weak boundedness property, then T is L2 bounded. This proof
is based on the boundedness of paraproducts and is given in Theorem 8.5.4. Paraproducts were first
exploited by Bony [28] and Coifman and Meyer [81]. The proof of L2 boundedness using condition
(iv) given in the proof of Theorem 8.3.3 was later obtained by Coifman and Meyer [82]. The
equivalent conditions (ii), (iii), and (vi) first appeared in Stein [292], while condition (iv) is also due
to David and Journé [103]. Condition (i) appears in the article of Nazarov, Volberg, and Treil [245]
in the context of nondoubling measures. The same authors [246] obtained a proof of Theorems
8.2.1 and 8.2.3 for Calderón–Zygmund operators on nonhomogeneous spaces. Multilinear versions
of the T (1) theorem were obtained by Christ and Journé [70], Grafakos and Torres [154], and
Bényi, Demeter, Nahmod, Thiele, Torres, and Villaroya [20]. The article [70] also contains a proof
of the quadratic T (1) type Theorem 8.6.3. Smooth paraproducts viewed as bilinear operators have
been studied by Bényi, Maldonado, Nahmod, and Torres [21] and Dini-continuous versions of
them by Maldonado and Naibo [225].

The orthogonality Lemma 8.5.1 was first proved by Cotlar [94] for self-adjoint and mutually
commuting operators Tj . The case of general noncommuting operators was obtained by Knapp and
Stein [190]. Theorem 8.5.7 is due to Calderón and Vaillancourt [49] and is also valid for symbols
of class S0

ρ,ρ when 0 ≤ ρ < 1. For additional topics on pseudodifferential operators we refer to
the books of Coifman and Meyer [81], Journé [180], Stein [292], Taylor [309], Torres [315], and
the references therein. The last reference presents a careful study of the action of linear operators
with standard kernels on general function spaces. The continuous version of the orthogonality
Lemma 8.5.1 given in Exercise 8.5.8 is due to Calderón and Vaillancourt [49]. Conclusion (iii) in
the orthogonality Lemma 8.5.1 follows from a general principle saying that if ∑x j is a series in a
Hilbert space such that ‖∑ j∈F x j‖ ≤ M for all finite sets F , then the series ∑x j converges in norm.
This is a consequence of the Orlicz–Pettis theorem, which states that in any Banach space, if ∑xnj

converges weakly for every subsequence of integers n j , then ∑x j converges in norm.
A nice exposition on the Cauchy integral that presents several historical aspects of its study is

the book of Muskhelishvili [243]. See also the book of Journé [180]. Proposition 8.6.1 is due to
Plemelj [265] when Γ is a closed Jordan curve. The L2 boundedness of the first commutator C1
in Example 8.3.8 is due to Calderón [42]. The L2 boundedness of the remaining commutators Cm,
m ≥ 2, is due to Coifman and Meyer [80], but with bounds of order m!

∥

∥A′∥
∥

m
L∞ . These bounds are

not as good as those obtained in Example 8.3.8 and do not suffice in obtaining the boundedness
of the Cauchy integral by summing the series of commutators. The L2 boundedness of the Cauchy
integral when

∥

∥A′∥
∥

L∞ is small enough is due to Calderón [43]. The first proof of the boundedness
of the Cauchy integral with arbitrary

∥

∥A′∥
∥

L∞ was obtained by Coifman, McIntosh, and Meyer [79].
This proof is based on an improved operator norm for the commutators

∥

∥Cm
∥

∥

L2→L2 ≤C0m4
∥

∥A′∥
∥

m
L∞ .

The quantity m4 was improved by Christ and Journé [70] to m1+δ for any δ > 0; it is announced
in Verdera [326] that Mateu and Verdera have improved this result by taking δ = 0. Another proof
of the L2 boundedness of the Cauchy integral was given by David [102] by employing the fol-
lowing bootstrapping argument: If the Cauchy integral is L2 bounded whenever

∥

∥A′∥
∥

L∞ ≤ ε , then
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it is also L2 bounded whenever
∥

∥A′∥
∥

L∞ ≤ 10
9 ε . A refinement of this bootstrapping technique was

independently obtained by Murai [241], who was also able to obtain the best possible bound for

the operator norm
∥

∥˜CΓ
∥

∥

L2→L2 ≤ C
(

1 +
∥

∥A′∥
∥

L∞
)1/2

in terms of
∥

∥A′∥
∥

L∞ . Here ˜CΓ is the operator
defined in (8.6.15). Note that the corresponding estimate for CΓ involves the power 3/2 instead of
1/2. See the book of Murai [242] for this result and a variety of topics related to the commutators
and the Cauchy integral. Two elementary proofs of the L2 boundedness of the Cauchy integral
were given by Coifman, Jones, and Semmes [77]. The first of these proofs uses complex variables
and the second a pseudo-Haar basis of L2 adapted to the accretive function 1 + iA′. A geometric
proof was given by Melnikov and Verdera [231]. Other proofs were obtained by Verdera [326]
and Tchamitchian [310]. The proof of boundedness of the Cauchy integral given in Section 8.6 is
taken from Semmes [281]. The book of Christ [67] contains an insightful exposition of many of
the preceding results and discusses connections between the Cauchy integral and analytic capacity.
The book of David and Semmes [105] presents several extensions of the results in this chapter to
singular integrals along higher-dimensional surfaces.

The T (1) theorem is applicable to many problems only after a considerable amount of work;
see, for instance, Christ [67] for the case of the Cauchy integral. A more direct approach to many
problems was given by McIntosh and Meyer [224], who replaced the function 1 by an accretive
function b and showed that any operator T with standard kernel that satisfies T (b) = T t(b) = 0
and

∥

∥MbTMb

∥

∥

W B <∞ must be L2 bounded. (Mb here is the operator given by multiplication by b.)
This theorem easily implies the boundedness of the Cauchy integral. David, Journé, and Semmes
[104] generalized this theorem even further as follows: If b1 and b2 are para-accretive functions
such that T maps b1C

∞
0 → (b2C

∞
0 )′ and is associated with a standard kernel, then T is L2 bounded

if and only if T (b1) ∈ BMO, T t(b2) ∈ BMO, and
∥

∥Mb1 TMb2

∥

∥

WB < ∞. This is called the T (b)
theorem. The article of Semmes [281] contains a different proof of this theorem in the special case
T (b) = 0 and T t(1) = 0 (Exercise 8.6.6). Our proof of Theorem 8.6.6 is based on ideas from [281].
An alternative proof of the T (b) theorem was given by Fabes, Mitrea, and Mitrea [121] based on a
lemma due to Krein [200]. Another version of the T (b) theorem that is applicable to spaces with
no Euclidean structure was obtained by Christ [66].

Theorem 8.7.1 was posed as a problem by Kato [181] for maximal accretive operators and re-
formulated by McIntosh [222], [223] for square roots of elliptic operators. The reformulation was
motivated by counterexamples found to Kato’s original abstract formulation, first by Lions [215]
for maximal accretive operators, and later by McIntosh [220] for regularly accretive ones. The
one-dimensional Kato problem and the boundeness of the Cauchy integral along Lipschitz curves
are equivalent problems as shown by Kenig and Meyer [188]. See also Auscher, McIntosh, and
Nahmod [8]. Coifman, Deng, and Meyer [73] and independently Fabes, Jerison, and Kenig [119],
[120] solved the square root problem for small peturbations of the identity matrix. This method
used multilinear expansions and can be extended to operators with smooth coefficients. McIntosh
[221] considered coefficients in Sobolev spaces, Escauriaza in VMO (unpublished), and Alexopou-
los [3] real Hölder coefficients using homogenization techniques. Peturbations of real symmetric
matrices with L∞ coefficients were treated in Auscher, Hofmann, Lewis, and Tchamitchian [10].
The solution of the two-dimensional Kato problem was obtained by Hofmann and McIntosh [164]
using a previously derived T (b) type reduction due to Auscher and Tchamitchian [9]. Hofmann,
Lacey, and McIntosh [165] extended this theorem to the case in which the heat kernel of e−tL sat-
isfies Gaussian bounds. Theorem 8.7.1 was obtained by Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian [11]; the exposition in the text is based on this reference. Combining Theorem 8.7.1
with a theorem of Lions [215], it follows that the domain of

√
L is L̇2

1(R
n) and that for functions f

in this space the equivalence of norms
∥

∥

√
L( f )

∥

∥

L2 ≈
∥

∥∇ f
∥

∥

L2 is valid.



Chapter 9
Weighted Inequalities

Weighted inequalities arise naturally in Fourier analysis, but their use is best jus-
tified by the variety of applications in which they appear. For example, the theory
of weights plays an important role in the study of boundary value problems for
Laplace’s equation on Lipschitz domains. Other applications of weighted inequali-
ties include extrapolation theory, vector-valued inequalities, and estimates for cer-
tain classes of nonlinear partial differential equations.

The theory of weighted inequalities is a natural development of the principles and
methods we have acquainted ourselves with in earlier chapters. Although a variety
of ideas related to weighted inequalities appeared almost simultaneously with the
birth of singular integrals, it was only in the 1970s that a better understanding of
the subject was obtained. This was spurred by Muckenhoupt’s characterization of
positive functions w for which the Hardy–Littlewood maximal operator M maps
Lp(Rn,w(x)dx) to itself. This characterization led to the introduction of the class
Ap and the development of weighted inequalities. We pursue exactly this approach
in the next section to motivate the introduction of the Ap classes.

9.1 The Ap Condition

A weight is a nonnegative locally integrable function on Rn that takes values in
(0,∞) almost everywhere. Therefore, weights are allowed to be zero or infinite only
on a set of Lebesgue measure zero. Hence, if w is a weight and 1/w is locally
integrable, then 1/w is also a weight.

Given a weight w and a measurable set E , we use the notation

w(E) =
∫

E
w(x)dx

to denote the w-measure of the set E . Since weights are locally integrable functions,
w(E) <∞ for all sets E contained in some ball. The weighted Lp spaces are denoted
by Lp(Rn,w) or simply Lp(w). Recall the uncentered Hardy–Littlewood maximal

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 9,
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operators on Rn over balls

M( f )(x) = sup
B�x

Avg
B

| f | = sup
B�x

1
|B|

∫

B
| f (y)|dy ,

and over cubes

Mc( f )(x) = sup
Q�x

Avg
Q

| f | = sup
Q�x

1
|Q|

∫

Q
| f (y)|dy ,

where the suprema are taken over all balls B and cubes Q (with sides parallel to the
axes) that contain the given point x. It is a classical result proved in Section 2.1 that
for all 1 < p < ∞ there is a constant Cp(n) > 0 such that

∫

Rn
M( f )(x)p dx ≤Cp(n)p

∫

Rn
| f (x)|p dx (9.1.1)

for all functions f ∈ Lp(Rn). We are concerned with the situation in which the mea-
sure dx in (9.1.1) is replaced by w(x)dx for some weight w(x).

9.1.1 Motivation for the Ap Condition

The question we raise is whether there is a characterization of all weights w(x) such
that the strong type (p, p) inequality

∫

Rn
M( f )(x)p w(x)dx ≤Cp

p

∫

Rn
| f (x)|p w(x)dx (9.1.2)

is valid for all f ∈ Lp(w).
Suppose that (9.1.2) is valid for some weight w and all f ∈ Lp(w) for some

1 < p < ∞. Apply (9.1.2) to the function f χB supported in a ball B and use that
AvgB | f | ≤ M( f χB)(x) for all x ∈ B to obtain

w(B)
(

Avg
B

| f |
)p ≤

∫

B
M( f χB)p wdx ≤Cp

p

∫

B
| f |p wdx . (9.1.3)

It follows that
(

1
|B|

∫

B
| f (t)|dt

)p

≤ Cp
p

w(B)

∫

B
| f (x)|p w(x)dx (9.1.4)

for all balls B and all functions f . At this point, it is tempting to choose a function
such that the two integrands are equal. We do so by setting f = w−p′/p, which gives
f pw = w−p′/p. Under the assumption that infB w > 0 for all balls B, it would follow
from (9.1.4) that
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sup
B balls

(

1
|B|

∫

B
w(x)dx

)(

1
|B|

∫

B
w(x)−

1
p−1 dx

)p−1

≤Cp
p . (9.1.5)

If infB w = 0 for some balls B, we take f = (w+ ε)−p′/p to obtain

(

1
|B|

∫

B
w(x)dx

)(

1
|B|

∫

B
(w(x)+ε)−

p′
p dx

)p( 1
|B|

∫

B

w(x)dx

(w(x)+ ε)p′

)−1

≤Cp
p (9.1.6)

for all ε > 0. Replacing w(x)dx by (w(x)+ ε)dx in the last integral in (9.1.6) we
obtain a smaller expression, which is also bounded by Cp

p . Since −p′/p = −p′ + 1,
(9.1.6) implies that

(

1
|B|

∫

B
w(x)dx

)(

1
|B|

∫

B
(w(x)+ ε)−

p′
p dx

)p−1

≤Cp
p , (9.1.7)

from which we can still deduce (9.1.5) via the Lebesgue monotone convergence
theorem by letting ε → 0. We have now obtained that every weight w that satisfies
(9.1.2) must also satisfy the rather strange-looking condition (9.1.5), which we refer
to in the sequel as the Ap condition. It is a remarkable fact, to be proved in this chap-
ter, that the implication obtained can be reversed, that is, (9.1.2) is a consequence
of (9.1.5). This is the first significant achievement of the theory of weights [i.e., a
characterization of all functions w for which (9.1.2) holds]. This characterization is
based on some deep principles discussed in the next section and provides a solid
motivation for the introduction and careful examination of condition (9.1.5).

Before we study the converse statements, we consider the case p = 1. Assume
that for some weight w the weak type (1,1) inequality

w
(

{x ∈ Rn : M( f )(x) > α}
)

≤ C1

α

∫

Rn
| f (x)|w(x)dx (9.1.8)

holds for all functions f ∈ L1(Rn). Since M( f )(x)≥AvgB | f | for all x∈B, it follows
from (9.1.8) that for all α < AvgB | f | we have

w(B) ≤ w
(

{x ∈ Rn : M( f )(x) > α}
)

≤ C1

α

∫

Rn
| f (x)|w(x)dx . (9.1.9)

Taking f χB instead of f in (9.1.9), we deduce that

Avg
B

| f | = 1
|B|

∫

B
| f (t)|dt ≤ C1

w(B)

∫

B
| f (x)|w(x)dx (9.1.10)

for all functions f and balls B. Taking f = χS, we obtain

|S|
|B| ≤C1

w(S)
w(B)

, (9.1.11)

where S is any measurable subset of the ball B.
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Recall that the essential infimum of a function w over a set E is defined as

ess.inf
E

(w) = inf
{

b > 0 : |{x ∈ E : w(x) < b}| > 0
}

.

Then for every a > ess.infB(w) there exists a subset Sa of B with positive measure
such that w(x) < a for all x ∈ Sa. Applying (9.1.11) to the set Sa, we obtain

1
|B|

∫

B
w(t)dt ≤ C1

|Sa|

∫

Sa

w(t)dt ≤C1a , (9.1.12)

which implies

1
|B|

∫

B
w(t)dt ≤C1w(x) for all balls B and almost all x ∈ B. (9.1.13)

It remains to understand what condition (9.1.13) really means. For every ball B,
there exists a null set N(B) such that (9.1.13) holds for all x in B \N(B). Let N be
the union of all the null sets N(B) for all balls B with centers in Qn and rational
radii. Then N is a null set and for every x in B\N, (9.1.13) holds for all balls B with
centers in Qn and rational radii. By density, (9.1.13) must also hold for all balls B
that contain a fixed x in Rn \N. It follows that for x ∈ Rn \N we have

M(w)(x) = sup
B�x

1
|B|

∫

B
w(t)dt ≤C1w(x) . (9.1.14)

Therefore, assuming (9.1.8), we have arrived at the condition

M(w)(x) ≤C1w(x) for almost all x ∈ Rn, (9.1.15)

where C1 is the same constant as in (9.1.13).
We later see that this deduction can be reversed and we can obtain (9.1.8) as a

consequence of (9.1.15). This motivates a careful study of condition (9.1.15), which
we refer to as the A1 condition. Since in all the previous arguments we could have
replaced cubes with balls, we give the following definitions in terms of cubes.

Definition 9.1.1. A function w(x) ≥ 0 is called an A1 weight if

M(w)(x) ≤C1w(x) for almost all x ∈ Rn (9.1.16)

for some constant C1. If w is an A1 weight, then the (finite) quantity

[w]A1 = sup
Q cubes in Rn

(

1
|Q|

∫

Q
w(t)dt

)

∥

∥w−1
∥

∥

L∞(Q) (9.1.17)

is called the A1 Muckenhoupt characteristic constant of w, or simply the A1 charac-
teristic constant of w. Note that A1 weights w satisfy



9.1 The Ap Condition 283

1
|Q|

∫

Q
w(t)dt ≤ [w]A1 ess.inf

y∈Q
w(y) (9.1.18)

for all cubes Q in Rn.

Remark 9.1.2. We also define

[w]balls
A1

= sup
B balls in Rn

(

1
|B|

∫

B
w(t)dt

)

∥

∥w−1
∥

∥

L∞(B) . (9.1.19)

Using (9.1.13), we see that the smallest constant C1 that appears in (9.1.16) is equal
to the A1 characteristic constant of w as defined in (9.1.19). This is also equal to the
smallest constant that appears in (9.1.13). All these constants are bounded above
and below by dimensional multiples of [w]A1 .

We now recall condition (9.1.5), which motivates the following definition of Ap

weights for 1 < p < ∞.

Definition 9.1.3. Let 1 < p < ∞. A weight w is said to be of class Ap if

sup
Q cubes in Rn

(

1
|Q|

∫

Q
w(x)dx

)(

1
|Q|

∫

Q
w(x)−

1
p−1 dx

)p−1

< ∞ . (9.1.20)

The expression in (9.1.20) is called the Ap Muckenhoupt characteristic constant of
w (or simply the Ap characteristic constant of w) and is denoted by [w]Ap .

Remark 9.1.4. Note that Definitions 9.1.1 and 9.1.3 could have been given with the
set of all cubes in Rn replaced by the set of all balls in Rn. Defining [w]balls

Ap
as in

(9.1.20) except that cubes are replaced by balls, we see that

(

vn2−n)p ≤
[w]Ap

[w]balls
Ap

≤
(

nn/2vn2−n)p
. (9.1.21)

9.1.2 Properties of Ap Weights

It is straightforward that translations, isotropic dilations, and scalar multiples of Ap

weights are also Ap weights with the same Ap characteristic. We summarize some
basic properties of Ap weights in the following proposition.

Proposition 9.1.5. Let w ∈ Ap for some 1 ≤ p < ∞. Then

(1) [δλ (w)]Ap = [w]Ap , where δλ (w)(x) = w(λx1, . . . ,λxn).

(2) [τz(w)]Ap = [w]Ap, where τz(w)(x) = w(x− z), z ∈ Rn.

(3) [λw]Ap = [w]Ap for all λ > 0.
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(4) When 1 < p < ∞, the function w− 1
p−1 is in Ap′ with characteristic constant

[

w− 1
p−1
]

Ap′
= [w]

1
p−1
Ap

.

Therefore, w ∈ A2 if and only if w−1 ∈ A2 and both weights have the same A2

characteristic constant.

(5) [w]Ap ≥ 1 for all w ∈ Ap. Equality holds if and only if w is a constant.

(6) The classes Ap are increasing as p increases; precisely, for 1 ≤ p < q < ∞ we
have

[w]Aq ≤ [w]Ap .

(7) lim
q→1+

[w]Aq = [w]A1 if w ∈ A1.

(8) The following is an equivalent characterization of the Ap characteristic con-
stant of w:

[w]Ap = sup
Qcubes
in Rn

sup
f in Lp(Q,wdx)
| f |>0a.e. on Q

{

(

1
|Q|
∫

Q | f (t)|dt
)p

1
w(Q)

∫

Q | f (t)|pw(t)dt

}

.

(9) The measure w(x)dx is doubling: precisely, for all λ > 1 and all cubes Q we
have

w(λQ) ≤ λ np[w]Ap w(Q) .

(λQ denotes the cube with the same center as Q and side length λ times the
side length of Q.)

Proof. The simple proofs of (1), (2), and (3) are left as an exercise. Property (4) is
also easy to check and plays the role of duality in this context. To prove (5) we use
Hölder’s inequality with exponents p and p′ to obtain

1 =
1
|Q|

∫

Q
dx =

1
|Q|

∫

Q
w(x)

1
p w(x)−

1
p dx ≤ [w]

1
p
Ap

,

with equality holding only when w(x)
1
p = cw(x)−

1
p for some c > 0 (i.e., when w is a

constant). To prove (6), observe that 0 < q′ −1 < p′ −1 ≤ ∞ and that the statement

[w]Aq ≤ [w]Ap

is equivalent to the fact
∥

∥w−1
∥

∥

Lq′−1(Q, dx
|Q| )

≤
∥

∥w−1
∥

∥

Lp′−1(Q, dx
|Q| )

.

Property (7) is a consequence of part (a) of Exercise 1.1.3.
To prove (8), apply Hölder’s inequality with exponents p and p′ to get
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(Avg
Q

| f |)p =
(

1
|Q|

∫

Q
| f (x)|dx

)p

=
(

1
|Q|

∫

Q
| f (x)|w(x)

1
p w(x)−

1
p dx

)p

≤ 1
|Q|p

(
∫

Q
| f (x)|pw(x)dx

)(
∫

Q
w(x)−

p′
p dx

)
p
p′

=
(

1
ω(Q)

∫

Q
| f (x)|pw(x)dx

)(

1
|Q|

∫

Q
w(x)dx

)(

1
|Q|

∫

Q
w(x)−

1
p−1 dx

)p−1

≤ [w]Ap

(

1
ω(Q)

∫

Q
| f (x)|pw(x)dx

)

.

This argument proves the inequality ≥ in (8) when p > 1. In the case p = 1 the
obvious modification yields the same inequality. The reverse inequality follows by
taking f = (w+ ε)−p′/p as in (9.1.6) and letting ε → 0.

Applying (8) to the function f = χQ and putting λQ in the place of Q in (8), we
obtain

w(λQ) ≤ λ np[w]Apw(Q) ,

which says that w(x)dx is a doubling measure. This proves (9). �

Example 9.1.6. A positive measure dμ is called doubling if for some C < ∞,

μ(2B) ≤Cμ(B) (9.1.22)

for all balls B. We show that the measures |x|a dx are doubling when a > −n. We
divide all balls B(x0,R) in Rn into two categories: balls of type I that satisfy |x0| ≥ 3R
and type II that satisfy |x0| < 3R. For balls of type I we observe that

∫

B(x0,2R)
|x|a dx ≤ vn(2R)n

{

(|x0|+ 2R)a when a ≥ 0,

(|x0|−2R)a when a < 0,
∫

B(x0,R)
|x|a dx ≥ vnRn

{

(|x0|−R)a when a ≥ 0,

(|x0|+ R)a when a < 0.

Since |x0| ≥ 3R, we have |x0|+ 2R ≤ 4(|x0|−R) and |x0|−2R ≥ 1
4(|x0|+ R), from

which (9.1.22) follows with C = 23n4|a|.
For balls of type II, we have |x0| ≤ 3R and we note two things: first

∫

B(x0,2R)
|x|a dx ≤

∫

|x|≤5R
|x|a dx = cnRn+a,

and second, since |x|a is radially decreasing for a < 0 and radially increasing for
a ≥ 0, we have
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∫

B(x0,R)
|x|a dx ≥

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫

B(0,R)
|x|a dx when a ≥ 0,

∫

B(3R
x0
|x0|

,R)
|x|a dx when a < 0.

For x ∈ B(3R x0
|x0| ,R) we must have |x| ≥ 2R, and hence both integrals on the right

are at least a multiple of Rn+a. This establishes (9.1.22) for balls of type II.

Example 9.1.7. We investigate for which real numbers a the power function |x|a is
an Ap weight on Rn. For 1 < p < ∞, we need to examine for which a the following
expression is finite:

sup
B balls

(

1
|B|

∫

B
|x|a dx

)(

1
|B|

∫

B
|x|−a p′

p dx

)
p
p′

. (9.1.23)

As in the previous example we split the balls in Rn into those of type I and those of
type II. If B = B(x0,R) is of type I, then the presence of the origin does not affect
the behavior of either integral in (9.1.23), and we see that the expression inside the
supremum in (9.1.23) is comparable to

|x0|a
(

|x0|−a p′
p
)

p
p′ = 1.

If B(x0,R) is a ball of type II, then B(0,5R) has size comparable to B(x0,R) and
contains it. Since the measure |x|a dx is doubling, the integrals of the function |x|a
over B(x0,R) and over B(0,5R) are comparable. It suffices therefore to estimate the
expression inside the supremum in (9.1.23), in which we have replaced B(x0,R) by
B(0,5R). But this is

(

1
vn(5R)n

∫

B(0,5R)
|x|a dx

)(

1
vn(5R)n

∫

B(0,5R)
|x|−a p′

p dx

)
p
p′

=
(

n
(5R)n

∫ 5R

0
ra+n−1dr

)(

n
(5R)n

∫ 5R

0
r−a p′

p +n−1dr

)
p
p′

,

which is seen easily to be finite and independent of R exactly when −n < a < n p
p′ .

We conclude that |x|a is an Ap weight, 1 < p <∞, if and only if −n < a < n(p−1).
The previous proof can be suitably modified to include the case p = 1. In this case

we obtain that |x|a is an A1 weight if and only if −n < a ≤ 0. As we have seen, the
measure |x|a dx is doubling on the larger range −n < a < ∞. Thus for a > n(p−1),
the function |x|a provides an example of a doubling measure that is not in Ap.

Example 9.1.8. On Rn the function

u(x) =

{

log 1
|x| when |x| < 1

e ,

1 otherwise,
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is an A1 weight. Indeed, to check condition (9.1.19) it suffices to consider balls of
type I and type II as defined in Example 9.1.6. In either case the required estimate
follows easily.

We now return to a point alluded to earlier, that the Ap condition implies the
boundedness of the Hardy–Littlewood maximal function M on the space Lp(w). To
this end we introduce four maximal functions acting on functions f that are locally
integrable with respect to w:

Mw( f )(x) = sup
B�x

1
w(B)

∫

B
| f |wdy ,

where the supremum is taken over open balls B that contain the point x and

Mw( f )(x) = sup
δ>0

1
w(B(x,δ ))

∫

B(x,δ )
| f |wdy ,

Mw
c ( f )(x) = sup

Q�x

1
w(Q)

∫

Q
| f |wdy ,

where Q is an open cube containing the point x, and

Mw
c ( f )(x) = sup

δ>0

1
w(Q(x,δ ))

∫

Q(x,δ )
| f |wdy ,

where Q(x,δ ) = ∏n
j=1(x j − δ ,x j + δ ) is a cube of side length 2δ centered at

x = (x1, . . . ,xn). When w = 1, these maximal functions reduce to the standard ones
M( f ), M( f ), Mc( f ), and Mc( f ), the uncentered and centered Hardy–Littlewood
maximal functions with respect to balls and cubes, respectively.

Theorem 9.1.9. Let w ∈ Ap(Rn) for some 1 < p < ∞. Then there is a constant Cn,p

such that
∥

∥Mc
∥

∥

Lp(w)→Lp(w) ≤Cn,p[w]
1

p−1
Ap

. (9.1.24)

Since the operators Mc, Mc, M, and M are pointwise comparable, a similar conclu-
sion holds for the other three as well.

Proof. Fix a weight w and let σ = w− 1
p−1 be the dual weight. Fix an open cube

Q = Q(x0,r) in Rn with center x0 and side length 2r and write

1
|Q|

∫

Q
| f |dy =

w(Q)
1

p−1σ(3Q)

|Q|
p

p−1

{

|Q|
w(Q)

(

1
σ(3Q)

∫

Q
| f |dy

)p−1} 1
p−1

. (9.1.25)

For any x ∈ Q, consider the cube Q(x,2r). Then Q � Q(x,2r) � 3Q = Q(x0,3r) and
thus

1
σ(3Q)

∫

Q
| f |dy ≤ 1

σ(Q(x,2r))

∫

Q(x,2r)
| f |dy ≤ Mσ

c (| f |σ−1)(x)

for any x ∈ Q. Inserting this expression in (9.1.25), we obtain
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1
|Q|

∫

Q
| f |dy ≤ w(Q)

1
p−1σ(3Q)

|Q|
p

p−1

{

1
w(Q)

∫

Q
Mσ

c (| f |σ−1)p−1 dy

} 1
p−1

. (9.1.26)

Since one may easily verify that

w(Q)σ(3Q)p−1

|Q|p ≤ 3np[w]Ap ,

it follows that

1
|Q|

∫

Q
| f |dy ≤ 3

np
p−1 [w]

1
p−1
Ap

(

Mw
c

[(

Mσ
c (| f |σ−1)

)p−1
w−1](x0)

) 1
p−1

,

since x0 is the center of Q. Hence, we have

Mc( f ) ≤ 3
np

p−1 [w]
1

p−1
Ap

(

Mw
c

[(

Mσ
c (| f |σ−1)

)p−1
w−1]

) 1
p−1

.

Applying Lp(w) norms, we deduce

∥

∥Mc( f )
∥

∥

Lp(w) ≤ 3
np

p−1 [w]
1

p−1
Ap

∥

∥Mw
c

[(

Mσ
c (| f |σ−1)

)p−1
w−1]

∥

∥

1
p−1

Lp′ (w)

≤ 3
np

p−1 [w]
1

p−1
Ap

∥

∥Mw
c

∥

∥

1
p−1

Lp′ (w)→Lp′ (w)

∥

∥

(

Mσ
c (| f |σ−1)

)p−1
w−1

∥

∥

1
p−1

Lp′ (w)

= 3
np

p−1 [w]
1

p−1
Ap

∥

∥Mw
c

∥

∥

1
p−1

Lp′ (w)→Lp′ (w)

∥

∥Mσ
c (| f |σ−1)

∥

∥

Lp(σ)

≤ 3
np

p−1 [w]
1

p−1
Ap

∥

∥Mw
c

∥

∥

1
p−1

Lp′ (w)→Lp′ (w)

∥

∥Mσ
c

∥

∥

Lp(σ)→Lp(σ)

∥

∥ f
∥

∥

Lp(w) ,

and conclusion (9.1.24) follows, provided we show that
∥

∥Mw
c

∥

∥

Lq(w)→Lq(w) ≤C(q,n) < ∞ (9.1.27)

for any 1 < q < ∞ and any weight w.
We obtain this estimate by interpolation. Obviously (9.1.27) is valid when q =∞

with C(∞,n) = 1. If we prove that
∥

∥Mw
c

∥

∥

L1(w)→L1,∞(w) ≤C(1,n) < ∞ , (9.1.28)

then (9.1.27) will follow from Theorem 1.3.2.
To prove (9.1.28) we fix f ∈ L1(Rn,wdx). We first show that the set

Eλ = {Mw
c ( f ) > λ}

is open. For any r > 0, let Q(x,r) denote an open cube of side length 2r with center
x ∈ Rn. If we show that for any r > 0 and x ∈ Rn the function
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x �→ 1
w(Q(x,r)

∫

Q(x,r)
| f |wdy (9.1.29)

is continuous, then Mw
c ( f ) is the supremum of continuous functions; hence it is

lower semicontinuous and thus the set Eλ is open. But this is straightforward. If
xn → x0, then w(Q(xn,r)) → w(Q(x0,r)) and also

∫

Q(xn,r) | f |wdy →
∫

Q(x0,r) | f |wdy
by the Lebesgue dominated convergence theorem. Since w(Q(x0,r)) �= 0, it follows
that the function in (9.1.29) is continuous.

Given K a compact subset of Eλ , for any x ∈ K select an open cube Qx centered
at x such that

1
w(Qx)

∫

Qx

| f |wdy > λ .

Applying Lemma 9.1.10 (proved immediately afterward) we find a subfamily
{Qxj}m

j=1 of the family of the balls {Qx : x ∈ K} such that (9.1.30) and (9.1.31)
hold. Then

w(K) ≤
m

∑
j=1

w(Qxj ) ≤
m

∑
j=1

1
λ

∫

Qx j

| f |wdy ≤ 24n

λ

∫

Rn
| f |wdy ,

where the last inequality follows by multiplying (9.1.31) by | f |w and integrating
over Rn. Taking the supremum over all compact subsets K of Eλ and using the inner
regularity of wdx, which is a consequence of the Lebesgue monotone convergence
theorem, we deduce that Mw

c maps L1(w) to L1,∞(w) with constant at most 24n. Thus
(9.1.28) holds with C(1,n) = 24n. �
Lemma 9.1.10. Let K be a bounded set in Rn and for every x ∈ K, let Qx be an open
cube with center x and sides parallel to the axes. Then there are an m ∈ Z+ ∪{∞}
and a sequence of points {x j}m

j=1 in K such that

K �
m
⋃

j=1

Qxj (9.1.30)

and for almost all y ∈ Rn one has

m

∑
j=1

χQx j
(y) ≤ 24n . (9.1.31)

Proof. Let
s0 = sup{�(Qx) : x ∈ K} .

If s0 = ∞, then there exists x1 ∈ K such that �(Qx1) > 4L, where [−L,L]n contains
K. Then K is contained in Qx1 and the statement of the lemma is valid with m = 1.

Suppose now that s0 < ∞. Select x1 ∈ K such that �(Qx1) > s0/2. Then define

K1 = K \Qx1 , s1 = sup{�(Qx) : x ∈ K1} ,

and select x2 ∈ K1 such that �(Qx2) > s1/2. Next define
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K2 = K \ (Qx1 ∪Qx2) , s2 = sup{�(Qx) : x ∈ K2} ,

and select x3 ∈ K2 such that �(Qx3) > s2/2. Continue until the first integer m is
found such that Km is an empty set. If no such integer exists, continue this process
indefinitely and set m = ∞.

We claim that for all i �= j we have 1
3 Qxi ∩ 1

3 Qxj = /0. Indeed, suppose that i > j.
Then xi ∈ Ki−1 = K \ (Qx1 ∪·· ·∪Qxi−1); thus xi /∈ Q j. Also xi ∈ Ki−1 � Kj−1, which
implies that �(Qxi) ≤ s j−1 < 2�(Qxj ). If xi /∈ Q j and �(Qxj) > 1

2�(Qxi), it easily

follows that 1
3 Qxi ∩ 1

3 Qxj = /0.
We now prove (9.1.30). If m < ∞, then Km = /0 and therefore K � ⋃m

j=1 Qxj . If

m = ∞, then there is an infinite number of selected cubes Qxj . Since the cubes 1
3 Qxj

are pairwise disjoint and have centers in a bounded set, it must be the case that
some subsequence of the sequence of their lengths converges to zero. If there exists
a y ∈ K \⋃∞j=1 Qxj , this y would belong to all Kj, j = 1,2, . . . , and then s j ≥ �(Qy)
for all j. Since some subsequence of the s j’s tends to zero, it would follow that
�(Qy) = 0, which would force the open cube Qy to be the empty set, a contradiction.
Thus (9.1.30) holds.

Finally, we show that ∑m
j=1 χQx j

(y) ≤ 24n for almost every point y ∈ Rn. To
prove this we consider the n hyperplanes Hi that are parallel to the coordinate
hyperplanes and pass through the point y. Then we may write Rn as a union of
2n higher-dimensional open “octants” Or and n hyperplanes Hi of n-dimensional
Lebesgue measure zero. We show that there are only finitely many points x j in a
given such open “octant” Or. Indeed, let us fix an Or and pick an xk0 ∈ K ∩Or such
that Qxk0

contains y and the distance from xk0 to y is largest possible. If x j is another
point in K ∩Or such that Qxj contains y, then �(Qxk0

) ≥ �(Qxj ), which yields that
x j ∈ Qxk0

. As previously observed, one must then have j < k0, which implies that
1
2�(Qxk0

) < �(Qxj ). Thus all cubes Qxj with centers in K ∩Or that contain the fixed
point y have side lengths comparable to that of Qxk0

. A simple geometric argument
now gives that there are at most finitely many cubes Qxj of side length between α
and 2α that contain the given point y such that 1

3 Qxj are pairwise disjoint. Indeed,

let α = 1
2�(Qxk0

) and let {Qxr}r∈I be the cubes with these properties. Then we have

αn|I|
3n ≤∑

r∈I

∣

∣
1
3 Qxr

∣

∣=
∣

∣

⋃

r∈I

1
3 Qxr

∣

∣≤
∣

∣

⋃

r∈I

Qxr

∣

∣≤ (4α)n ,

since all the cubes Qxr contain the point y and have length at most 2α and they
must therefore be contained in a cube of side length 4α centered at y. This observa-
tion shows that |I| ≤ 12n, and since there are 2n sets Or, we conclude the proof of
(9.1.31). �

Remark 9.1.11. Without use of the covering Lemma 9.1.10, (9.1.28) can be proved
via the doubling property of w (cf. Exercise 2.1.1(a)), but then the resulting constant
C(q,n) would depend on the doubling constant of the measure wdx and thus on
[w]Ap ; this would yield a worse dependence on [w]Ap in the constant in (9.1.24).
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Exercises

9.1.1. Let k be a nonnegative measurable function such that k,k−1 are in L∞(Rn).
Prove that if w is an Ap weight for some 1 ≤ p < ∞, then so is kw.

9.1.2. Let w1, w2 be two A1 weights and let 1 < p < ∞. Prove that w1w1−p
2 is an Ap

weight by showing that

[w1w1−p
2 ]Ap ≤ [w1]A1 [w2]

p−1
A1

.

9.1.3. Suppose that w ∈ Ap for some p ∈ [1,∞) and 0 < δ < 1. Prove that wδ ∈ Aq,
where q = δ p + 1− δ , by showing that

[wδ ]Aq ≤ [w]δAp
.

9.1.4. Show that if the Ap characteristic constants of a weight w are uniformly
bounded for all p > 1, then w ∈ A1.

9.1.5. Let w0 ∈Ap0 and w1 ∈ Ap1 for some 1≤ p0, p1 <∞. Let 0≤ θ ≤ 1 and define

1
p

=
1−θ

p0
+
θ
p1

and w
1
p = w

1−θ
p0

0 w
θ
p1
1 .

Prove that

[w]Ap ≤ [w0]
(1−θ) p

p0
Ap0

[w1]
θ p

p1
Ap1

;

thus w is in Ap.

9.1.6. Let 1 < p < ∞. A pair of weights (u,w) that satisfies

[u,w](Ap,Ap) = sup
Q cubes

in Rn

(

1
|Q|

∫

Q
udx

)(

1
|Q|

∫

Q
w− 1

p−1 dx

)p−1

< ∞

is said to be of class (Ap,Ap). The quantity [u,w](Ap,Ap) is called the (Ap,Ap) char-
acteristic constant of the pair.
(a) Show that for any f ∈ L1

loc(R
n) with 0 < f <∞ a.e., the pair ( f ,M( f )) is of class

(Ap,Ap) for every 1< p<∞ with characteristic constant independent of f .
(b) If (u,w) is of class (Ap,Ap), then the Hardy–Littlewood maximal operator M
may not map Lp(w) to Lp(u).
[

Hint: Try the pair
(

M(g)1−p, |g|1−p
)

for a suitable g.
]

9.1.7. In contrast to part (b) of Exercise 9.1.6, show that if the pair of weights (u,w)
is of class (Ap,Ap) for some 1 < p < ∞, then M must map Lp(w) to Lp,∞(u) with

norm at most C(n, p)[u,w]
1
p

(Ap,Ap)
.

[

Hint: Show first using Hölder’s inequality that for all functions f and all cubes Q′

we have
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(

1
|Q′|

∫

Q′
| f |dx

)p

u(Q′) ≤ [u,w](Ap,Ap)

∫

Q′
| f |pwdx .

Replacing f by f χQ, where Q ⊆ Q′, obtain that

u(Q′) ≤ [u,w](Ap,Ap)|Q′|p
∫

Q | f |pwdx
(∫

Q | f |dx
)p .

Then use Exercise 4.3.9 to find disjoint cubes Q j such that the set Eα = {x ∈ Rn :
Mc( f )(x) > α} is contained in the union of 3Q j and α

4n < 1
|Qj |

∫

Qj
| f (t)|dt ≤ α

2n .

Then u(Eα) ≤ ∑ j u(3Q j), and bound each u(3Q j) by taking Q′ = 3Q j and Q = Q j

in the preceding estimate.
]

9.1.8. Use Exercise 9.1.7 to prove that for all 1 < q < ∞ there is a constant Cq < ∞
such that for all f ,g ≥ 0 locally integrable functions on Rn we have

∫

Rn
M( f )(x)q g(x)dx ≤Cq

∫

Rn
f (x)q M(g)(x)dx .

[

Hint: Take 1 < p < q and interpolate between Lp and L∞.
]

9.1.9. Let w ∈ Ap for some 1 ≤ p < ∞ and k ≥ 1. Show that min(w,k) is in Ap and
satisfies

[min(w,k)]Ap ≤ cp ([w]Ap + 1) ,

where cp = 1 when p ≤ 2 and cp = 2p−2 when p > 2.
[

Hint: Use that 1
|Q|
∫

Q min(w,k)−
1

p−1 dx≤ 1
|Q|
∫

Q w− 1
p−1 dx+k−

1
p−1 , raise to the power

p−1, and multiply by min
(

k, 1
|Q|
∫

Q wdx
)

.
]

9.1.10. Suppose that wj ∈ Ap j with 1 ≤ j ≤ m for some 1 ≤ p1, . . . , pm <∞ and let
0 < θ1, . . . ,θm < 1 be such that θ1 + · · ·+θm = 1. Show that

wθ1
1 · · ·wθm

m ∈ Amax{p1,...,pm} .

[

Hint: First note that each weight wj lies in Amax{p1,...,pm} and then apply Hölder’s
inequality.

]

9.1.11. Let w1 ∈ Ap1 and w2 ∈ Ap2 for some 1 ≤ p1, p2 < ∞. Prove that

[w1 + w2]Ap ≤ [w1]Ap1
+[w2]Ap2

,

where p = max(p1, p2).

9.1.12. Prove the claim of Example 9.1.8.
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9.2 Reverse Hölder Inequality for Ap Weights and Consequences

An essential property of Ap weights is that they assign to subsets of balls mass
proportional to the percentage of the Lebesgue measure of the subset within the
ball. The following lemma provides a way to quantify this statement.

Lemma 9.2.1. Let w ∈ Ap for some 1 ≤ p < ∞ and let 0 < α < 1. Then there exists
β < 1 such that whenever S is a measurable subset of a cube Q that satisfies |S| ≤
α|Q|, we have w(S) ≤ β w(Q).

Proof. Taking f = χA in property (8) of Proposition 9.1.5, we obtain

(

|A|
|Q|

)p

≤ [w]Ap

w(A)
w(Q)

. (9.2.1)

We write S = Q\A to get

(

1− |S|
|Q|

)p

≤ [w]Ap

(

1− w(S)
w(Q)

)

. (9.2.2)

Given 0 < α < 1, set

β = 1− (1−α)p

[w]Ap

(9.2.3)

and use (9.2.2) to obtain the required conclusion. �

9.2.1 The Reverse Hölder Property of Ap Weights

We are now ready to state and prove one of the main results of the theory of weights,
the reverse Hölder inequality for Ap weights.

Theorem 9.2.2. Let w ∈ Ap for some 1 ≤ p < ∞. Then there exist constants C and
γ > 0 that depend only on the dimension n, on p, and on [w]Ap such that for every
cube Q we have

(

1
|Q|

∫

Q
w(t)1+γ dt

) 1
1+γ

≤ C
|Q|

∫

Q
w(t)dt . (9.2.4)

Proof. Let us fix a cube Q and set

α0 =
1
|Q|

∫

Q
w(x)dx .

We also fix 0 < α < 1. We define an increasing sequence of scalars

α0 < α1 < α2 < · · · < αk < · · ·
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for k ≥ 0 by setting

αk+1 = 2nα−1αk or αk = (2nα−1)kα0,

and for each k ≥ 1 we apply a Calderón–Zygmund decomposition to w at height αk.
Precisely, for dyadic subcubes R of Q, we let

1
|R|

∫

R
w(x)dx > αk (9.2.5)

be the selection criterion. Since Q does not satisfy the selection criterion, it is not
selected. We divide the cube Q into a mesh of 2n subcubes of equal side length, and
among these cubes we select those that satisfy (9.2.5). We subdivide each unselected
subcube into 2n cubes of equal side length and we continue in this way indefinitely.
We denote by {Qk, j} j the collection of all selected subcubes of Q. We observe that
the following properties are satisfied:

(1) αk <
1

|Qk, j|

∫

Qk, j

w(t)dt ≤ 2nαk.

(2) For almost all x /∈Uk we have w(x) ≤ αk, where Uk =
⋃

j
Qk, j.

(3) Each Qk+1, j is contained in some Qk,l .

Property (1) is satisfied since the unique dyadic parent of Qk, j was not chosen in the
selection procedure. Property (2) follows from the Lebesgue differentiation theorem
using the fact that for almost all x /∈Uk there exists a sequence of unselected cubes
of decreasing lengths whose closures’ intersection is the singleton {x}. Property (3)
is satisfied since each Qk, j is the maximal subcube of Q satisfying (9.2.5). And since
the average of w over Qk+1, j is also bigger than αk, it follows that Qk+1, j must be
contained in some maximal cube that possesses this property.

We now compute the portion of Qk,l that is covered by cubes of the form Qk+1, j

for some j. We have

2nαk ≥ 1
|Qk,l |

∫

Qk,l∩Uk+1

w(t)dt

=
1

|Qk,l | ∑
j:Qk+1, j⊆Qk,l

|Qk+1, j|
1

|Qk+1, j|

∫

Qk+1, j

w(t)dt

>

∣

∣Qk,l ∩Uk+1
∣

∣

|Qk,l |
αk+1

=

∣

∣Qk,l ∩Uk+1
∣

∣

|Qk,l |
2nα−1αk .

It follows that
∣

∣Qk,l ∩Uk+1
∣

∣≤ α|Qk,l |; thus, applying Lemma 9.2.1, we obtain

w(Qk,l ∩Uk+1)
w(Qk,l)

< β = 1− (1−α)p

[w]Ap

,
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from which, summing over all l, we obtain

w(Uk+1) ≤ βw(Uk) .

The latter gives w(Uk) ≤ β kw(U0). We also have |Uk+1| ≤ α|Uk|; hence |Uk| → 0 as
k →∞. Therefore, the intersection of the Uk’s is a set of Lebesgue measure zero. We
can therefore write

Q =
(

Q\U0
)⋃(

∞
⋃

k=0

Uk \Uk+1
)

modulo a set of Lebesgue measure zero. Let us now find a γ > 0 such that the reverse
Hölder inequality (9.2.4) holds. We have w(x) ≤ αk for almost all x in Q \Uk and
therefore

∫

Q
w(t)1+γ dt =

∫

Q\U0

w(t)γw(t)dt +
∞

∑
k=0

∫

Uk\Uk+1

w(t)γw(t)dt

≤ αγ0 w(Q\U0)+
∞

∑
k=0

αγk+1w(Uk)

≤ αγ0 w(Q\U0)+
∞

∑
k=0

((2nα−1)k+1α0)γβ kw(U0)

≤ αγ0

(

1 +(2nα−1)γ
∞

∑
k=0

(2nα−1)γkβ k
)

w(Q)

=
(

1
|Q|

∫

Q
w(t)dt

)γ(

1 +
(2nα−1)γ

1− (2nα−1)γβ

)
∫

Q
w(t)dt ,

provided γ > 0 is chosen small enough that (2nα−1)γβ < 1. Keeping track of the
constants, we conclude the proof of the theorem with

γ <
− logβ

log2n − logα
=

log
(

[w]Ap

)

− log
(

[w]Ap − (1−α)p
)

log2n − logα
(9.2.6)

and

C = 1 +
(2nα−1)γ

1− (2nα−1)γβ
= 1 +

(2nα−1)γ

1− (2nα−1)γ
(

1− (1−α)p

[w]Ap

)
. (9.2.7)

Note that up to this point, α was an arbitrary number in (0,1), and it may be chosen
to maximize (9.2.6). �

Remark 9.2.3. It is worth observing that for any fixed 0 < α < 1, the constant in
(9.2.6) decreases as [w]Ap increases, while the constant in (9.2.7) increases as [w]Ap

increases. This allows us to obtain the following stronger version of Theorem 9.2.2:
For any 1≤ p <∞ and B > 1, there exist positive constants C =C(n, p,B) and γ =

γ(n, p,B) such that for all w ∈ Ap satisfying [w]Ap ≤ B the reverse Hölder condition
(9.2.4) holds for every cube Q. See Exercise 9.2.4(a) for details.
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Observe that in the proof of Theorem 9.2.2 it was crucial to know that for some
0 < α,β < 1 we have

|S| ≤ α |Q| =⇒ w(S) ≤ β w(Q) (9.2.8)

whenever S is a subset of the cube Q. No special property of Lebesgue measure was
used in the proof of Theorem 9.2.2 other than its doubling property. Therefore, it is
reasonable to ask whether Lebesgue measure in (9.2.8) can be replaced by a general
measure μ satisfying the doubling property

μ(3Q) ≤Cn μ(Q) < ∞ (9.2.9)

for all cubes Q in Rn. A straightforward adjustment of the proof of the previous
theorem indicates that this is indeed the case.

Corollary 9.2.4. Let w be a weight and let μ be a measure on Rn satisfying (9.2.9).
Suppose that there exist 0 < α,β < 1, such that

μ(S)≤ α μ(Q) =⇒
∫

S
w(t)dμ(t) ≤ β

∫

Q
w(t)dμ(t)

whenever S is a μ-measurable subset of a cube Q. Then there exist 0 < C,γ < ∞
[which depend only on the dimension n, the constant Cn in (9.2.9), α , and β ] such
that for every cube Q in Rn we have

(

1
μ(Q)

∫

Q
w(t)1+γ dμ(t)

) 1
1+γ

≤ C
μ(Q)

∫

Q
w(t)dμ(t). (9.2.10)

Proof. The proof of the corollary can be obtained almost verbatim from that of
Theorem 9.2.2 by replacing Lebesgue measure with the doubling measure dμ and
the constant 2n by Cn.

Precisely, we define αk = (Cnα−1)kα0, where α0 is the μ-average of w over Q;
then properties (1), (2), (3) concerning the selected cubes {Qk, j} j are replaced by

(1μ ) αk <
1

μ(Qk, j)

∫

Qk, j

w(t)dμ(t) ≤Cnαk.

(2μ ) On Q\Uk we have w ≤ αk μ-almost everywhere, where Uk =
⋃

j
Qk, j.

(3μ ) Each Qk+1, j is contained in some Qk,l .

To prove the upper inequality in (1μ) we use that the dyadic parent of each selected
cube Qk, j was not selected and is contained in 3Qk, j. To prove (2μ) we need a dif-
ferentiation theorem for doubling measures, analogous to that in Corollary 2.1.16.
This can be found in Exercise 2.1.1. The remaining details of the proof are trivially
adapted to the new setting. The conclusion is that for

0 < γ <
− logβ

logCn − logα
(9.2.11)
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and

C = 1 +
(2α−1)γ

1− (Cnα−1)γβ
, (9.2.12)

(9.2.10) is satisfied. �

9.2.2 Consequences of the Reverse Hölder Property

Having established the crucial reverse Hölder inequality for Ap weights, we now
pass to some very important applications. Among them, the first result of this section
yields that an Ap weight that lies a priori in L1

loc(R
n) must actually lie in the better

space L1+σ
loc (Rn) for some σ > 0 depending on the weight.

Theorem 9.2.5. If w ∈ Ap for some 1 ≤ p < ∞, then there exists a number γ > 0
(that depends on [w]Ap, p, and n) such that w1+γ ∈ Ap.

Proof. The proof is simple. When p = 1, we apply the reverse Hölder inequality of
Theorem 9.2.2 to the weight w to obtain

1
|Q|

∫

Q
w(t)1+γ dt ≤

(

C
|Q|

∫

Q
w(t)dt

)1+γ
≤C1+γ [w]1+γ

A1
w(x)1+γ

for almost all x in the cube Q. Therefore, w1+γ is an A1 weight with characteristic
constant at most C1+γ [w]1+γ

A1
. (C is here the constant of Theorem 9.2.2.) When p >

1, there exist γ1,γ2 > 0 and C1,C2 > 0 such that the reverse Hölder inequality of

Theorem 9.2.2 holds for the weights w ∈ Ap and w− 1
p−1 ∈ Ap′ , that is,

(

1
|Q|

∫

Q
w(t)1+γ1 dt

) 1
1+γ1 ≤ C1

|Q|

∫

Q
w(t)dt,

(

1
|Q|

∫

Q
w(t)−

1
p−1 (1+γ2)dt

) 1
1+γ2 ≤ C2

|Q|

∫

Q
w(t)−

1
p−1 dt .

Taking γ = min(γ1,γ2), both inequalities are satisfied with γ in the place of γ1, γ2. It
follows that w1+γ is in Ap and satisfies

[w1+γ ]Ap ≤ (C1Cp−1
2 )1+γ [w]1+γ

Ap
. (9.2.13)

This concludes the proof of the theorem. �

Corollary 9.2.6. For any 1 < p <∞ and for every w∈Ap there is a q = q([w]Ap , p,n)
with q < p such that w ∈ Aq. In other words, we have

Ap =
⋃

q∈(1,p)

Aq .
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Proof. Given w ∈ Ap, let γ,C1,C2 be as in the proof of Theorem 9.2.5. In view of
the result in Exercise 9.1.3 (with δ = 1/(1 + γ), if w1+γ ∈ Ap and

q = p
1

1 + γ
+ 1− 1

1 + γ
=

p + γ
1 + γ

,

then w ∈ Aq and

[w]Aq = [(w1+γ )
1

1+γ ]Aq ≤
[

w1+γ]
1

1+γ
Ap

≤C1Cp−1
2 [w]Ap ,

where the last estimate comes from (9.2.13). Since 1 < q = p+γ
1+γ < p, the required

conclusion follows. Observe that the constants C1Cp−1
2 , q, and 1

γ increase as [w]Ap

increases. �
Another powerful consequence of the reverse Hölder property of Ap weights is

the following characterization of all A1 weights.

Theorem 9.2.7. Let w be an A1 weight. Then there exist 0 < ε < 1, a nonnegative
function k such that k,k−1 ∈ L∞, and a nonnegative locally integrable function f
that satisfies M( f ) < ∞ a.e. such that

w(x) = k(x)M( f )(x)ε . (9.2.14)

Conversely, every weight w of the form (9.2.14) for some k, f as previously is in A1

with

[w]A1 ≤
Cn

1− ε
∥

∥k
∥

∥

L∞

∥

∥k−1
∥

∥

L∞ ,

where Cn is a universal dimensional constant.

Proof. In view of Theorem 9.2.2, there exist 0 < γ,C < ∞ such that the reverse
Hölder condition

(

1
|Q|

∫

Q
w(t)1+γ dt

) 1
1+γ

≤ C
|Q|

∫

Q
w(t)dt ≤C [w]A1w(x) (9.2.15)

holds for all cubes Q for all x in Q\EQ, where EQ is a null subset of Q. We set

ε =
1

1 + γ
and f (x) = w(x)1+γ = w(x)

1
ε .

Letting N be the union of EQ over all Q with rational radii and centers in Qn, it fol-
lows from (9.2.15) that the uncentered Hardy–Littlewood maximal function Mc( f )
with respect to cubes satisfies

Mc( f )(x) ≤C1+γ [w]1+γ
A1

f (x) for x ∈ Rn \N.

This implies that M( f ) ≤ CnC1+γ [w]1+γ
A1

f a.e. for some constant Cn that depends
only on the dimension. We now set
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k(x) =
f (x)ε

M( f )(x)ε
,

and we observe that C−1C−ε
n [w]−1

A1
≤ k ≤ 1 a.e.

It remains to prove the converse. Given a weight w = kM( f )ε in the form (9.2.14)
and a cube Q, it suffices to show that

1
|Q|

∫

Q
M( f )(t)ε dt ≤ Cn

1− εM( f )ε (x) for almost all x ∈ Q, (9.2.16)

since the corresponding statement for kM( f )ε follows trivially from (9.2.16) using
that k,k−1 ∈ L∞. To prove (9.2.16), we write

f = f χ3Q + f χ(3Q)c .

Then

1
|Q|

∫

Q
M( f χ3Q)(t)ε dt ≤ C′

n

1− ε

(

1
|Q|

∫

Rn
( f χ3Q)(t)dt

)ε
(9.2.17)

in view of Kolmogorov’s inequality (Exercise 2.1.5). But the last expression in
(9.2.17) is at most a dimensional multiple of M( f )(x)ε for almost all x ∈ Q, which
proves (9.2.16) when f is replaced by f χ3Q on the left-hand side of the inequality.
And for f χ(3Q)c we only need to notice that

M( f χ(3Q)c)(t) ≤ 2nM( f χ(3Q)c)(t) ≤ 2nn
n
2 M( f )(x)

for all x,t in Q, since any ball B centered at t that gives a nonzero average for
f χ(3Q)c must have radius at least the side length of Q, and thus

√
nB must also

contain x. (Here M is the centered Hardy–Littlewood maximal operator introduced
in Definition 2.1.1.) Hence (9.2.16) also holds when f is replaced by f χ(3Q)c on the
left-hand side. Combining these two estimates and using the subbaditivity property
M( f1 + f2)ε ≤ M( f1)ε + M( f2)ε , we obtain (9.2.16). �

Exercises

9.2.1. Let w ∈ Ap for some 1 < p < ∞ and let 1 ≤ q < ∞. Prove that the sublinear
operator

S( f ) =
(

M(| f |qw)w−1)
1
q

is bounded on Lp′q(w).

9.2.2. Let v be a real-valued locally integrable function on Rn and let 1 < p < ∞.
Prove that ev is an Ap weight if and only if the following two conditions are satisfied
for some constant C < ∞:
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sup
Q cubes

1
|Q|

∫

Q
ev(t)−vQ dt ≤ C ,

sup
Q cubes

1
|Q|

∫

Q
e−(v(t)−vQ) 1

p−1 dt ≤ C .

[

Hint: If ev ∈ Ap, use that

1
|Q|

∫

Q
ev(t)−vQ dt ≤

(

Avg
Q

e−
v

p−1

)p−1(

Avg
Q

ev
)

and obtain a similar estimate for the second quantity.
]

9.2.3. Let v be a real-valued locally integrable function on Rn and let 1 < p < ∞.
(a) Use the result of Exercise 9.2.2 to show that ev is in A2 if and only if for some
constant C < ∞, we have

sup
Q cubes

1
|Q|

∫

Q
e|v(t)−vQ| dt ≤C .

Conclude that
∥

∥ logϕ
∥

∥

BMO ≤ [ϕ ]A2 ; thus if ϕ ∈ A2, then logϕ ∈ BMO.
(b) Use part (a) and Theorem 7.1.6 to prove the converse, namely that every BMO
function is equal to a constant multiple of the logarithm of an A2 weight.
(c) Prove that if ϕ is in Ap for some 1 < p < ∞, then logϕ is in BMO by showing
that

∥

∥ logϕ
∥

∥

BMO ≤

⎧

⎨

⎩

[ϕ ]Ap when 1 < p ≤ 2,

(p−1)[ϕ ]
1

p−1
Ap

when 2 < p < ∞ .

[

Hint: Use that ϕ− 1
p−1 ∈ Ap′ when p > 2.

]

9.2.4. Prove the following quantitative versions of Theorem 9.2.2 and Corollary
9.2.6.
(a) For any 1 ≤ p < ∞ and B > 1, there exist positive constants C = C1(n, p,B) and
γ = γ(n, p,B) such that for all w ∈ Ap satisfying [w]Ap ≤ B, (9.2.4) holds for every
cube Q.
(b) Given any 1 < p < ∞ and B > 1 there exist constants C = C2(n, p,B) and δ =
δ (n, p,B) such that for all w ∈ Ap we have

[w]Ap ≤ B =⇒ [w]Ap−δ ≤C .

9.2.5. Given a positive doubling measure μ on Rn, define the characteristic constant
[w]Ap(μ) and the class Ap(μ) for 1 < p <∞.
(a) Show that statement (8) of Proposition 9.1.5 remains valid if Lebesgue measure
is replaced by μ .
(b) Obtain as a consequence that if w ∈ Ap(μ), then for all cubes Q and all μ-
measurable subsets A of Q we have
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(

μ(A)
μ(Q)

)p

≤ [w]Ap(μ)
w(A)
w(Q)

.

Conclude that if Lebesgue measure is replaced by μ in Lemma 9.2.1, then the lemma
is valid for w ∈ Ap(μ).
(c) Use Corollary 9.2.4 to obtain that weights in Ap(μ) satisfy a reverse Hölder
condition.
(d) Prove that given a weight w ∈ Ap(μ), there exists 1 < q < p [which depends on
[w]Ap(μ)] such that w ∈ Aq(μ).

9.2.6. Let 1 < q <∞ and μ a positive measure on Rn. We say that a positive function
K on Rn satisfies a reverse Hölder condition of order q with respect to μ [symboli-
cally K ∈ RHq(μ)] if

[K]RHq(μ) = sup
Qcubes in Rn

( 1
μ(Q)

∫

Q Kq dμ
) 1

q

1
μ(Q)

∫

Q K dμ
<∞ .

For positive functions u,v on Rn and 1 < p < ∞, show that

[vu−1]RHp′ (udx) = [uv−1]
1
p

Ap(vdx) ,

that is, vu−1 satisfies a reverse Hölder condition of order p′ with respect to udx if
and only if uv−1 is in Ap(vdx). Conclude that

w ∈ RHp′(dx) ⇐⇒ w−1 ∈ Ap(wdx) ,

w ∈ Ap(dx) ⇐⇒ w−1 ∈ RHp′(wdx) .

9.2.7. (Gehring [145] ) Suppose that a positive function K on Rn lies in RHp(dx)
for some 1 < p < ∞. Show that there exists a δ > 0 such that K lies in RHp+δ (dx).
[

Hint: By Exercise 9.2.6, K ∈RHp(dx) is equivalent to the fact that K−1 ∈Ap′(K dx),
and the index p′ can be improved by Exercise 9.2.5(d).

]

9.2.8. (a) Show that for any w ∈ A1 and any cube Q in Rn and a > 1 we have

ess.inf
Q

w ≤ an[w]A1 ess.inf
aQ

w .

(b) Prove that there is a constant Cn such that for all locally integrable functions f
on Rn and all cubes Q in Rn we have

ess.inf
Q

M( f ) ≤Cn ess.inf
3Q

M( f ) ,

and an analogous statement is valid for Mc.
[

Hint: Part (a): Use (9.1.18). Part (b): Apply part (a) to M( f )
1
2 , which is an A1

weight in view of Theorem 9.2.7.
]
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9.2.9. (Lerner, Pérez, and Ombrosi [211] ) For a weight w ∈ A1(Rn) define a quan-
tity rw = 1 + 1

2n+1[w]A1
. Show that

Mc(wrw)
1

rw ≤ 2 [w]A1 w .

[

Hint: Fix a cube Q and consider the family FQ of all cubes obtained by subdividing
Q into a mesh of (2n)m subcubes of side length 2−m�(Q) for all m = 1,2, . . . . Define
Md

Q( f )(x) = supR∈FQ,R�x |R|−1 ∫

R | f |dy. Using Corollary 2.1.21, adapt the result of

Exercise 2.1.4(b) to the maximal function Md
Q; i.e., obtain

∫

Q∩{Md
Q(w)>λ}w(x)dx ≤

2nλ |{x ∈ Q : Md
Q(w)(x) > λ}| for λ > wQ = 1

|Q|
∫

Q wdt. Multiply by λδ−1 and

integrate to obtain
∫

Q Md
Q(w)δwdx ≤ (wQ)δ

∫

Q wdx + 2nδ
δ+1

∫

Q Md
Q(w)δ+1dx . Setting

δ = 1
2n+1‖w‖A1

, deduce that 1
|Q|
∫

Q wδ+1dx ≤ 1
|Q|
∫

Q Md
Q(w)δwdx ≤ 2(wQ)δ+1.

]

9.3 The A∞ Condition

In this section we examine more closely the class of all Ap weights. It turns out that
Ap weights possess properties that are p-independent but delicate enough to char-
acterize them without reference to a specific value of p. The Ap classes increase
as p increases, and it is only natural to consider their limit as p → ∞. Not surpris-
ingly, a condition obtained as a limit of the Ap conditions as p → ∞ provides some
unexpected but insightful characterizations of the class of all Ap weights.

9.3.1 The Class of A∞ Weights

Let us start by recalling a simple consequence of Jensen’s inequality:

(
∫

X
|h(t)|q dμ(t)

) 1
q

≥ exp

(
∫

X
log |h(t)|dμ(t)

)

, (9.3.1)

which holds for all measurable functions h on a probability space (X ,μ) and all
0 < q < ∞. See Exercise 1.1.3(b). Moreover, part (c) of the same exercise says that
the limit of the expressions on the left in (9.3.1) as q → 0 is equal to the expression
on the right in (9.3.1).

We apply (9.3.1) to the function h = w−1 for some weight w in Ap with q =
1/(p−1). We obtain

w(Q)
|Q|

(

1
|Q|

∫

Q
w(t)−

1
p−1 dt

)p−1

≥ w(Q)
|Q| exp

(

1
|Q|

∫

Q
logw(t)−1 dt

)

, (9.3.2)
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and the limit of the expressions on the left in (9.3.2) as p → ∞ is equal to the ex-
pression on the right in (9.3.2). This observation provides the motivation for the
following definition.

Definition 9.3.1. A weight w is called an A∞ weight if

[w]A∞ = sup
Q cubes in Rn

{(

1
|Q|

∫

Q
w(t)dt

)

exp

(

1
|Q|

∫

Q
logw(t)−1 dt

)}

< ∞ .

The quantity [w]A∞ is called the A∞ characteristic constant of w.

It follows from the previous definition and (9.3.2) that for all 1 ≤ p < ∞ we have

[w]A∞ ≤ [w]Ap .

This means that
⋃

1≤p<∞
Ap ⊆ A∞ , (9.3.3)

but the remarkable thing is that equality actually holds in (9.3.3), a deep property
that requires some work.

Before we examine this and other characterizations of A∞ weights, we discuss
some of their elementary properties.

Proposition 9.3.2. Let w ∈ A∞. Then

(1) [δλ (w)]A∞ = [w]A∞ , where δλ (w)(x) = w(λx1, . . . ,λxn) and λ > 0.

(2) [τz(w)]A∞ = [w]A∞ , where τz(w)(x) = w(x− z), z ∈ Rn.

(3) [λw]A∞ = [w]A∞ for all λ > 0.

(4) [w]A∞ ≥ 1.

(5) The following is an equivalent characterization of the A∞ characteristic con-
stant of w:

[w]A∞ = sup
Qcubes
in Rn

sup
log | f | ∈ L1(Q)
| f | > 0 a.e. on Q

{

w(Q)
∫

Q | f (t)|w(t)dt
exp

(

1
|Q|

∫

Q
log | f (t)|dt

)}

.

(6) The measure w(x)dx is doubling; precisely, for all λ > 1 and all cubes Q we
have

w(λQ) ≤ 2λ
n
[w]λ

n

A∞ w(Q) .

As usual, λQ here denotes the cube with the same center as Q and side length
λ times that of Q.

We note that estimate (6) is not as good as λ → ∞ but it can be substantially
improved using the case λ = 2. We refer to Exercise 9.3.1 for an improvement.
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Proof. Properties (1)–(3) are elementary, while property (4) is a consequence of
Exercise 1.1.3(b). To show (5), first observe that by taking f = w−1, the expression
on the right in (5) is at least as big as [w]A∞ . Conversely, (9.3.1) gives

exp

(

1
|Q|

∫

Q
log
(

| f (t)|w(t)
)

dt

)

≤ 1
|Q|

∫

Q
| f (t)|w(t)dt ,

which, after a simple algebraic manipulation, can be written as

w(Q)
∫

Q | f |wdt
exp

(

1
|Q|

∫

Q
log | f |dt

)

≤ w(Q)
|Q| exp

(

− 1
|Q|

∫

Q
log |w|dt

)

,

whenever f does not vanish almost everywhere on Q. Taking the supremum over all
such f and all cubes Q in Rn, we obtain that the expression on the right in (5) is at
most [w]A∞ .

To prove the doubling property for A∞ weights, we fix λ > 1 and we apply prop-
erty (5) to the cube λQ in place of Q and to the function

f =

{

c on Q,

1 on Rn \Q,
(9.3.4)

where c is chosen so that c1/λ n
= 2[w]A∞ . We obtain

w(λQ)
w(λQ\Q)+ cw(Q)

exp
( logc
λ n

)

≤ [w]A∞ ,

which implies (6) if we take into account the chosen value of c. �

9.3.2 Characterizations of A∞ Weights

Having established some elementary properties of A∞ weights, we now turn to some
of their deeper properties, one of which is that every A∞ weight lies in some Ap for
p < ∞. It also turns out that A∞ weights are characterized by the reverse Hölder
property, which as we saw is a fundamental property of Ap weights. The following
is the main theorem of this section.

Theorem 9.3.3. Suppose that w is a weight. Then w is in A∞ if and only if any one
of the following conditions holds:
(a) There exist 0 < γ,δ < 1 such that for all cubes Q in Rn we have

∣

∣

{

x ∈ Q : w(x) ≤ γ AvgQw
}∣

∣≤ δ |Q| .

(b) There exist 0 < α,β < 1 such that for all cubes Q and all measurable subsets A
of Q we have

|A| ≤ α |Q| =⇒ w(A) ≤ β w(Q) .



9.3 The A∞ Condition 305

(c) The reverse Hölder condition holds for w, that is, there exist 0 < C1,ε < ∞ such
that for all cubes Q we have

(

1
|Q|

∫

Q
w(t)1+ε dt

) 1
1+ε

≤ C1

|Q|

∫

Q
w(t)dt .

(d) There exist 0 < C2,ε0 < ∞ such that for all cubes Q and all measurable subsets
A of Q we have

w(A)
w(Q)

≤C2

(

|A|
|Q|

)ε0
.

(e) There exist 0 < α ′,β ′ < 1 such that for all cubes Q and all measurable subsets
A of Q we have

w(A) < α ′ w(Q) =⇒ |A| < β ′ |Q| .

(f) There exist p,C3 <∞ such that [w]Ap ≤C3. In other words, w lies in Ap for some
p ∈ [1,∞).

All the constants C1,C2,C3,α,β ,γ,δ ,α ′,β ′,ε,ε0, and p in (a)–(f) depend only
on the dimension n and on [w]A∞ . Moreover, if any of the statements in (a)–(f) is
valid, then so is any other statement in (a)–(f) with constants that depend only on
the dimension n and the constants that appear in the assumed statement.

Proof. The proof follows from the sequence of implications

w ∈ A∞ =⇒ (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ ( f ) =⇒ w ∈ A∞ .

At each step we keep track of the way the constants depend on the constants of the
previous step. This is needed to validate the last assertion of the theorem.

w ∈ A∞ =⇒ (a)
Fix a cube Q. Since multiplication of an A∞ weight with a positive scalar does

not alter its A∞ characteristic, we may assume that
∫

Q logw(t)dt = 0. This implies
that AvgQ w ≤ [w]A∞ . Then we have

∣

∣{x ∈ Q : w(x) ≤ γAvg
Q

w}
∣

∣ ≤
∣

∣{x ∈ Q : w(x) ≤ γ[w]A∞}
∣

∣

=
∣

∣{x ∈ Q : log(1 + w(x)−1) ≥ log(1 +(γ[w]A∞)
−1)}

∣

∣

≤ 1
log(1 +(γ[w]A∞)−1)

∫

Q
log

1 + w(t)
w(t)

dt

=
1

log(1 +(γ[w]A∞)−1)

∫

Q
log(1 + w(t))dt

≤ 1
log(1 +(γ[w]A∞)−1)

∫

Q
w(t)dt

≤ [w]A∞ |Q|
log(1 +(γ[w]A∞)−1)

=
1
2
|Q| ,
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which proves (a ) with γ = [w]−1
A∞

(e2[w]A∞ −1)−1 and δ = 1
2 .

(a) =⇒ (b)
Let Q be fixed and let A be a subset of Q with w(A) > βw(Q) for some β to be

chosen later. Setting S = Q\A, we have w(S) < (1−β )w(Q). We write S = S1 ∪S2,
where

S1 = {x ∈ S : w(x) > γAvgQw} and S2 = {x ∈ S : w(x) ≤ γAvgQw} .

For S2 we have |S2| ≤ δ |Q| by assumption (a ). For S1 we use Chebyshev’s inequality
to obtain

|S1| ≤
1

γAvg
Q

w

∫

S
w(t)dt =

|Q|
γ

w(S)
w(Q)

≤ 1−β
γ

|Q| .

Adding the estimates for |S1| and |S2|, we obtain

|S| ≤ |S1|+ |S2| ≤
1−β
γ

|Q|+ δ |Q|=
(

δ +
1−β
γ

)

|Q| .

Choosing numbers α,β in (0,1) such that δ + 1−β
γ = 1−α , for example α = 1−δ

2

and β = 1− (1−δ )γ
2 , we obtain |S| ≤ (1−α)|Q|, that is, |A| > α|Q|.

(b) =⇒ (c)
This was proved in Corollary 9.2.4. To keep track of the constants, we note that

the choices

ε =
− 1

2 logβ
log2n − logα

and C1 = 1 +
(2nα−1)ε

1− (2nα−1)εβ

as given in (9.2.6) and (9.2.7) serve our purposes.

(c) =⇒ (d )
We apply first Hölder’s inequality with exponents 1 + ε and (1 + ε)/ε and then

the reverse Hölder estimate to obtain

∫

A
w(x)dx ≤

(
∫

A
w(x)1+ε dx

) 1
1+ε

|A| ε
1+ε

≤
(

1
|Q|

∫

Q
w(x)1+ε dx

) 1
1+ε

|Q| 1
1+ε |A| ε

1+ε

≤ C1

|Q|

∫

Q
w(x)dx |Q| 1

1+ε |A| ε
1+ε ,

which gives
w(A)
w(Q)

≤C1

( |A|
|Q|

) ε
1+ε

.

This proves (d ) with ε0 = ε
1+ε and C2 = C1.
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(d ) =⇒ (e)
Pick an 0 < α ′′ < 1 small enough that β ′′ = C2(α ′′)ε0 < 1. It follows from (d )

that
|A| < α ′′|Q| =⇒ w(A) < β ′′w(Q) (9.3.5)

for all cubes Q and all A measurable subsets of Q. Replacing A by Q\A, the impli-
cation in (9.3.5) can be equivalently written as

|A| ≥ (1−α ′′)|Q| =⇒ w(A) ≥ (1−β ′′)w(Q) .

In other words, for measurable subsets A of Q we have

w(A) < (1−β ′′)w(Q) =⇒ |A| < (1−α ′′)|Q| , (9.3.6)

which is the statement in (e ) if we set α ′ = (1−β ′′) and β ′ = 1−α ′′. Note that
(9.3.5) and (9.3.6) are indeed equivalent.

(e) =⇒ ( f )
We begin by examining condition (e ), which can be written as
∫

A
w(t)dt ≤ α ′

∫

Q
w(t)dt =⇒

∫

A
w(t)−1w(t)dt ≤ β ′

∫

Q
w(t)−1w(t)dt ,

or, equivalently, as

μ(A) ≤ α ′μ(Q) =⇒
∫

A
w(t)−1 dμ(t) ≤ β ′

∫

Q
w(t)−1 dμ(t)

after defining the measure dμ(t) = w(t)dt. As we have already seen, the asser-
tions in (9.3.5) and (9.3.6) are equivalent. Therefore, we may use Exercise 9.3.2 to
deduce that the measure μ is doubling [i.e., it satisfies property (9.2.9) for some
constant Cn = Cn(α ′,β ′)] and hence the hypotheses of Corollary 9.2.4 are satisfied.
We conclude that the weight w−1 satisfies a reverse Hölder estimate with respect to
the measure μ , that is, if γ,C are defined as in (9.2.11) and (9.2.12) [in which α is
replaced by α ′, β by β ′, and Cn is the doubling constant of w(x)dx], then we have

(

1
μ(Q)

∫

Q
w(t)−1−γ dμ(t)

) 1
1+γ

≤ C
μ(Q)

∫

Q
w(t)−1 dμ(t) (9.3.7)

for all cubes Q in Rn. Setting p = 1+ 1
γ and raising to the pth power, we can rewrite

(9.3.7) as the Ap condition for w. We can therefore take C3 = Cp to conclude the
proof of (f).

( f ) =⇒ w ∈ A∞
This is trivial, since [w]A∞ ≤ [w]Ap . �

An immediate consequence of the preceding theorem is the following result re-
lating A∞ to Ap.
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Corollary 9.3.4. The following equality is valid:

A∞ =
⋃

1≤p<∞
Ap.

Exercises

9.3.1. (a) Show that property (6) in Proposition 9.3.2 can be improved to

w(λQ) ≤ min
ε>0

(1 + ε)λ n
[w]λ

n

A∞
−1

ε
w(Q) .

(b) Take λ = 2 in property (6) of Proposition 9.3.2 and iterate the estimate obtained
to deduce that

w(λQ) ≤ (2λ )2n(1+log2[w]A∞ )w(Q) .
[

Hint: Part (a): Take c in (9.3.4) such that c1/λ n
= (1 + ε)[w]A∞ .

]

9.3.2. Suppose that μ is a positive Borel measure on Rn with the property that for
all cubes Q and all measurable subsets A of Q we have

|A| < α|Q| =⇒ μ(A) < βμ(Q)

for some fixed 0 < α,β < 1. Show that μ is doubling [i.e., it satisfies (9.2.9)].
[

Hint: Choose λ = (1+α/2)1/n such that |λQ\Q|< α|Q|. Write λQ as the union
of cn shifts Qs of Q, for some dimensional constant cn. Then μ((λQ \Q)∩Qs)| <
βμ(Qs) ≤ βμ(Q)+βμ((λQ \Q)∩Qs). Conclude that μ(λQ) ≤ cn

β
1−β μ(Q) and

from this derive an estimate for μ(3Q).
]

9.3.3. Prove that a weight w is in Ap if and only if both w and w− 1
p−1 are in A∞.

[

Hint: You may want to use the result of Exercise 9.2.2.
]

9.3.4. (Stein [291] ) Prove that if P(x) is a polynomial of degree k in Rn, then
log |P(x)| is in BMO with norm depending only on k and n and not on the coef-
ficients of the polynomial.
[

Hint: Use that all norms on the finite-dimensional space of polynomials of degree
at most k are equivalent to show that |P(x)| satisfies a reverse Hölder inequality.
Therefore, |P(x)| is an A∞ weight and thus Exercise 9.2.3(c) is applicable.

]

9.3.5. Show that the product of two A1 weights may not be an A∞ weight.

9.3.6. Let g be in Lp(w) for some 1 ≤ p ≤ ∞ and w ∈ Ap. Prove that g ∈ L1
loc(R

n).
[

Hint: Let B be a ball. In the case p < ∞, write
∫

B |g|dx =
∫

B(|g|w− 1
p )w

1
p dx and

apply Hölder’s inequality. In the case p = ∞, use that w ∈ Ap0 for some p0 < ∞.
]
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9.3.7. (Pérez [262] ) Show that a weight w lies in A∞ if and only if there exist
γ,C > 0 such that for all cubes Q we have

w
({

x ∈ Q : w(x) > λ
})

≤Cλ
∣

∣

{

x ∈ Q : w(x) > γλ
}∣

∣

for all λ > AvgQ w.
[

Hint: The displayed condition easily implies that

1
|Q|

∫

Q
w1+ε

k dx ≤
(w(Q)

|Q|

)ε+1
+

C′δ
γ1+ε

1
|Q|

∫

Q
w1+ε

k dx ,

where k > 0, wk = min(w,k) and δ = ε/(1+ ε). Take ε > 0 small enough to obtain
the reverse Hölder condition (c ) in Theorem 9.3.3 for wk. Let k → ∞ to obtain the
same conclusion for w. Conversely, find constants γ,δ ∈ (0,1) as in condition (a) of
Theorem 9.3.3 and for λ > AvgQ w write the set {w > λ}∩Q as a union of maximal
dyadic cubes Q j such that λ < AvgQj

w ≤ 2nλ for all j. Then w(Q j) ≤ 2nλ |Q j| ≤
2nλ
1−δ |Q j ∩{w > γλ}| and the required conclusion follows by summing on j.

]

9.4 Weighted Norm Inequalities for Singular Integrals

We now address a topic of great interest in the theory of singular integrals, their
boundedness properties on weighted Lp spaces. It turns out that a certain amount of
regularity must be imposed on the kernels of these operators to obtain the aforemen-
tioned weighted estimates.

9.4.1 A Review of Singular Integrals

We begin by recalling some definitions from Chapter 8.

Definition 9.4.1. Let 0 < δ ,A < ∞. A function K(x,y) defined for x,y ∈ Rn with
x �= y is called a standard kernel (with constants δ and A) if

|K(x,y)| ≤ A
|x− y|n , x �= y, (9.4.1)

and whenever |x− x′| ≤ 1
2 max

(

|x− y|, |x′ − y|
)

we have

|K(x,y)−K(x′,y)| ≤ A|x− x′|δ
(|x− y|+ |x′ − y|)n+δ (9.4.2)

and also when |y− y′| ≤ 1
2 max

(

|x− y|, |x− y′|
)

we have
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|K(x,y)−K(x,y′)| ≤ A|y− y′|δ
(|x− y|+ |x− y′|)n+δ . (9.4.3)

The class of all kernels that satisfy (9.4.1), (9.4.2), and (9.4.3) are denoted by
SK(δ ,A).

Definition 9.4.2. Let 0 < δ ,A <∞ and K in SK(δ ,A). A Calderón–Zygmund opera-
tor associated with K is a linear operator T defined on S (Rn) that admits a bounded
extension on L2(Rn),

∥

∥T ( f )
∥

∥

L2 ≤ B
∥

∥ f
∥

∥

L2 , (9.4.4)

and that satisfies
T ( f )(x) =

∫

Rn
K(x,y) f (y)dy (9.4.5)

for all f ∈ C ∞0 and x not in the support of f . The class of all Calderón–Zygmund
operators associated with kernels in SK(δ ,A) that are bounded on L2 with norm
at most B is denoted by CZO(δ ,A,B). Given a Calderón–Zygmund operator T in
CZO(δ ,A,B), we define the truncated operator T (ε) as

T (ε)( f )(x) =
∫

|x−y|>ε
K(x,y) f (y)dy

and the maximal operator associated with T as follows:

T (∗)( f )(x) = sup
ε>0

∣

∣T (ε)( f )(x)
∣

∣ .

We note that if T is in CZO(δ ,A,B), then T (ε) f and T (∗)( f ) is well defined for
all f in

⋃

1≤p<∞Lp(Rn). It is also well defined whenever f is locally integrable and
satisfies

∫

|x−y|≥ε | f (y)| |x− y|−ndy < ∞ for all x ∈ Rn and ε > 0.

9.4.2 A Good Lambda Estimate for Singular Integrals

The following theorem is the main result of this section.

Theorem 9.4.3. Let w ∈ A∞ and T in CZO(δ ,A,B). Then there exist positive con-
stants C0 = C0(n, [w]A∞), ε0 = ε0(n, [w]A∞), and γ0 = γ0(n,δ ,A) such that for all
0 < γ < γ0 we have

w
(

{T (∗)( f ) > 3λ}∩{M( f ) ≤ γλ}
)

≤C0γε0(A+B)ε0w
(

{T (∗)( f ) > λ}
)

, (9.4.6)

for all locally integrable functions f for which
∫

|x−y|≥ε | f (y)| |x−y|−ndy <∞ for all
x ∈ Rn and ε > 0. Here M denotes the Hardy–Littlewood maximal operator.

Proof. We write the open set

Ω = {T (∗)( f ) > λ} =
⋃

j

Q j ,
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where Q j are the Whitney cubes of Proposition 7.3.4. We set

Q∗
j = 10

√
nQ j ,

Q∗∗
j = 10

√
nQ∗

j ,

where aQ denotes the cube with the same center as Q whose side length is a�(Q),
where �(Q) is the side length of Q. We note that in view of Proposition 7.3.4, the
distance from Q j toΩ c is at most 4

√
n�(Q j). But the distance from Q j to the bound-

ary of Q∗
j is (5

√
n− 1

2 )�(Q j), which is bigger than 4
√

n�(Q j). Therefore, Q∗
j must

meet Ω c and for every cube Q j we fix a point y j ∈Ω c ∩Q∗
j . See Figure 9.1.

Qj

Qj

Q
j

**

* y
j

.

..
.

x
zj

t

c

(50 n - 5   n ) l(Q )j 

(5   n -    ) l(Q )j
1
2

Ω Ω

Fig. 9.1 A picture of the proof.

We also fix f in
⋃

1≤p<∞Lp(Rn), and for each j we write

f = f j
0 + f j

∞ ,

where f j
0 is the part of f near Q j and f j

∞ is the part of f away from Q j defined as
follows:

f j
0 = f χQ∗∗

j
,

f j
∞ = f χ(Q∗∗

j )c .
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We now claim that the following estimate is true:
∣

∣Q j ∩{T (∗)( f ) > 3λ}∩{M( f )≤ γλ}
∣

∣≤Cn γ (A + B)
∣

∣Q j
∣

∣ . (9.4.7)

Once the validity of (9.4.7) is established, we apply Theorem 9.3.3 part (d) to obtain
constants ε0,C2 > 0 (which depend on [w]A∞ and the dimension n) such that

w
(

Q j ∩{T (∗)( f ) > 3λ}∩{M( f ) ≤ γλ}
)

≤C2 (Cn)ε0 γε0 (A + B)ε0 w(Q j) .

Then a simple summation on j gives (9.4.6) with C0 = C2(Cn)ε0 , and recall that C2

and ε0 depend on n and [w]A∞ .
In proving estimate (9.4.7), we may assume that for each cube Q j there exists a

z j ∈ Q j such that M( f )(z j) ≤ γ λ ; otherwise, the set on the left in (9.4.7) is empty.
We invoke Theorem 8.2.3, which states that T (∗) maps L1(Rn) to L1,∞(Rn) with

norm at most C(n)(A + B). We have the estimate

∣

∣Q j ∩{T (∗)( f ) > 3λ}∩{M( f ) ≤ γλ}
∣

∣≤ Iλ0 + Iλ∞ , (9.4.8)

where

Iλ0 =
∣

∣Q j ∩{T (∗)( f j
0 ) > λ}∩{M( f ) ≤ γλ}

∣

∣ ,

Iλ∞ =
∣

∣Q j ∩{T (∗)( f j
∞) > 2λ}∩{M( f )≤ γλ}

∣

∣ .

To control Iλ0 we note that f j
0 is in L1(Rn) and we argue as follows:

Iλ0 ≤
∣

∣{T (∗)( f j
0 ) > λ}

∣

∣

≤
∥

∥T (∗)∥
∥

L1→L1,∞

λ

∫

Rn
| f j

0 (x)|dx

≤ C(n)(A + B)
|Q∗∗

j |
λ

1
|Q∗∗

j |

∫

Q∗∗
j

| f (x)|dx

≤ C(n)(A + B)
|Q∗∗

j |
λ

Mc( f )(z j)

≤ ˜C(n)(A + B)
|Q∗∗

j |
λ

M( f )(z j)

≤ ˜C(n)(A + B)
|Q∗∗

j |
λ
λ γ

= Cn (A + B)γ |Q j| .

(9.4.9)

Next we claim that Iλ∞ = 0 if we take γ sufficiently small. We first show that for all
x ∈ Q j we have

sup
ε>0

∣

∣T (ε)( f j
∞)(x)−T (ε)( f j

∞)(y j)
∣

∣≤C(1)
n,δ AM( f )(z j) . (9.4.10)
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Indeed, let us fix an ε > 0. We have

∣

∣T (ε)( f j
∞)(x)−T (ε)( f j

∞)(y j)
∣

∣ =
∣

∣

∣

∣

∫

|t−x|>ε

K(x,t) f j
∞(t)dt −

∫

|t−y j |>ε

K(y j, t) f j
∞(t)dt

∣

∣

∣

∣

≤ L1 + L2 + L3 ,

where

L1 =
∣

∣

∣

∣

∫

|t−y j |>ε

[

K(x,t)−K(y j,t)
]

f j
∞(t)dt

∣

∣

∣

∣

,

L2 =
∣

∣

∣

∣

∫

|t−x|>ε
|t−y j |≤ε

K(x,t) f j
∞(t)dt

∣

∣

∣

∣

,

L3 =
∣

∣

∣

∣

∫

|t−x|≤ε
|t−y j |>ε

K(x,t) f j
∞(t)dt

∣

∣

∣

∣

,

in view of identity (4.4.6).
We now make a couple of observations. For t /∈ Q∗∗

j , x,z j ∈ Q j, and y j ∈ Q∗
j we

have

3
4
≤ |t − x|

|t − y j|
≤ 5

4
,

48
49

≤ |t − x|
|t − z j|

≤ 50
49

. (9.4.11)

Indeed,
|t − y j| ≥ (50n−5

√
n)�(Q j) ≥ 44n�(Q j)

and

|x− y j| ≤
1
2

√
n�(Q j)+

√
n10

√
n�(Q j) ≤ 11n�(Q j) ≤

1
4
|t − y j| .

Using this estimate and the inequalities

3
4
|t − y j| ≤ |t − y j|− |x− y j| ≤ |t − x| ≤ |t − y j|+ |x− y j| ≤

5
4
|t − y j| ,

we obtain the first estimate in (9.4.11). Likewise, we have

|x− z j| ≤
√

n�(Q j) ≤ n�(Q j)

and
|t − z j| ≥ (50n− 1

2 )�(Q j) ≥ 49n�(Q j) ,

and these give

48
49

|t − z j| ≤ |t − z j|− |x− z j| ≤ |t − x| ≤ |t − z j|+ |x− z j| ≤
50
49

|t − z j| ,
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yielding the second estimate in (9.4.11).
Since |x− y j| ≤ 1

2 |t − y j| ≤ 1
2 max

(

|t − x|, |t − y j|
)

, we have

|K(x, t)−K(y j,t)| ≤
A|x− y j|δ

(|t − x|+ |t− y j|)n+δ ≤C′
n,δA

�(Q j)δ

|t − z j|n+δ ;

hence, we obtain

L1 ≤
∫

|t−z j |≥49n�(Qj)

C′
n,δA

�(Q j)δ

|t − z j|n+δ | f (t)|dt ≤C′′
n,δAM( f )(z j)

using Theorem 2.1.10. Using (9.4.11) we deduce

L2 ≤
∫

|t−z j |≤ 5
4 ·

49
48 ε

A
|x− t|n χ|t−x|≥ε | f j

∞(t)|dt ≤C′
nAM( f )(z j) .

Again using (9.4.11), we obtain

L3 ≤
∫

|t−z j |≤ 49
48 ε

A
|x− t|n χ|t−x|≥ 3

4 ε
| f j
∞(t)|dt ≤C′′

n AM( f )(z j) .

This proves (9.4.10) with constant C(1)
n,δ = C′′

n,δ +C′
n +C′′

n .
Having established (9.4.10), we next claim that

sup
ε>0

∣

∣T (ε)( f j
∞)(y j)

∣

∣≤ T (∗)( f )(y j)+C(2)
n AM( f )(z j) . (9.4.12)

To prove (9.4.12) we fix a cube Q j and ε > 0. We let R j be the smallest number such
that

Q∗∗
j ⊆ B(y j,R j) .

See Figure 9.2. We consider the following two cases.

Case (1): ε ≥ R j. Since Q∗∗
j ⊆ B(y j,ε), we have B(y j,ε)c ⊆ (Q∗∗

j )c and therefore

T (ε)( f j
∞)(y j) = T (ε)( f )(y j) ,

so (9.4.12) holds easily in this case.

Case (2): 0 < ε < R j. Note that if t ∈ (Q∗∗
j )c, then |t − y j| ≥ 40n�(Q j). On the

other hand, R j ≤ diam(Q∗∗
j ) = 100n

3
2 �(Q j). This implies that

R j ≤ 5
√

n
2 |t − y j| , when t ∈ (Q∗∗

j )c .
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Qj

Qj

Qj

**

* yj.

Rj

Fig. 9.2 The ball B(y j ,R j).

Notice also that in this case we have B(y j,R j)c ⊆ (Q∗∗
j )c, hence

T (R j)( f j
∞)(y j) = T (R j)( f )(y j) .

Therefore, we have
∣

∣T (ε)( f j
∞)(y j)

∣

∣ ≤
∣

∣T (ε)( f j
∞)(y j)−T (R j)( f j

∞)(y j)
∣

∣+
∣

∣T (R j)( f )(y j)
∣

∣

≤
∫

ε≤|y j−t|≤R j

|K(y j,t)| | f j
∞(t)|dt + T (∗)( f )(y j)

≤
∫

2
5
√

n
R j≤|y j−t|≤R j

|K(y j,t)|| f j
∞(t)|dt + T (∗)( f )(y j)

≤
A( 2

5
√

n )−n

Rn
j

∫

|z j−t|≤ 5
4 ·

49
48 R j

| f (t)|dt + T (∗)( f )(y j)

≤ C(2)
n AM( f )(z j)+ T (∗)( f )(y j) ,

where in the penultimate estimate we used (9.4.11). The proof of (9.4.12) follows

with the required bound C(2)
n A.

Combining (9.4.10) and (9.4.12), we obtain
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T (∗)( f j
∞)(x) ≤ T (∗)( f )(y j)+

(

C(1)
n,δ +C(2)

n
)

AM( f )(z j) .

Recalling that y j /∈Ω and that M( f )(z j) ≤ γλ , we deduce

T (∗)( f j
∞)(x) ≤ λ +

(

C(1)
n,δ +C(2)

n
)

Aγλ .

Setting γ0 =
(

C(1)
n,δ +C(2)

n
)−1

A−1, for 0 < γ < γ0, we have that the set

Q j ∩{T (∗)( f j
∞) > 2λ}∩{M( f ) ≤ γλ}

is empty. This shows that the quantity Iγ∞ vanishes if γ is smaller than γ0. Returning
to (9.4.8) and using the estimate (9.4.9) proved earlier, we conclude the proof of
(9.4.7), which, as indicated earlier, implies the theorem. �

Remark 9.4.4. We observe that for any δ > 0, estimate (9.4.6) also holds for the
operator

T (∗)
δ ( f )(x) = sup

ε≥δ
|T (ε)( f )(x)|

with the same constant (which is independent of δ ).

To see the validity of (9.4.6) for T (∗)
δ , it suffices to prove

∣

∣T (∗)
δ ( f j

∞)(y j)
∣

∣≤ T (∗)
δ ( f )(y j)+C(2)

n AM( f )(z j) , (9.4.13)

which is a version of (9.4.12) with T (∗) replaced by T (∗)
δ . The following cases arise:

Case (1′): R j ≤ δ ≤ ε or δ ≤ R j ≤ ε . Here, as in Case (1) we have

|T (ε)( f j
∞)(y j)| = |T (ε)( f )(y j)| ≤ T (∗)

δ ( f )(y j) .

Case (2′): δ ≤ ε < R j. As in Case (2) we have T (R j)( f j
∞)(y j) = T (R j)( f )(y j), thus

∣

∣T (ε)( f j
∞)(y j)

∣

∣ ≤
∣

∣T (ε)( f j
∞)(y j)−T (R j)( f j

∞)(y j)
∣

∣+
∣

∣T (R j)( f )(y j)
∣

∣ .

As in the proof of Case (2), we bound the first term on the right of the last displayed

expression by C(2)
n AM( f )(z j) while the second term is at most T (∗)

δ ( f )(y j).

9.4.3 Consequences of the Good Lambda Estimate

Having obtained the important good lambda weighted estimate for singular inte-
grals, we now pass to some of its consequences. We begin with the following lemma:

Lemma 9.4.5. Let 1 ≤ p <∞, δ > 0, w ∈ Ap, x ∈ Rn, and f ∈ Lp(w). Then we have
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∫

|x−y|≥δ

| f (y)|
|x− y|n dy ≤C00([w]A∞ ,n, p,x,δ ) [w]

1
p
Ap

∥

∥ f
∥

∥

Lp(w)

for some constant C00 depending on the stated parameters. In particular, T (δ )( f )
and T (∗)( f ) are defined for f ∈ Lp(w).

Proof. For each δ > 0 and x pick a cube Q0 = Q0(x,δ ) of side length cnδ (for some
constant cn) such that Q0 � B(x,δ ). Set Q j = 2 jQ0 for j ≥ 0. We have

∫

|y−x|≥δ

| f (y)|
|x− y|n dy ≤ Cn

∞

∑
j=0

(2 jδ )−n
∫

Qj+1\Qj

| f (y)|dy

≤ Cn

∞

∑
j=1

(

1
|Q j|

∫

Qj

| f (y)|pwdy

) 1
p
(

1
|Q j|

∫

Qj

w− p′
p dy

) 1
p′

≤ Cn [w]
1
p
Ap

∞

∑
j=1

(
∫

Qj

| f (y)|pwdy

) 1
p
(

1
w(Q j)

) 1
p

≤ Cn [w]
1
p
Ap

∥

∥ f
∥

∥

Lp(w)

∞

∑
j=1

(

w(Q j)
)− 1

p .

But Theorem 9.3.3 (d) gives for some ε0 = ε0(n, [w]A∞) that

w(Q0)
w(Q j)

≤C(n, [w]A∞)
|Q0|ε0
|Q j|ε0

,

from which it follows that

w(Q j)−1 ≤C′ 2− jnε0 .

In view of this estimate, the previous series converges. Note that C′ and hence C00

depend on [w]A∞ ,n, p,x,δ .
This argument is also valid in the case p = 1 by an obvious modification. �

Theorem 9.4.6. Let T be a CZO(δ ,A,B), 1 ≤ p < ∞, and w ∈ Ap. Then there is a
constant Cp = Cp(n,δ ,A + B, [w]A∞ , [w]Ap) such that

∥

∥T (∗)( f )
∥

∥

L1,∞(w) ≤C1
∥

∥ f
∥

∥

L1(w) (9.4.14)

whenever w ∈ A1 and f ∈ L1(w); and also

∥

∥T (∗)( f )
∥

∥

Lp(w) ≤Cp
∥

∥ f
∥

∥

Lp(w) (9.4.15)

whenever w ∈ Ap and f ∈ Lp(w).

Proof. This theorem is a consequence of the estimate proved in the previous theo-
rem. For technical reasons, it is useful to fix a δ > 0 and work with the auxiliary
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maximal operator T (∗)
δ instead of T (∗). We begin by taking 1 < p <∞ and f ∈ Lp(w)

for some w ∈ Ap. We write

∥

∥T (∗)
δ ( f )

∥

∥

p
Lp(w) =

∫ ∞

0
pλ p−1w

(

{T (∗)
δ ( f ) > λ}

)

dλ

= 3p
∫ ∞

0
pλ p−1w

(

{T (∗)
δ ( f ) > 3λ}

)

dλ ,

which we control by

3p
∫ ∞

0
pλ p−1w

(

{T (∗)
δ ( f ) > 3λ}∩{M( f ) ≤ γλ}

)

dλ

+ 3p
∫ ∞

0
pλ p−1w

(

{M( f ) > γλ}
)

dλ .

Using Theorem 9.4.3 (or rather Remark 9.4.4), we estimate the last terms by

3pC0γε0(A+B)ε0
∫ ∞

0
pλ p−1w

(

{T (∗)
δ ( f ) > λ}

)

dλ

+
3p

γ p

∫ ∞

0
pλ p−1w

(

{M( f ) > λ}
)

dλ ,

which is equal to

3pC0γε0(A+B)ε0
∥

∥T (∗)
δ ( f )

∥

∥

p
Lp(w) +

3p

γ p

∥

∥M( f )
∥

∥

p
Lp(w) .

Taking γ = min
( 1

2γ0,
1
2 (2C03p)−

1
ε0 (A+B)−1

)

, we conclude that

∥

∥T (∗)
δ ( f )

∥

∥

p
Lp(w)

≤ 1
2

∥

∥T (∗)
δ ( f )

∥

∥

p
Lp(w) + ˜Cp(n,δ ,A+B, [w]A∞)

∥

∥M( f )
∥

∥

p
Lp(w) .

(9.4.16)

We now prove a similar estimate when p = 1. For f ∈ L1(w) and w ∈ A1 we have

3λw
(

{T (∗)
δ ( f ) > 3λ}

)

≤ 3λw
(

{T (∗)
δ ( f ) > 3λ}∩{M( f ) ≤ γλ

)

+ 3λw
(

{M( f ) > γλ}
)

,

and this expression is controlled by

3λC0γε0(A+B)ε0w
(

{T (∗)
δ ( f ) > λ}

)

+
3
γ
∥

∥M( f )
∥

∥

L1,∞(w) .

It follows that
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∥

∥T (∗)
δ ( f )

∥

∥

L1,∞(w)

≤ 1
2

∥

∥T (∗)
δ ( f )

∥

∥

L1,∞(w)+
˜C1(n,δ ,A+B, [w]A∞)

∥

∥M( f )
∥

∥

L1,∞(w).
(9.4.17)

Estimate (9.4.15) would follow from (9.4.16) if we knew that
∥

∥T (∗)
δ ( f )

∥

∥

Lp(w) < ∞
whenever 1 < p < ∞, w ∈ Ap and f ∈ Lp(w), while (9.4.14) would follow from

(9.4.17) if we had
∥

∥T (∗)
δ ( f )

∥

∥

L1,∞(w) < ∞ whenever w ∈ A1 and f ∈ L1(w). Since we
do not know that these quantities are finite, a certain amount of work is needed.

To deal with this problem we momentarily restrict attention to a special class
of functions on Rn, the class of bounded functions with compact support. Note
that in view of Exercise 9.4.1, such functions are dense in Lp(w) when w ∈ A∞
and 1 ≤ p < ∞. Let h be a bounded function with compact support on Rn. Then

T (∗)
δ (h) ≤C1δ−n

∥

∥h
∥

∥

L1 and T (∗)
δ (h)(x) ≤C2(h)|x|−n for x away from the support of

h. It follows that
T (∗)
δ (h)(x) ≤C3(h,δ )(1 + |x|)−n

for all x ∈ Rn. Furthermore, if h is nonzero, then

M(h)(x) ≥ C4(h)
(1 + |x|)n ,

and therefore for w ∈ A1,

∥

∥T (∗)
δ (h)

∥

∥

L1,∞(wdx) ≤C5(h,δ )
∥

∥M(h)
∥

∥

L1,∞(wdx) < ∞ ,

while for 1 < p < ∞ and w ∈ Ap,

∫

Rn
(T (∗)
δ (h)(x))pw(x)dx ≤C5(h, p,δ )

∫

Rn
M(h)(x)pw(x)dx < ∞

in view of Theorem 9.1.9. Using these facts, (9.4.16), (9.4.17), and Theorem 9.1.9
once more, we conclude that for all δ > 0 and 1 < p < ∞ we have

∥

∥T (∗)
δ (h)

∥

∥

p
Lp(w) ≤ 2 ˜Cp

∥

∥M(h)
∥

∥

p
Lp(w) ≤ Cp

p

∥

∥h
∥

∥

p
Lp(w) ,

∥

∥T (∗)
δ (h)

∥

∥

L1,∞(w) ≤ 2 ˜C1
∥

∥M(h)
∥

∥

L1,∞(w) ≤ C1
∥

∥h
∥

∥

L1(w) ,
(9.4.18)

whenever h a bounded function with compact support. The constants ˜Cp and ˜C1

depend only on the parameters A + B, n, δ , and [w]A∞ , while Cp also depends on
[w]Ap , 1 ≤ p < ∞.

We now extend estimates (9.4.14) and (9.4.15) to functions in Lp(Rn,wdx).
Given 1 ≤ p < ∞, w ∈ Ap, and f ∈ Lp(w), let

fN(x) = f (x)χ| f |≤Nχ|x|≤N .
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Then fN is a bounded function with compact support that converges to f in Lp(w)
(i.e.,

∥

∥ fN − f
∥

∥

Lp(w) → 0 as N → ∞) by the Lebesgue dominated convergence theo-

rem. Also | fN | ≤ | f | for all N. Sublinearity and Lemma 9.4.5 give for all x ∈ Rn,

|T (∗)
δ ( fN)(x)−T (∗)

δ ( f )(x)| ≤ T (∗)
δ ( f − fN)(x)

≤ AC00([w]A∞ ,n, p,x,δ ) [w]
1
p
Ap

∥

∥ fN − f
∥

∥

Lp(w) ,

and this converges to zero as N → ∞. Therefore T (∗)
δ ( f ) = limN→∞ T (∗)

δ ( fN) point-
wise, and Fatou’s lemma for weak type spaces [Exercise 1.1.12(d)]gives for w ∈ A1

and f ∈ L1(w),

∥

∥T (∗)
δ ( f )

∥

∥

L1,∞(w) =
∥

∥ liminf
N→∞

T (∗)
δ ( fN)

∥

∥

L1,∞(w)

≤ liminf
N→∞

∥

∥T (∗)
δ ( fN)

∥

∥

L1,∞(w)

≤ C1 liminf
N→∞

∥

∥M( fN)
∥

∥

L1,∞(w)

≤ C1
∥

∥M( f )
∥

∥

L1,∞(w) ,

since | fN | ≤ | f | for all N. An analogous argument gives the estimate

∥

∥T (∗)
δ ( f )

∥

∥

Lp(w) ≤Cp
∥

∥ f
∥

∥

Lp(w)

for w ∈ Ap and f ∈ Lp(w) when 1 < p < ∞.
It remains to prove (9.4.15) and (9.4.14) for T (∗). But this is also an easy con-

sequence of Fatou’s lemma, since the constants Cp and C1 are independent of δ
and

lim
δ→0

T (∗)
δ ( f ) = T (∗)( f )

for all f ∈ Lp(w). �

Corollary 9.4.7. Let T be a CZO(δ ,A,B). Then for all 1 ≤ p < ∞ and for every
weight w ∈ Ap there is a constant Cp = Cp(n, [w]A∞ ,δ ,A + B) such that

∥

∥T ( f )
∥

∥

L1,∞(w) ≤C1
∥

∥ f
∥

∥

L1(w)

and
∥

∥T ( f )
∥

∥

Lp(w) ≤Cp
∥

∥ f
∥

∥

Lp(w)

for all smooth functions f with compact support.

Proof. We use the fact that any element of CZO(δ ,A,B) is a weak limit of a se-
quence of its truncations plus a bounded function times the identity operator, that is,
T = T0 + aI, where

∥

∥a
∥

∥

L∞ ≤ Cn(A + B) (cf. Proposition 8.1.11). Then T (ε j)( f ) →
T0( f ) weakly for some sequence ε j → 0+ and we have |T0( f )| ≤T (∗)( f ). Therefore,
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|T ( f )| ≤ T (∗)( f ) +Cn(A + B)| f |, and this estimate implies the required result in
view of the previous theorem. �

9.4.4 Necessity of the Ap Condition

We have established the main theorems relating Calderón–Zygmund operators and
Ap weights, namely that such operators are bounded on Lp(w) whenever w lies in
Ap. It is natural to ask whether the Ap condition is necessary for the boundedness of
singular integrals on Lp. We end this section by indicating the necessity of the Ap

condition for the boundedness of the Riesz transforms on weighted Lp spaces.

Theorem 9.4.8. Let w be a weight in Rn and let 1 ≤ p < ∞. Suppose that each of
the Riesz transforms R j is of weak type (p, p) with respect to w. Then w must be an
Ap weight. Similarly, let w be a weight in R. If the Hilbert transform H is of weak
type (p, p) with respect to w, then w must be an Ap weight.

Proof. We prove the n-dimensional case, n ≥ 2. The one-dimensional case is essen-
tially contained in following argument, suitably adjusted.

Let Q be a cube and let f be a nonnegative function on Rn supported in Q that
satisfies AvgQ f > 0. Let Q′ be the cube that shares a corner with Q, has the same
length as Q, and satisfies x j ≥ y j for all 1 ≤ j ≤ n whenever x ∈ Q′ and y ∈ Q. Then
for x ∈ Q′ we have

∣

∣

∣

∣

n

∑
j=1

R j( f )(x)
∣

∣

∣

∣

=
Γ ( n+1

2 )

π
n+1

2

n

∑
j=1

∫

Q

x j − y j

|x− y|n+1 f (y)dy ≥
Γ ( n+1

2 )

π
n+1

2

∫

Q

f (y)
|x− y|n dy .

But if x ∈ Q′ and y ∈ Q we must have that |x− y| ≤ 2
√

n�(Q), which implies that

|x− y|−n ≥ (2
√

n)−n|Q|−1. Let Cn = Γ ( n+1
2 )(2

√
n)−nπ−

n+1
2 . It follows that for all

0 < α < Cn AvgQ f we have

Q′ ⊆
{

x ∈ Rn :
∣

∣

n

∑
j=1

R j( f )(x)
∣

∣ > α
}

.

Since the operator ∑n
j=1 R j is of weak type (p, p) with respect to w (with constant

C), we must have

w(Q′) ≤ Cp

α p

∫

Q
f (x)pw(x)dx

for all α < Cn AvgQ f , which implies that

(

Avg
Q

f
)p ≤ C−p

n Cp

w(Q′)

∫

Q
f (x)pw(x)dx . (9.4.19)

We observe that we can reverse the roles of Q and Q′ and obtain
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(

Avg
Q′

g
)p ≤ C−p

n Cp

w(Q)

∫

Q′
g(x)pw(x)dx (9.4.20)

for all g supported in Q′. In particular, taking g = χQ′ in (9.4.20) gives that w(Q) ≤
C−p

n Cpw(Q′). Using this estimate and (9.4.19), we obtain

(

Avg
Q

f
)p ≤ (C−p

n Cp)2

w(Q)

∫

Q
f (x)pw(x)dx . (9.4.21)

Using the characterization of the Ap characteristic constant in Proposition 9.1.5 (8),
it follows that [w]Ap ≤ (C−p

n Cp)2 < ∞; hence w ∈ Ap. �

Exercises

9.4.1. Show that C ∞0 is dense in Lp(w) for all w ∈ A∞.

9.4.2. (Córdoba and Fefferman [92] ) Let T be in CZO(δ ,A,B). Show that for all
ε > 0 and all 1 < p < ∞ there exists a constant Cε,p,n such that for all functions u
and f on Rn we have

∫

Rn
|T (∗)( f )|p udx ≤Cε,p

∫

Rn
| f |pM(u1+ε)

1
1+ε dx

whenever the right-hand side is finite.
[

Hint: Obtain this result as a consequence of Theorem 9.4.6.
]

9.4.3. Use the idea of the proof of Theorem 9.4.6 to prove the following result.
Suppose that for some fixed A,B > 0 the nonnegative μ-measurable functions f and
T ( f ) satisfy the distributional inequality

μ
(

{T ( f ) > α}∩{ f ≤ cα}
)

≤ Aμ
(

{T ( f ) > Bα}
)

for all α > 0. Given 0 < p <∞ and A < Bp, if
∥

∥T ( f )
∥

∥

Lp(μ) <∞, then the following
is valid:

∥

∥T ( f )
∥

∥

Lp(μ) ≤C(c, p,A,B)
∥

∥ f
∥

∥

Lp(μ) ,

for some constant C(c, p,A,B) that depends only on the indicated parameters.

9.4.4. Let f be in L1(Rn,w), where w ∈ A1. Apply the Calderón–Zygmund decom-
position to f at height α > 0 to write f = g + b as in Theorem 4.3.1. Prove that

∥

∥g
∥

∥

L1(w) ≤ [w]A1

∥

∥ f
∥

∥

L1(w) ,
∥

∥b
∥

∥

L1(w) ≤ 2[w]A1

∥

∥ f
∥

∥

L1(w) .

9.4.5. Assume that T has a kernel in SK(δ ,A) and suppose that T maps L2(w) to
L2(w) for every w ∈ A1. Prove that T maps L1(w) to L1,∞(w) for every w ∈ A1.
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[

Hint: Use Theorem 4.3.1 to write f = g + b, where b = ∑ j b j and each b j is sup-
ported in a cube Q j with center c j. To estimate T (g) use an L2(w) estimate and
Exercise 9.4.4. To estimate T (b) use the mean value property, the fact that

∫

Rn\Q∗
j

|y− c j|δ
|x− c j|n+δ w(x)dx ≤Cδ ,nM(w)(y) ≤C′

δ ,n[w]A1 w(y) ,

and Exercise 9.4.4 to obtain the required estimate.
]

9.4.6. Recall that the transpose Tt of a linear operator T is defined by

〈

T ( f ),g
〉

=
〈

f ,Tt(g)
〉

for all suitable f and g. Suppose that T is a linear operator that maps Lp(v) to itself
for some 1 < p < ∞ and some v ∈ Ap. Show that the transpose operator Tt maps
Lp′(w) to Lp′(w) with the same norm, where w = v1−p′ ∈ Ap′ .

9.4.7. Suppose that T is a linear operator that maps L2(v) to itself for all v such
that v−1 ∈ A1. Show that the transpose operator Tt of T maps L2(w) to L2(w) for all
w ∈ A1.

9.4.8. Let 1 < p < ∞. Suppose that T is a linear operator that maps Lp(v) to itself
for all v satisfying v−1 ∈ Ap. Show that the transpose operator Tt of T maps Lp′(w)
to itself for all w satisfying w−1 ∈ Ap′ .

9.4.9. Let w ∈ A∞ and assume that for some locally integrable function f we have
M( f ) ∈ Lp0(w) for some 0 < p0 < ∞. Show that for all p with p0 ≤ p < ∞ there is
a constant C(p,n, [w]A∞) such that

∥

∥Md( f )
∥

∥

Lp(w) ≤C(p,n, [w]A∞)
∥

∥M#( f )
∥

∥

Lp(w) ,

where Md is the dyadic maximal operator given in Definition 7.4.3. Conclude the
same estimate for M.
[

Hint: Let Q j be as in the proof of Theorem 7.4.4. Combine estimate (7.4.4) with
property (d) of Theorem 9.3.3,

w
(

Q j ∩
{

Md( f ) > 2λ , M#( f ) ≤ γλ
})

≤C2(2nγ)ε0 w(Q j) ,

where both C2 and ε0 depend on the dimension n and [w]A∞ . Obtain the result of
Theorem 7.4.4 in which the Lebesgue measure is replaced by w in A∞ and the quan-
tity 2nγ is replaced by C2(2nγ)ε0 . Finally, observe that Theorem 7.4.5 can be adapted
to a general weight w in A∞.

]
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9.5 Further Properties of Ap Weights

In this section we discuss other properties of Ap weights. Many of these properties
indicate certain deep connections with other branches of analysis. We focus atten-
tion on three such properties: factorization, extrapolation, and relations of weighted
inequalities to vector-valued inequalities.

9.5.1 Factorization of Weights

Recall the simple fact that if w1,w2 are A1 weights, then w = w1 w1−p
2 is an Ap weight

(Exercise 9.1.2). The factorization theorem for weights says that the converse of
this statement is true. This provides a surprising and striking representation of Ap

weights.

Theorem 9.5.1. Suppose that w is an Ap weight for some 1 < p < ∞. Then there
exist A1 weights w1 and w2 such that

w = w1 w1−p
2 .

Proof. Let us fix a p ≥ 2 and w ∈ Ap. We define an operator T as follows:

T ( f ) =
(

w− 1
p M( f p−1w

1
p )
) 1

p−1 + w
1
p M( f w− 1

p ) ,

where M is the Hardy–Littlewood maximal operator. We observe that T is well

defined and bounded on Lp(Rn). This is a consequence of the facts that w− 1
p−1

is an Ap′ weight and that M maps Lp′(w− 1
p−1 ) to itself and also Lp(w) to itself.

Thus the norm of T on Lp depends only on the Ap characteristic constant of w.
Let B(w) =

∥

∥T
∥

∥

Lp→Lp , the norm of T on Lp. Next, we observe that for f ,g ≥ 0 in
Lp(Rn) and λ ≥ 0 we have

T ( f + g)≤ T ( f )+ T (g) , T (λ f ) = λT ( f ) . (9.5.1)

To see the first assertion, we need only note that for every ball B, the operator

f →
(

1
|B|

∫

B
| f |p−1w

1
p dx

) 1
p−1

is sublinear as a consequence of Minkowski’s integral inequality, since p−1 ≥ 1.
We now fix an Lp function f0 with

∥

∥ f0
∥

∥

Lp = 1 and we define a function ϕ in
Lp(Rn) as the sum of the Lp convergent series

ϕ =
∞

∑
j=1

(2B(w))− jT j( f0) . (9.5.2)
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We define
w1 = w

1
pϕ p−1 , w2 = w− 1

pϕ ,

so that w = w1 w1−p
2 . It remains to show that w1,w2 are A1 weights. Applying T and

using (9.5.1), we obtain

T (ϕ) ≤ 2B(w)
∞

∑
j=1

(2B(w))− j−1T j+1( f0)

= 2B(w)
(

ϕ− T ( f0)
2B(w)

)

≤ 2B(w)ϕ ,

that is,
(

w− 1
p M(ϕ p−1w

1
p )
) 1

p−1 + w
1
p M(ϕw− 1

p ) ≤ 2B(w)ϕ .

Using that ϕ = (w− 1
p w1)

1
p−1 = w

1
p w2, we obtain

M(w1) ≤ (2B(w))p−1w1 and M(w2) ≤ 2B(w)w2 .

These show that w1 and w2 are A1 weights whose characteristic constants depend
on [w]Ap (and also the dimension n and p). This concludes the case p ≥ 2.

We now turn to the case p < 2. Given a weight w ∈ Ap for 1 < p < 2, we consider
the weight w−1/(p−1), which is in Ap′ . Since p′ > 2, using the result we obtained, we

write w−1/(p−1) = v1v1−p′

2 , where v1, v2 are A1 weights. It follows that w = v1−p
1 v2,

and this completes the asserted factorization of Ap weights. �

Combining the result just obtained with Theorem 9.2.7, we obtain the following
description of Ap weights.

Corollary 9.5.2. Let w be an Ap weight for some 1 < p <∞. Then there exist locally
integrable functions f1 and f2 with

M( f1)+ M( f2) < ∞ a.e.,

constants 0 < ε1,ε2 < 1, and a nonnegative function k satisfying k,k−1 ∈ L∞ such
that

w = k M( f1)ε1 M( f2)ε2(1−p) . (9.5.3)

9.5.2 Extrapolation from Weighted Estimates on a Single Lp0

Our next topic concerns a striking application of weighted norm inequalities. This
says that an estimate on Lp0(v) for a single p0 and all Ap0 weights v implies a similar
Lp estimate for all p in (1,∞). This property is referred to as extrapolation.
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Surprisingly the operator T is not needed to be linear or sublinear in the following
extrapolation theorem. The only condition required is that T be well defined on
⋃

1≤q<∞
⋃

w∈Aq
Lq(w). If T happens to be a linear operator, this condition can be

relaxed to T being well defined on C ∞0 (Rn).

Theorem 9.5.3. Suppose that T is defined on
⋃

1≤q<∞
⋃

w∈Aq
Lq(w) and takes values

in the space of measurable complex-valued functions. Let 1 ≤ p0 < ∞ and suppose
that there exists a positive increasing function N on [1,∞) such that for all weights
v in Ap0 we have

∥

∥T
∥

∥

Lp0 (v)→Lp0 (v) ≤ N
(

[v]Ap0

)

. (9.5.4)

Then for any 1 < p < ∞ and for all weights w in Ap we have
∥

∥T
∥

∥

Lp(w)→Lp(w) ≤ K
(

n, p, p0, [w]Ap

)

, (9.5.5)

where

K
(

n, p, p0, [w]Ap

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2N
(

κ1(n, p, p0) [w]
p0−1
p−1

Ap

)

when p < p0,

2
p−p0

p0(p−1) N
(

κ2(n, p, p0) [w]Ap

)

when p > p0,

and κ1(n, p, p0) and κ2(n, p, p0) are constants that depend on n, p, and p0.

Proof. Let 1 < p < ∞ and w ∈ Ap. We define an operator

M′( f ) =
M( f w)

w
,

where M is the Hardy–Littlewood maximal operator. We observe that since w1−p′ is
in Ap′ , the operator M′ maps Lp′(w) to itself; indeed, we have

∥

∥M′∥
∥

Lp′ (w)→Lp′ (w) =
∥

∥M
∥

∥

Lp′ (w1−p′ )→Lp′ (w1−p′ )

≤ Cn,p[w1−p′ ]
1

p′−1

= Cn,p[w]Ap

(9.5.6)

in view of Theorem 9.1.9 and property (4) of Proposition 9.1.5.
We introduce operators M0( f ) = | f | and Mk = M ◦M ◦ · · · ◦M, where M is the

Hardy–Littlewood maximal function and the composition is taken k times. Likewise,
we introduce powers (M′)k of M′ for k ∈ Z+ ∪{0}. The following lemma provides
the main tool in the proof of Theorem 9.5.3. Its simple proof uses Theorem 9.1.9
and (9.5.6) and is omitted.

Lemma 9.5.4. (a) Let 1 < p < ∞ and w ∈ Ap. Define operators R and R′

R( f ) =
∞

∑
k=0

Mk( f )
(

2
∥

∥M
∥

∥

Lp(w)→Lp(w)

)k
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for functions f in Lp(w) and also

R′( f ) =
∞

∑
k=0

(M′)k( f )
(

2
∥

∥M′
∥

∥

Lp′ (w)→Lp′ (w)

)k

for functions f in Lp′(w). Then there exist constants C1(n, p) and C2(n, p) that de-
pend on n and p such that

| f | ≤ R( f ) , (9.5.7)
∥

∥R( f )
∥

∥

Lp(w) ≤ 2
∥

∥ f
∥

∥

Lp(w) , (9.5.8)

M(R( f )) ≤ C1(n, p) [w]
1

p−1
Ap

R( f ) , (9.5.9)

for all functions f in Lp(w) and such that

|h| ≤ R′(h) , (9.5.10)
∥

∥R′(h)
∥

∥

Lp′ (w) ≤ 2
∥

∥h
∥

∥

Lp′ (w) , (9.5.11)

M′(R′(h)) ≤ C2(n, p) [w]Ap R′(h) , (9.5.12)

for all functions h in Lp′(w).

We now proceed with the proof of the theorem. It is natural to split the proof into
the cases p < p0 and p > p0.

Case (1): p < p0. Assume momentarily that R( f )
− p0

(p0/p)′ is an Ap0 weight. Then we
have
∥

∥T ( f )
∥

∥

p
Lp(w)

=
∫

Rn
|T ( f )|pR( f )

− p
(p0/p)′ R( f )

p
(p0/p)′ wdx

≤
(
∫

Rn
|T ( f )|p0R( f )

− p0
(p0/p)′ wdx

)
p

p0
(
∫

Rn
R( f )p wdx

) 1
(p0/p)′

≤ N
(

[

R( f )
− p0

(p0/p)′
]

Ap0

)p
(
∫

Rn
| f |p0R( f )

− p0
(p0/p)′ wdx

)
p

p0
(
∫

Rn
R( f )p wdx

) 1
(p0/p)′

≤ N
(

[

R( f )
− p0

(p0/p)′
]

Ap0

)p
(
∫

Rn
R( f )p0R( f )

− p0
(p0/p)′ wdx

)
p

p0
(
∫

Rn
R( f )p wdx

) 1
(p0/p)′

= N
(

[

R( f )
− p0

(p0/p)′
]

Ap0

)p
(
∫

Rn
R( f )pwdx

)
p

p0
(
∫

Rn
R( f )p wdx

) 1
(p0/p)′

≤ N
(

[

R( f )
− p0

(p0/p)′
]

Ap0

)p(
2
∥

∥ f
∥

∥

Lp(w)

)p
,
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where we used Hölder’s inequality with exponents p0/p and (p0/p)′, the hypothesis
of the theorem, (9.5.7), and (9.5.8). Thus, we have the estimate

∥

∥T ( f )
∥

∥

Lp(w) ≤ 2N
(

[

R( f )
− p0

(p0/p)′
]

Ap0

)

∥

∥ f
∥

∥

Lp(w) (9.5.13)

and it remains to obtain a bound for the Ap0 characteristic constant of R( f )
− p0

(p0/p)′ .
In view of (9.5.9), the function R( f ) is an A1 weight with characteristic constant at

most a constant multiple of [w]
1

p−1
Ap

. Consequently, there is a constant C′
1 such that

R( f )−1 ≤C′
1 [w]

1
p−1
Ap

(

1
|Q|

∫

Q
R( f )dx

)−1

for any cube Q in Rn. Thus we have

1
|Q|

∫

Q
R( f )

− p0
(p0/p)′ wdx

≤
(

C′
1 [w]

1
p−1
Ap

)

p0
(p0/p)′

(

1
|Q|

∫

Q
R( f )dx

)− p0
(p0/p)′

(

1
|Q|

∫

Q
wdx

)

.

(9.5.14)

Next we have
(

1
|Q|

∫

Q

(

R( f )
− p0

(p0/p)′ w
)1−p′0

dx

)p0−1

=
(

1
|Q|

∫

Q
R( f )

p0(p′0−1)
(p0/p)′ w1−p′0 dx

)p0−1

≤
(

1
|Q|

∫

Q
R( f )dx

)
p0

(p0/p)′
(

1
|Q|

∫

Q
w1−p′

)p−1

,

(9.5.15)

where we applied Hölder’s inequality with exponents

(

p′ −1
p′0 −1

)′
and

p′ −1
p′0 −1

,

and we used that

p0(p′0 −1)
(p0/p)′

(

p′ −1
p′0 −1

)′
= 1 and

p0 −1
(

p′−1
p′0−1

)′ =
p0

(p0/p)′
.

Multiplying (9.5.14) by (9.5.15) and taking the supremum over all cubes Q in Rn

we deduce that

[

R( f )
− p0

(p0/p)′
]

Ap0

≤
(

C′
1 [w]

1
p−1
Ap

)

p0
(p0/p)′ [w]Ap = κ1(n, p, p0) [w]

p0−1
p−1

Ap
.
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Combining this estimate with (9.5.13) and using the fact that N is an increasing
function, we obtain the validity of (9.5.5) in the case p < p0.

Case (2): p > p0. In this case we set r = p/p0 > 1. Then we have

∥

∥T ( f )
∥

∥

p
Lp(w) =

∥

∥ |T ( f )|p0
∥

∥

r
Lr(w) =

(
∫

Rn
|T ( f )|p0hwdx

)r

(9.5.16)

for some nonnegative function h with Lr′(w) norm equal to 1. We define a function

H =
[

R′(h
r′
p′
)]

p′
r′ .

Obviously, we have 0 ≤ h ≤ H and thus
∫

Rn
|T ( f )|p0hwdx ≤

∫

Rn
|T ( f )|p0 H wdx

≤ N
(

[H w]Ap0

)p0
∥

∥ f
∥

∥

p0
Lp0 (H w)

≤ N
(

[H w]Ap0

)p0
∥

∥ | f |p0
∥

∥

Lr(w)

∥

∥H
∥

∥

Lr′ (w)

≤ 2
p′
r′ N

(

[H w]Ap0

)p0
∥

∥ f
∥

∥

p0
Lp(w) ,

(9.5.17)

noting that

∥

∥H
∥

∥

r′

Lr′ (w) =
∫

Rn
R′(hr′/p′)p′ wdx ≤ 2p′

∫

Rn
hr′ wdx = 2p′ ,

which is valid in view of (9.5.11). Moreover, this argument is based on the hypoth-
esis of the theorem and requires that H w be an Ap0 weight. To see this, we observe
that condition (9.5.12) implies that Hr′/p′w is an A1 weight with characteristic con-
stant at most a multiple of [w]A1 . Thus, there is a constant C′

2 that depends only on n
and p such that

1
|Q|

∫

Q
H

r′
p′ wdx ≤C′

2 [w]ApH
r′
p′ w

for all cubes Q in Rn. From this it follows that

(H w)−1 ≤ κ2(n, p, p0) [w]
p′
r′
Ap

(

1
|Q|

∫

Q
H

r′
p′ wdx

)− p′
r′

w
p′
r′ −1 ,

where we set κ2(n, p, p0) = (C′
2)

p′/r′ . We raise the preceding displayed expression
to the power p′0 − 1, we average over the cube Q, and then we raise to the power
p0 −1. We deduce the estimate
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(

1
|Q|

∫

Q
(H w)1−p′0 dx

)p0−1

≤ κ2(n, p, p0) [w]
p′
r′
Ap

(

1
|Q|

∫

Q
H

r′
p′ wdx

)− p′
r′
(

1
|Q|

∫

Q
w1−p′ dx

)p0−1

,

(9.5.18)

where we use the fact that
(

p′

r′
−1

)

(

p′0 −1
)

= 1− p′ .

Note that r′/p′ ≥ 1, since p0 ≥ 1. Using Hölder’s inequality with exponents r′/p′

and (r′/p′)−1 we obtain that

1
|Q|

∫

Q
H wdx ≤

(

1
|Q|

∫

Q
H

r′
p′ wdx

)
p′
r′
(

1
|Q|

∫

Q
wdx

)
p0−1
p−1

, (9.5.19)

where we used that
1

( r′
p′ )

′
=

p0 −1
p−1

.

Multiplying (9.5.18) by (9.5.19), we deduce the estimate

[

H w
]

Ap0
≤ κ2(n, p, p0) [w]

p′
r′
Ap

[w]
p0−1
p−1

Ap
= κ2(n, p, p0) [w]Ap .

Inserting this estimate in (9.5.17) we obtain

∫

Rn
|T ( f )|p0 hwdx ≤ 2

p′
r′ N

(

κ2(n, p, p0) [w]Ap

)p0
∥

∥ f
∥

∥

p0
Lp(w) ,

and combining this with (9.5.16) we conclude that

∥

∥T ( f )
∥

∥

p
Lp(w) ≤ 2

p′r
r′ N

(

κ2(n, p, p0) [w]Ap

)p0r∥
∥ f
∥

∥

p0r
Lp(w) .

This proves the required estimate (9.5.5) in the case p > p0. �

There is a version of Theorem 9.5.3 in which the initial strong type assumption
is replaced by a weak type estimate.

Theorem 9.5.5. Suppose that T is a well defined operator on
⋃

1<q<∞
⋃

w∈Aq
Lq(w)

that takes values in the space of measurable complex-valued functions. Fix 1 ≤
p0 <∞ and suppose that there is an increasing function N on [1,∞) such that for all
weights v in Ap0 we have

∥

∥T
∥

∥

Lp0 (v)→Lp0,∞(v) ≤ N([v]Ap0
) . (9.5.20)

Then for any 1 < p < ∞ and for all weights w in Ap we have
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∥

∥T
∥

∥

Lp(w)→Lp,∞(w) ≤ K
(

n, p, p0, [w]Ap

)

, (9.5.21)

where K
(

n, p, p0, [w]Ap

)

is as in Theorem 9.5.3.

Proof. For every fixed λ > 0 we define

Tλ ( f ) = λχ|T( f )|>λ .

The operator Tλ is not linear but is well defined on
⋃

1<q<∞
⋃

w∈Aq
Lq(w), since T is

well defined on this union. We show that Tλ maps Lp0(v) to Lp0(v) for every v∈Ap0 .
Indeed, we have

(
∫

Rn
|Tλ ( f )|p0 vdx

) 1
p0

=
(
∫

Rn
λ p0χ|T ( f )|>λ vdx

) 1
p0

=
(

λ p0v
(

{|T ( f )| > λ}
)

) 1
p0

≤ N([v]Ap0
)
∥

∥ f
∥

∥

Lp0 (v)

using the hypothesis on T . Applying Theorem 9.5.3, we obtain that Tλ maps Lp(w)
to itself for all 1 < p <∞ and all w∈ Ap with a constant independent of λ . Precisely,
for any w ∈ Ap and any f ∈ Lp(w) we have

∥

∥Tλ ( f )
∥

∥

Lp(w) ≤ K
(

n, p, p0, [w]Ap

)∥

∥ f
∥

∥

Lp(w) .

Since
∥

∥T ( f )
∥

∥

Lp,∞(w) = sup
λ>0

∥

∥Tλ ( f )
∥

∥

Lp(w) ,

it follows that T maps Lp(w) to Lp,∞(w) with the asserted norm. �

Assuming that the operator T in the preceding theorem is sublinear (or quasi-
sublinear), we obtain the following result that contains a stronger conclusion.

Corollary 9.5.6. Suppose that T is a sublinear operator on
⋃

1<q<∞
⋃

w∈Aq
Lq(w)

that takes values in the space of measurable complex-valued functions. Fix 1 ≤
p0 <∞ and suppose that there is an increasing function N on [1,∞) such that for all
weights v in Ap0 we have

∥

∥T
∥

∥

Lp0 (v)→Lp0,∞(v) ≤ N([v]Ap0
) . (9.5.22)

Then for any 1 < p <∞ and any weight w in Ap there is a constant K′(n, p, p0, [w]Ap)
such that

∥

∥T ( f )
∥

∥

Lp(w) ≤ K′(n, p, p0, [w]Ap)
∥

∥ f
∥

∥

Lp(w) .

Proof. The proof follows from Theorem 9.5.5 and the Marcinkiewicz interpolation
theorem. �
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We end this subsection by observing that the conclusion of the extrapolation The-
orem 9.5.3 can be strengthened to yield vector-valued estimates. This strengthening
may be achieved by a simple adaptation of the proof discussed.

Corollary 9.5.7. Suppose that T is defined on
⋃

1≤q<∞
⋃

w∈Aq
Lq(w) and takes val-

ues in the space of all measurable complex-valued functions. Fix 1 ≤ p0 < ∞ and
suppose that there is an increasing function N on [1,∞) such that for all weights v
in Ap0 we have

∥

∥T
∥

∥

Lp0 (v)→Lp0 (v) ≤ N
(

[v]Ap0

)

.

Then for every 1 < p < ∞ and every weight w ∈ Ap we have

∥

∥

∥

(

∑
j
|T ( f j)|p0

) 1
p0
∥

∥

∥

Lp(w)
≤ K(n, p, p0, [w]Ap)

∥

∥

∥

(

∑
j
| f j|p0

) 1
p0
∥

∥

∥

Lp(w)

for all sequences of functions f j in Lp(w), where K
(

n, p, p0, [w]Ap

)

is as in Theorem
9.5.3.

Proof. To derive the claimed vector-valued inequality follow the proof of Theorem

9.5.3 replacing the function f by (∑ j | f j|p0)
1
p0 and T ( f ) by (∑ j |T ( f j)|p0)

1
p0 . �

9.5.3 Weighted Inequalities Versus Vector-Valued Inequalities

We now turn to the last topic we are going to discuss in relation to Ap weights:
connections between weighted inequalities and vector-valued inequalities. The next
result provides strong evidence that there is a nontrivial connection of this sort. The
following is a general theorem saying that any vector-valued inequality is equivalent
to some weighted inequality. The proof of the theorem is based on a minimax lemma
whose precise formulation and proof can be found in Appendix H.

Theorem 9.5.8. (a) Let 0 < p < q,r < ∞. Let {Tj} j be a sequence of sublinear
operators that map Lq(μ) to Lr(ν), where μ and ν are arbitrary measures. Then
the vector-valued inequality

∥

∥

∥

(

∑
j
|Tj( f j)|p

)1
p

∥

∥

∥

Lr
≤C

∥

∥

∥

(

∑
j
| f j|p

)1
p

∥

∥

∥

Lq
(9.5.23)

holds for all f j ∈ Lq(μ) if and only if for every u ≥ 0 in L
r

r−p (ν) there exists U ≥ 0

in L
q

q−p (μ) with
∥

∥U
∥

∥

L
q

q−p
≤
∥

∥u
∥

∥

L
r

r−p
,

sup
j

∫

|Tj( f )|p udν ≤ Cp
∫

| f |p U dμ .
(9.5.24)
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(b) Let 0 < q,r < p < ∞. Let {Tj} j be as before. Then the vector-valued inequality

(9.5.23) holds for all f j ∈ Lq(μ) if and only if for every u≥ 0 in L
q

p−q (μ) there exists

U ≥ 0 in L
r

p−r (ν) with
∥

∥U
∥

∥

L
r

p−r
≤
∥

∥u
∥

∥

L
q

p−q
,

sup
j

∫

|Tj( f )|p U−1 dν ≤ Cp
∫

| f |p u−1 dμ .
(9.5.25)

Proof. We begin with part (a). Given f j ∈ Lq(Rn,μ), we use (9.5.24) to obtain

∥

∥

∥

(

∑
j

|Tj( f j)|p
) 1

p
∥

∥

∥

Lr(ν)
=
∥

∥

∥∑
j

|Tj( f j)|p
∥

∥

∥

1
p

L
r
p (ν)

= sup
‖u‖

L
r

r−p
≤1

(
∫

Rn
∑

j

|Tj( f j)|p udν
)1

p

≤ sup
‖u‖

L
r

r−p
≤1

C

(
∫

Rn
∑

j
| f j|p U dμ

)1
p

≤ sup
‖u‖

L
r

r−p
≤1

C
∥

∥

∥∑
j
| f j|p

∥

∥

∥

1
p

L
q
p (μ)

∥

∥U
∥

∥

1
p

L
q

q−p

≤ C
∥

∥

∥

(

∑
j
| f j|p

) 1
p
∥

∥

∥

Lq(μ)
,

which proves (9.5.23) with the same constant C as in (9.5.24). To prove the converse,
given a nonnegative u ∈ L

r
r−p (ν) with

∥

∥u
∥

∥

L
r

r−p
= 1, we define

A =
{

a = (a0,a1) : a0 =∑
j
| f j|p, a1 =∑

j
|Tj( f j)|p, f j ∈ Lq(μ)

}

and
B =

{

b ∈ L
q

q−p (μ) : b ≥ 0 ,
∥

∥b
∥

∥

L
q

q−p
≤ 1 =

∥

∥u
∥

∥

L
r

r−p

}

.

Notice that A and B are convex sets and B is weakly compact. (The sublinearity of
each Tj is used here.) We define the function Φ on A×B by setting

Φ(a,b) =
∫

a1udν−Cp
∫

a0bdμ =∑
j

(
∫

|Tj( f j)|pudν−Cp
∫

| f j|pbdμ
)

.

ThenΦ is concave on A and weakly continuous and convex on B. Thus the minimax
lemma in Appendix H is applicable. This gives

min
b∈B

sup
a∈A
Φ(a,b) = sup

a∈A
min
b∈B
Φ(a,b) . (9.5.26)
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At this point observe that for a fixed a =
(

∑ j | f j|p,∑ j |Tj( f j)|p
)

in A we have

min
b∈B
Φ(a,b) ≤

∥

∥

∥∑
j
|Tj( f j)|p

∥

∥

∥

L
r
p (ν)

∥

∥u
∥

∥

L
r

r−p
−Cp max

b∈B

∫

∑
j
| f j|p bdμ

≤
∥

∥

∥∑
j
|Tj( f j)|p

∥

∥

∥

L
r
p (ν)

−Cp
∥

∥

∥∑
j
| f j|p

∥

∥

∥

L
q
p (μ)

≤ 0

using the hypothesis (9.5.23). It follows that supa∈A minb∈BΦ(a,b) ≤ 0 and hence
(9.5.26) yields minb∈B supa∈AΦ(a,b) ≤ 0. Thus there exists a U ∈ B such that
Φ(a,U) ≤ 0 for every a ∈ A. This completes the proof of part (a).

The proof of part (b) is similar. Using the result of Exercise 9.5.1 and (9.5.25),
given f j ∈ Lq(Rn,μ) we have

∥

∥

∥

(

∑
j

| f j|p
) 1

p

∥

∥

∥

Lq(μ)
=
∥

∥

∥∑
j

| f j|p
∥

∥

∥

1
p

L
q
p (μ)

= inf
‖u‖

L
q

p−q
≤1

(
∫

Rn
∑

j

| f j|p u−1 dμ
)1

p

≥ 1
C

inf
‖U‖

L
r

p−r
≤1

(
∫

Rn
∑

j
|Tj( f j)|p U−1 dν

)1
p

=
1
C

∥

∥

∥∑
j
|Tj( f j)|p

∥

∥

∥

1
p

L
r
p (ν)

=
1
C

∥

∥

∥

(

∑
j
|Tj( f j)|p

) 1
p
∥

∥

∥

Lr(ν)
.

To prove the converse direction in part (b), given a fixed u ≥ 0 in L
q

p−q (μ) with
∥

∥u
∥

∥

L
q

p−q
= 1, we define A as in part (a) and

B =
{

b ∈ L
p

p−r (ν) : b ≥ 0,
∥

∥b
∥

∥

L
p

p−r
≤ 1 =

∥

∥u
∥

∥

L
q

p−q

}

.

We also define the function Φ on A×B by setting

Φ(a,b) =
∫

a1b−1dν−Cp
∫

a0u−1 dμ

= ∑
j

(
∫

|Tj( f j)|pb−1 dν−Cp
∫

| f j|pu−1 dμ
)

.

Then Φ is concave on A and weakly continuous and convex on B. Also, using Exer-
cise 9.5.1, for any a =

(

∑ j | f j|p,∑ j |Tj( f j)|p
)

in A, we have

min
b∈B
Φ(a,b) ≤

∥

∥

∥∑
j

|Tj( f j)|p
∥

∥

∥

L
r
p (ν)

−Cp
∥

∥

∥∑
j

| f j|p
∥

∥

∥

L
q
p (μ)

≤ 0 .



9.5 Further Properties of Ap Weights 335

Thus supa∈A minb∈BΦ(a,b) ≤ 0. Using (9.5.26), yields minb∈B supa∈AΦ(a,b) ≤ 0,
and the latter implies the existence of a U in B such that Φ(a,U) ≤ 0 for all a ∈ A.
This proves (9.5.25). �

Example 9.5.9. We use the previous theorem to obtain another proof of the vector-
valued Hardy–Littlewood maximal inequality in Corollary 4.6.5. We take Tj = M

for all j. For given 1 < p < q < ∞ and u in L
q

q−p we set s = q
q−p and U =

∥

∥M
∥

∥

−1
Ls→Ls M(u). In view of Exercise 9.1.8 we have

∥

∥U
∥

∥

Ls ≤
∥

∥u
∥

∥

Ls and
∫

Rn
M( f )p udx ≤Cp

∫

Rn
| f |p U dx .

Using Theorem 9.5.8, we obtain

∥

∥

∥

(

∑
j

|M( f j)|p
)1

p

∥

∥

∥

Lq
≤Cn,p,q

∥

∥

∥

(

∑
j

| f j|p
)1

p

∥

∥

∥

Lq
(9.5.27)

whenever 1 < p < q < ∞, an inequality obtained earlier in (4.6.17).

It turns out that no specific properties of the Hardy–Littlewood maximal function
are used in the preceding inequality, and we can obtain a general result along these
lines. For simplicity we take the operators Tj in the next theorem to be linear.

Exercises

9.5.1. Let 0 < s < 1 and f be in Ls(X ,μ). Show that

∥

∥ f
∥

∥

Ls = inf

{
∫

X
| f |u−1 dμ :

∥

∥u
∥

∥

L
s

1−s
≤ 1

}

and that the infimum is attained.
[

Hint: Try u = c | f |1−s for a suitable constant c.
]

9.5.2. Use the same idea of the proof of Theorem 9.5.1 to prove the following gen-
eral result: Let μ be a positive measure on a measure space X and let T be a bounded
sublinear operator on Lp(X ,μ) for some 1 ≤ p <∞. Suppose that T ( f ) ≥ 0 for all f
in Lp(X ,μ). Prove that for all f0 ∈ Lp(X ,μ), there exists an f ∈ Lp(X ,μ) such that

(a) f0(x) ≤ f (x) for μ-almost all x ∈ X .

(b)
∥

∥ f
∥

∥

Lp(X) ≤ 2
∥

∥ f0
∥

∥

Lp(X).

(c) T ( f )(x) ≤ 2
∥

∥T
∥

∥

Lp→Lp f (x) for μ-almost all x ∈ X .
[

Hint: Try the expression in (9.5.2) starting the sum at j = 0.
]
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9.5.3. (Duoandikoetxea [116] ) Suppose that T is a well defined operator on the
union

⋃

1<q<∞
⋃

w∈Aq
Lq(w) that satisfies

∥

∥T
∥

∥

Lr(v)→Lr(v) ≤ N([v]Ar) for some in-

creasing function N : [1,∞) → R+. Without using Theorem 9.5.3 prove that for
1 < q < r and all v ∈ A1, T maps Lq(v) to Lq(v) with constant depending on q,r, n,
and [v]A1 .
[

Hint: Hölder’s inequality gives that

∥

∥T ( f )
∥

∥

Lq(v) ≤
(
∫

Rn
|T ( f )(x)|rM( f )(x)q−r v(x)dx

)1
r
(
∫

Rn
M( f )(x)qv(x)dx

)
r−q
rq

.

Then use the fact that the weight M( f )
r−q
r−1 is in A1 and Exercise 9.1.2.

]

9.5.4. Let T be a sublinear operator defined on
⋃

2≤q<∞Lq. Suppose that for all
functions f and u we have

∫

Rn
|T ( f )|2udx ≤

∫

Rn
| f |2M(u)dx .

Prove that T maps Lp(Rn) to itself for all 2 < p < ∞.
[

Hint: Use that

∥

∥T ( f )
∥

∥

Lp = sup
‖u‖

L(p/2)′≤1

(
∫

Rn
|T ( f )|2udx

)1
2

and Hölder’s inequality.
]

9.5.5. (X. C. Li ) Let T be a sublinear operator defined on
⋃

1<q≤2
⋃

w∈Aq
Lq(w).

Suppose that T maps L2(w) to L2(w) for all weights w that satisfy w−1 ∈ A1. Prove
that T maps Lp to itself for all 1 < p < 2.
[

Hint: We have

∥

∥T ( f )
∥

∥

Lp ≤
(
∫

Rn
|T ( f )|2M( f )−(2−p) dx

)1
2
(
∫

Rn
M( f )p dx

)
2−p
2p

by Hölder’s inequality. Apply the hypothesis to the first term of the product.
]

HISTORICAL NOTES

Weighted inequalities can probably be traced back to the beginning of integration, but the
Ap condition first appeared in a paper of Rosenblum [272] in a somewhat different form. The
characterization of Ap when n = 1 in terms of the boundedness of the Hardy–Littlewood maximal
operator was obtained by Muckenhoupt [237]. The estimate on the norm in (9.1.24) can also be
reversed, as shown by Buckley [36]. The simple proof of Theorem 9.1.9 is contained in Lerner’s
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article [209] and yields both the Muckenhoupt theorem and Buckley’s optimal growth of the norm
of the Hardy–Littlewood maximal operator in terms of the Ap characteristic constant of the weight.
Another proof of this result is given by Christ and Fefferman [69]. Versions of Lemma 9.1.10 for
balls were first obtained by Besicovitch [23] and independently by Morse [235]. The particular
version of Lemma 9.1.10 that appears in the text is adapted from that in de Guzmán [109]. Another
version of this lemma is contained in the book of Mattila [227]. The fact that A∞ is the union of
the Ap spaces was independently obtained by Muckenhoupt [238] and Coifman and Fefferman
[74]. The latter paper also contains a proof that Ap weights satisfy the crucial reverse Hölder
condition. This condition first appeared in the work of Gehring [145] in the following context: If F
is a quasiconformal homeomorphism from Rn into itself, then |det(∇F)| satisfies a reverse Hölder
inequality. The characterization of A1 weights is due to Coifman and Rochberg [84]. The fact that
M( f )δ is in A∞ when δ < 1 was previously obtained by Córdoba and Fefferman [92]. The different
characterizations of A∞ (Theorem 9.3.3) are implicit in [237] and [74]. Another characterization of
A∞ in terms of the Gurov-Reshetnyak condition supQ

1
|Q|
∫

Q | f −AvgQ f |dx ≤ εAvgQ f for f ≥ 0
and 0 < ε < 2 was obtained by Korenovskyy, Lerner, and Stokolos [196]. The definition of A∞
using the reverse Jensen inequality herein was obtained as an equivalent characterization of that
space by Garcı́a-Cuerva and Rubio de Francia [141] (p. 405) and independently by Hrusčev [169].
The reverse Hölder condition was extensively studied by Cruz-Uribe and Neugebauer [98].

Weighted inequalities with weights of the form |x|a for the Hilbert transform were first obtained
by Hardy and Littlewood [159] and later by Stein [288] for other singular integrals. The necessity
and sufficiency of the Ap condition for the boundedness of the Hilbert transform on weighted Lp

spaces was obtained by Hunt, Muckenhoupt, and Wheeden [172]. Historically, the first result re-
lating Ap weights and the Hilbert transform is the Helson-Szegő theorem [162], which says that
the Hilbert transform is bounded on L2(w) if and only if logw = u+Hv, where u,v ∈ L∞(R) and
∥

∥v
∥

∥

L∞ < π
2 . The Helson-Szegő condition easily implies the A2 condition, but the only known direct

proof for the converse gives
∥

∥v
∥

∥

L∞ < π ; see Coifman, Jones, and Rubio de Francia [76]. A related
result in higher dimensions was obtained by Garnett and Jones [143]. Weighted Lp estimates con-
trolling Calderón–Zygmund operators by the Hardy–Littlewood maximal operator were obtained
by Coifman [71]. Coifman and Fefferman [74] extended one-dimensional weighted norm inequali-
ties to higher dimensions and also obtained good lambda inequalities for A∞ weights for more gen-
eral singular integrals and maximal singular integrals (Theorem 9.4.3). Bagby and Kurtz [14], and
later Alvarez and Pérez [4], gave a sharper version of Theorem 9.4.3, by replacing the good lambda
inequality by a rearrangement inequality. See also the related work of Lerner [208]. The result of
Exercise 9.4.9 relating the weighted norms of f and M#( f ) is also valid under weaker assumptions
on f ; for instance, the condition M( f ) ∈ Lp0 can be replaced by the condition w({| f | > t}) < ∞
for every t > 0; see Kurtz [201]. Using that min(M,w) is an A∞ weight with constant indepen-
dent of M and Fatou’s lemma, this condition can be relaxed to |{| f |> t}| < ∞ for every t > 0. A
rearrangement inequality relating f and M#( f ) is given in Bagby and Kurtz [13].

The factorization of Ap weights was conjectured by Muckenhoupt and proved by Jones [178].
The simple proof given in the text can be found in [76]. Extrapolation of operators (Theorem 9.5.3)
is due to Rubio de Francia [274]. An alternative proof of this theorem was given later by Garcı́a-
Cuerva [140]. The value of the constant K(n, p, p0, [w]Ap) first appeared in Dragičević, Grafakos,
Pereyra, and Petermichl [110]. The present treatment of Theorem 9.5.3, based on crucial Lemma
9.5.4, was communicated to the author by J. M. Martell. One may also consult the related work
of Cruz-Uribe, Martell, and Pérez [97]. The simple proof of Theorem 9.5.5 was conceived by J.
M. Martell and first appeared in the treatment of extrapolation of operators of many variables; see
Grafakos and Martell [151]. The idea of extrapolation can be carried to general pairs of functions,
see Cruz-Uribe, Martell, and Pérez [96]. The equivalence between vector-valued inequalities and
weighted norm inequalities of Theorem 9.5.8 is also due to Rubio de Francia [275]. The difficult
direction in this equivalence is obtained using a minimax principle (see Fan [122]). Alternatively,
one can use the factorization theory of Maurey [228], which brings an interesting connection with
Banach space theory. The book of Garcı́a-Cuerva and Rubio de Francia [141] provides an excellent
reference on this and other topics related to weighted norm inequalities.
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A primordial double-weighted norm inequality is the observation of Fefferman and Stein [129]
that the maximal function maps Lp(M(w)) to Lp(w) for nonnegative measurable functions w (Exer-

cise 9.1.8). Sawyer [278] obtained that the condition supQ

(∫

Q v1−p′dx
)−1∫

Q M(v1−p′χQ)pwdx <∞
provides a characterization of all pairs of weights (v,w) for which the Hardy–Littlewood maximal
operator M maps Lp(v) to Lp(w). Simpler proofs of this result were obtained by Cruz-Uribe [95]
and Verbitsky [324]. The fact that Sawyer’s condition reduces to the usual Ap condition when v = w
was shown by Hunt, Kurtz, and Neugebauer [171]. The two-weight problem for singular integrals
is more delicate, since they are not necessarily bounded from Lp(M(w)) to Lp(w). Known results
in this direction are that singular integrals map Lp(M[p]+1(w)) to Lp(w), where Mr denotes the rth
iterate of the maximal operator. See Wilson [333] (for 1 < p < 2) and Pérez [259] for the remaining
p’s. A necessary condition for the boundedness of the Hilbert transform from Lp(v) to Lp(w) was
obtained by Muckenhoupt and Wheeden [239]. A necessary and sufficient such condition is yet to
be found. A class of multiple weights that satisfy a vector Ap condition has been introduced and
studied in the article of Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [210].

For an approach to two-weighted inequalities using Bellman functions, we refer to the article of
Nazarov, Treil, and Volberg [247]. The notion of Bellman functions originated in control theory;
the article [248] of the previous authors analyzes the connections between optimal control and
harmonic analysis. Bellman functions have been used to derive estimates for the norms of classical
operators on weighted Lebesgue spaces; for instance, Petermichl [264] showed that for w ∈A2(R),
the norm of the Hilbert transform from L2(R,w) to L2(R,w) is bounded by a constant times the
characteristic constant [w]A2 .

The theory of Ap weights in this chapter carries through to the situation in which Lebesgue
measure is replaced by a general doubling measure. This theory also has a substantial analogue
when the underlying measure is nondoubling but satisfies μ(∂Q) = 0 for all cubes Q in Rn with
sides parallel to the axes; see Orobitg and Pérez [253]. A thorough account of weighted Littlewood–
Paley theory and exponential-square function integrability is contained in the book of Wilson [334].



Chapter 10
Boundedness and Convergence of Fourier
Integrals

In this chapter we return to fundamental questions in Fourier analysis related to
convergence of Fourier series and Fourier integrals. Our main goal is to understand
in what sense the inversion property of the Fourier transform

f (x) =
∫

Rn
̂f (ξ )e2π ix·ξ dξ

holds when f is a function on Rn. This question is equivalent to the corresponding
question for the Fourier series

f (x) = ∑
m∈Zn

̂f (m)e2π ix·m

when f is a function on Tn. The main problem is that the function (or sequence) ̂f
may not be integrable and the convergence of the preceding integral (or series) needs
to be suitably interpreted. To address this issue, a summability method is employed.
This is achieved by the introduction of a localizing factor Φ(ξ/R), leading to the
study of the convergence of the expressions

∫

Rn
Φ(ξ/R)̂f (ξ )e2π ix·ξ dξ

as R →∞. Here Φ is a function on Rn that decays sufficiently rapidly at infinity and
satisfies Φ(0) = 1. For instance, we may take Φ = χB(0,1), where B(0,1) is the unit
ball in Rn. Analogous summability methods arise in the torus.

An interesting case arises when Φ(ξ ) = (1−|ξ |2)λ+, λ ≥ 0, in which we obtain
the Bochner–Riesz means introduced by Riesz when n = 1 and λ = 0 and Bochner
for n ≥ 2 and general λ > 0. The question is whether the Bochner–Riesz means

∑
m2

1+···+m2
n≤R2

(

1− m2
1 + · · ·+ m2

n

R2

)λ
̂f (m1, . . . ,mn)e2π i(m1x1+···+mnxn)
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converge in Lp. This question is equivalent to whether the function (1− |ξ |2)λ+ is
an Lp multiplier on Rn and is investigated in this chapter. Analogous questions con-
cerning the almost everywhere convergence of these families are also studied.

10.1 The Multiplier Problem for the Ball

In this section we show that the characteristic function of the unit disk in R2 is not
an Lp multiplier when p �= 2. This implies the same conclusion in dimensions n≥ 3,
since sections of higher-dimensional balls are disks and by Theorem 2.5.16 we have
that if χB(0,r) /∈ Mp(R2) for all r > 0, then χB(0,1) /∈ Mp(Rn) for any n ≥ 3.

10.1.1 Sprouting of Triangles

We begin with a certain geometric construction that at first sight has no apparent
relationship to the multiplier problem for the ball in Rn. Given a triangle ABC with
base b = AB and height h0 we let M be the midpoint of AB. We construct two other
triangles AMF and BME from ABC as follows. We fix a height h1 > h0 and we
extend the sides AC and BC in the direction away from its base until they reach a
certain height h1. We let E be the unique point on the line passing through the points
B and C such that the triangle EMB has height h1. Similarly, F is uniquely chosen
on the line through A and C so that the triangle AMF has height h1.

Fig. 10.1 The sprouting of
the triangle ABC.
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The triangle ABC now gives rise to two triangles AMF and BME called the
sprouts of ABC. The union of the two sprouts AMF and BME is called the sprouted
figure obtained from ABC and is denoted by Spr(ABC). Clearly Spr(ABC) contains
ABC. We call the difference

Spr(ABC)\ABC

the arms of the sprouted figure. The sprouted figure Spr(ABC) has two arms of equal
area, the triangles EGC and FCH as shown in Figure 10.1, and we can precisely
compute the area of each arm. One may easily check (see Exercise 10.1.1) that

Area (each arm of Spr(ABC)) =
b
2

(h1 −h0)2

2h1 −h0
, (10.1.1)

where b = AB.

Fig. 10.2 The second step of
the construction.

We start with an isosceles triangleΛ = ABC in R2 with base AB of length b0 = ε
and height MC = h0 = ε , where M is the midpoint of AB. We define the heights

h1 =
(

1 +
1
2

)

ε ,

h2 =
(

1 +
1
2

+
1
3

)

ε ,

. . .

h j =
(

1 +
1
2

+ · · ·+ 1
j + 1

)

ε .
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We apply the previously described sprouting procedure to Λ to obtain two sprouts
Λ1 = AMF and Λ2 = EMB, as in Figure 10.1, each with height h1 and base length
b0/2. We now apply the same procedure to the triangles Λ1 and Λ2. We then obtain
two sprouts Λ11 and Λ12 from Λ1 and two sprouts Λ21 and Λ22 from Λ2, a total of
four sprouts with height h2. See Figure 10.2. We continue this process, obtaining at
the jth step 2 j sprouts Λr1...r j , r1, . . . ,r j ∈ {1,2} each with base length b j = 2− jb0

and height h j. We stop this process when the kth step is completed.

Fig. 10.3 The third step of
the construction.

We let E(ε,k) be the union of the triangles Λr1...rk over all sequences r j of 1’s
and 2’s. We obtain an estimate for the area of E(ε,k) by adding to the area of Λ the
areas of the arms of all the sprouted figures obtained during the construction. By
(10.1.1) we have that each of the 2 j arms obtained at the jth step has area

b j−1

2
(h j −h j−1)2

2h j −h j−1
.

Summing over all these areas and adding the area of the original triangle, we obtain
the estimate
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|E(ε,k)| =
1
2
ε2 +

k

∑
j=1

2 j b j−1

2
(h j −h j−1)2

2h j −h j−1

≤ 1
2
ε2 +

k

∑
j=1

2 j 2−( j−1)b0

2
ε2

( j + 1)2ε

≤ 1
2
ε2 +

∞

∑
j=2

ε2

j2 ≤
(1

2
+
π2

6
−1
)

ε2

≤ 3
2
ε2 ,

where we used the fact that 2h j −h j−1 ≥ ε for all j ≥ 1.
Having completed the construction of the set E(ε,k), we are now in a position

to indicate some of the ideas that appear in the solution of the Kakeya problem.
We first observe that no matter what k is, the measure of the set E(ε,k) can be
made as small as we wish if we take ε small enough. Our purpose is to make a
needle of infinitesimal width and unit length move continuously from one side of
this angle to the other utilizing each sprouted triangle in succession. To achieve this,
we need to apply a similar construction to any of the 2k triangles that make up the
set E(ε,k) and repeat the sprouting procedure a large enough number of times. We
refer to [99] for details. An elaborate construction of this sort yields a set within
which the needle can be turned only through a fixed angle. But adjoining a few such
sets together allows us to rotate a needle through a half-turn within a set that still
has arbitrarily small area. This is the idea used to solve the aforementioned needle
problem.

10.1.2 The counterexample

We now return to the multiplier problem for the ball, which has an interesting con-
nection with the Kakeya needle problem.

Fig. 10.4 A rectangle R and
its adjacent rectangles R′.

In the discussion that follows we employ the following notation. Given a rectan-
gle R in R2, we let R′ be two copies of R adjacent to R along its shortest side so that
R∪R′ has the same width as R but three times its length. See Figure 10.4.

We need the following lemma.
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Lemma 10.1.1. Let δ > 0 be a given number. Then there exists a measurable subset
E of R2 and a finite collection of rectangles R j in R2 such that

(1) The R j’s are pairwise disjoint.
(2) We have 1/2 ≤ |E| ≤ 3/2.
(3) We have |E| ≤ δ ∑ j |R j|.
(4) For all j we have |R′

j ∩E| ≥ 1
12 |R j|.

Proof. We start with an isosceles triangle ABC in the plane with height 1 and base
AB, where A = (0,0) and B = (1,0). Given δ > 0, we find a positive integer k such
that k+2 > e1/δ . For this k we set E = E(1,k), the set constructed earlier with ε = 1.
We then have 1/2 ≤ |E| ≤ 3/2; thus (2) is satisfied.

R

hk

R
2R R

3

3 log (k+2)

 (1,0)(0,0)

0

1

. .

Fig. 10.5 The rectangles R j.

Recall that each dyadic interval [ j2−k,( j+1)2−k] in [0,1] is the base of ex-
actly one sprouted triangle A jB jCj, where j ∈ {0,1, . . . ,2k − 1}. Here we set
A j = ( j2−k,0), B j = (( j+1)2−k,0), and Cj the other vertex of the sprouted tri-
angle. We define a rectangle R j inside the angle ∠A jCjB j as in Figure 10.6. The
rectangle R j is defined so that one of its vertices is either A j or B j and the length of
its longest side is 3 log(k + 2).

We now make some calculations. First we observe that the longest possible length
that either A jCj or B jCj can achieve is

√
5hk/2. By symmetry we may assume that

the length of A jCj is larger than that of B jCj as in Figure 10.6. We now have that
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√
5

2
hk <

3
2

(

1 +
1
2

+ · · ·+ 1
k + 1

)

<
3
2

(

1 + log(k + 1)
)

< 3log(k + 2),

since k ≥ 1 and e < 3. Hence R′
j contains the triangle A jB jCj. We also have that

hk = 1 +
1
2

+ · · ·+ 1
k + 1

> log(k + 2).

Using these two facts, we obtain

|R′
j ∩E| ≥ Area(A jB jCj) =

1
2

2−khk > 2−k−1 log(k + 2). (10.1.2)

Fig. 10.6 A closer look at R j .

Denote by |XY | the length of the line segment through the points X and Y . The
law of sines applied to the triangle A jB jD j gives

|A jD j| = 2−k sin(∠A jB jD j)
sin(∠A jD jB j)

≤ 2−k

cos(∠A jCjB j)
. (10.1.3)

But the law of cosines applied to the triangle A jB jCj combined with the estimates
hk ≤ |A jCj|, |B jCj| ≤

√
5hk/2 give that
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cos(∠A jCjB j) ≥
h2

k + h2
k − (2−k)2

2 5
4 h2

k

≥ 4
5
− 2

5
· 1

4
≥ 1

2
. (10.1.4)

Combining (10.1.3) and (10.1.4), we obtain

|A jD j| ≤ 2−k+1 = 2|A jB j| .

Using this fact and (10.1.2), we deduce

|R′
j ∩E| ≥ 2−k−1 log(k + 2) =

1
12

2−k+13 log(k + 2)≥ 1
12

|R j| ,

which proves the required conclusion (4).
Conclusion (1) in Lemma 10.1.1 follows from the fact that the regions inside

the angles ∠A jCjB j and under the triangles A jCjB j are pairwise disjoint. This is
shown in Figure 10.5. This can be proved rigorously by a careful examination of the
construction of the sprouted triangles A jCjB j, but the details are omitted.

It remains to prove (3). To achieve this we first estimate the length of the line
segment A jD j from below. The law of sines gives

|A jD j|
sin(∠A jB jD j)

=
2−k

sin(∠A jD jB j)
,

from which we obtain that

|A jD j| ≥ 2−k sin(∠A jB jD j) ≥ 2−k−1∠A jB jD j ≥ 2−k−1∠B jA jCj .

(All angles are measured in radians.) But the smallest possible value of the angle
∠B jA jCj is attained when j = 0, in which case ∠B0A0C0 = arctan2 > 1. This gives
that

|A jD j| ≥ 2−k−1 .

It follows that each R j has area at least 2−k−13 log(k + 2). Therefore,

∣

∣

∣

∣

2k−1
⋃

j=0

R j

∣

∣

∣

∣

=
2k−1

∑
j=0

|R j| ≥ 2k2−k−13 log(k + 2)≥ |E| log(k + 2)≥ |E|
δ

,

since |E| ≤ 3/2 and k was chosen so that k + 2 > e1/δ . �

Next we have a calculation involving the Fourier transforms of characteristic
functions of rectangles.

Proposition 10.1.2. Let R be a rectangle whose center is the origin in R2 and let v
be a unit vector parallel to its longest side. Consider the half-plane

H = {x ∈ R2 : x · v ≥ 0}

and the multiplier operator
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SH ( f ) = (̂f χH )∨.

Then we have |SH (χR)| ≥ 1
10χR′ .

Remark 10.1.3. Applying a translation, we see that the same conclusion is valid for
any rectangle in R2 whose longest side is parallel to v.

Proof. Applying a rotation, we reduce the problem to the case R = [−a,a]× [−b,b],
where 0 < a ≤ b < ∞, and v = e2 = (0,1). Since the Fourier transform acts in each
variable independently, we have the identity

SH (χR)(x1,x2) = χ[−a,a](x1)
(

χ̂[−b,b]χ[0,∞)
)∨(x2)

= χ[−a,a](x1)
I + iH

2
(χ[−b,b])(x2).

It follows that

|SH (χR)(x1,x2)| ≥
1
2
χ[−a,a](x1)|H(χ[−b,b])(x2)|

=
1

2π
χ[−a,a](x1)

∣

∣

∣

∣

log

∣

∣

∣

∣

x2 + b
x2 −b

∣

∣

∣

∣

∣

∣

∣

∣

.

But for (x1,x2) ∈ R′ we have χ[−a,a](x1) = 1 and b < |x2| < 3b. So we have two
cases, b < x2 < 3b and −3b < x2 < −b. When b < x2 < 3b we see that

∣

∣

∣

∣

x2 + b
x2 −b

∣

∣

∣

∣

=
x2 + b
x2 −b

> 2 ,

and similarly, when −3b < x2 < −b we have
∣

∣

∣

∣

x2 −b
x2 + b

∣

∣

∣

∣

=
b− x2

−b− x2
> 2 .

It follows that for (x1,x2) ∈ R′ the lower estimate is valid:

|SH (χR)(x1,x2)| ≥
log2
2π

≥ 1
10

.

�

Next we have a lemma regarding vector-valued inequalities of half-plane multi-
pliers.

Lemma 10.1.4. Let v1,v2, . . . ,v j, . . . be a sequence of unit vectors in R2. Define the
half-planes

H j = {x ∈ R2 : x · v j ≥ 0} (10.1.5)

and linear operators
SH j( f ) = (̂f χH j)

∨.
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Assume that the disk multiplier operator

T ( f ) = (̂f χB(0,1))
∨

maps Lp(R2) to itself with norm Bp < ∞. Then we have the inequality

∥

∥

∥

(

∑
j
|SH j( f j)|2

) 1
2
∥

∥

∥

Lp
≤ Bp

∥

∥

∥

(

∑
j
| f j|2

) 1
2

∥

∥

∥

Lp
(10.1.6)

for all bounded and compactly supported functions f j .

Proof. We prove the lemma for Schwartz functions f j and we obtain the general
case by a simple limiting argument. We define disks D j,R = {x∈ R2 : |x−Rv j| ≤ R}
and we let

Tj,R( f ) = (̂f χDj,R)∨

be the multiplier operator associated with the disk D j,R. We observe that χDj,R →
χH j pointwise as R → ∞, as shown in Figure 10.7.

Fig. 10.7 A sequence of disks
converging to a half-plane.

For f ∈ S (R2) and every x ∈ R2 we have

lim
R→∞

Tj,R( f )(x) = SH j( f )(x)

by passing the limit inside the convergent integral. Fatou’s lemma now yields

∥

∥

∥

(

∑
j
|SH j( f j)|2

) 1
2

∥

∥

∥

Lp
≤ liminf

R→∞

∥

∥

∥

(

∑
j
|Tj,R( f j)|2

) 1
2

∥

∥

∥

Lp
. (10.1.7)

Next we observe that the following identity is valid:

Tj,R( f )(x) = e2π iRv j ·xTR(e−2π iRv j ·(·) f )(x), (10.1.8)

where TR is the multiplier operator TR( f ) = (̂f χB(0,R))∨. Setting g j = e−2π iRv j ·(·) f j

and using (10.1.7) and (10.1.8), we deduce
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∥

∥

(

∑
j

|SH j( f j)|2
) 1

2
∥

∥

Lp ≤ liminf
R→∞

∥

∥

(

∑
j

|TR(g j)|2
) 1

2
∥

∥

Lp . (10.1.9)

Observe that the operator TR is Lp bounded with the same norm Bp as T in view of
identity (2.5.15). Applying Theorem 4.5.1, we obtain that the last term in (10.1.9)
is bounded by

liminf
R→∞

∥

∥TR
∥

∥

Lp→Lp

∥

∥

(

∑
j
|g j|2

) 1
2
∥

∥

Lp = Bp
∥

∥

(

∑
j
| f j|2

) 1
2
∥

∥

Lp .

Combining this inequality with (10.1.9), we obtain (10.1.6). �
We have now completed all the preliminary material we need to prove that the

characteristic function of the unit disk in R2 is not an Lp multiplier if p �= 2.

Theorem 10.1.5. The characteristic function of the unit ball in Rn is not an Lp

multiplier when 1 < p �= 2 < ∞.

Proof. As mentioned earlier, in view of Theorem 2.5.16, it suffices to prove the
result in dimension n = 2. By duality it suffices to prove the result when p > 2.
Suppose that χB(0,1) ∈ Mp(R2) for some p > 2, say with norm Bp < ∞.

Suppose that δ > 0 is given. Let E and R j be as in Lemma 10.1.1. We let f j = χR j .
Let v j be the unit vector parallel to the long side of R j and let Hj be the half-plane
defined as in (10.1.5). Using Proposition 10.1.2, we obtain

∫

E
∑

j
|SH j( f j)(x)|2 dx = ∑

j

∫

E
|SH j( f j)(x)|2 dx

≥ ∑
j

∫

E

1
102 χR′

j
(x)dx

=
1

100∑j
|E ∩R′

j|

≥ 1
1200∑j

|R j| ,

(10.1.10)

where we used condition (4) of Lemma 10.1.1 in the last inequality. Hölder’s in-
equality with exponents p/2 and (p/2)′ = p/(p−2) gives

∫

E
∑

j

|SH j( f j)(x)|2 dx ≤ |E|
p−2

p
∥

∥

(

∑
j

|SH j( f j)|2
) 1

2
∥

∥

2
Lp

≤ B2
p|E|

p−2
p
∥

∥

(

∑
j

| f j|2
) 1

2
∥

∥

2
Lp

= B2
p|E|

p−2
p

(

∑
j

|R j|
) 2

p

≤ B2
pδ

p−2
p ∑

j
|R j|,

(10.1.11)
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where we used Lemma 10.1.4, the disjointness of the R j’s, and condition (3) of
Lemma 10.1.1 successively. Combining (10.1.10) with (10.1.11), we obtain the in-
equality

∑
j

|R j| ≤ 1200Bpδ
p−2

p ∑
j

|R j| ,

which provides a contradiction when δ is very small. �

Exercises

10.1.1. Prove identity (10.1.1).
[

Hint: With the notation of Figure 10.1, first prove

h1 −h0

h1
=

NC
b/2

,
height (NGC)

h0
=

NC
NC + b/2

using similar triangles.
]

10.1.2. Given a rectangle R, let R′′ denote either of the two parts that make up R′.
Prove that for any k ∈ Z+ and any δ > 0, there exist rectangles S j in R2, 0 ≤ j < 2k,
with dimensions proportionate to 2−k × log(k + 1),

∣

∣

∣

∣

2k−1
⋃

j=0

S j

∣

∣

∣

∣

< δ ,

such that for some choice of S′′j , the S′′j ’s are disjoint.
[

Hint: Consider the 2k triangles that make up the set E(ε,k) and choose each rectan-
gle S j inside a corresponding triangle. Then the parts of the S′j’s that point downward
are disjoint. Choose ε depending on δ .

]

10.1.3. Is the characteristic function of the cylinder

{(ξ1,ξ2,ξ3) ∈ R3 : ξ 2
1 + ξ 2

2 < 1}

a Fourier multiplier on Lp(R3) for 1 < p <∞ and p �= 2?

10.1.4. Modify the ideas of the proof of Lemma 10.1.4 to show that the character-
istic function of the set

{(ξ1,ξ2) ∈ R2 : ξ2 > ξ 2
1 }

is not in Mp(R2) when p �= 2.
[

Hint: Let H j =
{

(ξ1,ξ2)∈R2 : ξ2 > s j ξ 2
1

}

for some s j > 0. The parabolic regions
{

(ξ1,ξ2) ∈ R2 : ξ2 + R
s2

j
4 > 1

R

(

ξ1 + R
s j
2

)2}
are contained in H j, are translates of

the region
{

(ξ1,ξ2) ∈ R2 : ξ2 > 1
R ξ

2
1

}

, and tend to H j as R → ∞.
]
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10.1.5. Let a1, . . . ,an > 0. Show that the characteristic function of the ellipsoid

{

(ξ , . . . ,ξn) ∈ Rn :
ξ 2

1

a2
1

+ · · ·+ ξ
2
n

a2
n

< 1
}

is not in Mp(Rn) when p �= 2.
[

Hint: Think about dilations.
]

10.2 Bochner–Riesz Means and the Carleson–Sjölin Theorem

We now address the problem of norm convergence for the Bochner–Riesz means.
In this section we provide a satisfactory answer in dimension n = 2, although a key
ingredient required in the proof is left for the next section.

Definition 10.2.1. For a function f on Rn we define its Bochner–Riesz means of
complex order λ with Reλ > 0 to be the family of operators

BλR( f )(x) =
∫

Rn
(1−|ξ/R|2)λ+ ̂f (ξ )e2π ix·ξ dξ , R > 0.

We are interested in the convergence of the family BλR( f ) as R →∞. Observe that
when R →∞ and f is a Schwartz function, the sequence BλR( f ) converges pointwise
to f . Does it also converge in norm? Using Exercise 10.2.1, this question is equiva-
lent to whether the function (1−|ξ |2)λ+ is an Lp multiplier [it lies in Mp(Rn)], that
is, whether the linear operator

Bλ ( f )(x) =
∫

Rn
(1−|ξ |2)λ+ ̂f (ξ )e2π ix·ξ dξ

maps Lp(Rn) to itself. The question that arises is given λ with Reλ > 0 find the
range of p’s for which (1−|ξ |2)λ+ is an Lp(Rn) Fourier multiplier; this question is
investigated in this section when n = 2.

The analogous question for the operators BλR on the n-torus introduced in Defi-
nition 3.4.1 is also equivalent to the fact that the function (1− |ξ |2)λ+ is a Fourier
multiplier in Mp(Rn). This was shown in Corollary 3.6.10. Therefore the Bochner–
Riesz problem for the torus Tn and the Euclidean space Rn are equivalent. Here we
focus attention on the Euclidean case, and we start our investigation by studying the
kernel of the operator Bλ .

10.2.1 The Bochner–Riesz Kernel and Simple Estimates

In view of the last identity in Appendix B.5, Bλ is a convolution operator with kernel
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Kλ (x) =
Γ (λ + 1)
πλ

Jn
2 +λ (2π |x|)
|x| n

2 +λ . (10.2.1)

Following Appendix B.6, we have for |x| ≤ 1,

|Kλ (x)| =
|Γ (λ + 1)|

|πλ |
|Jn

2 +λ (2π |x|)|
|x| n

2 +Reλ ≤ Γ (Reλ + 1)
πReλ C0 eπ

2|Imλ |2 ,

where C0 is a constant that depends only on n/2 + Reλ . Consequently, Kλ (x) is
bounded by a constant (that grows at most exponentially in |Imλ |2) in the unit ball
of Rn.

For |x| ≥ 1, following Appendix B.7, we have

|Kλ (x)| =
|Γ (λ + 1)|

|πλ |
|Jn

2 +λ (2π |x|)|
|x| n

2 +Reλ ≤C0
eπ |Imλ |+π

2|Imλ |2

πReλ (2π |x|) 1
2

Γ (Reλ + 1)
|x| n

2 +Reλ ,

where C0 depends only on n/2 + Reλ . Thus Kλ (x) is pointwise bounded by a con-

stant (that grows at most exponentially in |Imλ |) times |x|− n+1
2 −Reλ for |x| ≥ 1.

Combining these two observations, we obtain that for Reλ > n−1
2 , Kλ is a smooth

integrable function on Rn. Hence Bλ is a bounded operator on Lp for 1 ≤ p ≤ ∞.

Proposition 10.2.2. For all 1 ≤ p ≤ ∞ and λ > n−1
2 , Bλ is a bounded operator on

Lp(Rn) with norm at most C1 ec1|Imλ |2 , where C1,c1 depend only on n,Reλ .

Proof. The ingredients of the proof have already been discussed. �

We refer to Exercise 10.2.8 for an analogous result for the maximal Bochner–
Riesz operator.

According to the asymptotics for Bessel functions in Appendix B.8, Kλ is a
smooth function equal to

Γ (λ + 1)
πλ+1

cos(2π |x|− π(n+1)
4 − πλ

2 )

|x| n+1
2 +λ

+ O(|x|− n+3
2 −λ ) (10.2.2)

for |x| ≥ 1. It is natural to examine whether the operators Bλ are bounded on certain
Lp spaces by testing them on specific functions. This may provide some indication
as to the range of p’s for which these operators may be bounded on Lp.

Proposition 10.2.3. When λ > 0 and p ≤ 2n
n+1+2λ or p ≥ 2n

n−1−2λ , the operators Bλ

are not bounded on Lp(Rn).

Proof. Let h be a Schwartz function whose Fourier transform is equal to 1 on the
ball B(0,2) and vanishes off the ball B(0,3). Then

Bλ (h)(x) =
∫

|ξ |≤1
(1−|ξ |2)λ e2π iξ ·x dx = Kλ (x) ,
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and it suffices to show that Kλ is not in Lp(Rn) for the claimed range of p’s. Notice
that √

2/2 ≤ cos(2π |x|− π(n+1)
4 − πλ

2 ) ≤ 1 (10.2.3)

for all x lying in the annuli

Ak =
{

x ∈ Rn : k +
n + 2λ

8
≤ |x| ≤ k +

n + 2λ
8

+
1
4

}

, k ∈ Z+.

Since in this range, the argument of the cosine in (10.2.2) lies in [2πk,2πk + π
4 ].

Consider the range of p’s that satisfy

2n
n + 1 + 2λ

≥ p >
2n

n + 3 + 2λ
. (10.2.4)

If we can show that Bλ is unbounded in this range, it will also have to be unbounded
in the bigger range 2n

n+1+2λ ≥ p. This follows by interpolation between the values

p = 2n
n+3+2λ − δ and p = 2n

n+1+2λ + δ , δ > 0, for λ fixed.
In view of (10.2.2) and (10.2.3), we have that

∥

∥Kλ
∥

∥

p
Lp ≥C′

∞

∑
k=n+2λ

∫

Ak

|x|−p n+1
2 −pλdx−C′′ −C′′′

∫

|x|≥1
|x|−p n+3

2 −pλdx , (10.2.5)

where C′′ is the integral of Kλ in the unit ball. It is easy to see that for p in the
range (10.2.4), the integral outside the unit ball converges, while the series diverges
in (10.2.5).

The unboundedness of Bλ on Lp(Rn) in the range of p ≥ 2n
n−1−2λ follows by

duality. �

Fig. 10.8 The operator Bλ is
unbounded on Lp(Rn) when
(1/p,λ ) lies in the shaded
region.

1
2 2n

n+1

2

10

p
1

2n

λ

n-1

n-1
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In Figure 10.8 the shaded region is the set of all pairs ( 1
p ,λ ) for which the oper-

ators Bλ are known to be unbounded on Lp(Rn).

10.2.2 The Carleson–Sjölin Theorem

We now pass to the main result in this section. We prove the boundedness of the
operators Bλ , λ > 0, in the range of p’s not excluded by the previous proposition in
dimension n = 2.

Theorem 10.2.4. Suppose that 0 < Reλ ≤ 1/2. Then the Bochner–Riesz operator
Bλ maps Lp(R2) to itself when 4

3+2Reλ < p < 4
1−2Reλ . Moreover, for this range of

p’s and for all f ∈ Lp(R2) we have that

BλR( f ) → f

in Lp(R2) as R → ∞.

Proof. Once the first assertion of the theorem is established, the second assertion
will be a direct consequence of it and of the fact that the means BλR(h) converge
to h in Lp for h in a dense subclass of Lp. Such a dense class is, for instance, the
class of all Schwartz functions h whose Fourier transforms are compactly supported
(Exercise 5.2.9). For a function h in this class, we see easily that BλR(h) → h point-
wise. But if ̂h is supported in |ξ | ≤ c, then for R ≥ 2c, integration by parts gives that
the functions BλR(h)(x) are pointwise controlled by the function (1 + |x|)−N with
N large; then the Lebesgue dominated convergence theorem gives that the BλR(h)
converge to h in Lp. Finally, a standard ε/3 argument, using that

sup
R>0

∥

∥BλR
∥

∥

Lp→Lp =
∥

∥(1−|ξ |2)λ+
∥

∥

Mp
< ∞ ,

yields BλR( f ) → f in Lp for general Lp functions f .
It suffices to focus our attention on the first part of the theorem. We therefore fix

a complex number λ with positive real part and we keep track of the growth of all
involved constants in Imλ .

We start by picking a smooth function ϕ supported in [− 1
2 , 1

2 ] and a smooth
function ψ supported in [ 1

8 , 5
8 ] that satisfy

ϕ(t)+
∞

∑
k=0

ψ
(1− t

2−k

)

= 1

for all t ∈ [0,1). We now decompose the multiplier (1−|ξ |2)λ+ as

(1−|ξ |2)λ+ = m00(ξ )+
∞

∑
k=0

2−kλmk(ξ ) , (10.2.6)
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where m00(ξ ) = ϕ(|ξ |)(1−|ξ |2)λ and for k ≥ 0, mk is defined by

mk(ξ ) =
(1−|ξ |

2−k

)λ
ψ
(1−|ξ |

2−k

)

(1 + |ξ |)λ .

Note that m00 is a smooth function with compact support; hence the multiplier m00

lies in Mp(R2) for all 1 ≤ p ≤ ∞. Each function mk is also smooth, radial, and
supported in the small annulus

1− 5
8 2−k ≤ |ξ | ≤ 1− 1

8 2−k

and therefore also lies in Mp; nevertheless the Mp norms of the mk’s grow as k
increases, and it is crucial to determine how this growth depends on k so that we can
sum the series in (10.2.6).

Next we show that the Fourier multiplier norm of each mk on L4(R2) is at most
C (1 + |k|)1/2(1 + |Imλ |)3. Summing on k implies that Bλ maps L4(R2) to itself
with norm at most a multiple of (1+ |Imλ |)3 when Reλ > 0. Given this bound, we
conclude the first (and main) statement of the theorem via Theorem 1.3.7 (precisely
Exercise 1.3.4), which permits interpolation for the analytic family of operatorsλ �→
Bλ between the estimates

∥

∥Bλ
∥

∥

L4(R2)→L4(R2) ≤C (1 + |Imλ |)3 when Reλ > 0,
∥

∥Bλ
∥

∥

L1(R2)→L1(R2) ≤C1 ec1|Imλ |2 when Reλ > 1
2 ,

where C,C1,c1 depend only on Reλ . The second estimate above is proved in Propo-
sition 10.2.2 while the set of points (1/p,λ ) obtained by interpolation can be seen
in Figure 10.8.

To estimate the norm of each mk in M4(R2), we need an additional decomposi-
tion of the operator mk that takes into account the radial nature of mk. For each k ≥ 0
we define the sectorial arcs (parts of a sector between two arcs)

Γk,� =
{

re2π iθ ∈ R2 : |θ − �2−
k
2 | < 2−

k
2 , 1− 5

8 2−k ≤ r ≤ 1− 1
8 2−k}

for all �∈ {0,1,2, . . . , [2k/2]−1}. We now introduce a smooth functionω supported
in [−1,1] and equal to 1 on [−1/4,1/4] such that for all x ∈ R we have

∑
�∈Z
ω(x− �) = 1 .

Then we define mk,�(re2π iθ ) = mk(re2π iθ )ω(2k/2θ − �) for integers � in the set
{0,1,2, . . . , [2k/2]−1}. If k is an even integer, it follows from the construction that

mk(ξ ) =
[2k/2]−1

∑
�=0

mk,�(ξ ) (10.2.7)
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for all ξ in R2. If k is odd we replace the function θ �→ ω(2k/2θ − ([2k/2]−1)) by
a function ωk(θ ) supported in the bigger interval

[

([2k/2]−2)2−k/2,1
]

that satisfies
ωk(θ )+ω(2k/2(θ − 1)) = 1 on the interval

[

([2k/2]− 1)2−k/2,1
]

. This leads to a
new definition of the function mk,[2k/2]−1 so that (10.2.7) is satisfied.

This provides the circular (angular) decomposition of mk. Observe that for all
positive integers α and β there exist constants Cα ,β such that

|∂αr ∂
β
θ mk,�(re2π iθ )| ≤Cα ,β (1 + |λ |)α+β2kα2

k
2β

and such that each mk,� is a smooth function supported in the sectorial arcs Γk,�.
We fix k ≥ 0 and we group the set of all {mk,�}� into five subsets: (a) those whose

supports are contained in Q = {(x,y) ∈ R2 : x > 0, |y|< |x|} ; (b) those mk,� whose
supports are contained in the sector Q′ = {(x,y) ∈ R2 : x < 0, |y| < |x|} ; (c) those
whose supports are contained in Q′′ = {(x,y) ∈ R2 : y > 0, |y| > |x|} ; (d) the mk,�

with supports contained in Q′′′ = {(x,y) ∈ R2 : y < 0, |y| > |x|} ; and finally (e)
those mk,� whose supports intersect the lines |y| = |x|.

There are only at most eight mk,� in case (e), and their sum is easily shown to be
an L4 Fourier multilpier with a constant that grows like (1 + |λ |)3, as shown below.
The remaining cases are symmetric, and we focus attention on case (a).

Let I be the set of all indices � in the set {0,1,2, . . . , [2k/2]−1} corresponding to
case (a), i.e., the sectorial arcs Γk,� are contained in the quarter-plane Q. Let Tk,� be
the operator given on the Fourier transform by multiplication by the function mk,�.
We have

∥

∥

∥∑
�∈I

Tk,�( f )
∥

∥

∥

4

L4
=
∫

R2

∣

∣

∣∑
�∈I

Tk,�( f )
∣

∣

∣

4
dx

=
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

Tk,�( f )Tk,�′( f )
∣

∣

∣

2
dx

=
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

̂Tk,�( f ) ∗ ̂Tk,�′( f )
∣

∣

∣

2
dξ ,

(10.2.8)

where we used Plancherel’s identity in the last equality. Each function ̂Tk,�( f ) is sup-

ported in the sectorial arc Γk,�. Therefore, the function ̂Tk,�( f )∗ ̂Tk,�′( f ) is supported
in Γk,� +Γk,�′ and we write the last integral as

∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(

̂Tk,�( f )∗ ̂Tk,�′( f )
)

χΓk,�+Γk,�′

∣

∣

∣

2
dξ .

In view of the Cauchy–Schwarz inequality, the last expression is controlled by
∫

R2

(

∑
�∈I
∑
�′∈I

∣

∣̂Tk,�( f ) ∗ ̂Tk,�′( f )
∣

∣

2
)(

∑
�∈I
∑
�′∈I

∣

∣χΓk,�+Γk,�′
∣

∣

2
)

dξ . (10.2.9)
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At this point we make use of the following lemma, in which the curvature of the
circle is manifested.

Lemma 10.2.5. There exists a constant C0 such that for all k ≥ 0 the following
estimate holds:

∑
�∈I
∑
�′∈I

χΓk,�+Γk,�′ ≤C0 .

We postpone the proof of this lemma until the end of this section. Using Lemma
10.2.5, we control the expression in (10.2.9) by

C0

∫

R2
∑
�∈I
∑
�′∈I

∣

∣̂Tk,�( f )∗ ̂Tk,�′( f )
∣

∣

2
dξ = C0

∥

∥

∥

(

∑
�∈I

|Tk,�( f )|2
) 1

2
∥

∥

∥

4

L4
. (10.2.10)

We examiine each Tk,� a bit more carefully. We have that mk,0 is supported in a
rectangle with sides parallel to the axes and dimensions 2−k (along the ξ1-axis) and

2−
k
2 +1 (along the ξ2-axis). Moreover, in that rectangle, ∂ξ1

≈ ∂r and ∂ξ2
≈ ∂θ , and

it follows that the smooth function mk,0 satisfies

|∂αξ1
∂βξ2

mk,0(ξ1,ξ2)| ≤Cα ,β (1 + |λ |)α+β2kα2
k
2β

for all positive integers α and β . This estimate can also be written as

∣

∣∂αξ1
∂βξ2

[

mk,0(2−kξ1,2
− k

2 ξ2)
] ∣

∣≤Cα ,β (1 + |λ |)α+β ,

which easily implies that

2
3
2 k|m∨

k,0(2
kx1,2

k
2 x2)| ≤Cα ,β (1 + |λ |)3(1 + |x1|+ |x2|)−3 .

Let V� be the unit vector representing the point e2π i�2−k/2
and V⊥

� the unit vector

representing the point ie2π i�2−k/2
. Applying a rotation, we obtain that the functions

m∨
k,� satisfy

∣

∣m∨
k,�(x1,x2)

∣

∣≤C (1 + |λ |)33−
3k
2 (1 + 2−k|x ·V�|+ 2−

k
2 |x ·V⊥

� |)−3 (10.2.11)

and hence
sup
k≥0

sup
�∈I

∥

∥m∨
k,�

∥

∥

L1 ≤C (1 + |λ |)3 . (10.2.12)

The crucial fact is that the constant C in (10.2.12) is independent of � and k.
At this point, for each fixed k ≥ 0 and � ∈ I we let Jk,� be the ξ2-projection of

the support of mk,�. Based on the earlier definition of mk,�, we easily see that when
� > 0,

Jk,� =
[

(1− 5
8 2−k)sin(2π 2−

k
2 (�−1)),(1− 1

8 2−k)sin(2π 2−
k
2 (�+ 1))

]

.
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A similar formula holds for � < 0 in I. The crucial observation is that for any fixed
k ≥ 0 the sets Jk,� are “almost disjoint” for different � ∈ I. Indeed, the sets Jk,� are
contained in the intervals

˜Jk,� =
[

(1− 3
8 2−k)sin(2π 2−

k
2 �)−10 ·2− k

2 ,(1− 3
8 2−k)sin(2π 2−

k
2 �)+ 10 ·2−k

2
]

,

which have length 20 ·2− k
2 and are centered at the points (1− 3

8 2−k)sin(2π 2−
k
2 �) .

For σ ∈ Z and τ ∈ {0,1, . . . ,39} we define the strips

Sk,σ ,τ =
{

(ξ1,ξ2) : ξ2 ∈ [40σ 2−
k
2 + τ 2−

k
2 ,40(σ + 1)2−

k
2 + τ 2−

k
2 )
}

.

These strips have length 40 ·2− k
2 and have the property that each ˜Jk,� is contained in

one of them; say ˜Jk,� is contained in some Sk,σ�,τ� , which we call Bk,�. Then we have

Tk,�( f ) = Tk,�( fk,�) ,

where we set
fk,� =

(

χBk,�
̂f
)∨ = χ∨Bk,�

∗ f .

As a consequence of the Cauchy–Schwarz inequality (with respect to the measure
|m∨

k,�|dx), we obtain

|Tk,�( fk,�)|2 ≤
∥

∥m∨
k,�

∥

∥

L1

(

|m∨
k,�| ∗ | fk,�|2

)

≤ C (1 + |λ |)3(|m∨
k,�| ∗ | fk,�|2

)

in view of (10.2.12). We now return to (10.2.10), which controls (10.2.9) and hence
(10.2.8). Using this estimate, we bound the term in (10.2.10) by

∥

∥

∥

(

∑
�∈I

|Tk,�( f )|2
) 1

2
∥

∥

∥

4

L4
=
∥

∥

∥∑
�∈I

|Tk,�( fk,�)|2
∥

∥

∥

2

L2

≤ C2 (1 + |λ |)6
∥

∥

∥∑
�∈I

|m∨
k,�| ∗ | fk,�|2

∥

∥

∥

2

L2

= C2 (1 + |λ |)6
(
∫

R2
∑
�∈I

(|m∨
k,�| ∗ | fk,�|2)gdx

)2

= C2 (1 + |λ |)6
(

∑
�∈I

∫

R2
(|m̂k,�| ∗ g) | fk,�|2 dx

)2

≤ C2 (1 + |λ |)6
(
∫

R2
sup
�∈I

(

|m̂k,�| ∗ g|
)

∑
�∈I

| fk,�|2 dx

)2

≤ C2 (1 + |λ |)6
∥

∥

∥sup
�∈I

(

|m̂k,�| ∗ g
)

∥

∥

∥

2

L2

∥

∥

∥

(

∑
�∈I

| fk,�|2
) 1

2
∥

∥

∥

4

L4
,

where g is an appropriate nonnegative function in L2(R2) of norm 1.
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If we knew the validity of the estimates
∥

∥

∥ sup
�∈I

(

|m̂k,�| ∗ g
)

∥

∥

∥

L2
≤C (1 + |λ |)3(1 + k)

∥

∥g
∥

∥

L2 (10.2.13)

and
∥

∥

∥

(

∑
�∈I

| fk,�|2
) 1

2
∥

∥

∥

L4
≤C

∥

∥ f
∥

∥

L4 , (10.2.14)

then we would be able to conclude that
∥

∥mk

∥

∥

Mp
≤C (1 + |λ |)3(1 + k)

1
2 (10.2.15)

and hence we could sum the series in (10.2.6).
Estimates (10.2.13) and (10.2.14) are discussed in the next two subsections. �

10.2.3 The Kakeya Maximal Function

We showed in the previous subsection that m∨
k,0 is integrable over R2 and satisfies

the estimate

2
3
2 k|m∨

k,0(2
kx1,2

k
2 x2)| ≤

C (1 + |λ |)3

(1 + |x|)3 .

Since
1

(1 + |x|)3 ≤C
∞

∑
s=0

2−s

22s χ[−2s,2s]×[−2s,2s](x) ,

it follows that

|m̂k,0(x)| ≤C′(1 + |λ |)3
∞

∑
s=0

2−s 1
|Rs|

χRs(x) ,

where Rs = [−2s2k,2s2k]× [−2s2
k
2 ,2s2

k
2 ]. Since a general m̂k,� is obtained from m̂k,0

via a rotation, a similar estimate holds for it. Precisely, we have

|m̂k,�(x)| ≤C′ (1 + |λ |)3
∞

∑
s=0

2−s 1
|Rs,�|

χRs,�(x) , (10.2.16)

where Rs,� is a rectangle with principal axes along the directions V� and V⊥
� and

side lengths 2s2k and 2s2
k
2 , respectively. Using (10.2.16), we obtain the following

pointwise estimate for the maximal function in (10.2.13):

sup
�∈I

(

|m̂k,�| ∗ g
)

≤ C′
∞

∑
s=0

2−s sup
�∈I

1
|Rs,�|

∫

Rs,�

g(x− y)dy , (10.2.17)

where Rs,� are rectangles with dimensions 2s2k and 2s2
k
2 .
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Motivated by (10.2.17), for fixed N ≥ 10 and a > 0, we introduce the Kakeya
maximal operator without dilations

K a
N (g)(x) = sup

R�x

1
|R|

∫

R
|g(y)|dy , (10.2.18)

acting on functions g∈ L1
loc, where the supremum is taken over all rectangles R in R2

of dimensions a and aN and arbitrary orientation. What makes this maximal opera-
tor interesting is that the rectangles R that appear in the supremum in (10.2.19) are
allowed to have arbitrary orientation. We also define the Kakeya maximal operator
KN by

KN(w)(x) = sup
a>0

K a
N (w) , (10.2.19)

for w locally integrable. The maximal function KN(w)(x) is therefore obtained as
the supremum of the averages of a function w over all rectangles in R2 that contain
the point x and have arbitrary orientation but fixed eccentricity equal to N. (The
eccentricity of a rectangle is the ratio of its longer side to its shorter side.)

We see that KN( f ) is pointwise controlled by a cN M( f ), where M is the Hardy–
Littlewood maximal operator M. This implies that KN is of weak type (1,1) with
bound at most a multiple of N. Since KN is bounded on L∞ with norm 1, it follows
that KN maps Lp(R2) to itself with norm at most a multiple of N1/p. However, we
show in the next section that this estimate is very rough and can be improved sig-
nificantly. In fact, we obtain an Lp estimate for KN with norm that grows logarith-
mically in N (when p ≥ 2), and this is very crucial, since N = 2k/2 in the following
application.

Using this new terminology, we write the estimate in (10.2.17) as

sup
�∈I

(

|m̂k,�| ∗ g
)

≤ C′(1 + |λ |)3
∞

∑
s=0

2−sK 2s+k/2

2k/2 (g) . (10.2.20)

The required estimate (10.2.13) is a consequence of (10.2.20) and of the follow-
ing theorem, whose proof is discussed in the next section.

Theorem 10.2.6. There exists a constant C such that for all N ≥ 10 and all f in
L2(R2) the following norm inequality is valid:

sup
a>0

∥

∥K a
N ( f )

∥

∥

L2(R2) ≤C (logN)
∥

∥ f
∥

∥

L2(R2) .

Theorem 10.2.6 is a consequence of Theorem 10.3.5, in which the preceding
estimate is proved for a more general maximal operator MΣN , which in particular
controls KN and hence K a

N for all a > 0. This maximal operator is introduced in
the next section.
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10.2.4 Boundedness of a Square Function

We now turn to the proof of estimate (10.2.14). This is a consequence of the follow-
ing result, which is a version of the Littlewood–Paley theorem for intervals of equal
length.

Theorem 10.2.7. For j ∈ Z, let I j be intervals of equal length with disjoint interior
whose union is R. We define operators Pj with multipliers χIj . Then for 2 ≤ p < ∞,
there is a constant Cp such that for all f ∈ Lp(R) we have

∥

∥

∥

(

∑
j
|Pj( f )|2

)1
2
∥

∥

∥

Lp(R)
≤Cp

∥

∥ f
∥

∥

Lp(R) . (10.2.21)

In particular, the same estimate holds if the intervals I j have disjoint interiors and
equal length but do not necessarily cover R.

Proof. Multiplying the function f by a suitable exponential, we may assume that the
intervals I j have the form

(

( j− 1
2)a,( j+ 1

2 )a
)

for some a > 0. Applying a dilation to
f reduces matters to the case a = 1. We conclude that the constant Cp is independent
of the common size of the intervals I j and it suffices to obtain estimate (10.2.21) in
the case a = 1.

We assume therefore that I j = ( j − 1
2 , j + 1

2) for all j ∈ Z. Next, our goal is to
replace the operators Pj by smoother analogues of them. To achieve this we intro-
duce a smooth function ψ with compact support that is identically equal to 1 on the
interval [− 1

2 , 1
2 ] and vanishes off the interval [− 3

4 , 3
4 ]. We introduce operators S j by

setting
̂S j( f )(ξ ) = ̂f (ξ )ψ(ξ − j)

and we note that the identity
Pj = PjS j (10.2.22)

is valid for all j ∈ Z. For t ∈ R we define multipliers mt as

mt(ξ ) = ∑
j∈Z

e−2π i jtψ(ξ − j) ,

and we set kt = m∨
t . With I0 = (−1/2,1/2), we have

∫

I0
|(kt ∗ f )(x)|2 dt =

∫

I0

∣

∣

∣∑
j∈Z

e−2π i jtS j( f )(x)
∣

∣

∣

2
dt

= ∑
j∈Z

|S j( f )(x)|2 ,
(10.2.23)

where the last equality is just Plancherel’s identity on I0 = [− 1
2 , 1

2 ]. In view of the
last identity, it suffices to analyze the operator given by convolution with the family
of kernels kt . By the Poisson summation formula (Theorem 3.1.17) applied to the
function x �→ ψ(x)e2π ixt , we obtain
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mt(ξ ) = e−2π iξ t ∑
j∈Z
ψ(ξ − j)e2π i(ξ− j)t

= ∑
j∈Z

(

ψ(·)e2π i(·)t)
̂( j)e2π i jξ e−2π iξ t

= ∑
j∈Z

e2π i( j−t)ξ ψ̂( j− t) .

Taking inverse Fourier transforms, we obtain

kt = ∑
j∈Z
ψ̂( j− t)δ− j+t ,

where δb denotes Dirac mass at the point b. Therefore, kt is a sum of Dirac masses
with rapidly decaying coefficients. Since each Dirac mass has Borel norm at most
1, we conclude that

∥

∥kt
∥

∥

M
≤ ∑

j∈Z
|ψ̂( j− t)| ≤ ∑

j∈Z
(1 + | j− t|)−10 ≤ 10 , (10.2.24)

which is independent of t. This says that the measures kt have uniformly bounded
norms. Take now f ∈ Lp(R) and p ≥ 2. Using identity (10.2.22), we obtain

∫

R

(

∑
j∈Z

|Pj( f )(x)|2
)

p
2
dx =

∫

R

(

∑
j∈Z

|PjS j( f )(x)|2
)

p
2
dx

≤ cp

∫

R

(

∑
j∈Z

|S j( f )(x)|2
)

p
2
dx ,

and the last inequality follows from Exercise 4.6.1(a). The constant cp depends only
on p. Recalling identity (10.2.23), we write

cp

∫

R

(

∑
j∈Z

|S j( f )(x)|2
)

p
2
dx ≤ cp

∫

R

(
∫

I0
|(kt ∗ f )(x)|2 dt

)
p
2

dx

≤ cp

∫

R

(
∫

I0
|(kt ∗ f )(x)|pdt

)
p
p

dx

= cp

∫

I0

∫

R
|(kt ∗ f )(x)|p dxdt

≤ 10cp

∫

I0

∫

R
| f (x)|p dxdt

= 10cp
∥

∥ f‖p
Lp ,

where we used Hölder’s inequality on the interval I0 (together with the fact that
p ≥ 2) and (10.2.24). The proof of the theorem is complete with constant Cp =
(10cp)1/p. �

We now return to estimate (10.2.14). First recall the strips
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Sk,σ ,τ =
{

(ξ1,ξ2) : ξ2 ∈ [40σ2−
k
2 + τ,40(σ + 1)2−

k
2 + τ)

}

defined for σ ∈ Z and τ ∈ {0,1, . . . ,39}. These strips have length 40 ·2− k
2 , and each

˜Jk,� is contained in one of them, which we called Sk,σ�,τ� = Bk,�.
The family {Bk,�}�∈I does not consist of disjoint sets, but we split it into 40 sub-

families by placing Bk,� in different subfamilies if the indices τ� and τ�′ are different.
We now write the set I as

I = I1 ∪ I2 ∪·· ·∪ I40 ,

where for each �,�′ ∈ I j the sets Bk,� and Bk,�′ are disjoint.
We now use Theorem 10.2.7 to obtain the required quadratic estimate (10.2.14).

Things now are relatively simple. We observe that the multiplier operators f �→
(χBk,�

̂f )∨ on R2 obey the estimates (10.2.21), in which Lp(R) is replaced by Lp(R2),
since they are the identity operators in the ξ1-variable.

We conclude that

∥

∥

∥

(

∑
�∈I j

|Tk,�( f )|2
)1

2
∥

∥

∥

Lp(R2)
≤Cp

∥

∥ f
∥

∥

Lp(R2) (10.2.25)

holds for all p ≥ 2 and, in particular, for p = 4. This proves (10.2.14) for a single
I j, and the same conclusion follows for I with a constant 40 times as big.

10.2.5 The Proof of Lemma 10.2.5

We finally discuss the proof of Lemma 10.2.5.

Proof. If k = 0,1, . . . ,k0 up to a fixed integer k0, then there exist only finitely many
pairs of sets Γ� +Γ�′ depending on k0, and the lemma is trivially true. We may there-
fore assume that k is a large integer; in particular we may take δ = 2−k ≤ 2400−2.
In the sequel, for simplicity we replace 2−k by δ and we denote the set Γk,� by Γ�. In
the proof that follows we are working with a fixed δ ∈ [0,2400−2]. Elements of the
set Γ� +Γ�′ have the form

re2π i(�+α)δ 1/2
+ r′e2π i(�′+α ′)δ 1/2

, (10.2.26)

where α,α ′ range in the interval [−1,1] and r,r′ range in [1− 5
8δ ,1−

1
8δ ]. We set

w(�,�′) = e2π i�δ 1/2
+ e2π i�′δ 1/2

= 2cos(π |�− �′|δ 1
2 )eπ i(�+�′)δ 1/2

, (10.2.27)

where the last equality is a consequence of a trigonometric identity that can be found
in Appendix E. Using similar identities (see Appendix E) and performing algebraic
manipulations, one may verify that the general element (10.2.26) of the set Γ� +Γ�′
can be written as
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w(�,�′) +
{

r
cos(2παδ

1
2 )+ cos(2πα ′δ

1
2 )−2

2

}

w(�,�′)

+
{

r
sin(2παδ

1
2 )+ sin(2πα ′δ

1
2 )

2

}

iw(�,�′)

+ E(r, �,�′,α,α ′,δ ) ,

where

E(r, �,�′,α,α ′,δ ) = (r−1)
(

e2π i�δ 1/2
+ e2π i�′δ 1/2

)

+(r′ − r)e2π i(�′+α ′)δ 1/2

+ r
(

e2π i�δ 1/2 − e2π i�′δ 1/2
)(cos(2παδ

1
2 )− cos(2πα ′δ

1
2 )

2

)

+ r
(

e2π i�δ 1/2 − e2π i�′δ 1/2
)(sin(2παδ 1

2 )− sin(2πα ′δ 1
2 )

2

)

.

The coefficients in the curly brackets are real, and E(r, �,�′,α,α ′,δ ) is an error of
magnitude at most 2δ + 8π2|�− �′|δ . These observations and the facts |sinx| ≤ |x|
and |1− cosx| ≤ |x|2/2 (see Appendix E) imply that the set Γ� +Γ�′ is contained in
the rectangle R(�,�′) centered at the point w(�,�′) with half-width

2π2δ +(2δ + 8π2|�− �′|δ ) ≤ 80(1 + |�− �′|)δ

in the direction along w(�,�′) and half-length

2πδ
1
2 +(2δ + 8π2|�− �′|δ ) ≤ 30δ

1
2

in the direction along iw(�,�′) [which is perpendicular to that along w(�,�′)]. Since

2π |�− �′|δ 1
2 < π

2 , this rectangle is contained in a disk of radius 105δ
1
2 centered at

the point w(�,�′) .

We immediately deduce that if |w(�,�′)−w(m,m′)| is bigger than 210δ 1
2 , then

the sets Γ� +Γ�′ and Γm +Γm′ do not intersect. Therefore, if these sets intersect, we
should have

|w(�,�′)−w(m,m′)| ≤ 210δ
1
2 .

In view of Exercise 10.2.2, the left-hand side of the last expression is at least

2 2
π cos(π4 )|π(�+ �′)−π(m+ m′)|δ 1

2

(here we use the hypothesis that |2π�δ
1
2 | < π

4 twice). We conclude that if the sets
Γ� +Γ�′ and Γm +Γm′ intersect, then

|(�+ �′)− (m+ m′)| ≤ 210/2
√

2 ≤ 150 . (10.2.28)

In this case the angle between the vectors w(�,�′) and w(m,m′) is
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ϕ�,�′,m,m′ = π |(�+ �′)− (m+ m′)|δ 1
2 ,

which is smaller than π/16, provided (10.2.28) holds and δ < 2400−2. This says
that in this case, the rectangles R(�,�′) and R(m,m′) are essentially parallel to each
other (the angle between them is smaller than π/16).

Let us fix a rectangle R(�,�′), and for another rectangle R(m,m′) we denote by
˜R(m,m′) the smallest rectangle containing R(m,m′) with sides parallel to the corre-
sponding sides of R(�,�′). An easy trigonometric argument shows that ˜R(m,m′) has
the same center as R(m,m′) and has half-sides at most

30δ
1
2 cos(ϕ�,�′,m,m′)+ 80(1 + |�− �′|)δ sin(ϕ�,�′,m,m′) ,

80(1 + |�− �′|)δ cos(ϕ�,�′,m,m′)+ 30δ
1
2 sin(ϕ�,�′,m,m′) ,

in view of Exercise 10.2.3. Then ˜R(m,m′) has half-sides at most 60000δ 1
2 and

18000(1 + |�− �′|)δ and is therefore contained in a fixed multiple of R(m,m′). If
Γ� +Γ�′ and Γm +Γm′ intersect, then so do ˜R(m,m′) and R(�,�′), and both of these
rectangles have sides parallel to the vectors w(�,�′) and iw(�,�′). But in the direc-
tion of w(�,�′), these rectangles have sides with half-lengths at most 80(1+ |�−�′|)δ
and 16000(1+ |m−m′|)δ . Note that the distance of the lines parallel to the direction
iw(�,�′) and passing through the centers of the rectangles ˜R(m,m′) and R(�,�′) is

2
∣

∣cos(π |�− �′|δ 1
2 )− cos(π |m−m′|δ 1

2 )
∣

∣ ,

as we easily see using (10.2.27). If these rectangles intersect, we must have

2
∣

∣cos(π |�− �′|δ 1
2 )− cos(π |m−m′|δ 1

2 )
∣

∣≤ 16080(2 + |�− �′|+ |m−m′|)δ .

We conclude that if the sets R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′), then

∣

∣cos(π |�− �′|δ 1
2 )− cos(π |m−m′|δ 1

2 )
∣

∣≤ 50000(|�− �′|+ |m−m′|)δ .

But the expression on the left is equal to

2
∣

∣sin(π |�−�′|−|m−m′ |
2 δ

1
2 )sin(π |�−�′|+|m−m′|

2 δ
1
2 )
∣

∣ ,

which is at least

2
∣

∣|�− �′|− |m−m′|
∣

∣

(

|�− �′|+ |m−m′|
)

δ

in view of the simple estimate |sin t| ≥ 2
π |t| for |t| < π

2 . We conclude that if the sets
R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′), then

∣

∣|�− �′|− |m−m′|
∣

∣≤ 25000 . (10.2.29)
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Combining (10.2.28) with (10.2.29), it follows that if Γm +Γm′ and Γ� +Γ�′ intersect,
then

max
(

∣

∣min(m,m′)−min(�,�′)
∣

∣,
∣

∣max(m,m′)−max(�,�′)
∣

∣

)

≤ 25150
2

.

We conclude that the set Γm +Γm′ intersects the fixed set Γ�+Γ�′ for at most (25151)2

pairs (m,m′). This finishes the proof of the lemma. �

Exercises

10.2.1. For λ ≥ 0 show that for all f ∈ Lp(Rn) the Bochner–Riesz operators

BλR( f )(x) =
∫

Rn
(1−|ξ/R|2)λ+ ̂f (ξ )e2π ix·ξ dξ

converge to f in Lp(Rn) if and only if the function (1−|ξ |2)λ+ lies in Mp(Rn).
[

Hint: In the beginning of the proof of Theorem 10.2.4 it was shown that if
(1− |ξ |2)λ+ lies in Mp(Rn), then the BλR( f ) converge to f in Lp(Rn). Conversely,
if for all f ∈ Lp(Rn) the BλR( f ) converge to f in Lp as R → ∞, then for every f
in Lp(Rn) there is a constant Cf such that supR>0

∥

∥BλR( f )
∥

∥

Lp ≤ Cf < ∞. It fol-

lows that supR>0

∥

∥BλR
∥

∥

Lp→Lp < ∞ by the uniform boundedness principle; hence
∥

∥Bλ
∥

∥

Lp→Lp < ∞.
]

10.2.2. Let |θ1|, |θ2| < π
4 be two angles. Show geometrically that

|r1eiθ1 − r2eiθ2 | ≥ min(r1,r2)sin |θ1 −θ2|

and use the estimate |sin t| ≥ 2|t|
π for |t| < π

2 to obtain a lower bound for the second
expression in terms of |θ1 −θ2|.

10.2.3. Let R be a rectangle in R2 having length b > 0 along a direction�v = (ξ1,ξ2)
and length a > 0 along the perpendicular direction�v⊥ = (−ξ2,ξ1). Let �w be another
vector that forms an angle ϕ < π

2 with �v. Show that the smallest rectangle R′ that
contains R and has sides parallel to �w and �w⊥ has side lengths asin(ϕ)+ bcos(ϕ)
along the direction �w and acos(ϕ)+ bsin(ϕ) along the direction �w⊥.

10.2.4. Prove that Theorem 10.2.7 does not hold when p < 2.
[

Hint: Try the intervals I j = [ j, j + 1] and ̂f = χ[0,N] as N → ∞.
]

10.2.5. Let {Ik}k be a family of intervals in the real line with |Ik|= |Ik′ | and Ik∩Ik′ =
/0 for all k �= k′. Define the sets

Sk =
{

(ξ1, . . . ,ξn) ∈ Rn : ξ1 ∈ Ik
}

.

Prove that for all p ≥ 2 and all f ∈ Lp(Rn) we have
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∥

∥

∥

(

∑
k

|(̂f χSk)
∨|2
)1

2
∥

∥

∥

Lp(Rn)
≤Cp

∥

∥ f
∥

∥

Lp(Rn) ,

where Cp is the constant of Theorem 10.2.7.

10.2.6. (a) Let {Ik}k, {J�}� be two families of intervals in the real line with |Ik| =
|Ik′ |, Ik ∩ Ik′ = /0 for all k �= k′, and |J�| = |J�′ |, J�∩ J�′ = /0 for all �,�′. Prove that for
all p ≥ 2 there is a constant Cp such that

∥

∥

∥

(

∑
k
∑
�

|(̂f χIk×J�
)∨|2

)1
2
∥

∥

∥

Lp(R2)
≤C2

p

∥

∥ f
∥

∥

Lp(R2) ,

for all f ∈ Lp(R2).
(b) State and prove an analogous result on Rn.
[

Hint: Use the Rademacher functions and apply Theorem 10.2.7 twice.
]

10.2.7. (Rubio de Francia [273] ) On Rn consider the points x� = �
√
δ , � ∈ Zn. Fix

a Schwartz function h whose Fourier transform is supported in the unit ball in Rn.
Given a function f on Rn, define ̂f�(ξ ) = ̂f (ξ )̂h(δ− 1

2 (ξ − x�)). Prove that for some
constant C (which depends only on h and n) the estimate

(

∑
�∈Zn

| f�|2
)1

2 ≤C M(| f |2) 1
2

holds for all functions f . Deduce the Lp(Rn) boundedness of the preceding square
function for all p > 2.
[

Hint: For a sequence λ� with ∑� |λ�|2 = 1, set

G( f )(x) = ∑
�∈Zn

λ� f�(x) =
∫

Rn

[

∑
�∈Zn

λ� e
2π i

x�·y√
δ

]

f
(

x− y√
δ

)

h(y)dy .

Split Rn as the union of Q0 = [− 1
2 , 1

2 ]n and 2 j+1Q0 \ 2 jQ0 for j ≥ 0 and control the
integral on each such set using the decay of h and the L2(2 j+1Q0) norms of the other
two terms. Finally, exploit the orthogonality of the functions e2π i�·y to estimate the
L2(2 j+1Q0) norm of the expression inside the square brackets by C2n j/2. Sum over
j ≥ 0 to obtain the required conclusion.

]

10.2.8. For λ > 0 define the maximal Bochner–Riesz operator

Bλ∗ ( f )(x) = sup
R>0

∣

∣

∣

∣

∫

Rn
(1−|ξ/R|2)λ+ ̂f (ξ )e2π ix·ξ dξ

∣

∣

∣

∣

.

Prove that Bλ∗ maps Lp(Rn) to itself when λ > n−1
2 for 1 ≤ p ≤ ∞.

[

Hint: Use Corollary 2.1.12.
]
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10.3 Kakeya Maximal Operators

We recall the Hardy–Littlewood maximal operator with respect to cubes on Rn de-
fined as

Mc( f )(x) = sup
Q∈F
Q�x

1
|Q|

∫

Q
| f (y)|dy , (10.3.1)

where F is the set of all closed cubes in Rn (with sides not necessarily parallel to
the axes). The operator Mc is equivalent (bounded above and below by constants) to
the corresponding maximal operator M′

c in which the family F is replaced by the
more restrictive family F ′ of cubes in Rn with sides parallel to the coordinate axes.

It is interesting to observe that if the family of all cubes F in (10.3.1) is replaced
by the family of all rectangles (or parallelepipeds) R in Rn, then we obtain an op-
erator M0 that is unbounded on Lp(Rn); see also Exercise 2.1.9. If we substitute
the family of all parallelepipeds R, however, with the more restrictive family R ′

of all parallelepipeds with sides parallel to the coordinate axes, then we obtain the
so-called strong maximal function

Ms( f )(x) = sup
R∈R′
R�x

1
|R|

∫

R
| f (y)|dy , (10.3.2)

which was introduced in Exercise 2.1.6. The operator Ms is bounded on Lp(Rn) for
1 < p < ∞ but it is not of weak type (1,1). See Exercise 10.3.1.

These examples indicate that averaging over long and skinny rectangles is quite
different than averaging over squares. In general, the direction and the dimensions
of the averaging rectangles play a significant role in the boundedness properties of
the maximal functions. In this section we investigate aspects of this topic.

10.3.1 Maximal Functions Associated with a Set of Directions

Definition 10.3.1. Let Σ be a set of unit vectors in R2, i.e., a subset of the unit
circle S1. Associated with Σ , we define RΣ to be the set of all closed rectangles in
R2 whose longest side is parallel to some vector in Σ . We also define a maximal
operator MΣ associated with Σ as follows:

MΣ ( f )(x) = sup
R∈RΣ

R�x

1
|R|

∫

R
| f (y)|dy ,

where f is a locally integrable function on R2.
We also recall the definition given in (10.2.19) of the Kakeya maximal operator

KN(w)(x) = sup
R�x

1
|R|

∫

R
|w(y)|dy , (10.3.3)



10.3 Kakeya Maximal Operators 369

where the supremum is taken over all rectangles R in R2 of dimensions a and aN
where a > 0 is arbitrary. Here N is a fixed real number that is at least 10.

Example 10.3.2. Let Σ = {v} consist of only one vector v = (a,b). Then

MΣ ( f )(x) = sup
0<r≤1

sup
N>0

1
rN2

∫ N

−N

∫ rN

−rN
| f (x− t(a,b)− s(−b,a))|dsdt .

If Σ = {(1,0),(0,1)} consists of the two unit vectors along the axes, then

MΣ = Ms ,

where Ms is the strong maximal function defined in (10.3.2).

It is obvious that for each Σ ⊆ S1, the maximal function MΣ maps L∞(R2) to
itself with constant 1. But MΣ may not always be of weak type (1,1), as the example
Ms indicates; see Exercise 10.3.1. The boundedness of MΣ on Lp(R2) in general
depends on the set Σ .

An interesting case arises in the following example as well.

Example 10.3.3. For N ∈ Z+, let

Σ = ΣN =
{(

cos( 2π j
N ),sin( 2π j

N )
)

: j = 0,1,2, . . . ,N −1
}

be the set of N uniformly spread directions on the circle. Then we expect MΣN to
be Lp bounded with constant depending on N. There is a connection between the
operator MΣN previously defined and the Kakeya maximal operator KN defined in
(10.2.19). In fact, Exercise 10.3.3 says that

KN( f ) ≤ 20MΣN ( f ) (10.3.4)

for all locally integrable functions f on R2.

We now indicate why the norms of KN and MΣN on L2(R2) grow as N →∞. We
refer to Exercises 10.3.4 and 10.3.7 for the corresponding result for p �= 2.

Proposition 10.3.4. There is a constant c such that for any N ≥ 10 we have
∥

∥KN
∥

∥

L2(R2)→L2(R2) ≥ c(logN) (10.3.5)

and
∥

∥KN
∥

∥

L2(R2)→L2,∞(R2) ≥ c(logN)
1
2 . (10.3.6)

Therefore, a similar conclusion follows for MΣN .

Proof. We consider the family of functions fN(x) = 1
|x|χ3≤|x|≤N defined on R2 for

N ≥ 10. Then we have
∥

∥ fN
∥

∥

L2(R2) ≤ c1(logN)
1
2 . (10.3.7)
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On the other hand, for every x in the annulus 6 < |x| < N, we consider the rectangle

Rx of dimensions |x| − 3 and |x|−3
N , one of whose shorter sides touches the circle

|y| = 3 and the other has midpoint x. Then

KN( fN)(x) ≥ 1
|Rx|

∫

Rx

| fN(y)|dy ≥ c2N
(|x|−3)2

∫∫

6≤y1≤|x|
|y2|≤ |x|−3

2N

dy1dy2

y1
≥ c3

log |x|
|x| .

It follows that

∥

∥KN( fN)
∥

∥

L2(R2) ≥ c3

(
∫

6≤|x|≤N

( log |x|
|x|

)2
dx

) 1
2

≥ c4 (logN)
3
2 . (10.3.8)

Combining (10.3.7) with (10.3.8) we obtain (10.3.5) with c = c4/c1.
We now turn to estimate (10.3.6). Since for all 6 < |x| < N we have

KN( fN)(x) ≥ c3
log |x|
|x| > c3

logN
N

,

it follows that
∣

∣

{

KN( fN) > c3
logN

N

}∣

∣≥ π(N2 −62) ≥ c5N2 and hence

∥

∥KN( fN)
∥

∥

L2,∞
∥

∥ fN
∥

∥

L2

≥
sup
λ>0
λ
∣

∣

{

KN( fN) > λ
}∣

∣

1
2

c1(logN)
1
2

≥ c3
logN

N

∣

∣

{

KN( fN) > c3
logN

N

}∣

∣

1
2

c1(logN)
1
2

≥ c3
√

c5

c1
(logN)

1
2 .

This completes the proof. �

10.3.2 The Boundedness of MΣN on Lp(R2)

It is rather remarkable that both estimates of Proposition 10.3.4 are sharp in terms
of their behavior as N → ∞, as the following result indicates.

Theorem 10.3.5. There exist constants 0 < B,C <∞ such that for every N ≥ 10 and
all f ∈ L2(R2) we have

∥

∥MΣN ( f )
∥

∥

L2,∞(R2) ≤ B(logN)
1
2
∥

∥ f
∥

∥

L2(R2) (10.3.9)

and
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∥

∥MΣN ( f )
∥

∥

L2(R2) ≤C (logN)
∥

∥ f
∥

∥

L2(R2) . (10.3.10)

In view of (10.3.4), similar estimates also hold for KN.

Proof. We deduce (10.3.10) from the weak type estimate (10.3.9), which we rewrite
as

∣

∣

{

x ∈ R2 : MΣN ( f )(x) > λ
}∣

∣≤ B2 (logN)

∥

∥ f
∥

∥

2
L2

λ 2 . (10.3.11)

We prove this estimate for some constant B > 0 independent of N. But prior to doing
this we indicate why (10.3.11) implies (10.3.10).

Using Exercise 10.3.2, we have that MΣN maps Lp(R2) to Lp(R2) (and hence
into Lp,∞) with constant at most a multiple of N1/p for all 1 < p < ∞. Using this
with p = 3/2, we have

∥

∥MΣN

∥

∥

L
3
2 →L

3
2 ,∞ ≤

∥

∥MΣN

∥

∥

L
3
2 →L

3
2
≤ AN

2
3 (10.3.12)

for some constant A > 0. Now split f as the sum f = f1 + f2 + f3, where

f1 = f χ| f |≤ 1
4λ

,

f2 = f χ 1
4λ<| f |≤N2λ ,

f3 = f χN2λ<| f | .

It follows that
∣

∣

{

MΣN ( f ) > λ
}∣

∣≤
∣

∣

{

MΣN ( f2) > λ
3

}∣

∣+
∣

∣

{

MΣN ( f3) > λ
3

}∣

∣ , (10.3.13)

since the set
{

MΣN ( f1) > λ
3

}

is empty. To obtain the required result we use the L2,∞

estimate (10.3.11) for f2 and the L
3
2 ,∞ estimate (10.3.12) for f3. We have

∥

∥MΣN ( f )
∥

∥

2
L2

= 2
∫ ∞

0
λ
∣

∣

{

MΣN ( f ) > λ
}∣

∣dλ

≤
∫ ∞

0
2λ
∣

∣

{

MΣN ( f2) > λ
3

}∣

∣dλ +
∫ ∞

0
2λ
∣

∣

{

MΣN ( f3) > λ
3

}∣

∣dλ

≤
∫ ∞

0

2λB2 (logN)
λ 2

∫

1
4λ<| f |≤N2λ

| f |2dxdλ +
∫ ∞

0

2λA
3
2 N

λ
3
2

∫

| f |>N2λ

| f | 3
2 dxdλ

≤ 2B2(logN)
∫

R2
| f (x)|2

∫ 4| f (x)|

| f (x)|
N2

dλ
λ

dx + 2A
3
2 N

∫

R2
| f (x)| 3

2

∫
| f (x)|

N2

0

dλ
λ

1
2

dx

=
(

4B2(log2N)(logN)+ 4A
3
2
)∥

∥ f
∥

∥

2
L2

≤ C(logN)2
∥

∥ f
∥

∥

2
L2
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using Fubini’s theorem for integrals. This proves (10.3.10).
To avoid problems with antipodal points, it is convenient to split ΣN as the union

of eight sets, in each of which the angle between any two vectors does not exceed
2π/8. It suffices therefore to obtain (10.3.11) for each such subset of ΣN . Let us fix
one such subset of ΣN , which we call Σ1

N . To prove (10.3.11), we fix a λ > 0 and
we start with a compact subset K of the set {x ∈ R2 : MΣ1

N
( f )(x) > λ

}

. Then for
every x ∈ K, there exists an open rectangle Rx that contains x and whose longest side
is parallel to a vector in Σ1

N . By compactness of K, there exists a finite subfamily
{Rα}α∈A of the family {Rx}x∈K such that

∫

Rα
| f (y)|dy > λ |Rα |

for all α ∈ A and such that the union of the Rα’s covers K.
We claim that there is a constant C such that for any finite family {Rα}α∈A of

rectangles whose longest side is parallel to a vector in Σ1
N there is a subset B of A

such that
∫

R2

(

∑
β∈B

χRβ (x)
)2

dx ≤C
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ (10.3.14)

and that ∣

∣

∣

⋃

α∈A

Rα
∣

∣

∣≤C(logN)
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ . (10.3.15)

Assuming (10.3.14) and (10.3.15), we easily deduce (10.3.11). Indeed,
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ ≤ ∑
β∈B

|Rβ |

<
1
λ ∑β∈B

∫

Rβ
| f (y)|dy

=
1
λ

∫

R2

(

∑
β∈B

χRβ

)

| f (y)|dy

≤ 1
λ

(
∫

R2

(

∑
β∈B

χRβ

)2
dx

)1
2 ∥
∥ f
∥

∥

L2

≤ C
1
2

λ

∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣

1
2 ∥
∥ f
∥

∥

L2 ,

from which it follows that
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣≤
C
λ 2

∥

∥ f
∥

∥

2
L2 .

Then, using (10.3.15), we obtain
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|K| ≤
∣

∣

∣

⋃

α∈A

Rα
∣

∣

∣≤C (logN)
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣≤
C2

λ 2 (logN)
∥

∥ f
∥

∥

2
L2 ,

and since K was an arbitrary compact subset of {x : MΣ1
N
( f )(x) > λ

}

, the same
estimate is valid for the latter set.

We now turn to the selection of the subfamily {Rβ}β∈B and the proof of
(10.3.14) and (10.3.15).

Let Rβ1
be the rectangle in {Rα}α∈A with the longest side. Suppose we have

chosen Rβ1
,Rβ2

, . . . ,Rβ j−1
for some j ≥ 2. Then among all rectangles Rα that satisfy

j−1

∑
k=1

|Rβk
∩Rα | ≤

1
2
|Rα | , (10.3.16)

we choose a rectangle Rβ j
such that its longer side is as large as possible. Since the

collection {Rα}α∈A is finite, this selection stops after m steps. Define

B = {β1,β2, . . . ,βm} .

Using (10.3.16), we obtain

∫

R2

(

∑
β∈B

χRβ

)2
dx ≤ 2

m

∑
j=1

j

∑
k=1

|Rβk
∩Rβ j

|

= 2
m

∑
j=1

[( j−1

∑
k=1

|Rβk
∩Rβ j

|
)

+ |Rβ j
|
]

≤ 2
m

∑
j=1

[ 1
2
|Rβ j

|+ |Rβ j
|
]

= 3
m

∑
j=1

|Rβ j
| .

(10.3.17)

A consequence of this fact is that

m

∑
j=1

|Rβ j
| =

∫

⋃m
j=1 Rβ j

( m

∑
j=1

χRβ j

)

dx

≤
∣

∣

∣

m
⋃

j=1

Rβ j

∣

∣

∣

1
2
(
∫

Rn

(

∑
β∈B

χRβ

)2
dx

)1
2

≤
∣

∣

∣

m
⋃

j=1

Rβ j

∣

∣

∣

1
2 √

3
( m

∑
j=1

|Rβ j
|
) 1

2
,

which implies that
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m

∑
j=1

|Rβ j
| ≤ 3

∣

∣

∣

m
⋃

j=1

Rβ j

∣

∣

∣. (10.3.18)

Using (10.3.18) in conjunction with the last estimate in (10.3.17), we deduce the
desired inequality (10.3.14) with C = 9.

We now turn to the proof of (10.3.15). Let Mc be the usual Hardy–Littlewood
maximal operator with respect to cubes in Rn (or squares in R2; recall n = 2). Since
Mc is of weak type (1,1), (10.3.15) is a consequence of the estimate

⋃

α∈A \B
Rα ⊆

{

x ∈ R2 : Mc
(

∑
β∈B

χ(Rβ )∗
)

(x) > c(logN)−1} (10.3.19)

for some absolute constant c, where (Rβ )∗ is the rectangle Rβ expanded 5 times in
both directions. Indeed, if (10.3.19) holds, then

∣

∣

∣

⋃

α∈A

Rα
∣

∣

∣ ≤
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣+
∣

∣

∣

⋃

α∈A \B
Rα
∣

∣

∣

≤
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣+
10
c

(logN) ∑
β∈B

|(Rβ )∗|

≤
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣+
250

c
(logN) ∑

β∈B

|Rβ |

≤ C (logN)
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ ,

where we just used (10.3.18) and the fact that N is large.
It remains to prove (10.3.19). At this point we need the following lemma. In the

sequel we denote by θα the angle between the x axis and the vector pointing in the
longer direction of Rα for any α ∈ A . We also denote by lα the shorter side of Rα
and by Lα the longer side of Rα for any α ∈ A . Finally, we set

ωk =
2π2k

N

for k ∈ Z+ and ω0 = 0.

Lemma 10.3.6. Let Rα be a rectangle in the family {Rα}α∈A and let 0 ≤ k <
[ log(N/8)

log2

]

. Suppose that β ∈ B is such that

ωk ≤ |θα −θβ | < ωk+1

and such that Lβ ≥ Lα . Let sα = 8max(lα ,ωkLα ). For an arbitrary x ∈ Rα , let Q be
a square centered at x with sides of length sα parallel to the sides of Rα . Then we
have

|Rβ ∩Rα |
|Rα |

≤ 32
|(Rβ )∗ ∩Q|

|Q| . (10.3.20)
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Assuming Lemma 10.3.6, we conclude the proof of (10.3.19). Fix α ∈ A \B.
Then the rectangle Rα was not selected in the selection procedure. This means that
for all l ∈ {2, . . . ,m+ 1} we have exactly one of the following: either

l−1

∑
j=1

|Rβ j
∩Rα | >

1
2
|Rα | (10.3.21)

or
l−1

∑
j=1

|Rβ j
∩Rα | ≤

1
2
|Rα | and Lα ≤ Lβl

. (10.3.22)

If (10.3.22) holds for l = 2, we let μ ≤ m be the largest integer such that (10.3.22)
holds for all l ≤ μ . Then (10.3.22) fails for l = μ + 1; hence (10.3.21) holds for
l = μ+ 1; thus

1
2
|Rα | <

μ

∑
j=1

|Rβ j
∩Rα | ≤ ∑

β∈B
Lβ≥Lα

|Rβ ∩Rα | . (10.3.23)

If (10.3.22) fails for l = 2, then (10.3.21) holds for l = 2, and this implies that

1
2
|Rα | < |Rβ1

∩Rα | ≤ ∑
β∈B

Lβ≥Lα

|Rβ ∩Rα | .

In either case we have

1
2
|Rα | < ∑

β∈B
Lβ≥Lα

|Rβ ∩Rα | ,

and from this it follows that there exists a k with 0 ≤ k <
[ log(N/8)

log2

]

such that

log2
2log(N/8)

|Rα | < ∑
β∈B

Lβ≥Lα
ωk≤|θβ−θα |<ωk+1

|Rβ ∩Rα | . (10.3.24)

By Lemma 10.3.6, for any x ∈ Rα there is a square Q such that (10.3.20) holds for
any Rβ with β ∈ B satisfying Lβ ≥ Lα and ωk ≤ |θβ −θα | < ωk+1. It follows that

log2
2log(N/8)

< 2 ∑
β∈B

Lβ≥Lα
ωk≤|θβ−θα |<ωk+1

|(Rβ )∗ ∩Q|
|Q| ,

which implies
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c
logN

<
log2

4log(N/8)
<

1
|Q|

∫

Q
∑
β∈B

χ(Rβ )∗ dx .

This proves (10.3.19), since for α ∈ A \B, any x ∈ Rα must be an element of the
set
{

x ∈ R2 : Mc
(

∑β∈B χ(Rβ )∗
)

(x) > c(logN)−1
}

. �

It remains to prove Lemma 10.3.6.

Fig. 10.9 For angles τ less
than that displayed, the strip
R∞β meets the upper side of Q.
The length of the intersection
of R∞β with the lower side of
Q is denoted by b.

x

R

R

Q

α

.

β

h

∞

b

τ

Proof. We fix Rα and Rβ so that Lβ ≥ Lα and we assume that Rβ intersects Rα ;
otherwise, (10.3.20) is obvious. Let τ be the angle between the directions of the
rectangles Rα and Rβ , that is,

τ = |θα −θβ | .

By assumption we have τ < ωk+1 ≤ π
4 , since k + 1 ≤ [ log(N/8)

log2 ] ≤ log(N/8)
log2 .

Let R∞β denote the smallest closed infinite strip in the direction of the longer side
of Rβ that contains it. We make the following observation: if

tanτ ≤
1
2 sα − lα
1
2 sα + Lα

, (10.3.25)

then the strip R∞β intersects the upper side (according to Figure 10.9) of the square
Q. Indeed, the worst possible case is drawn in Figure 10.9, in which equality holds
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in (10.3.25). For τ ≤ π/4 we have tanτ < 3τ/2, and since τ < 2ωk, it follows that
tanτ < 3ωk. Our choice of sα implies

sα ≥ 6ωk Lα + 2 lα =⇒ 3ωk ≤
1
2 sα − lα
1
2 sα + Lα

;

hence (10.3.25) holds.
We have now proved that R∞β meets the upper side of Q. We examine the size

of the intersection R∞β ∩Q. According to the picture in Figure 10.9, this intersection
contains a parallelogram of base b = lβ/cosτ and height sα −h and a right triangle
with base b and height h (with 0 ≤ h ≤ sα ). Then we have

|R∞β ∩Q|
|Q| ≥ 1

s2
α

lβ
cosτ

(

sα −h +
1
2

h
)

≥ 1
s2
α

lβ
cosτ

(1
2

sα
)

≥ 1
2

lβ
sα

.

Since (Rβ )∗ has length 5Lβ and Rβ meets Rα , we have that R∞β ∩Q � (Rβ )∗ ∩Q and
therefore

|(Rβ )∗ ∩Q|
|Q| ≥ 1

2

lβ
sα

. (10.3.26)

On the other hand, let Rα ,β be the smallest parallelogram two of whose opposite
sides are parallel to the shorter sides of Rα and whose remaining two sides are
contained in the boundary lines of R∞β . Then

|Rα ∩Rβ | ≤ |Rα ,β | ≤
lβ

cosτ
Lα ≤ 2 lβLα .

Another geometric argument shows that

|Rα ∩Rβ | ≤ lβ
lα

sin(τ)
≤ lα lβ

π
2τ

≤ lα lβ
π

2ωk
≤ 2

lα lβ
ωk

.

Combining these estimates, we deduce

|Rα ∩Rβ |
|Rα |

≤ 2min
( lβ

lα
,

lβ
ωk Lα

)

≤ 16
lβ
sα

. (10.3.27)

Finally, (10.3.26) and (10.3.27) yield (10.3.20). �
We end this subsection with an immediate corollary of the theorem just proved.

Corollary 10.3.7. For every 1 < p < ∞ there exists a constant cp such that

∥

∥KN
∥

∥

Lp(R2)→Lp(R2) ≤ cp

{

N
2
p−1(logN)

1
p′ when 1 < p < 2,

(logN)
1
p when 2 < p < ∞.

(10.3.28)

Proof. We see that
∥

∥KN
∥

∥

L1(R2)→L1,∞(R2) ≤C N (10.3.29)
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by replacing a rectangle of dimensions a×aN by the smallest square of side length
aN that contains it. Interpolating between (10.3.9) and (10.3.29), we obtain the first
statement in (10.3.28). The second statement in (10.3.28) follows by interpolation
between (10.3.9) and the trivial L∞ → L∞ estimate. (In both cases we use Theorem
1.3.2.) �

10.3.3 The Higher-Dimensional Kakeya Maximal Operator

The Kakeya maximal operator without dilations K a
N on L2(R2) was crucial in the

study of the boundedness of the Bochner–Riesz operator Bλ on L4(R2). An analo-
gous maximal operator could be introduced on Rn.

Definition 10.3.8. Given fixed a > 0 and N ≥ 10, we introduce the Kakeya maximal
operator without dilations on Rn as

K a
N ( f )(x) = sup

R

1
|R|

∫

R
| f (y)|dy ,

where the supremum is taken over all rectangular parallelepipeds (boxes) of arbi-
trary orientation in Rn that contain the point x and have dimensions

a×a×·· ·×a
︸ ︷︷ ︸

n−1 times

×aN .

We also define the centered version Ka
N of K a

N as follows:

K
a
N( f )(x) = sup

R

1
|R|

∫

R
| f (y)|dy ,

where the supremum is restricted to those rectangles among the previous ones that
are centered at x. These two maximal operators are comparable, and we have

K
a
N ≤ K a

N ≤ 2n
K

a
N

by a simple geometric argument.

We also define the higher-dimensional analogue of the Kakeya maximal operator
KN introduced in (10.3.3).

Definition 10.3.9. Let N ≥ 10. We denote by R(N) the set of all rectangular paral-
lelepipeds (boxes) in Rn with arbitrary orientation and dimensions

a×a×·· ·×a
︸ ︷︷ ︸

n−1 times

×aN

with arbitrary a > 0. Given a locally integrable function f on Rn, we define
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KN( f )(x) = sup
R∈R(N)

R�x

1
|R|

∫

R
| f (y)|dy

and

KN( f )(x) = sup
R∈R(N)

R has center x

1
|R|

∫

R
| f (y)|dy ;

KN and KN are called the centered and uncentered nth-dimensional Kakeya maximal
operators, respectively.

For convenience we call rectangular parallelepipeds, i.e., elements of R(N),
higher-dimensional rectangles, or simply rectangles. We clearly have

sup
a>0

K a
N = KN and sup

a>0
K

a
N = KN ;

hence the boundedness of K a
N can be deduced from that of KN ; however, this de-

duction can essentially be reversed with only logarithmic loss in N (see the refer-
ences at the end of this chapter). In the sequel we restrict attention to the operator
K a

N , whose study already presents all the essential difficulties and requires a novel
set of ideas in its analysis. We consider a specific value of a, since a simple dilation
argument yields that the norms of K a

N and K b
N on a fixed Lp(Rn) are equal for all

a,b > 0.
Concerning K 1

N , we know that
∥

∥K 1
N

∥

∥

L1(Rn)→L1,∞(Rn) ≤ cn Nn−1 . (10.3.30)

This estimate follows by replacing a rectangle of dimensions

n−1 times
︷ ︸︸ ︷

1×1×·· ·×1×N by
the smallest cube of side length N that contains it. This estimate is sharp; see Exer-
cise 10.3.7.

It would be desirable to know the following estimate for K 1
N :

∥

∥K 1
N

∥

∥

Ln(Rn)→Ln,∞(Rn) ≤ c′n(logN)
n−1

n (10.3.31)

for some dimensional constant c′n. It would then follow that
∥

∥K 1
N

∥

∥

Ln(Rn)→Ln(Rn) ≤ c′′n logN (10.3.32)

for some other dimensional constant c′′n ; see Exercise 10.3.8(b). Moreover, if esti-
mate (10.3.31) were true, then interpolating between (10.3.30) and (10.3.31) would
yield the bound

∥

∥K 1
N

∥

∥

Lp(Rn)→Lp(Rn) ≤ cn,pN
n
p−1(logN)

1
p′ , 1 < p < n . (10.3.33)
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It is estimate (10.3.33) that we would like to concentrate on. We have the follow-
ing result for a certain range of p’s in the interval (1,n).

Theorem 10.3.10. Let pn = n+1
2 and N ≥ 10. Then there exists a constant Cn such

that
∥

∥K 1
N

∥

∥

Lpn,1(Rn)→Lpn,∞(Rn) ≤ CnN
n

pn
−1 , (10.3.34)

∥

∥K 1
N

∥

∥

Lpn (Rn)→Lpn,∞(Rn) ≤ CnN
n

pn
−1(logN)

1
p′n , (10.3.35)

∥

∥K 1
N

∥

∥

Lpn (Rn)→Lpn (Rn) ≤ CnN
n

pn
−1(logN) . (10.3.36)

Moreover, for every 1 < p < pn there exists a constant Cn,p such that

∥

∥K 1
N

∥

∥

Lp(Rn)→Lp(Rn) ≤Cn,p N
n
p−1(logN)

1
p′ . (10.3.37)

Proof. We begin by observing that (10.3.37) is a consequence of (10.3.30) and
(10.3.35) using Theorem 1.3.2. We also observe that (10.3.36) is a consequence
of (10.3.35), while (10.3.35) is a consequence of (10.3.34) (see Exercise 10.3.8).
We therefore concentrate on estimate (10.3.34).

We choose to work with the centered version K1
N of K 1

N , which is comparable to
it. To make the geometric idea of the proof a bit more transparent, we pick δ < 1/10,
we set N = 1/δ , and we work with the equivalent operator Kδ1/δ , whose norm is the

same as that of K 1
N . Since the operators in question are positive, we work with

nonnegative functions.
The proof is based on a linearization of the operator K δ

1/δ . Let us call a rectangle
of dimensions δ × δ × ·· · × δ × 1 a δ -tube. We call the line segment parallel to
the longest edges that joins the centers of its two smallest faces, a δ -tube’s axis of
symmetry.

For every x in Rn we select (in some measurable way) a δ -tube τ(x) that contains
x such that

1
2

K δ
1/δ ( f )(x) ≤ 1

|τ(x)|

∫

τ(x)
f (y)dy .

Suppose we have a grid of cubes in Rn each of side length δ ′ = δ/(2
√

n), and let
Q j be a cube in that grid with center cQj . Then any δ -tube centered at a point z ∈ Q j

must contain the entire Q j, and it follows that

K
δ
1/δ ( f )(z) ≤ K δ

1/δ ( f )(cQj ) ≤
2

|τ(cQj )|

∫

τ(cQ j )
f (y)dy . (10.3.38)

This observation motivates the introduction of a grid of width δ ′ = δ/(2
√

n) in
Rn so that for every cube Q j in the grid there is an associated δ -tube τ j satisfying

τ j ∩Q j �= /0.

Then we define a linear operator
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Lδ ( f ) =∑
j

(

1
|τ j|

∫

τ j

f (y)dy

)

χQj ,

which certainly satisfies

Lδ ( f ) ≤ 2nK 2δ
1/δ ( f ) ≤ 4n

K
2δ
1/δ ( f ) ,

and in view of (10.3.38), it also satisfies

K
δ
1/δ ( f ) ≤ 2Lδ ( f ) .

It suffices to show that Lδ is bounded from Lpn,1 to Lpn,∞ with constantCn(δ−1)
n
pn

−1,
which is independent of the choice of δ -tubes τ j .

Our next reduction is to take f to be the characteristic function of a set. The space
Lpn,∞ is normable [i.e., it has an equivalent norm under which it is a Banach space
(Exercise 1.1.12)]; hence by Exercise 1.4.7, the boundedness of Lδ from Lpn,1 to
Lpn,∞ is a consequence of the restricted weak type estimate

sup
λ>0
λ
∣

∣

{

Lδ (χA) > λ
}∣

∣

1
pn ≤C′

n(δ
−1)

n
pn

−1|A|
1

pn , (10.3.39)

for some dimensional constant Cn and all sets A of finite measure. This estimate can
be written as

λ
n+1

2 δ
n−1

2 |Eλ | ≤Cn|A| , (10.3.40)

where
Eλ =

{

x ∈ Rn : Lδ (χA)(x) > λ
}

=
{

Lδ (χA) > λ
}

.

Our final reduction stems from the observation that the operator Lδ is “local.”
This means that if f is supported in a cube Q, say of side length one, then Lδ ( f ) is
supported in a fixed multiple of Q. Indeed, it is simple to verify that if x /∈ 10Q and
f is supported in Q, then Lδ ( f )(x) = 0, since no δ -tube containing x can reach Q.
For “local” operators, it suffices to prove their boundedness for functions supported
in cubes of side length one; see Exercise 10.3.9. We may therefore work with a
measurable set A contained in a cube in Rn of side length one. This assumption has
as a consequence that Eλ is contained in a fixed multiple of Q, such as 10Q.

Having completed all the required reductions, we proceed by proving the re-
stricted weak type estimate (10.3.40) for sets A supported in a cube of side length
one. In proving (10.3.40) we may take λ ≤ 1; otherwise, the set Eλ is empty. We
consider the cases c0(n)δ ≤ λ and c0(n)δ > λ , for some large constant c0(n) to be
determined later. If c0(n)δ > λ , then

|Eλ | ≤C1
n (1/δ )n−1 |A|

λ
(10.3.41)

by the weak type (1,1) boundedness of Lδ with constant C1
nδ 1−n. It follows from

(10.3.41) that
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C1
n |A| ≥ |Eλ |δ n−1λ > c0(n)−

n−1
2 |Eλ |λ

n+1
2 δ

n−1
2 ,

which proves (10.3.40) in this case.
We now assume c0(n)δ ≤ λ ≤ 1. Since Lδ (χA) is constant on each Q j, we have

that each Q j is either entirely contained in the set Eλ or disjoint from it. Conse-
quently, setting

E =
{

j : Q j ⊆ Eλ
}

,

we have
Eλ =

⋃

j∈E

Q j .

Hence
|E | = #

{

j : j ∈ E
}

= |Eλ |(δ ′)−n,

and for all j ∈ E we have

|τ j ∩A| > λ |τ j| = λ δ n−1 .

It follows that

|A| sup
x

[

∑
j∈E

χτ j(x)
]

≥
∫

A
∑
j∈E

χτ j dx

= ∑
j∈E

|τ j ∩A|

> λ δ n−1|E |

= λ δ n−1 |Eλ |
(δ ′)n

= (2
√

n)n λ |Eλ |
δ

.

Therefore, there exists an x0 in A such that

#
{

j ∈ E : x0 ∈ τ j
}

> (2
√

n)n λ |Eλ |
δ |A| .

Let S(x0,
1
2 ) be a sphere of radius 1

2 centered at the point x0. We find on this sphere
a finite set of pointsΘ = {θk}k that is maximal with respect to the property that the
balls B(θk,δ ) are at distance at least 10

√
nδ from each other. Define spherical caps

Sk = Sn−1 ∩B(θk,δ ) .

Since the Sk’s are disjoint and have surface measure a constant multiple of δ n−1, it
follows that there are about δ 1−n such points θk.

We count the number of δ -tubes that contain x0 and intersect a fixed cap Sk. All
these δ -tubes are contained in a cylinder of length 3 and diameter c1(n)δ whose
axis of symmetry contains x0 and the center of the cap Sk. This cylinder has volume
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3ωn−1c1(n)n−1δ n−1, and thus it intersects at most c2(n)δ−1 cubes of the family Q j,
since the Q j’s are disjoint and all have volume equal to (δ ′)n. We deduce then that
given such a cap Sk, there exist at most c3(n)δ−1 δ -tubes (from the initial family)
that contain the point x0 and intersect Sk.

Let us call a set of δ -tubes ε-separated if for every τ and τ ′ in the set with τ �= τ ′
we have that the angle between the axis of symmetry of τ and τ ′ is at least ε > 0.

Since we have at least (2
√

n)nλ |Eλ |
δ |A| δ -tubes that contain the given point x0, and each

cap Sk is intersected by at most c3(n)δ−1 δ -tubes that contain x0, it follows that at

least c4(n)λ |Eλ ||A| of these δ -tubes have to intersect different caps Sk. But δ -tubes that
intersect different caps Sk and contain x0 are δ -separated. We have therefore shown
that there exist at least c4(n)λ |Eλ ||A| δ -separated tubes from the original family that
contain the point x0. Call T the family of these δ -tubes.

We find a maximal subset Θ ′ of the θk’s such that the balls B(θk,δ ), θk ∈ Θ ′,

have distance at least 30
√

nδ
λ from each other. This is possible if λ/δ ≥ c0(n) for

some large constant c0(n) [such as c0(n) = 1000
√

n ]. We “thin out” the family T
by removing all the δ -tubes that intersect the caps Sk with θk ∈ Θ \Θ ′. In other
words, we essentially keep in T one out of every 1/λ n−1 δ -tubes. In this way we

extract at least c5(n)λ
n |Eλ |
|A| δ -tubes from T that are 60

√
nδ
λ -separated and contain

the point x0. We denote these tubes by {τ j : j ∈ F}.
We have therefore found a subset F of E such that

x0 ∈ τ j for all j ∈ F , (10.3.42)

τk ,τ j are 60
√

n
δ
λ

- separated when j,k ∈ F , j �= k, (10.3.43)

|F | ≥ c5(n)
|Eλ |λ n

|A| . (10.3.44)

Notice that
∣

∣A∩ τ j ∩B(x0,
λ
3 )
∣

∣≤
∣

∣τ j ∩B(x0,
λ
3 )
∣

∣≤ 2
3
λδ n−1 ,

and since for any j ∈ E (and thus for j ∈ F ) we have |A∩ τ j| > λδ n−1, it must be
the case that

∣

∣A∩ τ j ∩B(x0,
λ
3 )c
∣

∣>
1
3
λδ n−1 . (10.3.45)

Moreover, it is crucial to note that the sets

A∩ τ j ∩B(x0,
λ
3 )c , j ∈ F , (10.3.46)

are pairwise disjoint. In fact, if x j and xk are points on the axes of symmetry of two
60

√
n δλ -separated δ -tubes τ j and τk in F such that |x j − x0| = |xk − x0| = λ

3 , then
the distance from xk to x j must be at least 10

√
nδ . This implies that the distance

between τ j ∩B(x0,
λ
3 )c and τk ∩B(x0,

λ
3 )c is at least 6

√
nδ > 0. We now conclude

the proof of the theorem as follows:
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|A| ≥
∣

∣A∩
⋃

j∈F

(

τ j ∩B(x0,
λ
3 )c)

∣

∣

= ∑
j∈F

∣

∣A∩ τ j ∩B(x0,
λ
3 )c
∣

∣

≥ ∑
j∈F

λδ n−1

3

= |F | λδ
n−1

3

≥ c5(n)
|Eλ |λ n

|A|
λδ n−1

3
,

using that the sets in (10.3.46) are disjoint, (10.3.45), and (10.3.44). We conclude
that

|A|2 ≥ 1
3

c5(n)λ n+1δ n−1|Eλ | ≥ c6(n)λ n+1δ n−1|Eλ |2 ,

since, as observed earlier, the set Eλ is contained in a cube of side length 10. Taking
square roots, we obtain (10.3.40). This proves (10.3.39) and hence (10.3.36). �

Exercises

10.3.1. Let h be the characteristic function of the square [0,1]2 in R2. Prove that for
any 0 < λ < 1 we have

∣

∣{x ∈ R2 : Ms(h)(x) > λ}
∣

∣≥ 1
λ

log
1
λ

.

Use this to show that Ms is not of weak type (1,1). Compare this result with that of
Exercise 2.1.6.

10.3.2. (a) Given a unit vector v in R2 define the directional maximal function along
�v by

M�v( f )(x) = sup
ε>0

1
2ε

∫ +ε

−ε
| f (x− t�v)|dt

wherever f is locally integrable over R2. Prove that for such f , M�v( f )(x) is well
defined for almost all x contained in any line not parallel to�v.
(b) For 1 < p <∞, use the method of rotations to show that M�v maps Lp(R2) to itself
with norm the same as that of the centered Hardy–Littlewood maximal operator M
on Lp(R).
(c) Let Σ be a finite set of directions. Prove that for all 1 ≤ p ≤∞, there is a constant
Cp > 0 such that

∥

∥MΣ ( f )
∥

∥

Lp(R2) ≤Cp |Σ |
1
p
∥

∥ f
∥

∥

Lp(R2)
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for all f in Lp(R2).
[

Hint: Use the inequality MΣ ( f )p ≤ ∑
�v∈Σ

[M�vM�v⊥( f )]p.
]

10.3.3. Show that
KN ≤ 20MΣN ,

where ΣN is a set of N uniformly distributed vectors in S1.
[

Hint: Use Exercise 10.2.3.
]

10.3.4. This exercise indicates a connection between the Besicovitch construction
in Section 10.1 and the Kakeya maximal function. Recall the set E of Lemma 10.1.1,
which satisfies 1

2 ≤ |E| ≤ 3
2 .

(a) Show that there is a positive constant c such that for all N ≥ 10 we have
∣

∣

{

x ∈ R2 : KN(χE)(x) > 1
144

}∣

∣≥ c loglogN .

(b) Conclude that for all 2 < p < ∞ there is a constant cp such that

∥

∥KN
∥

∥

Lp(R2)→Lp(R2) ≥ cp(log logN)
1
p .

[

Hint: Using the notation of Lemma 10.1.1, first show that

∣

∣

{

x ∈ R2 : K3·2k log(k+2)(χE)(x) > 1
36

}∣

∣≥ log(k + 2) ,

by showing that the previous set contains all the disjoint rectangles R j for j =
1,2, . . . ,2k; here k is a large positive integer. To show this, for x in

⋃2k

j=1 R j con-
sider the unique rectangle R jx that contains x union (R jx)

′ and set Rx = R jx ∪ (R jx)
′.

Then |Rx| = 3|R jx | = 3 ·2−k log(k + 2), and we have

1
|Rx|

∫

Rx

|χE(y)|dy =
|E ∩Rx|
|Rx|

≥ |E ∩ (R jx)
′|

3|R jx |
≥ 1

36

in view of conclusion (4) in Lemma 10.1.1. Part (b): Express the Lp norm of KN(χE)
in terms of its distribution function.

]

10.3.5. Show that MS1 is unbounded on Lp(R2) for any p < ∞.
[

Hint: You may use Proposition 10.3.4 when p ≤ 2. When p > 2 one may need
Exercise 10.3.4.

]

10.3.6. Consider the n-dimensional Kakeya maximal operator KN . Show that there
exist dimensional constants cn and c′n such that for N sufficiently large we have

∥

∥KN
∥

∥

Ln(Rn)→Ln(Rn) ≥ cn (logN) ,
∥

∥KN
∥

∥

Ln(Rn)→Ln,∞(Rn) ≥ c′n (logN)
n−1

n .

[

Hint: Consider the functions fN(x) = 1
|x|χ3≤|x|≤N and adapt the argument in Propo-

sition 10.3.4 to an n-dimensional setting.
]
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10.3.7. For all 1 ≤ p < n show that there exist constants cn,p such that the n-
dimensional Kakeya maximal operator KN satisfies

∥

∥KN
∥

∥

Lp(Rn)→Lp(Rn) ≥
∥

∥KN
∥

∥

Lp(Rn)→Lp,∞(Rn) ≥ cn,p N
n
p−1 .

[

Hint: Consider the functions hN(x) = |x|−
n+1

p χ3≤|x|≤N and show that KN(hN)(x) >

c/|x| for all x in the annulus 6 < |x| < N.
]

10.3.8. (Carbery, Hernández, and Soria [51] ) Let T be a sublinear operator defined
on L1(Rn)+ L∞(Rn) and taking values in a set of measurable functions. Let 10 ≤
N < ∞, 1 < p < ∞, and 0 < a,M < ∞.
(a) Suppose that

∥

∥T
∥

∥

L1→L1,∞ ≤ C1 Na ,
∥

∥T
∥

∥

Lp,1→Lp,∞ ≤ M,
∥

∥T
∥

∥

L∞→L∞ ≤ 1 .

Show that
∥

∥T
∥

∥

Lp→Lp,∞ ≤C(a, p,C1)M (logN)
1
p′ .

(b) Suppose that
∥

∥T
∥

∥

L1→L1,∞ ≤ C1 Na ,
∥

∥T
∥

∥

Lp→Lp,∞ ≤ M,
∥

∥T
∥

∥

L∞→L∞ ≤ 1 .

Show that
∥

∥T
∥

∥

Lp→Lp ≤C′(a, p,C1)M(logN)
1
p .

[

Hint: Part (a): Split f = f1 + f2 + f3, where f3 = f χ| f |≤ λ4
, f2 = f χλ

4 <| f |≤Lλ , and

f1 = f χ| f |>Lλ , where Lp−1 = Na. Use the weak type (1,1) estimate for f1 and the
restricted weak type (p, p) estimate for f2 and note that the measure of the set
{|T ( f3)| > λ/3} is zero. One needs the auxiliary result

∥

∥ f χa≤| f |≤b

∥

∥

Lp,1 ≤C(p)(1 + log b
a )

1
p′
∥

∥ f
∥

∥

Lp ,

which can be proved as follows. First use the identity of Proposition 1.4.9. Then
note that the distribution function d f χa≤| f |≤b

(s) is equal to d f (a) for s < a, to d f (s)
for a ≤ s < b, and vanishes for s ≥ b. It follows that

∥

∥ f χa≤| f |≤b

∥

∥

Lp,1 ≤ ad f (a)
1
p +

∫ b

a
d f (t)

1
p dt ≤ 2

∫ a

a
2

d f (t)
1
p dt +

∫ b

a
d f (t)

1
p dt ,
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from which the claimed estimate follows by Hölder’s inequality and Proposition
1.1.4. Part (b): Use the same splitting and the method employed in the proof of
Theorem 10.3.5.

]

10.3.9. Suppose that T is a linear operator defined on a subspace of measurable
functions on Rn with the property that whenever f is supported in a cube Q of side
length s, then T ( f ) is supported in aQ for some a > 1. Prove the following:
(a) If T is defined on Lp(Rn) for some 0 < p < ∞ and

∥

∥T ( f )
∥

∥

Lp ≤ B
∥

∥ f
∥

∥

Lp

for all f supported in a cube of side length s, then the same estimate holds (with a
larger constant) for all functions in Lp(Rn).
(b) If T satisfies for some 0 < p < ∞,

∥

∥T (χA)
∥

∥

Lp,∞ ≤ B|A|
1
p

for all measurable sets A contained in a cube of side length s, then the same estimate
holds (with a larger constant) for all measurable sets A in Rn.

10.4 Fourier Transform Restriction and Bochner–Riesz Means

If g is a continuous function on Rn, its restriction to a hypersurface S ⊆ Rn is a well
defined function. By a hypersurface we mean a submanifold of Rn of dimension
n−1. So, if f is an integrable function on Rn, its Fourier transform ̂f is continuous
and hence its restriction ̂f

∣

∣

S on S is well defined.

Definition 10.4.1. Let 1 ≤ p,q ≤ ∞. We say that a compact hypersurface S in Rn

satisfies a (p,q) restriction theorem if the restriction operator

f → ̂f
∣

∣

S ,

which is initially defined on L1(Rn)∩Lp(Rn), has an extension that maps Lp(Rn)
boundedly into Lq(S). The norm of this extension may depend on p,q,n, and S. If S
satisfies a (p,q) restriction theorem, we write that property Rp→q(S) holds. We say
that property Rp→q(S) holds with constant C if for all f ∈ L1(Rn)∩Lp(Rn) we have

∥

∥̂f
∥

∥

Lq(S) ≤C
∥

∥ f
∥

∥

Lp(Rn) .

Example 10.4.2. Property R1→∞(S) holds for any compact hypersurface S.

We denote by R( f ) = ̂f
∣

∣

Sn−1 the restriction of the Fourier transform on a hy-
persurface S. Let dσ be the canonically induced surface measure on S. Then for a
function ϕ defined on S we have
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∫

Sn−1
̂f ϕ dσ =

∫

Rn
̂f (̂ϕ dσ)∨ dξ =

∫

Rn
f ̂ϕ dσ dx ,

which says that the transpose of the linear operator R is the linear operator

Rt(ϕ) = ̂ϕ dσ . (10.4.1)

By duality, we easily see that a (p,q) restriction theorem for a compact hypersurface
S is equivalent to the following (q′, p′) extension theorem for S:

Rt : Lq′(S) → Lp′(Rn) .

Our objective is to determine all pairs of indices (p,q) for which the sphere Sn−1

satisfies a (p,q) restriction theorem. It becomes apparent in this section that this
problem is relevant in the understanding of the norm convergence of the Bochner–
Riesz means.

10.4.1 Necessary Conditions for Rp→q(Sn−1) to Hold

We look at basic examples that impose restrictions on the indices p,q in order
for Rp→q(Sn−1) to hold. We first make an observation. If Rp→q(Sn−1) holds, then
Rp→s(Sn−1) for any s ≤ q.

Example 10.4.3. Let dσ be surface measure on the unit sphere Sn−1. In view of the
identity in Appendix B.4, we have

̂dσ(ξ ) =
2π

|ξ | n−2
2

Jn−2
2

(2π |ξ |) .

Using the asymptotics in Appendix B.8, the last expression is equal to

2
√

2π
|ξ | n−1

2

cos(2π |ξ |− π(n−1)
4 )+ O(|ξ |− n+1

2 )

as |ξ | → ∞. It follows that Rt(1)(ξ ) = ̂dσ(ξ ) does not lie in Lp′(Rn) if n−1
2 p′ ≤ n

and n+1
2 p′ > n. Thus Rp→q(Sn−1) fails when 2n

n+1 ≤ p < 2n
n−1 . Since R1→q(Sn−1)

holds for all q ∈ [1,∞], by interpolation we deduce that Rp→q(Sn−1) fails when
p ≥ 2n

n+1 . We conclude that a necessary condition for Rp→q(Sn−1) to hold is that

1 ≤ p <
2n

n + 1
. (10.4.2)

In addition to this condition, there is another necessary condition for Rp→q(Sn−1)
to hold. This is a consequence of the following revealing example.
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Example 10.4.4. Let ϕ be a Schwartz function on Rn such that ϕ̂ ≥ 0 and ϕ̂(ξ )≥ 1
for all ξ in the closed ball |ξ | ≤ 2. For N ≥ 1 define functions

fN(x1,x2, . . . ,xn−1,xn) = ϕ
(x1

N
,

x2

N
, . . . ,

xn−1

N
,

xn

N2

)

.

To test property Rp→q(Sn−1), instead of working with Sn−1, we may work with the
translated sphere S = Sn−1 +(0,0, . . . ,0,1) in Rn (cf. Exercise 10.4.2(a)). We have

̂fN(ξ ) = Nn+1ϕ̂(Nξ1,Nξ2, . . . ,Nξn−1,N
2ξn) .

We note that for all ξ = (ξ1, . . . ,ξn) in the spherical cap

S′ = S∩{ξ ∈ Rn : ξ 2
1 + · · ·+ ξ 2

n−1 ≤ N−2 and ξn < 1} , (10.4.3)

we have ξn ≤ 1− (1− 1
N2 )

1
2 ≤ 1

N2 and therefore

|(Nξ1,Nξ2, . . . ,Nξn−1,N
2ξn)| ≤ 2 .

This implies that for all ξ in S′ we have ̂fN(ξ ) ≥ Nn+1. But the spherical cap S′ in
(10.4.3) has surface measure c(N−1)n−1. We obtain

∥

∥̂fN
∥

∥

Lq(S) ≥
∥

∥̂fN
∥

∥

Lq(S′) ≥ c
1
q Nn+1N

1−n
q .

On the other hand,
∥

∥ fN
∥

∥

Lp(Rn) =
∥

∥ϕ
∥

∥

Lp(Rn)N
n+1

p . Therefore, if Rp→q(Sn−1) holds,
we must have

∥

∥ϕ
∥

∥

Lp(Rn)N
n+1

p ≥Cc
1
q Nn+1N

1−n
q ,

and letting N → ∞, we obtain the following necessary condition on p and q for
Rp→q(Sn−1) to hold:

1
q
≥ n + 1

n−1
1
p′

. (10.4.4)

We have seen that the restriction property Rp→q(Sn−1) fails in the shaded region
of Figure 10.10 but obviously holds on the closed line segment CD. It remains to
investigate the validity of property Rp→q(Sn−1) for ( 1

p , 1
q) in the unshaded region of

Figure 10.10.
It is a natural question to ask whether the restriction property Rp→q(Sn−1) holds

on the line segment BD minus the point B in Figure 10.10, i.e., the set

{

(p,q) :
1
q

=
n + 1
n−1

1
p′

1 ≤ p <
2n

n + 1

}

. (10.4.5)

If property Rp→q(Sn−1) holds for all points in this set, then it will also hold in the
closure of the quadrilateral ABDC minus the closed segment AB.
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Fig. 10.10 The restriction
property Rp→q(Sn−1) fails
in the shaded region and on
the closed line segment AB
but holds on the closed line
segment CD and could hold
on the open line segment
BD and inside the unshaded
region.

1

2

1

2n

2

n+1

2n
n+1

1

10
p

q
1

1

A

B

C

2(n+1)

n+3

E.

D

G

10.4.2 A Restriction Theorem for the Fourier Transform

In this subsection we establish the following restriction theorem for the Fourier
transform.

Theorem 10.4.5. Property Rp→q(Sn−1) holds for the set

{

(p,q) :
1
q

=
n + 1
n−1

1
p′

, 1 ≤ p ≤ 2(n + 1)
n + 3

}

(10.4.6)

and therefore for the closure of the quadrilateral with vertices E, G, D, and C in
Figure 10.10.

Proof. The case p = 1 and q =∞ is trivial. Therefore, we need to establish only the
case p = 2(n+1)

n+3 and q = 2, since the remaining cases follow by interpolation.
Using Plancherel’s identity and Hölder’s inequality, we obtain

∥

∥̂f
∥

∥

2
L2(Sn−1) =

∫

Sn−1
̂f (ξ ) ̂f (ξ )dσ(ξ )

=
∫

Rn
f (x) ( f ∗ dσ∨)(x)dx

≤
∥

∥ f
∥

∥

Lp(Rn)

∥

∥ f ∗ dσ∨∥
∥

Lp′ (Rn) .

To establish the required conclusion it is enough to show that

∥

∥ f ∗ dσ∨∥
∥

Lp′ (Rn) ≤Cn
∥

∥ f
∥

∥

Lp(Rn) when p =
2(n + 1)

n + 3
. (10.4.7)
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To obtain this estimate we need to split the sphere into pieces. Each hyperplane
ξk = 0 cuts the sphere Sn−1 into two hemispheres, which we denote by H1

k and H2
k .

We introduce a partition of unity {ϕ j} j of Rn with the property that for any j there
exist k ∈ {1,2, . . . ,} and l ∈ {1,2} such that

(supportϕ j)∩Sn−1
� Hl

k ;

that is, the support of each ϕ j intersected with the sphere Sn−1 is properly contained
in some hemisphere Hl

k. Then the family of all ϕ j whose support meets Sn−1 forms
a finite partition of unity of the sphere when restricted to it. We therefore write

dσ = ∑
j∈F
ϕ j dσ ,

where F is a finite set. If we obtain (10.4.7) for each measure ϕ jdσ instead of dσ ,
then (10.4.7) follows by summing on j. We fix such a measureϕ j dσ , which, without
loss of generality, we assume is supported in {ξ ∈ Sn−1 : ξn > c} � H1

n for some
c ∈ (0,1). In the sequel we write elements x ∈ Rn as x = (x′,t), where x′ ∈ Rn−1 and
t ∈ R. Then for x ∈ Rn we have

(ϕ j dσ)∨(x) =
∫

Sn−1
ϕ j(ξ )e2π ix·ξ dσ(ξ ) =

∫

ξ ′∈Rn−1

|ξ ′|2≤1−c2

e2π ix·ξ ϕ j
(

ξ ′,
√

1−|ξ ′|2
)

dξ ′
√

1−|ξ ′|2
,

where ξ = (ξ ′,ξn); for the last identity we refer to Appendix D.5. Writing x =
(x′,t) ∈ Rn−1 ×R, we have

(ϕ j dσ)∨(x′, t) =
∫

ξ ′∈Rn−1

|ξ ′|2≤1−c2

e2π ix′·ξ ′ e2π it
√

1−|ξ ′|2 ϕ j
(

ξ ′,
√

1−|ξ ′|2
)

√

1−|ξ ′|2
dξ ′

=
(

e2π it
√

1−|ξ ′|2 ϕ j
(

ξ ′,
√

1−|ξ ′|2
)

√

1−|ξ ′|2

)�
(x′) ,

(10.4.8)

where � indicates the inverse Fourier transform in the ξ ′ variable. For each t ∈ R
we introduce a function on Rn−1 by setting

Kt(x′) = (ϕ j dσ)∨(x′, t) .

We observe that identity (10.4.8) and the fact that 1−|ξ ′|2 ≥ c2 > 0 on the support
of ϕ j imply that

sup
t∈R

sup
ξ ′∈Rn−1

|(Kt )�(ξ ′)| ≤Cn < ∞ , (10.4.9)

where � indicates the Fourier transform on Rn−1. We also have that

Kt (x′) = (ϕ j dσ)∨(x′,t) =
(

ϕ∨
j ∗ dσ∨)(x′, t) .
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Since ϕ∨
j is a Schwartz function on Rn and the function |dσ∨(x′, t)| is bounded by

(1+ |(x′,t)|)− n−1
2 (see Appendices B.4, B.6, and B.7), it follows from Exercise 2.2.4

that
|Kt(x′)| ≤C(1 + |(x′,t)|)− n−1

2 ≤C(1 + |t|)− n−1
2 (10.4.10)

for all x′ ∈ Rn−1. Estimate (10.4.9) says that the operator given by convolution with
Kt maps L2(Rn−1) to itself with norm at most a constant, while (10.4.10) says that
the same operator maps L1(Rn−1) to L∞(Rn−1) with norm at most a constant multi-

ple of (1 + |t|)− n−1
2 . Interpolating between these two estimates yields

∥

∥Kt � g
∥

∥

Lp′ (Rn−1) ≤Cp,n|t|−(n−1)( 1
p−

1
2 )∥
∥g
∥

∥

Lp(Rn−1)

for all 1 ≤ p ≤ 2, where � denotes convolution on Rn−1 (and ∗ convolution on Rn).
We now return to the proof of the required estimate (10.4.7) in which dσ∨ is

replaced by (ϕ j dσ)∨. Let f (x) = f (x′,t) be a function on Rn. We have

∥

∥ f ∗ (ϕ j dσ)∨
∥

∥

Lp′ (Rn) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∫

R
f ( · ,τ)� Kt−τ dτ

∥

∥

∥

∥

Lp′ (Rn−1)

∥

∥

∥

∥

∥

Lp′ (R)

≤
∥

∥

∥

∥

∥

∫

R

∥

∥

∥ f ( · ,τ)� Kt−τ
∥

∥

∥

Lp′ (Rn−1)
dτ

∥

∥

∥

∥

∥

Lp′ (R)

≤ Cp,n

∥

∥

∥

∥

∥

∫

R

∥

∥ f ( · ,τ)
∥

∥

Lp(Rn−1)

|t − τ|(n−1)( 1
p−

1
2 )

dτ

∥

∥

∥

∥

∥

Lp′ (R)

= Cp,n

∥

∥

∥Iβ
(

∥

∥ f ( · ,t)
∥

∥

Lp(Rn−1)

)∥

∥

∥

Lp′ (R,dt)
,

where β = 1− (n− 1)( 1
p −

1
2) and Iβ is the Riesz potential (or fractional integral)

given in Definition 6.1.1. Using Theorem 6.1.3 with s = β , n = 1, and q = p′, we
obtain that the last displayed equation is bounded by a constant multiple of

∥

∥

∥‖ f ( · ,t)
∥

∥

Lp(Rn−1)

∥

∥

∥

Lp(R,dt)
=
∥

∥ f
∥

∥

Lp(Rn) .

The condition 1
p −

1
q = s

n on the indices p,q,s,n assumed in Theorem 6.1.3 translates
exactly to

1
p
− 1

p′
=
β
1

= 1− n−1
p

− n−1
2

,

which is equivalent to p = 2(n+1)
n+3 . This concludes the proof of estimate (10.4.7)

in which the measure σ∨ is replaced by (ϕ j dσ)∨. Estimates for the remaining
(ϕ j dσ)∨ follow by a similar argument in which the role of the last coordinate is
played by some other coordinate. The final estimate (10.4.7) follows by summing j
over the finite set F . The proof of the theorem is now complete. �
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10.4.3 Applications to Bochner–Riesz Multipliers

We now apply the restriction theorem obtained in the previous subsection to the
Bochner–Riesz problem. In this subsection we prove the following result.

Theorem 10.4.6. For Reλ > n−1
2(n+1) , the Bochner–Riesz operator Bλ is bounded on

Lp(Rn) for p in the optimal range

2n
n + 1 + 2Reλ

< p <
2n

n−1−2Reλ
.

Proof. The proof is based on the following two estimates:

∥

∥Bλ
∥

∥

L1(Rn)→L1(Rn) ≤C1(Reλ ) ec0|Imλ |2 when Reλ > n−1
2 , (10.4.11)

∥

∥Bλ
∥

∥

Lp(Rn)→Lp(Rn) ≤C2(Reλ ) ec0|Imλ |2 when Reλ > n−1
2(n+1) , (10.4.12)

where p = 2(n+1)
n+3 and C1, C2 are constants that depend on n and Reλ , while c0 is an

absolute constant. Once (10.4.11) and (10.4.12) are known, the required conclusion
is a consequence of Theorem 1.3.7. Recall that Bλ is given by convolution with the
kernel Kλ defined in (10.2.1). This kernel satisfies

|Kλ (x)| ≤C3(Reλ )ec0|Imλ |2(1 + |x|)− n+1
2 −Reλ (10.4.13)

in view of the estimates in Appendices B.6 and B.7. Then (10.4.11) follows easily
from (10.4.13) and we focus our attention on (10.4.12).

The key ingredient in the proof of (10.4.12) is a decomposition of the kernel.
But first we isolate the smooth part of the multiplier near the origin and we focus
attention on the part of it near the boundary of the unit disk. Precisely, we start with
a Schwartz function 0 ≤ η ≤ 1 supported in the ball B(0, 3

4 ) that is equal to 1 on the
smaller ball B(0, 1

2 ). Then we write

mλ (ξ ) = (1−|ξ |2)λ+ = (1−|ξ |2)λ+η(ξ )+ (1−|ξ |2)λ+(1−η(ξ )) .

Since the function (1−|ξ |2)λ+η(ξ ) is smooth and compactly supported, it is an Lp

Fourier multiplier for all 1 ≤ p ≤ ∞, with norm that is easily seen to grow poly-
nomially in |λ |. We therefore need to concentrate on the nonsmooth piece of the
multiplier (1−|ξ |2)λ+(1−η(ξ )), which is supported in B(0, 1

2 )c. Let

Kλ (x) =
(

(1−|ξ |2)λ+(1−η(ξ ))
)∨

(x)

be the kernel of the nonsmooth piece of the multiplier.
We pick a smooth radial function ϕ with support inside the ball B(0,2) that is

equal to 1 on the closed unit ball B(0,1). For j = 1,2, . . . we introduce functions

ψ j(x) = ϕ(2− jx)−ϕ(2− j+1x)



394 10 Boundedness and Convergence of Fourier Integrals

supported in the annuli 2 j−1 ≤ |x| ≤ 2 j+1. Then we write

Kλ ∗ f = T λ0 ( f )+
∞

∑
j=1

T λj ( f ) , (10.4.14)

where T λ0 is given by convolution with ϕKλ and each T λj is given by convolution

with ψ jKλ .
We begin by examining the kernelϕKλ . Introducing a compactly supported func-

tion ζ that is equal to 1 on B(0, 3
2), we write

Kλ =
(

(1−| · |2)λ+(1−η)ζ
)∨

=
(

(1−| · |2)λ+
)∨ ∗

(

(1−η)ζ
)∨

= Kλ ∗
(

(1−η)ζ
)∨

.

Using this and (10.4.13) implies that Kλ is a bounded function, and thus ϕKλ is
bounded and compactly supported. Thus the operator T λ0 is bounded on all the Lp

spaces, 1 ≤ p ≤ ∞, with a bound that grows at most exponentially in |Imλ |2.
Next we study the boundedness of the operators T λj ; here the dependence on the

index j plays a role. Fix p < 2 as in the statement of the theorem. Our goal is to
show that there exist positive constants C,δ (depending only on n and Reλ ) such
that for all functions f in Lp(Rn) we have

∥

∥T λj ( f )
∥

∥

Lp(Rn) ≤C ec0|Imλ |22− jδ∥
∥ f
∥

∥

Lp(Rn) . (10.4.15)

Once (10.4.15) is established, the Lp boundedness of the operator f �→ Kλ ∗ f fol-
lows by summing the series in (10.4.14).

As a consequence of (10.4.13) we obtain that

|Kλj (x)| ≤ C3(Reλ ) ec0|Imλ |2 (1 + |x|)− n+1
2 −Reλ |ψ j(x)|

≤ C′2−( n+1
2 +Reλ ) j ,

(10.4.16)

since ψ j(x) = ψ(2− jx) and ψ is supported in the annulus 1
2 ≤ |x| ≤ 2. From this

point on, the constants containing a prime are assumed to grow at most exponentially
in |Imλ |2. Since Kλj is supported in a ball of radius 2 j+1 and satisfies (10.4.16), we
deduce the estimate

∥

∥

̂Kλj
∥

∥

2
L2 =

∥

∥Kλj
∥

∥

2
L2 ≤C′′2−(n+1+2Reλ ) j2n j = C′′2−(1+2Reλ ) j . (10.4.17)

We need another estimate for ̂Kλj . We claim that for all M ≥ n + 1 there is a
constant CM such that

∫

|ξ |≤ 1
8

|̂Kλj (ξ )|2|ξ |−β dξ ≤CM,n,β 2−2 j(M−n) , β < n. (10.4.18)
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Indeed, since ̂Kλ (ξ ) is supported in |ξ | ≥ 1
2 [recall that the function η was chosen

equal to 1 on B(0, 1
2 )], we have

|̂Kλj (ξ )| = |(̂Kλ ∗ ψ̂ j)(ξ )| ≤ 2 jn
∫

1
2≤|ξ−ω|≤1

(1−|ξ −ω |2)Reλ
+ |ψ̂(2 jω)|dω .

Suppose that |ξ | ≤ 1
8 . Since |ξ −ω | ≥ 1

2 , we must have |ω | ≥ 3
8 . Then

|ψ̂(2 jω)| ≤CM(2 j|ω |)−M ≤ (8/3)MCM2− jM ,

from which it follows easily that

sup
|ξ |≤ 1

8

|̂Kλj (ξ )| ≤C′
M2− j(M−n) . (10.4.19)

Then (10.4.18) is a consequence of (10.4.19) and of the fact that the function |ξ |−β
is integrable near the origin.

We now return to estimate (10.4.15). A localization argument (Exercise 10.4.4)
allows us to reduce estimate (10.4.15) to functions f that are supported in a cube of
side length 2 j. Let us therefore assume that f is supported in some cube Q of side
length 2 j. Then Tλj ( f ) is supported in 5Q and we have for 1 ≤ p < 2 by Hölder’s
inequality

∥

∥T λj ( f )
∥

∥

2
Lp(5Q) ≤ |5Q|2( 1

p−
1
2 )∥
∥T λj ( f )

∥

∥

2
L2(5Q)

≤ Cn2( 1
p−

1
2 )2n j∥

∥

̂Kλj ̂f
∥

∥

2
L2 .

(10.4.20)

Having returned to L2, we are able to use the Lp → L2 restriction theorem obtained
in the previous subsection. To this end we use polar coordinates and the fact that Kλj
is a radial function to write

∥

∥

̂Kλj ̂f
∥

∥

2
L2 =

∫ ∞

0
|̂Kλj (re1)|2

(
∫

Sn−1
|̂f (rθ )|2 dθ

)

rn−1dr , (10.4.21)

where e1 = (1,0, . . . ,0) ∈ Sn−1. Since the restriction of the function x �→ r−n f (x/r)
on the sphere Sn−1 is ̂f (rθ ), we have

∫

Sn−1
|̂f (rθ )|2 dθ ≤C2

p,n

[
∫

Rn
r−np| f (x/r)|p dx

] 2
p

= C2
p,n r

− 2n
p′
∥

∥ f
∥

∥

2
Lp , (10.4.22)

where Cp,n is the constant in Theorem 10.4.5 that holds whenever p ≤ 2(n+1)
n+3 . So

assuming p ≤ 2(n+1)
n+3 and inserting estimate (10.4.22) in (10.4.21) yields
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∥

∥

̂Kλj ̂f
∥

∥

2
L2 ≤ C2

p,n

∥

∥ f
∥

∥

2
Lp

∫ ∞

0
|̂Kλj (re1)|2r

n−1− 2n
p′ dr

≤
C2

p,n

ωn−1

∥

∥ f
∥

∥

2
Lp

∫

Rn
|̂Kλj (ξ )|2|ξ |−

2n
p′ dξ ,

(10.4.23)

where ωn−1 = |Sn−1|. Appealing to estimate (10.4.18) for |ξ | ≤ 1
8 with β = 2n

p′ < n

(since p < 2) and to estimate (10.4.17) for |ξ | ≥ 1
8 , we obtain

∥

∥

̂Kλj ̂f
∥

∥

2
L2 ≤C′′′ 2−(1+2Reλ ) j

∥

∥ f
∥

∥

2
Lp .

Combining this inequality with the one previously obtained in (10.4.20) yields
(10.4.15) with

δ =
n + 1

2
+ Reλ − n

p
.

This number is positive exactly when 2n
n+1+2Reλ < p. This was the condition as-

sumed by the theorem when p < 2. The other condition Reλ > n−1
2(n+1) is naturally

imposed by the restriction p ≤ 2(n+1)
n+3 . Finally, the analogous result in the range

p > 2 follows by duality. �

10.4.4 The Full Restriction Theorem on R2

In this section we prove the validity of the restriction condition Rp→q(S1) in dimen-
sion n = 2, for the full range of exponents suggested by Figure 10.10.

To achieve this goal, we “fatten” the circle by a small amount 2δ . Then we obtain
a restriction theorem for the “fattened circle” and then obtain the required estimate
by taking the limit as δ → 0. Precisely, we use the fact

∫

S1
|̂f (ω)|q dω = lim

δ→0

1
2δ

∫ 1+δ

1−δ

∫

S1
|̂f (rθ )|q dθ r dr (10.4.24)

to recover the restriction theorem for the circle from a restriction theorem for annuli
of width 2δ .

Throughout this subsection, δ is a number satisfying 0 < δ < 1
1000 , and for sim-

plicity we use the notation

χδ (ξ ) = χ(1−δ ,1+δ )(|ξ |) , ξ ∈ R2 .

We note that in view of identity (10.4.24), the restriction property Rp→q(S1) is a
trivial consequence of the estimate

1
2δ

∫ ∞

0

∫

S1
|χδ (rθ )̂f (rθ )|q dθ r dr ≤Cq

∥

∥ f
∥

∥

q
Lp , (10.4.25)
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or, equivalently, of
∥

∥χδ ̂f
∥

∥

Lq(R2) ≤ (2δ )
1
q C
∥

∥ f
∥

∥

Lp(R2) . (10.4.26)

We have the following result.

Theorem 10.4.7. (a) Given 1 ≤ p < 4
3 , set q = p′

3 . Then there is a constant Cp such
that for all Lp functions f on R2 and all small positive δ we have

∥

∥χδ ̂f
∥

∥

Lq(R2) ≤Cpδ
1
q
∥

∥ f
∥

∥

Lp(R2) . (10.4.27)

(b) When p = q = 4/3, there is a constant C such that for all L4/3 functions f on R2

and all small δ > 0 we have
∥

∥χδ ̂f
∥

∥

L
4
3 (R2)

≤Cδ
3
4 (log 1

δ )
1
4
∥

∥ f
∥

∥

L
4
3 (R2)

. (10.4.28)

Proof. To prove this theorem, we work with the extension operator

Eδ (g) = ̂χδg = ̂χδ ∗ ĝ ,

which is dual (i.e., transpose) to f �→ χδ ̂f , and we need to show that

∥

∥Eδ ( f )
∥

∥

Lp′ (R2) ≤Cδ
1
q (log 1

δ )β
∥

∥ f
∥

∥

Lq′ (R2) , (10.4.29)

where β = 1
4 when p = 4

3 and β = 0 when p < 4
3 .

We employ a splitting similar to that used in Theorem 10.2.4, with the only dif-
ference that the present partition of unity is nonsmooth and hence simpler. We define
functions

χδ� (ξ ) = χδ (ξ )χ2π�δ 1/2≤Arg ξ<2π(�+1)δ 1/2

for � ∈ {0,1, . . . , [δ−1/2]}. We suitably adjust the support of the function χδ
[δ−1/2]

so

that the sum of all these functions equals χδ . We now split the indices that appear
in the set {0,1, . . . , [δ−1/2]} into nine different subsets so that the supports of the
functions indexed by them are properly contained in some sector centered at the ori-
gin of amplitude π/4. We therefore write Eδ as a sum of nine pieces, each properly
supported in a sector of amplitude π/4. Let I be the set of indices that correspond
to one of these nine sectors and let

EδI ( f ) =∑
�∈I

̂χδ� f .

It suffices therefore to obtain (10.4.29) for each EδI in lieu of Eδ . Let us fix such an
index set I and without loss of generality we assume that

I = {0,1, . . . , [ 1
8δ

−1/2]} .
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Since the theorem is trivial when p = 1, to prove part (a) we fix a number p with
1 < p < 4

3 . We set
r = (p′/2)′

and we observe that this r satisfies 1
r = 1

p′ +
1
q′ . We note that 1 < r < 2 and we apply

the Hausdorff–Young inequality
∥

∥h
∥

∥

Lr′ ≤
∥

∥h∨
∥

∥

Lr . We have

∥

∥EδI ( f )
∥

∥

p′

Lp′ (R2)
=
∫

R2
|EδI ( f )2|r′ dx

≤
(
∫

R2
|(EδI ( f )2)∨|r dx

) r′
r

=
(
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(χδ� f )∗ (χδ�′ f )
∣

∣

∣

r
dx

) r′
r

.

(10.4.30)

We obtain the estimate

(
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(χδ� f )∗ (χδ�′ f )
∣

∣

∣

r
dx

) r′
r

≤Cδ
p′
q
∥

∥ f
∥

∥

p′

Lq′ (R2)
, (10.4.31)

which suffices to prove the theorem.
Denote by Sδ ,�,�′ the support of χδ� + χδ�′ . Then we write the left-hand side of

(10.4.31) as
(
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(

(χδ� f )∗ (χδ�′ f )
)

χSδ ,�,�′

∣

∣

∣

r
dx

) r′
r

, (10.4.32)

which, via Hölder’s inequality, is controlled by

(
∫

R2

(

∑
�∈I
∑
�′∈I

∣

∣(χδ� f )∗ (χδ�′ f )
∣

∣

r
) r

r
(

∑
�∈I
∑
�′∈I

∣

∣χSδ ,�,�′

∣

∣

r′
) r

r′ dx

) r′
r

. (10.4.33)

We now recall Lemma 10.2.5, in which the curvature of the circle was crucial. In
view of that lemma, the second factor of the integrand in (10.4.33) is bounded by a
constant independent of δ . We have therefore obtained the estimate

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤C

(

∑
�∈I
∑
�′∈I

∫

R2

∣

∣(χδ� f )∗ (χδ�′ f )
∣

∣

r
dx

) r′
r

. (10.4.34)

We prove at the end of this section the following auxiliary result.

Lemma 10.4.8. With the same notation as in the proof of Theorem 10.4.7, for any
1 < r < ∞, there is a constant C (independent of δ and f ) such that

∥

∥(χδ� f )∗ (χδ�′ f )
∥

∥

Lr ≤C

(

δ 3
2

|�− �′|+ 1

) 1
r′ ∥
∥χδ� f

∥

∥

Lr

∥

∥χδ�′ f
∥

∥

Lr (10.4.35)
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for all �,�′ ∈ I = {0,1, . . . , [ 1
8δ

−1/2]} .

Assuming Lemma 10.4.8 and using (10.4.34), we write

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

r
Lr

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

r
Lr

(|�− �′|+ 1)
r
r′

)] r′
r

≤Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] r′
rs
[

∑
�∈I

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

r
Lr

(|�− �′|+ 1)
r
r′

)s′] r′
rs′

,

(10.4.36)

where we used Hölder’s inequality for some 1 < s < ∞. We now recall the discrete
fractional integral operator

{a j} j �→
{

∑
j′

a j′

(| j− j′|+ 1)1−α

}

j
,

which maps �s(Z) to �s′(Z) (see Exercise 6.1.10) when

1
s
− 1

s′
= α , 0 < α < 1 . (10.4.37)

When 1 < p < 4
3 , we have 1 < r < 2, and choosing α = 2− r = 1− r

r′ , we obtain
from (10.4.36) that

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤ C′δ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] r′
rs
[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] r′
rs

= C′δ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] 2r′
rs

. (10.4.38)

The unique s that solves equation (10.4.37) is seen easily to be s = q′/r. Moreover,
since q = p′/3, we have 1 < s < 2. We use again Hölder’s inequality to pass from
∥

∥χδ� f
∥

∥

Lr to
∥

∥χδ� f
∥

∥

Lq′ . Indeed, recalling that the support of χδ� has measure ≈ δ 3
2 ,

we have
∥

∥χδ� f
∥

∥

Lr ≤C(δ
3
2 )

1
r −

1
q′
∥

∥χδ� f
∥

∥

Lq′ .

Inserting this in (10.4.38) yields

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤ Cδ
3
2

[

∑
�∈I

(

C(δ
3
2 )

1
r −

1
q′
∥

∥χδ� f
∥

∥

Lq′

)rs
] 2r′

rs

= C′δ
3
2 (δ

3
2 )2r′( 1

r −
1
q′ )
[

∑
�∈I

∥

∥χδ� f
∥

∥

q′

Lq′

] 2r′
q′

≤ Cδ 3
∥

∥ f
∥

∥

p′

Lq′

= Cδ
p′
q
∥

∥ f
∥

∥

p′

Lq′ ,
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which is the required estimate since 1
r = 1

p′ +
1
q′ and p′ = 2r′. In the last inequality

we used the fact that the supports of the functions χδ� are disjoint and that these add
up to a function that is at most 1.

To prove part (b) of the theorem, we need to adjust the previous argument to
obtain the case p = 4

3 . Here we repeat part of the preceding argument taking r =
r′ = s = s′ = 2.

Using (10.4.34) with p = 4
3 (which forces r to be equal to 2) and Lemma 10.4.8

with r = 2 we write

∥

∥EI( f )
∥

∥

4
L4(R2) ≤ Cδ

3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

2
L2

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

2
L2

|�− �′|+ 1

)]

≤ Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

] 1
2
[

∑
�∈I

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

2
L2

|�− �′|+ 1

)2 ] 1
2

≤ Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

] 1
2
[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

] 1
2
[

∑
�∈I

1
|�|+ 1

]

≤ Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

]

log(δ−
1
2 )

≤ Cδ
3
2 (δ

3
2 )(

1
2−

1
4 )4
[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L4

]

log 1
δ

≤ Cδ 3( log 1
δ
)∥

∥ f
∥

∥

4
L4 .

�

We now prove Lemma 10.4.8, which we had left open.

Proof. The proof is based on interpolation. For fixed �,�′ ∈ I we define the bilinear
operator

T�,�′(g,h) = (gχδ� )∗ (hχδ�′) .

As we have previously observed, it is a simple geometric fact that the support of χδ�
is contained in a rectangle of side length ≈ δ in the direction e2π iδ 1/2� and of side

length ≈ δ 1
2 in the direction ie2π iδ 1/2�. Any two rectangles with these dimensions

in the aforementioned directions have an intersection that depends on the angle be-
tween them. Indeed, if � �= �′ this intersection is contained in a parallelogram of
sides δ and δ/sin(2πδ 1

2 |�− �′|), and hence the measure of the intersection is seen
easily to be at most a constant multiple of

δ · δ
sin(2πδ 1

2 |�− �′|)
.

As for �,�′ in the index set I we have 2πδ
1
2 |�− �′| < π/4, the sine is comparable to

its argument, and we conclude that the measure of the intersection is at most
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Cδ
3
2 (1 + |�− �′|)−1 .

It follows that

∥

∥χδ� ∗ χδ�′
∥

∥

L∞ = sup
z∈R2

|(z− supp (χδ� ))∩ supp (χδ�′)| ≤
Cδ

3
2

1 + |�− �′| ,

which implies the estimate

∥

∥T�,�′(g,h)
∥

∥

L∞ ≤
∥

∥χδ� ∗ χδ�′
∥

∥

L∞

∥

∥g
∥

∥

L∞

∥

∥h
∥

∥

L∞

≤ Cδ
3
2

1 + |�− �′|
∥

∥g
∥

∥

L∞

∥

∥h
∥

∥

L∞ .
(10.4.39)

Also, the estimate
∥

∥T�,�′(g,h)
∥

∥

L1 ≤
∥

∥gχδ�
∥

∥

L1

∥

∥hχδ�′
∥

∥

L1

≤
∥

∥g
∥

∥

L1

∥

∥h
∥

∥

L1

(10.4.40)

holds trivially. Interpolating between (10.4.39) and (10.4.40) yields the required
estimate (10.4.35). Here we used bilinear interpolation (Exercise 1.4.17). �

Example 10.4.9. The presence of the logarithmic factor in estimate (10.4.28) is nec-
essary. In fact, this estimate is sharp. We prove this by showing that the correspond-
ing estimate for the “dual” extension operator Eδ is sharp. Let I be the set of indices
we worked with in Theorem 10.4.7 (i.e., I = {0,1, . . . , [ 1

8δ
−1/2]}.) Let

f δ =∑
�∈I

χδ� .

Then
∥

∥ f δ
∥

∥

L4 ≈ δ
1
4 .

However,

Eδ ( f δ ) =∑
�∈I

̂χδ� ,

and we have

∥

∥Eδ ( f δ )
∥

∥

L4 =
(
∫

R2

∣

∣∑
�∈I
∑
�′∈I

̂χδ�
̂χδ�′
∣

∣

2
dξ
)1

4

=
(
∫

R2

∣

∣∑
�∈I
∑
�′∈I

χδ� ∗ χδ�′
∣

∣

2
dx

)1
4

≥
(

∑
�∈I
∑
�′∈I

∫

R2

∣

∣χδ� ∗ χδ�′
∣

∣

2
dx

)1
4

.
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At this point observe that the function χδ� ∗ χδ�′ is at least a constant multiple of

δ
3
2 (|�−�′|+1)−1 on a set of measure cδ

3
2 (|�−�′|+1). (See Exercise 10.4.5.) Using

this fact and the previous estimates, we deduce easily that

∥

∥Eδ ( f δ )
∥

∥

L4 ≥ c
(

∑
�∈I
∑
�′∈I

δ 3

(|�− �′|+ 1)2δ
3
2 (|�− �′|+ 1)

) 1
4 ≈ δ (log 1

δ )
1
4 ,

since |I| ≈ δ− 1
2 . It follows that

∥

∥Eδ ( f δ )
∥

∥

L4
∥

∥ f δ
∥

∥

L4

≥ cδ
3
4 (log 1

δ )
1
4 ,

which justifies the sharpness of estimate (10.4.28).

Exercises

10.4.1. Let S be a compact hypersurface in Rn and let dσ be surface measure on it.
Suppose that for some 0 < b < n we have

|̂dσ(ξ )| ≤C (1 + |ξ |)−b

for all ξ ∈ Rn. Prove that Rp→q(S) does not hold for any 1 ≤ q ≤ ∞ when p ≥ n
n−b .

10.4.2. Let S be a compact hypersurface and let 1 ≤ p,q ≤ ∞.
(a) Suppose that Rp→q(S) holds for S. Show that Rp→q(τ+S) holds for the translated
hypersurface τ+ S.
(b) Suppose that the hypersurface S is compact and its interior contains the origin.
For r > 0 let rS = {rξ : ξ ∈ S}. Suppose that Rp→q(Sn−1) holds with constant Cpqn.

Show that Rp→q(rSn−1) holds with constant Cpqnr
n−1

q − n
p′ .

10.4.3. Obtain a different proof of estimate (10.4.7) (and hence of Theorem 10.4.5)
by following the sequence of steps outlined here:
(a) Consider the analytic family of functions

(Kz)∨(ξ ) = 2π1−z
Jn−2

2 +z(2π |ξ |)

|ξ | n−2
2 +z

and observe that in view of the identity in Appendix B.4, (Kz)∨(ξ ) reduces to
dσ∨(ξ ) when z = 0, where dσ is surface measure on Sn−1.
(b) Use for free that the Bessel function J− 1

2 +iθ , θ ∈ R, satisfies

|J− 1
2 +iθ (x)| ≤Cθ |x|−

1
2 ,
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where Cθ grows at most exponentially in |θ |, to obtain that the family of operators
given by convolution with (Kz)∨ map L1(Rn) to L∞(Rn) when z = − n−1

2 + iθ .
(c) Appeal to the result in Appendix B.5 to obtain that for z not equal to 0,−1,−2, . . .
we have

Kz(x) =
2
Γ (z)

(1−|x|2)z−1 .

Use this identity to deduce that for z = 1 + iθ the family of operators given by
convolution with (Kz)∨ map L2(Rn) to itself with constants that grow at most expo-
nentially in |θ |. (Appendix A.6 contains a useful lower estimate for |Γ (1 + iθ )|.)
(d) Use Exercise 1.3.4 to obtain that for z = 0 the operator given by convolution
with dσ∨ maps Lp(Rn) to Lp′(Rn) when p = 2(n+1)

n+3 .

10.4.4. Suppose that T is a linear operator given by convolution with a kernel K
that is supported in the ball B(0,2R). Assume that there is a constant C such that for
all functions f supported in a cube of side length R we have

∥

∥T ( f )
∥

∥

Lp ≤ B
∥

∥ f
∥

∥

Lp

for some 1 ≤ p < ∞. Show that this estimate also holds for all Lp functions f with
constant 5nB.
[

Hint: Write f = ∑ j f χQj , where each cube Q j has side length R.
]

10.4.5. Using the notation of Theorem 10.4.7, show that there exist constants c,c′

such that the function χδ� ∗ χδ�′ is at least c′δ
3
2 (|�− �′|+ 1)−1 on a set of measure

cδ
3
2 (|�− �′|+ 1).

[

Hint: Prove the required conclusion for characteristic functions of rectangles with
the same orientation and comparable dimensions. Then use that the support of each
χδ� contains such a rectangle.

]

10.5 Almost Everywhere Convergence of Bochner–Riesz Means

We recall the Bochner–Riesz means BλR of complex order λ given in Definition
10.2.1. In this section we study the problem of almost everywhere convergence of
BλR( f ) → f as R → ∞. There is an intimate relationship between the almost ev-
erywhere convergence of a family of operators and boundedness properties of the
associated maximal family (cf. Theorem 2.1.14).1

For f ∈ Lp(Rn), the maximal Bochner–Riesz operator or order λ is defined by

Bλ∗ ( f ) = sup
R>0

∣

∣BλR( f )
∣

∣ .

1 In certain cases, Theorem 2.1.14 can essentially be reversed. Given a 1 ≤ p ≤ 2 and a family of
distributions u j with the mild continuity property that u j ∗ fk → u j ∗ f in measure whenever fk → f
in Lp(Rn) such that the maximal operator M ( f ) = sup j | f ∗ u j| < ∞ whenever f ∈ Lp(Rn), then
M maps Lp(Rn) to Lp,∞(K) for any compact subset K of Rn. See Stein [289], [292].
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10.5.1 A Counterexample for the Maximal Bochner–Riesz
Operator

We have the following result.

Theorem 10.5.1. Let n ≥ 2, λ > 0, and let 1 < p < 2 be such that

λ <
2n−1

2p
− n

2
.

Then Bλ∗ does not map Lp(Rn) to weak Lp(Rn).

Proof. Figure 10.11 shows the region in which Bλ∗ is known to be unbounded; this
region contains the set of points (1/p,λ ) strictly below the line that joins the points
(1,(n−1)/2) and (n/(2n−1),0).

Fig. 10.11 The operators Bλ∗
are unbounded on Lp(Rn)
when (1/p,λ ) lies in the
interior of the shaded region.

1
2

2n
n+1

2

10

p
1

2n

λ

n-1

n-1
2n-1

n

2

n-1

. ..

We denote points x in Rn by x =(x′,xn), where x′ ∈Rn−1, and we fix M ≥ 100 and
ε < 1/100. We let ψ(y) = χ|y′|≤1(y′)ζ (yn), where ζ is a smooth bump supported
in the interval [−1,1] that is equal to 1 on [−1/2,1/2] and satisfies 0 ≤ ζ ≤ 1. We
define

ψε,M(y) = ψ(ε−1y′,ε−1M− 1
2 yn) = χ|y′|≤ε(y′)ζ (ε−1M− 1

2 yn)

and we note that ψε,M(y) is supported in the set of y’s that satisfy |y′| ≤ ε and

|yn| ≤ εM
1
2 . We also define

fM(y) = e2π iynψε,M(y)

and
SM = {(x′,xn) : M ≤ |x′| ≤ 2M , M ≤ |xn| ≤ 2M}.
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Then
∥

∥ fM
∥

∥

Lp ≈ M
1

2p ε
n
p and |SM| ≈ Mn . (10.5.1)

Every point x ∈ SM must satisfy M ≤ |x| ≤ 3M. We fix x ∈ SM and we estimate
Bλ∗ ( fM)(x) = supR>0 |BλR( fM)(x)| from below by picking R = Rx = |x|/xn. Then
1/2 ≤ Rx ≤ 3 and we have

Bλ∗ ( fM)(x) ≥ Γ (λ + 1)
πλ

∣

∣

∣

∣

∫

Rn

Jn
2 +λ (2πRx|x− y|)
(Rx|x− y|) n

2 +λ e2π iynψε,M(y)dy

∣

∣

∣

∣

.

We make some observations. First |x′ − y′| ≥ 1
2 |x′|, since |x′| ≥ M and |y′| ≤ ε .

Second, |xn −yn| ≥ |xn|− |yn| ≥ 1
2 |xn|, since |xn| ≥ M and |yn| ≤ εM1/2. These facts

imply that |x− y| ≥ 1
2 |x|; thus |x− y| is comparable to |x|, which is of the order of

M. Since 2πRx|x− y| is large, we use the asymptotics for the Bessel function Jn
2 +λ

in Appendix B.8 to write

Jn
2 +λ (2πRx|x− y|)
(Rx|x− y|) n

2 +λ =
Cλ e2π iRx|x−y|eiϕ

(Rx|x− y|) n+1
2 +λ

+
Cλ e−2π iRx|x−y|e−iϕ

(Rx|x− y|) n+1
2 +λ

+Vn,λ (Rx|x− y|) ,

where ϕ = − π
2 ( n

2 +λ )− π
4 and

|Vn,λ (Rx|x− y|)| ≤
Cn,λ

(Rx|x− y|) n+3
2 +λ

≤
C′

n,λ

M
n+3

2 +λ
, (10.5.2)

since Rx = |x|
xn

≈ 1 and |x− y| ≥ 1
2 M. Using the preceding expression for the Bessel

function, we write

Bλ∗ ( fM)(x) ≥ C′
λ

∣

∣

∣

∣

∫

Rn

e2π iRx|x|eiϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

−C′
λ

∣

∣

∣

∣

∫

Rn

(e2π i(Rx|x−y|+yn)− e2π iRx|x|)eiϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

−C′
λ

∣

∣

∣

∣

∫

Rn

e2π i(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

−
∣

∣

∣

∣

∫

Rn
Vn,λ (Rx|x− y|)e2π iynψε,M(y) dy

∣

∣

∣

∣

.

The positive term is the main term and is bounded from below by

C′
λ (6M)−

n+1
2 −λ

∫

Rn
ψε,M(y)dy =

c1 εnM
1
2

M
n+1

2 +λ
. (10.5.3)

The three terms with the minus signs are errors and are bounded in absolute value
by smaller expressions. We notice that
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∣

∣Rx|x− y|+ yn−Rx|x|
∣

∣=
|x|
xn

∣

∣|x− y|+ xnyn

|x| − |x|
∣

∣=
|x|
xn

∣

∣Fx(y)−Fx(0)
∣

∣ ,

where Fx(y) = |x− y|+ |x|−1xnyn. Taylor’s expansion yields

Fx(y)−Fx(0) = ∇yFx(0) · y + O
(

|y|2 sup
j,k

|∂ j∂kFx(y)|
)

,

and a calculation gives ∇yFx(0) = (−|x|−1x′,0), while |∂ j∂kFx(y)| ≤ C |x− y|−1. It
follows that

|x|
xn

∣

∣Fx(y)−Fx(0)
∣

∣≤ 3

[

|x′ · y′|
|x| +C′ |y|2

|x− y|

]

≤C′′
[

ε+
(εM1/2)2

M

]

≤ 2C′′ε .

Using this fact and the support properties of ψ , we obtain

C′
λ

∣

∣

∣

∣

∫

Rn

(e2π i(Rx|x−y|+yn) − e2π iRx|x|)eiϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

≤ c2 ε(εnM
1
2 )

M
n+1

2 +λ
. (10.5.4)

Next we examine the phase Rx|x− y|+ yn as a function of yn. Its derivative with
respect to yn is

∂
∂yn

(

Rx|x− y|+ yn
)

= Rx
xn − yn

|x− y| + 1 ≥ 1 ,

since xn ≥ M and |yn| ≤ εM1/2, which implies that xn − yn > 0. Also note that

∣

∣

∣

∣

∂
∂yn

(

Rx
xn − yn

|x− y| + 1

)−1∣
∣

∣

∣

≤ C′′′

M

and that
∣

∣

∣

∣

∂
∂yn

1

|x− y| n+1
2 +λ

∣

∣

∣

∣

≤ C′′′

M
n+3

2 +λ
,

while the derivative of ζ (ε−1M− 1
2 yn) with respect to yn gives only a factor of

ε−1M− 1
2 . We integrate by parts one time with respect to yn in the integral

∫

Rn−1

∫

R

e2π i(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dyn dy′

to obtain an additional factor of ε−1M− 1
2 . Thus

∣

∣

∣

∣

∫

Rn

e2π i(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

≤ c3 εnM
1
2 (ε−1M− 1

2 )

M
n+1

2 +λ
. (10.5.5)

Finally, using (10.5.2) we obtain that
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∣

∣

∣

∣

∫

Rn
Vn,λ (Rx|x− y|)e2π iynψε,M(y) dy

∣

∣

∣

∣

≤ c4 εn M
1
2

M
n+3

2 +λ
. (10.5.6)

We combine (10.5.3), (10.5.4), (10.5.5), and (10.5.6) to deduce for x ∈ SM ,

Bλ∗ ( fM)(x) ≥ c1 εn

M
n
2 +λ − c2 εn+1

M
n
2 +λ − c3 εn−1

M
n+1

2 +λ
− c4 εn

M
n+2

2 +λ
.

We pick ε sufficiently small, say ε ≤ c1/(2c2), and M0 sufficiently large (depending
on the constants c1,c2,c3,c4) that

x ∈ SM =⇒ Bλ∗ ( fM)(x) > c0
1

M
n
2 +λ

whenever M ≥ M0. This fact together with (10.5.1) gives

∥

∥Bλ∗ ( fM)
∥

∥

Lp,∞
∥

∥ fM
∥

∥

Lp

≥ c0 M− n
2−λ |SM|

1
p

c′ M
1

2p

= cM
2n−1

2p − n
2−λ ,

and the required conclusion follows by letting M → ∞. �

10.5.2 Almost Everywhere Summability of the Bochner–Riesz
Means

We now focus attention on the case p ≥ 2 and we investigate whether the Bochner–
Riesz means converge almost everywhere outside the range in which they are known
to be unbounded on Lp. Our goal is to prove the following result.

Theorem 10.5.2. Let λ > 0 and n≥ 2. Then for all f in Lp(Rn) with 2≤ p < 2n
n−1−2λ

we have
lim

R→∞
BλR( f )(x) = f (x)

for almost all x ∈ Rn.

Since the almost everywhere convergence is obvious for functions in the Schwartz
class, to be able to use Theorem 2.1.14 to derive almost everywhere convergence for
general Lp functions, it suffices to know a weak type (p, p) estimate for Bλ∗ . How-
ever, instead of proving a weak type (p, p) estimate, we prove an L2 and a weighted
L2 estimate for Bλ∗ . Precisely, we prove the following result.

Proposition 10.5.3. Let λ > 0 and 0 ≤ α < 1 + 2λ ≤ n. Then there is a constant
C = C(α,λ ,n) such that

∫

Rn
|Bλ∗ ( f )(x)|2|x|−α dx ≤C

∫

Rn
| f (x)|2|x|−α dx
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for all functions f ∈ L2(Rn, |x|−αdx).

Assuming the result of Proposition 10.5.3, given p such that

2 ≤ p < pλ =
2n

n−1−2λ
,

choose α satisfying

0 ≤ n

(

1− 2
p

)

< α < 1 + 2λ = n

(

1− 2
pλ

)

.

Then the maximal operator Bλ∗ is bounded on L2 and also on L2(|x|−αdx). Hence
the almost everywhere convergence of the family {BλR( f )}R holds on L2 and also on
L2(|x|−αdx). Since 0 ≤ α < n, we have

Lp � L2 + L2(|x|−α) ,

and thus BλR( f ) converges almost everywhere for functions f ∈ Lp(Rn). See Exer-
cise 10.5.1 for this inclusion.

To prove Proposition 10.5.3, we decompose the multiplier (1− |ξ |2)λ+ as an in-
finite sum of smooth bumps supported in small concentric annuli in the interior of
the sphere |ξ | = 1 as we did in the proof of Theorem 10.2.4.

We pick a smooth function ϕ supported in [− 1
2 , 1

2 ] and a smooth function ψ
supported in [ 1

8 , 5
8 ] and with values in [0,1] that satisfy

ϕ(t)+
∞

∑
k=0

ψ
(1− t

2−k

)

= 1

for all t ∈ [0,1). We decompose the multiplier (1−|ξ |2)λ+ as

(1−|ξ |2)λ+ = m00(ξ )+
∞

∑
k=0

2−kλmk(ξ ) , (10.5.7)

where m00(ξ ) = ϕ(|ξ |)(1−|ξ |2)λ , and for k ≥ 1, mk is defined by

mk(ξ ) =
(1−|ξ |

2−k

)λ
ψ
(1−|ξ |

2−k

)

(1 + |ξ |)λ .

Then we define maximal operators associated with the multipliers m00 and mk,

Smk∗ ( f )(x) = sup
R>0

|
(

̂f (ξ )mk(ξ/R)
)∨(x)| ,

for k ≥ 0, and analogously we define Sm00∗ . Using (10.5.7) we have

Bλ∗ ( f ) ≤ Sm00∗ ( f )+
∞

∑
k=0

2−kλSmk∗ ( f ) . (10.5.8)
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Since Sm00∗ , Sm0∗ , Sm1∗ and any finite number of them are pointwise controlled by the
Hardy–Littlewood maximal operator, which is bounded on L2(|x|α) whenever−n <
α < n (cf. Theorem 9.1.9 and Example 9.1.7), we focus attention on the remaining
terms.

We make a small change of notation. Thinking of 2−k as roughly being δ (pre-
cisely δ = 2−k−3), for δ < 1/10 we let mδ (t) be a smooth function supported in the
interval [1−5δ ,1− δ ] and taking values in the interval [0,1] that satisfies

sup
1≤t≤2

∣

∣

∣

d�

dt�
mδ (t)

∣

∣

∣≤C�δ−� (10.5.9)

for all � ∈ Z+ ∪{0}. We define a related function

m̃δ (t) = δ t
d
dt

mδ (t) ,

which obviously satisfies estimates (10.5.9) with another constant ˜C� in place of C�.
Next we introduce the multiplier operators

Sδt ( f )(x) =
(

̂f (ξ )mδ (t|ξ |)
)∨(x) , ˜Sδt ( f )(x) =

(

̂f (ξ )m̃δ (t|ξ |)
)∨(x) ,

and the L2(|x|−α)-bounded maximal multiplier operator

Sδ∗ ( f ) = sup
t>0

|Sδt ( f )| ,

as well as the continuous square functions

Gδ ( f )(x) =
(
∫ ∞

0
|Sδt ( f )(x)|2 dt

t

)1
2

, Gδ ( f )(x) =
(
∫ ∞

0
|˜Sδt ( f )(x)|2 dt

t

)1
2

.

The operators Sδt and ˜Sδt are related. For f ∈ L2(|x|−α) and t > 0 we have

d
dt

Sδt ( f ) =
1
δ t
˜Sδt ( f ) .

Indeed, this operator identity is obvious for Schwartz functions f by the Lebesgue
dominated convergence theorem, and thus it holds for f ∈ L2(|x|−α ) by density.

The quadratic operators Gδ and ˜Gδ make their appearance in the application of
the fundamental theorem of calculus in the following context:

|Sδt ( f )(x)|2 = 2Re
∫ t

0
Sδu ( f )(x)

d
du

Sδu ( f )(x)du =
2
δ

Re
∫ t

0
Sδu ( f )(x) ˜Sδu ( f )(x)

du
u

,

which is valid for all functions f in L2(|x|−α) and almost all x ∈ Rn. This identity
uses the fact that for almost all x ∈ Rn we have
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lim
t→0

Sδt ( f )(x) = 0 (10.5.10)

when f ∈ L2(|x|−α). To see this, we observe that for Schwartz functions, (10.5.10)
is trivial by the Lebesgue dominated convergence theorem, while for general f in
L2(|x|−α) it is a consequence of Theorem 2.1.14, since Sδ∗ ( f ) ≤Cδ M( f ), where M
is the Hardy–Littlewood maximal operator. Consequently,

|Sδt ( f )(x)|2 ≤ 2
δ

∫ t

0
|Sδu ( f )(x)| |˜Sδu ( f )(x)| du

u
≤ 2
δ
|Gδ ( f )(x)| | ˜Gδ ( f )(x)|

for all t > 0, for f ∈ L2(|x|−α ) and for almost all x ∈ Rn. It follows that

∥

∥Sδ∗ ( f )
∥

∥

2
L2(|x|−a) ≤

2
δ
∥

∥Gδ ( f )
∥

∥

L2(|x|−a)

∥

∥ ˜Gδ ( f )
∥

∥

L2(|x|−a) , (10.5.11)

and the asserted boundedness of Sδ∗ reduces to that of the continuous square func-
tions Gδ and ˜Gδ on weighted L2 spaces with suitable constants depending on δ .

The boundedness of Gδ on L2(|x|−α) is a consequence of the following lemma.

Lemma 10.5.4. For 0 < δ < 1/10 and 0 ≤ α < n we have

∫

Rn

∫ 2

1
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤Cn,αAα(δ )

∫

Rn
| f (x)|2 dx

|x|α (10.5.12)

for all functions f in L2(|x|−α), where for ε > 0, Aα(ε) is defined by

Aα(ε) =

⎧

⎪

⎨

⎪

⎩

ε2−α when 1 < α < n,

ε (| logε|+ 1) when α = 1,

ε when 0 ≤ α < 1.

(10.5.13)

Assuming the statement of the lemma, we conclude the proof of Proposition
10.5.3 as follows. We take a Schwartz function ψ such that ψ̂ vanishes in a
neighborhood of the origin with ψ̂(ξ ) = 1 whenever 1/2 ≤ |ξ | ≤ 2 and we let
ψ2k(x) = 2−knψ(2−kx). We make the observation that if 1−5δ ≤ t|ξ | ≤ 1− δ and
2k−1 ≤ t ≤ 2k, then 1/2 ≤ 2k|ξ | ≤ 2, since δ < 1/10. This implies that ψ̂(2kξ ) = 1
on the support of the function ξ �→ mδ (t|ξ |). Hence

Sδt ( f ) = Sδt (ψ2k ∗ f )

whenever 2k−1 ≤ t ≤ 2k, and Lemma 10.5.4 (in conjunction with Exercise 10.5.2)
yields

∫

Rn

∫ 2k

2k−1
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤Cn,αAα(δ )

∫

Rn
|ψ2k ∗ f (x)|2 dx

|x|α .

Summing over k ∈ Z we obtain
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∥

∥Gδ ( f )
∥

∥

2
L2(|x|−α ) ≤Cn,αAα(δ )

∥

∥

∥

(

∑
k∈Z

|ψ2k ∗ f |2
) 1

2
∥

∥

∥

2

L2(|x|−α )
.

A randomization argument relates the weighted L2 norm of the square function to
the L2 norm of a linear expression involving the Rademacher functions as in

∥

∥

∥

(

∑
k∈Z

|ψ2k ∗ f |2
) 1

2
∥

∥

∥

2

L2(|x|−α )
=
∫ 1

0

∥

∥

∥∑
k∈Z

rk(t)(ψ2k ∗ f )
∥

∥

∥

2

L2(|x|−α )
dt ,

where rk denotes a renumbering of the Rademacher functions (Appendix C.1) in-
dexed by the entire set of integers. For each t ∈ [0,1] the operator

Mt( f ) = ∑
k∈Z

rk(t)(ψ2k ∗ f )

is associated with a multiplier that satisfies Mihlin’s condition (5.2.10) uniformly in
t. It follows that Mt is a singular integral operator bounded on all the Lp spaces for
1 < p < ∞, and in view of Corollary 9.4.7, it is also bounded on L2(w) whenever
w ∈ A2. Since the weight |x|−α is in A2 whenever −n < α < n, it follows that Mt is
bounded on L2(|x|−α) with a bound independent of t > 0. We deduce that

∥

∥Gδ ( f )
∥

∥

L2(|x|−α ) +
∥

∥ ˜Gδ ( f )
∥

∥

L2(|x|−α ) ≤C′
n,α
(

Aα(δ )
) 1

2
∥

∥ f
∥

∥

L2(|x|−α ) .

We now recall estimate (10.5.11) to obtain

∥

∥Sδ∗ ( f )
∥

∥

L2(|x|−α ) ≤C′(n,α)
(

δ−1Aα(δ )
)1/2∥

∥ f
∥

∥

L2(|x|−α ) .

Taking δ = 2−k−3, recalling the value of Aα(δ ) from Lemma 10.5.4, and inserting
this estimate in (10.5.8), we deduce Proposition 10.5.3. We note that the condition
α < 1 + 2λ is needed to make the series in (10.5.8) converge when 1 < α < n.

10.5.3 Estimates for Radial Multipliers

It remains to prove Lemma 10.5.4. Since all subsequent estimates concern linear
operators on weighted L2 spaces, in the sequel we will be working with functions in
the Schwartz class, unless it is otherwise specified.

We reduce estimate (10.5.12) to an estimate for a single t with the bound
Aα(δ )/δ , which is worse than Aα(δ ). The reduction to a single t is achieved via
duality. Estimate (10.5.12) says that the operator f �→ {Sδt ( f )}1≤t≤2 is bounded
from L2(Rn, |x|−αdx) to L2(L2( dt

t ), |x|−αdx). The dual statement of this fact is that
the operator

{gt}1≤t≤2 �→
∫ 2

1
Sδt (gt)

dt
t
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maps L2(L2( dt
t ), |x|αdx) to L2(Rn, |x|αdx). Here we use the fact that the operators St

are self-transpose and self-adjoint, since they have real and radial multipliers. Thus
estimate (10.5.12) is equivalent to

∫

Rn

∣

∣

∣

∣

∫ 2

1
Sδt (gt)(x)

dt
t

∣

∣

∣

∣

2

|x|α dx ≤Cn,α Aα(δ )
∫

Rn

∫ 2

1

∣

∣gt(x)
∣

∣

2 dt
t
|x|α dx , (10.5.14)

which by Plancherel’s theorem is also equivalent to

∫

Rn

∣

∣

∣

∣

D
α
2

(
∫ 2

1
mδ (t| · |)ĝt(·)

dt
t

)

(ξ )
∣

∣

∣

∣

2

dξ ≤Cn,αAα(δ )
∫

Rn

∫ 2

1

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2 dt
t

dξ .

Here

Dβ (h)(x) =
[
∫

Rn

|D[β ]+1
y (h)(x)|2
|y|n+2β dy

] 1
2

,

where Dy( f )(x) = f (x+ y)− f (x) is the difference operator encountered in Section
6.3 and Dk

y = Dy◦· · ·◦Dy (k times). The operator Dβ obeys the identity (see Exercise
6.3.9)

∥

∥Dβ (̂h)
∥

∥

2
L2 = c0(n,β )

∫

Rn
|h(x)|2 |x|2β dx .

Using the definition of Dα/2 we write

∣

∣

∣

∣

D
α
2

(
∫ 2

1
mδ (t| · |)ĝt(·)

dt
t

)

(ξ )
∣

∣

∣

∣

2

=
∫

Rn

∣

∣

∣

∣

∫ 2

1
D

[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
dt
t

∣

∣

∣

∣

2 dη
|η |n+α .

If the inner integrand on the right is nonzero, expressing Dk+1
y as in (6.3.2) and using

the support properties of mδ , we obtain that 1− 5δ ≤ t|ξ + sη | ≤ 1− δ for some
s ∈ {0,1, . . . , [α/2] + 1}; thus for each such s, t belongs to an interval of length
4δ |ξ + sη |−1 ≤ 4δ t(1−5δ )−1. Since t ≤ 2 and δ ≤ 1/10, it follows that t lies in a
set of measure at most 2([α/2]+ 2)δ . The Cauchy–Schwarz inequality then yields

∣

∣

∣

∣

D
α
2

(
∫ 2

1
mδ (t| · |)ĝt(·)

dt
t

)

(ξ )
∣

∣

∣

∣

2

≤ cα δ
∫

Rn

∫ 2

1

∣

∣

∣

∣

D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2 dt
t

dη
|η |n+α .

In view of the preceding reduction, we deduce that (10.5.14) is a consequence of

∫

Rn

∫

Rn

∫ 2

1

∣

∣

∣

∣

D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2 dt
t

dη
|η |n+α dξ

≤Cn,α
Aα(δ )
cα δ

∫

Rn

∫ 2

1

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2 dt
t

dξ

which can also be written as
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∫

Rn

∫ 2

1

∣

∣

∣

∣

D
α
2
(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2 dt
t

dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∫ 2

1

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2 dt
t

dξ .

This estimate is a consequence of

∫

Rn

∣

∣

∣

∣

D
α
2
(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2

dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2
dξ (10.5.15)

for all t ∈ [1,2]. A simple dilation argument reduces (10.5.15) to the single estimate

∫

Rn

∣

∣

∣

∣

D
α
2
(

mδ (| · |)ĝ(·)
)

(ξ )
∣

∣

∣

∣

2

dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣

∣D
α
2 (ĝ)(ξ )

∣

∣

2
dξ , (10.5.16)

which is equivalent to

∫

Rn

∣

∣Sδ1 (g)(x)
∣

∣

2 |x|α dx ≤ Cn,α
cα

Aα(δ )
δ

∫

Rn

∣

∣g(x)
∣

∣

2 |x|α dx

and also equivalent to

∫

Rn

∣

∣Sδ1 ( f )(x)
∣

∣

2 dx
|x|α ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣

∣ f (x)
∣

∣

2 dx
|x|α (10.5.17)

by duality. We have now reduced estimate (10.5.12) to (10.5.17).
We denote by Kδ (x) the kernel of the operator Sδ1 , i.e., the inverse Fourier trans-

form of the multiplier mδ (|ξ |). Certainly Kδ is a radial kernel on Rn, and it is con-
venient to decompose it radially as

Kδ = Kδ0 +
∞

∑
j=1

Kδj ,

where Kδ0 (x) = Kδ (x)φ(δx) and Kδj (x) = Kδ (x)
(

φ(2− jδx)−φ(21− jδx)
)

, for some
radial smooth function φ supported in the ball B(0,2) and equal to one on B(0,1).

To prove estimate (10.5.17) we make use of the subsequent lemmas.

Lemma 10.5.5. For all M ≥ 2n there is a constant CM = CM(n,φ) such that for all
j = 0,1,2, . . . we have

sup
ξ∈Rn

|̂Kδj (ξ )| ≤CM 2− jM (10.5.18)

and also
|̂Kδj (ξ )| ≤CM 2−( j+k)M (10.5.19)

whenever | |ξ |−1| ≥ 2kδ and k ≥ 4. Also

|̂Kδj (ξ )| ≤CM 2− jM δM(1 + |ξ |)−M (10.5.20)

whenever |ξ | ≤ 1/8 or |ξ | ≥ 15/8.
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Lemma 10.5.6. Let 0 ≤ α < n. Then there is a constant C(n,α) such that for all
Schwartz functions f and all ε > 0 we have

∫

| |ξ |−1|≤ε
|̂f (ξ )|2 dξ ≤C(n,α)εα−1Aα(ε)

∫

Rn
| f (x)|2 |x|αdx (10.5.21)

and also for M ≥ 2n there is a constant CM(n,α) such that

∫

Rn
|̂f (ξ )|2 1

(1 + |ξ |)M dξ ≤CM(n,α)
∫

Rn
| f (x)|2 |x|αdx . (10.5.22)

Assuming Lemmas 10.5.5 and 10.5.6 we prove estimate (10.5.17) as follows.
Using Plancherel’s theorem we write

∫

Rn
|(Kδj ∗ f )(x)|2 dx =

∫

Rn
|̂Kδj (ξ )|2|̂f (ξ )|2 dξ ≤ I + II + III ,

where

I =
∫

|ξ |≤ 1
8 ,|ξ |≥ 15

8

|̂Kδj (ξ )|2|̂f (ξ )|2 dξ ,

II =
[log2

7
16 δ

−1]+1

∑
k=4

∫

2kδ≤||ξ |−1|≤2k+1δ
|̂Kδj (ξ )|2|̂f (ξ )|2 dξ ,

III =
∫

| |ξ |−1|≤16δ
|̂Kδj (ξ )|2|̂f (ξ )|2 dξ .

Using (10.5.20) and (10.5.22) we obtain that

I ≤C′
M(n,α)2− jMδM

∫

Rn
| f (x)|2 |x|αdx .

In view of (10.5.19) and (10.5.21) we have

II ≤
[log2 δ−1]+1

∑
k=4

C(n,α)(2k+1δ )α−1Aα(2k+1δ )2− jM2−kM
∫

Rn
| f (x)|2 |x|αdx

≤ C′
M(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .

Finally, (10.5.18) and (10.5.21) yield

III ≤C′
M(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .

Summing the estimates for I, II, and III we deduce
∫

Rn
|(Kδj ∗ f )(x)|2 dx ≤CM(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .
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By duality, this estimate can be written as

∫

Rn
|(Kδj ∗ f )(x)|2 dx

|x|α ≤CM(n,α)2− jMδα−1Aα(δ )
∫

Rn
| f (x)|2 dx . (10.5.23)

Given a Schwartz function f , we write f0 = f χQ0 , where Q0 is a cube centered at
the origin of side length C 2 j/δ for some C to be chosen. Then for x ∈ Q0 we have
|x| ≤C

√
n2 j/δ , hence

∫

Rn
|(Kδj ∗ f0)(x)|2

dx
|x|α ≤ C′

M(n,α)δα−1Aα(δ )
2 jM

(

C
√

n
2 j

δ

)α ∫

Q0

| f0(x)|2
dx
|x|α

= C′′
M(n,α)2 j(α−M) Aα(δ )

δ

∫

Q0

| f0(x)|2
dx
|x|α . (10.5.24)

Now write Rn \Q0 as a mesh of cubes Qi, indexed by i ∈ Z \ {0}, of side lengths
2 j+2/δ and centers cQi . Since Kδj is supported in a ball of radius 2 j+1/δ , if fi is

supported in Qi, then fi ∗Kδj is supported in the cube 2
√

nQi. If the constant C is
large enough, say C ≥ 1000n, then for x ∈ Qi and x′ ∈ 2

√
nQi we have

|x| ≈ |cQi | ≈ |x′| ,

which says that the moduli of x and x′ are comparable in the following inequality:

∫

2
√

nQi

|(Kδj ∗ fi)(x′)|2
dx′

|x′|α ≤C′
M 2− jM

∫

Qi

| fi(x)|2
dx
|x|α . (10.5.25)

Thus (10.5.25) is a consequence of
∫

2
√

nQi

|(Kδj ∗ fi)(x′)|2 dx′ ≤CM 2− jM
∫

Qi

| fi(x)|2 dx , (10.5.26)

which is certainly satisfied, as seen by applying Plancherel’s theorem and using
(10.5.18). Since for δ < 1/10 we have Aα(δ )/δ ≥ 1, it follows that

∫

Rn
|(Kδj ∗ fi)(x)|2

dx
|x|α ≤CM 2− jM Aα(δ )

δ

∫

Rn
| fi(x)|2

dx
|x|α (10.5.27)

whenever fi is supported in Qi. We now pick M = 2n and we recall that α < n. We
have now proved that

∫

Rn
|(Kδj ∗ fi)(x)|2

dx
|x|α ≤C′′(n,α)2− jn Aα(δ )

δ

∫

Qi

| fi(x)|2
dx
|x|α

for functions fi supported in Qi.
Given a general f in the Schwartz class, write

f =∑
i∈Z

fi , where fi = f χQi .
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Then
∥

∥Kδj ∗ f
∥

∥

2
L2(|x|−α ) ≤ 2

∥

∥Kδj ∗ f0
∥

∥

2
L2(|x|−α ) + 2

∥

∥∑
i�=0

Kδj ∗ fi
∥

∥

2
L2(|x|−α )

≤ 2
∥

∥Kδj ∗ f0
∥

∥

2
L2(|x|−α ) + 2Cn∑

i�=0

∥

∥Kδj ∗ fi
∥

∥

2
L2(|x|−α )

≤ C′′′(n,α)2− jn Aα(δ )
δ

[

∥

∥ f0
∥

∥

2
L2(|x|−α ) +∑

i�=0

∥

∥ fi
∥

∥

2
L2(|x|−α )

]

= C′′′(n,α)2− jn Aα(δ )
δ

∥

∥ f
∥

∥

2
L2(|x|−α ) ,

where we used the bounded overlap of the family {Kj ∗ fi}i�=0 in the second dis-
played inequality (cf. Exercise 10.4.4). Taking square roots and summing over
j = 0,1,2, . . . , we deduce (10.5.17).

We now address the proof of Lemma 10.5.5, which was left open.

Proof. For the purposes of this proof we set ψ(x) = φ(x)−φ(2x). Then the inverse
Fourier transform of the function x �→ψ(2− jδx) is ξ �→ 2 jnδ−nψ̂(2 jξ/δ ). Convolv-

ing the latter with the function ξ �→ mδ (|ξ |), we obtain ̂Kδj (ξ ). We may therefore
write for j ≥ 1,

̂Kδj (ξ ) =
∫

Rn
mδ (|ξ −2− jδη |)ψ̂(η)dη , (10.5.28)

while for j = 0 an analogous formula holds with φ in place of ψ . Since |mδ | ≤
1, (10.5.18) follows easily when j = 0. For j ≥ 1 we expand the function ξ �→
mδ (|ξ −2− jδη |) in a Taylor series and we make use of the fact that ψ̂ has vanishing
moments of all orders to obtain

|̂Kδj (ξ )| ≤
∫

Rn
∑

|γ|=M

1
γ!
∥

∥∂ γmδ (| · |)
∥

∥

L∞ |2
− jδη |M|ψ̂(η)|dη

≤ C(M)δ−MδM2− jM
∫

Rn
|η |M|ψ̂(η)|dη .

This proves (10.5.18).
We turn now to the proof of (10.5.19). Suppose that | |ξ |− 1| ≥ 2kδ and k ≥ 4.

Then for |ξ | ≤ 1, recalling that mδ is supported in [1−5δ ,1− δ ], we write

|2− jδη | ≥ |ξ −2− jδη |− |ξ | ≥ (1−5δ )− (1−2kδ ) ≥ 2k−1δ ,

since k ≥ 4. For |ξ | ≥ 1 we have

|2− jδη | ≥ |ξ |− |ξ −2− jδη | ≥ (1 + 2kδ )− (1− δ )≥ 2kδ .

In either case we conclude that |η | ≥ 2k+ j−1, and using (10.5.28) we deduce

|̂Kδj (ξ )| ≤
∫

|η|≥2k+ j−1
|ψ̂(η)|dη ≤CM2−( j+k)M .
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The proof of (10.5.20) is similar. Since |ξ−2− jδη | ≥ 1−5δ ≥ 1/2, if |ξ | ≤ 1/8,
it follows that |2− jδη | ≥ 1/4. Likewise, if |ξ | ≥ 15/8, then |2− jδη | ≥ |ξ | − 1 ≥
|ξ |/4. These estimates imply

|2− jδη | ≥ 1
8
(1 + |ξ |) =⇒ |η | ≥ 2 j 1

8δ
(1 + |ξ |)

in the support of the integral in (10.5.28). It follows that

|̂Kδj (ξ )| ≤
∫

|η|≥2 j−3(1+|ξ |)/δ
|ψ̂(η)|dη ≤CM2− jMδM(1 + |ξ |)−M

whenever |ξ | ≤ 1/8 or |ξ | ≥ 15/8. �

We finish with the proof of Lemma 10.5.6, which had been left open.

Proof. We reduce estimate (10.5.21) by duality to

∫

Rn
|ĝ(ξ )|2 dξ

|ξ |α ≤C(n,α)εα−1Aα(ε)
∫

| |x|−1|≤ε
|g(x)|2 dx

for functions g supported in the annulus | |x| − 1| ≤ ε . Using that (|ξ |−α )̂ (x) =
cn,α |x|α−n (cf. Theorem 2.4.6), we write

∫

Rn
|ĝ(ξ )|2 dξ

|ξ |α =
∫

Rn
ĝ(ξ ) ĝ(ξ )

1
|ξ |α dξ

=
∫

Rn

(

ĝ ĝ
)∨(x)

cn,α

|x|n−α dx

=
∫

Rn
(g ∗˜g)(x) dx

|x|n−α

=
∫

| |y|−1|≤ε

∫

| |x|−1|≤ε
g(x)˜g(y)

cn,α

|x− y|n−α dxdy

≤ B(n,α)
∥

∥g
∥

∥

2
L2 ,

where g̃(x) = g(−x) and

B(n,α) = sup
| |x|−1|≤ε

∫

| |y|−1|≤ε

cn,α
|y− x|n−α dy .

The last inequality is proved by interpolating between the L1 → L1 and L∞ → L∞

estimates with bound B(n,α) for the linear operator

L(g)(x) =
∫

Rn
g(y)

cn,α
|x− y|n−α dy .

It remains to establish that

B(n,α) ≤C(n,α)εα−1Aα(ε) .



418 10 Boundedness and Convergence of Fourier Integrals

Applying a rotation and a change of variables, matters reduce to proving that

sup
| |x|−1|≤ε

∫

| |y−|x|e1|−1|≤ε

cn,α

|y|n−α dy ≤C(n,α)εα−1Aα(ε) ,

where e1 = (1,0, . . . ,0). This, in turn, is a consequence of
∫

| |y−e1|−1|≤2ε

cn,α
|y|n−α dy ≤C(n,α)εα−1Aα(ε) , (10.5.29)

since | |y− e1|x| | − 1| ≤ ε and | |x| − 1| ≤ ε imply | |y− e1| − 1| ≤ 2ε . In proving
(10.5.29), it suffices to assume that ε < 1/100; otherwise, the left-hand side of
(10.5.29) is bounded from above by a constant, and the right-hand side of (10.5.29)
is bounded from below by another constant. The region of integration in (10.5.29)
is a ring centered at e1 and width 4ε . We estimate the integral in (10.5.29) by the
sum of the integrals of the function cn,α |y|α−n over the sets

S0 = {y ∈ Rn : |y| ≤ ε, | |y− e1|−1| ≤ 2ε} ,

S� = {y ∈ Rn : �ε ≤ |y| ≤ (�+ 1)ε, | |y− e1|−1| ≤ 2ε} ,

S∗ = {y ∈ Rn : |y| ≥ 1, | |y− e1|−1| ≤ 2ε} ,

where � = 1, . . . , [ 1
ε ]+ 1. The volume of each S� is comparable to

ε
[

((�+ 1)ε)n−1− (�ε)n−1]≈ εn�n−2 .

Consequently,
∫

S0

dy
|y|n−α ≤ ωn−1

∫ ε

0

rn−1

rn−α dr =
ωn−1

α
εα ,

whereas
[ 1
ε ]+1

∑
�=1

∫

S�

dy
|y|n−α ≤C′

n,α

2/ε

∑
�=1

εn�n−2

(�ε)n−α ≤C′
n,α ε

α
2/ε

∑
�=1

1
�2−α .

Finally, the volume of S∞ is about ε; hence

∫

S∞

dy
|y|n−α ≤ |S∞| ≤C′′

n,α ε .

Combining these estimates, we obtain

∫

| |y−e1|−1|≤2ε

cn,α

|y|n−α dy ≤Cn,α

[

εα + εα
2/ε

∑
�=1

1
�2−α + ε

]

,

and it is an easy matter to check that the expression inside the square brackets is at
most a constant multiple of εα−1Aα(ε).

We now turn attention to (10.5.22). Switching the roles of f and ̂f , we rewrite
(10.5.22) as
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∫

Rn

| f (x)|2
(1 + |x|)M dx ≤ C′

M(n,α)
∫

Rn
| ̂(−Δ)

α
4 ( f )(ξ )|2 dξ

= C′
M(n,α)

∫

Rn
|(−Δ)

α
4 ( f )(x)|2 dx ,

recalling the Laplacian introduced in (6.1.1). This estimate can also be restated in
terms of the Riesz potential operator Iα/2 = (−Δ)−α/4 as follows:

∫

Rn

|Iα/2(g)(x)|2

(1 + |x|)M dx ≤C′
M(n,α)

∫

Rn
|g(x)|2 dx . (10.5.30)

To show this, we use Hölder’s inequality with exponents q/2 and n/α , where q > 2
satisfies

1
2
− 1

q
=
α
2n

.

Then we have

∫

Rn

|Iα/2(g)(x)|2

(1 + |x|)M dx ≤
(
∫

Rn

dx

(1 + |x|)Mn/α

) n
α ∥
∥Iα/2(g)

∥

∥

2
Lq(Rn)

≤ C′
M(n,α)

∥

∥g
∥

∥

2
L2(Rn)

in view of Theorem 6.1.3 and since M > n and α < n. This finishes the proof of the
lemma. �

Exercises

10.5.1. Let 0 < r < p <∞ and n(1− r
p) < β < n. Show that Lp(Rn) is contained in

Lr(Rn)+ Lr(Rn, |x|−β ).
[

Hint: Write f = f1 + f2, where f1 = f χ| f |>1 and f2 = f χ| f |≤1.
]

10.5.2. (a) With the notation of Lemma 10.5.4, use dilations to show that the esti-
mate

∫

Rn

∫ 2

1
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤C0

∫

Rn
| f (x)|2 dx

|x|α

implies
∫

Rn

∫ 2a

a
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤C0

∫

Rn
| f (x)|2 dx

|x|α

for any a > 0 and f in the Schwartz class.
(b) Using dilations also show that (10.5.16) implies (10.5.15).

10.5.3. Let h be a Schwartz function on Rn. Prove that

1
ε

∫

| |x|−1|≤ε
h(x)dx → 2|Sn−1|

∫

Sn−1
h(θ )dθ
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as ε → 0. Use Lemma 10.5.6 to show that for 1 < α < n we have
∫

Sn−1
|̂f (θ )|dθ ≤C(n,α)

∫

Rn
| f (x)|2|x|α dx .

10.5.4. Let w ∈ A2. Assume that the ball multiplier operator B0( f ) = (̂f χB(0,1))∨

satisfies
∫

Rn
|B0( f )(x)|2 w(x)dx ≤Cn,α

∫

Rn
| f (x)|2 w(x)dx

for all f ∈ L2(w). Prove the same estimate for B( f ) = supk∈Z |B0
2k( f )|.

[

Hint: Argue as in the proof of Theorem 5.3.1. Pick a smooth function with

compact support ̂Φ equal to one on B(0,1) and vanishing in B(0,2) and define
̂Ψ (ξ ) = ̂Φ(ξ )− ̂Φ(2ξ ). Then χB(0,1)

(

̂Φ(ξ )− ̂Φ(2ξ )
)

= χB(0,1)− ̂Φ(2ξ ); hence

B( f ) ≤ sup
k
|Φ2−k ∗ f |+

(

∑
k∈Z

|B0
2k( f )−Φ2−(k−1) ∗ f |2

) 1
2

≤ CΦ M( f )+
(

∑
k∈Z

|B0
2k( f ∗Ψ2−k)|2

) 1
2

and show that each term is bounded on L2(w).
]

10.5.5. Show that the Bochner–Riesz operator Bλ does not map Lp(Rn) to Lp,∞(Rn)
when λ = n−1

2 − n
p and 2 < p < ∞. Derive the same conclusion for Bλ∗ .

[

Hint: Suppose the contrary. Then by duality it would follow that Bλ maps Lp,1(Rn)
to Lp(Rn) when 1 < p < 2 and λ = n

p −
n+1

2 . To contradict this statement test the
operator on a Schwartz function whose Fourier transform is equal to 1 on the unit
ball and argue as in Proposition 10.2.3.

]

HISTORICAL NOTES

The geometric construction in Section 10.1 is based on ideas of Besicovitch, who used a similar
construction to answer the following question posed in 1917 by the Japanese mathematician S.
Kakeya: What is the smallest possible area of the trace of ink left on a piece of paper by an
ink-covered needle of unit length when the positions of its two ends are reversed? This problem
puzzled mathematicians for several decades until Besicovitch [22] showed that for any ε > 0 there
is a way to move the needle so that the total area of the blot of ink left on the paper is smaller than
ε . Fefferman [125] borrowed ideas from the construction of Besicovitch to provide the negative
answer to the multiplier problem to the ball for p �= 2 (Theorem 10.1.5). Prior to Fefferman’s
work, the fact that the characteristic function of the unit ball is not a multiplier on Lp(Rn) for
| 1

p −
1
2 | ≥

1
2n was pointed out by Herz [163], who also showed that this limitation is not necessary

when this operator is restricted to radial Lp functions. The crucial Lemma 10.1.4 in Fefferman’s
proof is due to Y. Meyer.

The study of Bochner–Riesz means originated in the article of Bochner [27], who obtained
their Lp boundedness for λ > n−1

2 . Stein [287] improved this result to λ > n−1
2 | 1

p − 1
2 | using
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interpolation for analytic families of operators. Theorem 10.2.4 was first proved by Carleson and
Sjölin [58]. A second proof of this theorem was given by Fefferman [127]. A third proof was
given by Hörmander [167]. The proof of Theorem 10.2.4 given in the text is due Córdoba [90].
This proof elaborated the use of the Kakeya maximal function in the study of spherical summation
multipliers, which was implicitly pioneered in Fefferman [127]. The boundedness of the Kakeya
maximal function KN on L2(R2) with norm C(log N)2 was first obtained by Córdoba [89]. The
sharp estimate C logN was later obtained by Strömberg [296]. The proof of Theorem 10.3.5 is
taken from this article of Strömberg. Another proof of the boundedness of the Kakeya maximal
function without dilations on L2(R2) was obtained by Müller [240]. Barrionuevo [17] showed that
for any subset Σ of S1 with N elements the maximal operator MΣ maps L2(R2) to itself with

norm CN2(log N)−1/2
for some absolute constant C. Note that this bound is O(Nε ) for any ε > 0.

Katz [183] improved this bound to C logN for some absolute constant C; see also Katz [184]. The
latter is a sharp bound, as indicated in Proposition 10.3.4. Katz [182] also showed that the maximal
operator MK associated with a set of unit vectors pointing along a Cantor set K of directions is
unbounded on L2(R2). If Σ is an infinite set of vectors in S1 pointing in lacunary directions, then
MΣ was studied by Strömberg [295], Córdoba and Fefferman [93], and Nagel, Stein, and Wainger
[244]. The last authors obtained its Lp boundedness for all 1 < p < ∞. Theorem 10.2.7 was first
proved by Carleson [56]. For a short account on extensions of this theorem, the reader may consult
the historical notes at the end of Chapter 5.

The idea of restriction theorems for the Fourier transform originated in the work of E. M. Stein
around 1967. Stein’s original restriction result was published in the article of Fefferman [123],
which was the first to point out connections between restriction theorems and boundedness of the
Bochner–Riesz means. The full restriction theorem for the circle (Theorem 10.4.7 for p < 4

3 ) is due
to Fefferman and Stein and was published in the aforementioned article of Fefferman [123]. See
also the related article of Zygmund [340]. The present proof of Theorem 10.4.7 is based in that of
Córdoba [91]. This proof was further elaborated by Tomas [314], who pointed out the logarithmic
blowup when p = 4

3 for the corresponding restriction problem for annuli. The result in Example
10.4.4 is also due to Fefferman and Stein and was initially proved using arguments from spherical
harmonics. The simple proof presented here was observed by A. W. Knapp. The restriction property
in Theorem 10.4.5 for p < 2(n+1)

n+3 is due to Tomas [313], while the case p = 2(n+1)
n+3 is due to Stein

[291]. Theorem 10.4.6 was first proved by Fefferman [123] for the smaller range of λ > n−1
4 using

the restriction property Rp→2(Sn−1) for p < 4n
3n+1 . The fact that the Rp→2(Sn−1) restriction property

(for p < 2) implies the boundedness of the Bochner–Riesz operator Bλ on Lp(Rn) is contained in
the work of Fefferman [123]. A simpler proof of this fact, obtained later by E. M. Stein, appeared in
the subsequent article of Fefferman [127]. This proof is given in Theorem 10.4.6, incorporating the
Tomas–Stein restriction property Rp→2(Sn−1) for p ≤ 2(n+1)

n+3 . It should be noted that the case n = 3
of this theorem was first obtained in unpublished work of Sjölin. For a short exposition and history
of this material consult the book of Davis and Chang [106]. Much of the material in Sections 10.2,
10.3, and 10.4 is based on the notes of Vargas [322].

There is an extensive literature on restriction theorems for submanifolds of Rn. It is noteworthy
to mention (in chronological order) the results of Strichartz [294], Prestini [267], Greenleaf [155],
Christ [62], Drury [112], Barceló [15], [16], Drury and Marshall [114], [115], Beckner, Carbery,
Semmes, and Soria [18], Drury and Guo [113], De Carli and Iosevich [107], [108], Sjölin and Soria
[284], Oberlin [250], Wolff [337], and Tao [306].

The boundedness of the Bochner–Riesz operators on the range excluded by Proposition 10.2.3
implies that the restriction property Rp→q(Sn−1) is valid when 1

q = n+1
n−1

1
p′ and 1 ≤ p < 2n

n+1 , as
shown by Tao [305]; in this article a hierarchy of conjectures in harmonic analysis and interrela-
tions among them is discussed. In particular, the aforementioned restriction property would imply
estimate (10.3.33) for the Kakeya maximal operator KN on Rn, which would in turn imply that
Besicovitch sets have Minkowski dimension n. (A Besicovitch set is defined as a subset of Rn that
contains a unit line segment in every direction.) Katz, Laba, and Tao [185] have obtained good
estimates on the Minkowski dimension of such sets in R3.
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A general sieve argument obtained by Córdoba [89] reduces the boundedness of the Kakeya
maximal operator KN to the one without dilations K a

N . For applications to the Bochner–Riesz
multiplier problem, only the latter is needed. Carbery, Hernández, and Soria [51] have proved
estimate (10.3.31) for radial functions in all dimensions. Igari [175] proved estimate (10.3.32) for
products of one-variable functions of each coordinate. The norm estimates in Corollary 10.3.7
can be reversed, as shown by Keich [187] for p > 2. The corresponding estimate for 1 < p < 2

in the same corollary can be improved to N
2
p −1. Córdoba [90] proved the partial case p ≤ 2 of

Theorem 10.3.10 on Rn. This range was extended by Drury [111] to p ≤ n+1
n−1 using estimates

for the x-ray transform. Theorem 10.3.10 (i.e., the further extension to p ≤ n+1
2 ) is due to Christ,

Duoandikoetxea, and Rubio de Francia [68], and its original proof also used estimates for the x-ray
transform; the proof of Theorem 10.3.10 given in the text is derived from that in Bourgain [29].
This article brought a breakthrough in many of the previous topics. In particular, Bourgain [29]
showed that the Kakeya maximal operator KN maps Lp(Rn) to itself with bound CεN

n
p −1+ε for

all ε > 0 and some pn > n+1
2 . He also showed that the range of p’s in Theorem 10.4.5 is not sharp,

since there exist indices p = p(n) > 2(n+1)
n+3 for which property Rp→q(Sn−1) holds, and that Theorem

10.4.6 is not sharp, since there exist indices λn < n−1
2(n+1) for which the Bochner–Riesz operators are

bounded on Lp(Rn) in the optimal range of p’s when λ ≥ λn. Improvements on these indices were
subsequently obtained by Bourgain [30], [31]. Some of Bourgain’s results in R3 were re-proved
by Schlag [279] using different geometric methods. Wolff [335] showed that the Kakeya maximal
operator KN maps Lp(Rn) to itself with bound CεN

n
p −1+ε for any ε > 0 whenever p ≤ n+2

2 . In
higher dimensions, this range of p’s was later extended by Bourgain [32] to p ≤ (1+ε) n

2 for some
dimension-free positive constant ε . When n = 3, further improvements on the restriction and the
Kakeya conjectures were obtained by Tao, Vargas, and Vega [308]. For further historical advances
in the subject the reader is referred to the survey articles of Wolff [336] and Katz and Tao [186].

Regarding the almost everywhere convergence of the Bochner–Riesz means, Carbery [50] has
shown that the maximal operator Bλ∗ ( f ) = supR>0 |BλR( f )| is bounded on Lp(R2) when λ > 0 and
2≤ p < 4

1−2λ , obtaining the convergence BλR( f )→ f almost everywhere for f ∈ Lp(R2). For n≥ 3,

2≤ p < 2n
n−1−2λ , and λ ≥ n−1

2(n+1) the same result was obtained by Christ [63]. Theorem 10.5.2 is due
to Carbery, Rubio de Francia, and Vega [52]. Theorem 10.5.1 is contained in Tao [304]. Tao [307]
also obtained boundedness for the maximal Bochner–Riesz operators Bλ∗ on Lp(R2) whenever
1 < p < 2 for an open range of pairs ( 1

p ,λ ) that lie below the line λ = 1
2 ( 1

p −
1
2 ).

On the critical line λ = n
p −

n+1
2 , boundedness into weak Lp for the Bochner–Riesz operators

is possible in the range 1 ≤ p ≤ 2n
n+1 . Christ [65], [64] first obtained such results for 1 ≤ p < 2(n+1)

n+3

in all dimensions. The point p = 2(n+1)
n+3 was later included by Tao [303]. In two dimensions, weak

boundedness for the full range of indices was shown by Seeger [280]; in all dimensions the same
conclusion was obtained by Colzani, Travaglini, and Vignati [87] for radial functions. Tao [304]
has obtained a general argument that yields weak endpoint bounds for Bλ whenever strong type
bounds are known above the critical line.



Chapter 11
Time–Frequency Analysis and the
Carleson–Hunt Theorem

In this chapter we discuss in detail the proof of the almost everywhere convergence
of the partial Fourier integrals of Lp functions on the line. The proof of this theo-
rem is based on techniques involving both spatial and frequency decompositions.
These techniques are referred to as time–frequency analysis. The underlying goal is
to decompose a given function at any scale as a sum of pieces perfectly localized
in frequency and well localized in space. The action of an operator on each piece
is carefully studied and the interaction between different parts of this action are an-
alyzed. Ideas from combinatorics are employed to organize the different pieces of
the decomposition.

11.1 Almost Everywhere Convergence of Fourier Integrals

In this section we study the proof of one of the most celebrated theorems in Fourier
analysis, Carleson’s theorem on the almost everywhere convergence of Fourier se-
ries of square integrable functions on the circle. The same result is also valid for
functions f on the line if the partial sums of the Fourier series are replaced by the
(partial) Fourier integrals

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ .

The equivalence of these assertions follows from the transference methods discussed
in Chapter 3.

For square-integrable functions f on the line, define the Carleson operator

C ( f )(x) = sup
N>0

∣

∣

(

̂f χ[−N,N]
)∨ ∣
∣= sup

N>0

∣

∣

∣

∣

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ
∣

∣

∣

∣

. (11.1.1)

We note that the operators (̂f χ[a,b])∨ are well defined when −∞≤ a < b ≤ ∞ for f
in L2(R), and thus so is C ( f ). We have the following result concerning C .
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Theorem 11.1.1. There is a constant C > 0 such that for all square-integrable func-
tions f on the line the following estimate is valid:

∥

∥C ( f )
∥

∥

L2,∞ ≤C
∥

∥ f
∥

∥

L2 .

It follows that for all f in L2(R) we have

lim
N→∞

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ = f (x) (11.1.2)

for almost all x ∈ R.

Proof. Because of the simple identity

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ =
∫ N

−∞
̂f (ξ )e2π ixξ dξ −

∫ −N

−∞
̂f (ξ )e2π ixξ dξ ,

it suffices to obtain L2 → L2,∞ bounds for the one-sided maximal operators

C1( f )(x) = sup
N>0

∣

∣

∣

∣

∫ N

−∞
̂f (ξ )e2π ixξ dξ

∣

∣

∣

∣

,

C2( f )(x) = sup
N>0

∣

∣

∣

∣

∫ −N

−∞
̂f (ξ )e2π ixξ dξ

∣

∣

∣

∣

.

Once these bounds are obtained, we can use the simple fact that (11.1.2) holds for
Schwartz functions and Theorem 2.1.14 to obtain (11.1.2) for all square-integrable

functions f on the line. Note that ˜C2( f ) = C1(˜f ), where ˜f (x) = f (−x) is the usual
reflection operator. Therefore, it suffices to obtain bounds only for C1. Just as is the
case with C , the operators C1 and C2 are well defined on L2(R).

For a > 0 and y∈R we define the translation operator τy, the modulation operator
Ma, and the dilation operator Da as follows:

τy( f )(x) = f (x− y) ,

Da( f )(x) = a−
1
2 f (a−1x) ,

My( f )(x) = f (x)e2π iyx .

These operators are isometries on L2(R).
We break down the proof of Theorem 11.1.1 into several steps.

11.1.1 Preliminaries

We denote rectangles of area 1 in the (x,ξ ) plane by s, t, u, etc. All rectangles
considered in the sequel have sides parallel to the axes. We think of x as the time
coordinate and of ξ as the frequency coordinate. For this reason we refer to the (x,ξ )
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coordinate plane as the time–frequency plane. The projection of a rectangle s on the
time axis is denoted by Is, while its projection on the frequency axis is denoted by
ωs. Thus a rectangle s is just s = Is ×ωs. Rectangles with sides parallel to the axes
and area equal to one are called tiles.

The center of an interval I is denoted by c(I). Also for a > 0, aI denotes an
interval with the same center as I whose length is a|I|. Given a tile s, we denote by
s(1) its bottom half and by s(2) its upper half defined by

s(1) = Is ×
(

ωs ∩ (−∞,c(ωs)
)

, s(2) = Is ×
(

ωs ∩ [c(ωs),+∞)
)

.

These sets are called semitiles. The projections of these sets on the frequency axes
are denoted by ωs(1) and ωs(2), respectively.

Fig. 11.1 The lower and the
upper parts of a tile s.

A dyadic interval is an interval of the form [m2k,(m+ 1)2k), where k and m are
integers. We denote by D the set of all rectangles I ×ω with I, ω dyadic intervals
and |I| |ω |= 1. Such rectangles are called dyadic tiles. We denote by D the set of all
dyadic tiles.

We fix a Schwartz function ϕ such that ϕ̂ is real, nonnegative, and supported in
the interval [−1/10,1/10]. For each tile s, we introduce a function ϕs as follows:

ϕs(x) = |Is|−
1
2ϕ
(

x− c(Is)
|Is|

)

e2π ic(ωs(1))x . (11.1.3)

This function is localized in frequency near c(ωs(1)). Using the previous notation,
we have

ϕs = Mc(ωs(1))τc(Is)D|Is|(ϕ) .

Observe that

ϕ̂s(ξ ) = |ωs|−
1
2 ϕ̂
(ξ − c(ωs(1))

|ωs|

)

e2π i(c(ωs(1))−ξ )c(Is) , (11.1.4)

from which it follows that ϕ̂s is supported in 1
5ωs(1). Also observe that the functions

ϕs have the same L2(R) norm.
Recall the complex inner product notation for f ,g ∈ L2(R):

〈

f |g
〉

=
∫

R
f (x)g(x)dx . (11.1.5)

Given a nonzero real number ξ , we introduce an operator
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Aξ ( f ) = ∑
s∈D
χωs(2) (ξ )

〈

f |ϕs
〉

ϕs (11.1.6)

initially defined for f in the Schwartz class. We show in the next subsection that
the series in (11.1.6) converges absolutely for f in the Schwartz class and thus Aξ
is well defined on this class. Moreover, we show in Lemma 11.1.2 that Aξ admits
an extension that is L2 bounded, and therefore it can thought of as well defined on
L2(R).

For every integer m, let us denote by Dm the set of all tiles s ∈ D such that
|Is| = 2m. We call these dyadic tiles of scale m. Then

Aξ ( f ) = ∑
m∈Z

Am
ξ ( f ) ,

where
Am
ξ ( f ) = ∑

s∈Dm

χωs(2) (ξ )
〈

f |ϕs
〉

ϕs , (11.1.7)

and observe that for each scale m, the second sum above ranges over all dyadic rect-
angles of a fixed scale whose tops contain the line perpendicular to the frequency
axis at height ξ . The operators Am

ξ are discretized versions of the multiplier operator

f �→
(

̂f χ(−∞,ξ ]
)∨

. Indeed, the Fourier transform of Am
ξ ( f ) is supported in the fre-

quency projection of the lower part s(1) of the dyadic tiles s that appear in (11.1.7).
But the sum in (11.1.7) is taken over all dyadic tiles s whose frequency projection
of the upper part s(2) contains ξ . So the Fourier transform of Am

ξ ( f ) is supported

in (−∞,ξ ]. On the other hand, summing over all s in (11.1.7) yields essentially the
identity operator; cf. Exercise 11.1.9. Therefore, Am

ξ can be viewed as the “part”
of the identity operator whose frequency multiplier consists of the function χ(−∞,ξ ]
instead of the function 1. As m becomes larger, we obtain a better and better approx-
imation to this multiplier. This heuristic explanation motivates the introduction and
study of the operators Am

ξ and Aξ .

Lemma 11.1.2. For any fixed ξ , the operators Am
ξ are bounded on L2(R) uniformly

in m and ξ ; moreover, the operator Aξ is L2 bounded uniformly in ξ .

Proof. We make a few observations about the operators Am
ξ . First recall that the

adjoint of an operator T is uniquely defined by the identity

〈

T ( f ) |g
〉

=
〈

f |T ∗(g)
〉

for all f and g. Observe that Am
ξ are self-adjoint operators, meaning that (Am

ξ )∗ = Am
ξ .

Moreover, we claim that if m �= m′, then

Am′
ξ (Am

ξ )∗ = (Am′
ξ )∗Am

ξ = 0 .

Indeed, given f and g we have



11.1 Almost Everywhere Convergence of Fourier Integrals 427

〈

(Am′
ξ )∗Am

ξ ( f ) |g
〉

=
〈

Am
ξ ( f ) |Am′

ξ (g)
〉

(11.1.8)

= ∑
s∈Dm

∑
s′∈Dm′

〈

f |ϕs
〉〈

g |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ ) .

Suppose that
〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ ) is nonzero. Then

〈

ϕs |ϕs′
〉

is also nonzero,

which implies that ωs(1) and ωs′(1) intersect. Also, the function χωs(2) (ξ )χωs′(2)
(ξ )

is nonzero; hence ωs(2) and ωs′(2) must intersect. Thus the dyadic intervals ωs and
ωs′ are not disjoint, and one must contain the other. If ωs were properly contained
in ωs′ , then it would follow that ωs is contained in ωs′(1) or in ωs′(2). But then either
ωs(1) ∩ωs′(1) or ωs(2) ∩ωs′(2) would have to be empty, which does not happen, as
observed. It follows that if

〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ ) is nonzero, then ωs = ωs′ ,

which is impossible if m �= m′. Thus the expression in (11.1.8) has to be zero.
We first discuss the boundedness of each operator Am

ξ . We have

∥

∥Am
ξ ( f )

∥

∥

2
L2 = ∑

s∈Dm

∑
s′∈Dm

〈

f |ϕs
〉〈

f |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ )

= ∑
s∈Dm

∑
s′∈Dmωs′=ωs

〈

f |ϕs
〉〈

f |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ )

≤ ∑
s∈Dm

∑
s′∈Dmωs′=ωs

∣

∣

〈

f |ϕs
〉∣

∣

2χωs(2) (ξ )
∣

∣

〈

ϕs |ϕs′
〉∣

∣

≤C1 ∑
s∈Dm

∣

∣

〈

f |ϕs
〉∣

∣

2χωs(2) (ξ ) , (11.1.9)

where we used an earlier observation about s and s′, the Cauchy–Schwarz inequality,
and the fact that

∑
s′∈Dmωs′=ωs

∣

∣

〈

ϕs |ϕs′
〉∣

∣≤C ∑
s′∈Dmωs′=ωs

(

1 +
dist (Is, Is′)

2m

)−10

≤C1 ,

which follows from the result in Appendix K.1. To estimate (11.1.9), we use that

∣

∣

〈

f |ϕs
〉∣

∣≤ C2

∫

R
| f (y)| |Is|−

1
2

(

1 +
|y− c(Is)|

|Is|

)−10

dy

= C3 |Is|
1
2

∫

R
| f (y)|

(

1 +
|y− z|
|Is|

)−10 dy
|Is|

≤ C4 |Is|
1
2 M( f )(z),

for all z ∈ Is, in view of Theorem 2.1.10. Since the preceding estimate holds for all
z ∈ Is, it follows that
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∣

∣

〈

f |ϕs
〉∣

∣

2 ≤ (C3)2|Is| inf
z∈Is

M( f )(z)2 ≤ (C3)2
∫

Is
M( f )(x)2 dx. (11.1.10)

Next we observe that the rectangles s ∈ Dm with the property that ξ ∈ ωs(2) are all
disjoint. This implies that the corresponding time intervals Is are also disjoint. Thus,
summing (11.1.10) over all s ∈ Dm with ξ ∈ ωs(2), we obtain that

∑
s∈Dm

∣

∣

〈

f |ϕs
〉∣

∣

2χωs(2) (ξ ) ≤ (C3)2 ∑
s∈Dm

χωs(2) (ξ )
∫

Is
M( f )(x)2 dx

≤ (C3)2
∫

R
M( f )(x)2 dx,

which establishes the required claim using the boundedness of the Hardy–Littlewood
maximal operator M on L2(R).

Finally, we discuss the boundedness of Aξ = ∑m∈Z Am
ξ . For every fixed m ∈ Z,

the dyadic tiles that appear in the sum defining Am
ξ ( f ) have the form

s = [k2m,(k + 1)2m)× [�2−m,(�+ 1)2−m) ,

where (�+ 1
2 )2−m ≤ ξ < (�+ 1)2−m. Thus � = [2mξ ], and since ϕ̂s is supported in

the lower part of the dyadic tile s, we may replace f by fm, where

̂fm = ̂f χ[2−m[2mξ ],2−m([2mξ ]+ 1
2 ))

As already observed, we have
〈

Am
ξ ( f ) |Am′

ξ ( f )
〉

= 0 whenever m �= m′. Conse-
quently,

∥

∥ ∑
m∈Z

Am
ξ ( f )

∥

∥

2
L2 = ∑

m∈Z

∥

∥Am
ξ ( f )

∥

∥

2
L2

= ∑
m∈Z

∥

∥Am
ξ ( fm)

∥

∥

2
L2

≤ C4 ∑
m∈Z

∥

∥ fm
∥

∥

2
L2

= C4 ∑
m∈Z

∥

∥̂fm
∥

∥

2
L2

≤ C4
∥

∥ f
∥

∥

2
L2 ,

since the supports of ̂fm are disjoint for different values of m ∈ Z. �

11.1.2 Discretization of the Carleson Operator

We let h ∈ S (R), ξ ∈ R \ {0}, and for each m ∈ Z, y,η ∈ R, and λ ∈ [0,1] we
introduce the operators
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Bm
ξ ,y,η,λ (h) = ∑

s∈Dm

χωs(2) (2
−λ (ξ +η))

〈

D2λ τyMη (h) |ϕs
〉

M−ητ−yD2−λ (ϕs) .

It is not hard to see that for all x ∈ R and λ ∈ [0,1] we have

Bm
ξ ,y,η,λ (h)(x) = Bm

ξ ,y+2m−λ ,η,λ (h)(x) = Bm
ξ ,y,η+2−m+λ ,λ (h)(x) ;

in other words, the function (y,η) �→ Bm
ξ ,y,η,λ (h)(x) is periodic in R2 with period

(2m−λ ,2−m+λ ). See Exercise 11.1.1.
Using Exercise 11.1.2, we obtain that for |m| large (with respect to ξ ) we have
∣

∣

∣

∣
∑

s∈Dm

χωs(2) (2
−λ (ξ +η))

〈

D2λ τyMη (h) |ϕs
〉

M−ητ−yD2−λ (ϕs)(x)
∣

∣

∣

∣

≤ Ch min(2m,1) ∑
s∈Dm

χωs(2) (2
−λ (ξ +η))2−m/2

∣

∣

∣ϕ
(x + y− c(Is)

2m−λ

)∣

∣

∣

≤ Ch min(2m/2,2−m/2)∑
k∈Z

∣

∣

∣ϕ
(x + y− k2m

2m−λ

)∣

∣

∣

≤ Ch min(2m/2,2−m/2) ,

since the last sum is seen easily to converge to some quantity that remains bounded
in x, y, η , and λ . It follows that for h ∈ S (R) we have

sup
x∈R

sup
y∈R

sup
η∈R

sup
0≤λ≤1

∣

∣Bm
ξ ,y,η,λ (h)(x)

∣

∣≤Ch min(2m/2,2−m/2) . (11.1.11)

Using Exercise 11.1.3 and the periodicity of the functions Bm
ξ ,y,η,λ (h), we conclude

that the averages
1

4KL

∫ L

−L

∫ K

−K

∫ 1

0
Bm
ξ ,y,η,λ (h) dλ dydη

converge pointwise to some Πm
ξ (h) as K,L → ∞. Estimate (11.1.11) implies the

uniform convergence for the series ∑
m∈Z

Bm
ξ ,y,η,λ (h) and therefore

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
M−ητ−yD2−λA ξ+η

2λ
D2λτyMη(h)dλ dydη (11.1.12)

= lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑

m∈Z
Bm
ξ ,y,η,λ (h) dλ dydη

= ∑
m∈Z

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
Bm
ξ ,y,η,λ (h) dλ dydη

= ∑
m∈Z
Πm
ξ (h) .
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We now make a few observations about the operator Πξ defined on S (R) in terms
of the expression in (11.1.12), that is:

Πξ (h) = ∑
m∈Z
Πm
ξ (h) .

First we observe that in view of Lemma 11.1.2 and Fatou’s lemma, we have that
Πξ is bounded on L2 uniformly in ξ . Next we observe that Πξ commutes with all
translations τz for z ∈ R. To see this, we use the fact that τ−zM−η = e−2π iηzM−ητ−z

to obtain

∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

D2λ τyMητz(h) |ϕs
〉

τ−zM−ητ−yD2−λ (ϕs)

= ∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

h |τ−zM−ητ−yD2−λ (ϕs)
〉

τ−zM−ητ−yD2−λ (ϕs)

= ∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

h |M−ητ−y−zD2−λ (ϕs)
〉

M−ητ−y−zD2−λ (ϕs) .

Recall that τ−zΠm
ξ τ

z(h) is equal to the limit of the averages of the preceding ex-
pressions over all (y,η ,λ ) ∈ [−K,K]× [−L,L]× [0,1]. But in view of the previous
identity, this is equal to the limit of the averages of the expressions

∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

D2λ τy′Mη(h) |ϕs
〉

M−ητ−y′D2−λ (ϕs) (11.1.13)

over all (y′,η ,λ ) ∈ [−K + z,K + z]× [−L,L]× [0,1]. Since (11.1.13) is periodic
in (y′,η), it follows that its average over the set [−K + z,K + z]× [−L,L]× [0,1] is
equal to its average over the set [−K,K]× [−L,L]× [0,1]. Taking limits as K,L→∞,
we obtain the identity τ−zΠm

ξ τ
z(h) = Πm

ξ (h). Summing over all m ∈ Z, it follows

that τ−zΠξτz(h) =Πξ (h).
A similar argument using averages over shifted rectangles of the form [−K,K]×

[−L+θ ,L+θ ] yields the identity

M−θΠξ+θMθ =Πξ (11.1.14)

for all ξ ,θ ∈ R. The details are left to the reader. Next, we claim that the opera-
tor M−ξΠξMξ commutes with dilations D2a

, a ∈ R. First we observe that for all
integers k we have

Aξ (h) = D2−k
A2−kξD2k

(h) , (11.1.15)

which is simply saying that Aξ is well behaved under change of scale. This identity
is left as an exercise to the reader. Identity (11.1.15) may not hold for noninteger
k, and this is exactly why we have averaged over all dilations 2λ , 0 ≤ λ ≤ 1, in
(11.1.12).

Let us denote by [a] the integer part of a real number a. Using the identities
DbMη = Mη/bDb and Dbτz = τbzDb, we obtain
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D2−a
M−(ξ+η)τ−yD2−λA ξ+η

2λ
D2λ τyMξ+ηD2a

(11.1.16)

=M−2a(ξ+η)τ−2−ayD2−(a+λ)
A ξ+η

2λ
D2a+λ

τ2−ayM2a(ξ+η)

=M−2a(ξ+η)τ−y′D2−λ
′
D2−[a+λ ]

A 2a(ξ+η)

2λ ′ 2[a+λ ]
D2[a+λ ]

D2λ
′
τy′M2a(ξ+η)

=M−2aξM−η ′τ−y′D2−λ
′
A 2aξ+2aη

2λ ′
D2λ

′
τy′Mη ′M2aξ

=M−ξM−θ(M−η ′τ−y′D2−λ
′
A ξ+θ+η′

2λ ′
D2λ

′
τy′Mη ′)MθMξ , (11.1.17)

where we set y′ = 2−ay, η ′ = 2aη , λ ′ = a + λ − [a + λ ], and θ = (2a − 1)ξ . The
average of (11.1.16) over all (y,η ,λ ) in [−K,K]× [−L,L]× [0,1] converges to the
operator D2−a

M−ξΠξMξD2a
as K,L → ∞. But this limit is equal to the limit of

the averages of the expression in (11.1.17) over all (y′,η ′,λ ′) in [−2−aK,2−aK]×
[−2aL,2aL]× [0,1], which is

M−ξM−θΠξ+θMθMξ .

Using the identity (11.1.14), we obtain that

D2−a
M−ξΠξMξD2a

= M−ξΠξMξ ,

saying that the operator M−ξΠξMξ commutes with dilations.

Next we observe that if ̂h is supported in [0,∞), then M−ξΠξMξ (h) = 0. This is
a consequence of the fact that the inner products

〈

D2λ τyMηMξ (h) |ϕs
〉

=
〈

Mξ (h) |M−ητ−yD2−λ (ϕs)
〉

vanish, since the Fourier transform of τ−zM−ητ−yD2−λ ϕs is supported in the set

(−∞,2λ c(ωs(1))−η + 2λ
10 |ωs|), which is disjoint from the interval (ξ ,+∞) when-

ever 2−λ (ξ +η) ∈ ωs(2). Finally, we observe that Πξ is a positive semidefinite op-
erator, that is, it satisfies

〈

Πξ (h) |h
〉

≥ 0 . (11.1.18)

This follows easily from the fact that the inner product in (11.1.18) is equal to

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑
s∈D
χωs(2)

( ξ+η
2λ

)∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣

2
dλ dydη . (11.1.19)

This identity also implies that Πξ is not the zero operator; indeed, notice that

∑
s∈D0

χωs(2)

( ξ+η
2λ

)∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣

2 =
〈

h
∣

∣B0
ξ ,y,η,λ (h)

〉
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is periodic with period (2−λ ,2λ ) in (y,η), and consequently the limit in (11.1.19)
is at least as big as

∫ 2λ

0

∫ 2−λ

0

∫ 1

0
∑

s∈D0

χωs(2)

( ξ+η
2λ

)∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣

2
dλ dydη

(cf. Exercise 11.1.3). Since we can always find a Schwartz function h and a dyadic

tile s such that
〈

D2λ τyMη (h) |ϕs
〉

is not zero for (y,η ,λ ) near (0,0,0), it follows
that the expression in (11.1.19) is strictly positive for some function h. The same
is valid for the inner product in (11.1.18); hence the operators and M−ξΠξMξ are
nonzero for every ξ .

Let us summarize what we have already proved: The operator M−ξΠξMξ is
nonzero, is bounded on L2(R), commutes with translations and dilations, and van-
ishes when applied to functions whose Fourier transform is supported in the positive
semiaxis [0,∞). In view of Exercise 4.1.11, it follows that for some constant cξ �= 0
we have

M−ξΠξMξ (h)(x) = cξ

∫ 0

−∞
̂h(η)e2π ixη dη ,

which identifies Πξ with the convolution operator whose multiplier is the function
cξ χ(−∞,ξ ]. Using the identity (11.1.14), we obtain

cξ+θ = cξ

for all ξ and θ , saying that cξ does not depend on ξ . We have therefore proved that
for all Schwartz functions h the following identity is valid:

Πξ (h) = c
(

̂hχ(−∞,ξ ]
)∨ (11.1.20)

for some fixed nonzero constant c. This completely identifies the operator Πξ . By
density it follows that

C1( f ) =
1
|c| sup

ξ>0
|Πξ ( f )| (11.1.21)

for all f ∈⋃1≤p<∞Lp(R).

11.1.3 Linearization of a Maximal Dyadic Sum

Our goal is to show that there exists a constant C > 0 such that for all f ∈ L2(R) we
have

∥

∥ sup
ξ>0

|Aξ ( f )|
∥

∥

L2,∞(R) ≤C
∥

∥ f
∥

∥

L2(R) . (11.1.22)

Once (11.1.22) is established, averaging yields the same conclusion for the operator
f �→ supξ>0 |Πξ ( f )|, establishing the required bound for C1. Let us describe this
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averaging argument. Identity (11.1.12) gives

Πξ ( f ) = lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
Gξ ,y,η,λ ( f )dλ dydη ,

where
Gξ ,y,η,λ ( f ) = M−ητ−yD2−λA ξ+η

2λ
D2λ τyMη ( f ) .

This, in turn, implies

sup
ξ∈R

|Πξ ( f )| ≤ liminf
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
sup
ξ∈R

|Gξ ,y,η,λ ( f )|dλ dydη . (11.1.23)

We now take the L2,∞ quasinorms of both sides, and we use Fatou’s lemma for weak
L2 [Exercise 1.1.12(d)]. We thus reduce the estimate for the operator supξ>0 |Πξ ( f )|
to the corresponding estimate for supξ>0 |Aξ ( f )|. In this way we obtain the L2,∞

boundedness of supξ>0 |Πξ ( f )| and therefore that of C1 in view of identity (11.1.21).
Matters are now reduced to the study of the discretized maximal operator

supξ>0 |Aξ ( f )| and, in particular, to the proof of estimate (11.1.22). It will be conve-
nient to study the maximal operator supξ>0 |Aξ ( f )| via a linearization. Here is how
this is achieved. Given f ∈ L2(R), we select a measurable real-valued function1

Nf : R → R+ such that for all x ∈ R we have

sup
ξ>0

|Aξ ( f )(x)| ≤ 2 |ANf (x)( f )(x)| .

For a general measurable function N : R → R+, we define a linear operator DN by
setting for f ∈ L2(R),

DN( f )(x) = AN(x)( f )(x) = ∑
s∈D

(χωs(2) ◦N)(x)
〈

f |ϕs
〉

ϕs(x) , (11.1.24)

where the sum on the right converges in L2(R) [and also uniformly for f ∈ S (R)].
To prove (11.1.22), it suffices to show that there exists C > 0 such that for all

f ∈ L2(R) and all measurable functions N : R → R+ we have
∥

∥DN( f )
∥

∥

L2,∞ ≤C
∥

∥ f
∥

∥

L2 . (11.1.25)

Applying (11.1.25) to the measurable function Nf and using the estimate

sup
ξ>0

|Aξ ( f )| ≤ 2DNf ( f )

yields the required conclusion for the maximal dyadic sum operator supξ>0 |Aξ ( f )|
and thus for C1( f ).

1 The range ξ > 0 may be replaced by a finite subset of the positive rationals by density; in this
case Nf could be taken to be the point ξ at which the supremum is attained.
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To justify certain algebraic manipulations we fix a finite subset P of D and we
define

DN,P( f )(x) = ∑
s∈P

(χωs(2) ◦N)(x)
〈

f |ϕs
〉

ϕs(x) . (11.1.26)

To prove (11.1.25) it suffices to show that there exists a C > 0 such that for all
f ∈ L2(R), all finite subsets P of D, and all real-valued measurable functions N on
the line we have

∥

∥DN,P( f )
∥

∥

L2,∞ ≤C
∥

∥ f
∥

∥

L2 . (11.1.27)

The important point is that the constant C in (11.1.27) is independent of f , P, and
the measurable function N.

To prove (11.1.27) we use duality. In view of the results of Exercises 1.4.12(c)
and 1.4.7, it suffices to prove that for all measurable subsets E of the real line with
finite measure we have
∣

∣

∣

∣

∫

E
DN,P( f )dx

∣

∣

∣

∣

=
∣

∣

∣∑
s∈P

〈

(χωs(2) ◦N)ϕs,χE
〉〈

ϕs | f
〉

∣

∣

∣≤C|E| 1
2
∥

∥ f
∥

∥

L2 . (11.1.28)

We obtain estimate (11.1.28) as a consequence of

∑
s∈P

∣

∣

〈

(χωs(2) ◦N)ϕs,χE
〉〈

f |ϕs
〉∣

∣≤C|E| 1
2
∥

∥ f
∥

∥

L2 (11.1.29)

for all f in L2, all measurable functions N, all measurable sets E of finite measure,
and all finite subsets P of D. It is estimate (11.1.29) that we shall concentrate on.

11.1.4 Iterative Selection of Sets of Tiles with Large Mass and
Energy

We introduce a partial order in the set of dyadic tiles that provides a way to organize
them. In this section, dyadic tiles are simply called tiles.

Definition 11.1.3. We define a partial order < in the set of dyadic tiles D by setting

s < s′ ⇐⇒ Is ⊆ Is′ and ωs′ ⊆ ωs .

If two tiles s,s′ ∈ D intersect, then we must have either s < s′ or s′ < s. Indeed,
both the time and frequency components of the tiles must intersect; then either Is ⊆
Is′ or Is′ ⊆ Is. In the first case we must have |ωs| ≥ |ωs′ |, thus ωs′ ⊆ ωs, which gives
s < s′, while in the second case a similar argument gives s′ < s. As a consequence of
this observation, if R0 is a finite set of tiles, then all maximal elements of R0 under
< must be disjoint sets.

Definition 11.1.4. A finite set of tiles P is called a tree if there exists a tile t ∈ P such
that all s ∈ P satisfy s < t. We call t the top of P and we denote it by t = top(P).
Observe that the top of a tree is unique.
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We denote trees by T, T′, T1, T2, and so on.
We observe that every finite set of tiles P can be written as a union of trees whose

tops are maximal elements. Indeed, consider all maximal elements of P under the
partial order <. Then every nonmaximal element s of P satisfies s < t for some
maximal element t ∈ P, and thus it belongs to a tree with top t.

Tiles can be written as a union of two semitiles Is ×ωs(1) and Is ×ωs(2). Since
tiles have area 1, semitiles have area 1/2.

Definition 11.1.5. A tree T is called a 1-tree if

ωtop(T)(1) ⊆ ωs(1)

all s ∈ T. A tree T′ is called a 2-tree if for all s ∈ T′ we have

ωtop(T′)(2) ⊆ ωs(2) .

We make a few observations about 1-trees and 2-trees. First note that every tree
can be written as the union of a 1-tree and a 2-tree, and the intersection of these
is exactly the top of the tree. Also, if T is a 1-tree, then the intervals ωtop(T)(2) and
ωs(2) are disjoint for all s ∈ T, and similarly for 2-trees. See Figure 11.2.

Fig. 11.2 A tree of seven
tiles including the darkened
top. The top together with the
three tiles on the right forms a
1-tree, while the top together
with the three tiles on the left
forms a 2-tree.

Definition 11.1.6. Let N : R → R+ be a measurable function, let s ∈ D, and let E
be a set of finite measure. Then we introduce the quantity
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M (E;{s}) =
1
|E| sup

u∈D
s<u

∫

E∩N−1[ωu]

|Iu|−1 dx

(1 + |x−c(Iu)|
|Iu| )10

.

We call M (E;{s}) the mass of E with respect to {s}. Given a subset P of D, we
define the mass of E with respect to P as

M (E;P) = sup
s∈P

M (E;{s}) .

We observe that the mass of E with respect to any set of tiles is at most

1
|E|

∫ +∞

−∞

dx
(1 + |x|)10 ≤ 1

|E| .

Definition 11.1.7. Given a finite subset P of D and a function f in L2(R), we intro-
duce the quantity

E ( f ;P) =
1

∥

∥ f
∥

∥

L2

sup
T

(

1
|Itop(T)| ∑s∈T

∣

∣

〈

f |ϕs
〉∣

∣

2
) 1

2

,

where the supremum is taken over all 2-trees T contained in P. We call E ( f ;P) the
energy of the function f with respect to the set of tiles P.

We now state three important lemmas which we prove in the remaining three
subsections, respectively.

Lemma 11.1.8. There exists a constant C1 such that for any measurable function
N : R → R+, for any measurable subset E of the real line with finite measure, and
for any finite set of tiles P there is a subset P′ of P such that

M (E;P\P′) ≤ 1
4
M (E;P)

and P′ is a union of trees T j satisfying

∑
j

|Itop(T j)| ≤
C1

M (E;P)
. (11.1.30)

Lemma 11.1.9. There exists a constant C2 such that for any finite set of tiles P and
for all functions f in L2(R) there is a subset P′′ of P such that

E ( f ;P\P′′) ≤ 1
2

E ( f ;P)

and P′′ is a union of trees T j satisfying

∑
j

|Itop(T j)| ≤
C2

E ( f ;P)2 . (11.1.31)
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Lemma 11.1.10. (The basic estimate) There is a finite constant C3 such that for all
trees T, all functions f in L2(R), for any measurable function N : R → R+, and for
all measurable sets E we have

∑
s∈T

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣

≤C3 |Itop(T)|E ( f ;T)M (E;T)
∥

∥ f
∥

∥

L2 |E| .
(11.1.32)

In the rest of this subsection, we conclude the proof of Theorem 11.1.1 assuming
Lemmas 11.1.8, 11.1.9, and 11.1.10.

Given a finite set of tiles P, a measurable set E of finite measure, a measurable
function N : R → R+, and a function f in L2(R), we find a very large integer n0

such that

E ( f ;P) ≤ 2n0 ,

M (E;P) ≤ 22n0 .

We shall construct by decreasing induction a sequence of pairwise disjoint sets

Pn0 , Pn0−1, Pn0−2, Pn0−3, . . .

such that
n0
⋃

j=−∞
P j = P (11.1.33)

and such that the following properties are satisfied:

(1) E ( f ;P j) ≤ 2 j+1 for all j ≤ n0;

(2) M (E;P j) ≤ 22 j+2 for all j ≤ n0;

(3) E
(

f ;P\ (Pn0 ∪·· ·∪P j)
)

≤ 2 j for all j ≤ n0;

(4) M
(

E;P\ (Pn0 ∪·· ·∪P j)
)

≤ 22 j for all j ≤ n0;

(5) P j is a union of trees T jk such that for all j ≤ n0 we have

∑
k

|Itop(T jk)| ≤C0 2−2 j ,

where C0 = C1 +C2 and C1 and C2 are the constants that appear in Lemmas
11.1.8 and 11.1.9, respectively.

Assume momentarily that we have constructed a sequence {P j} j≤n0 with the
described properties. Then to obtain estimate (11.1.29) we use (1), (2), (5), the ob-
servation that the mass of any set of tiles is always bounded by |E|−1, and Lemma
11.1.10 to obtain
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∑
s∈P

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣

= ∑
j
∑

s∈P j

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2) ]
|ϕs
〉∣

∣

≤ ∑
j
∑
k
∑

s∈T jk

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣

≤ C3∑
j
∑
k

|Itop(T jk)|E ( f ;T jk)M (E;T jk)
∥

∥ f
∥

∥

L2 |E|

≤ C3∑
j
∑
k

|Itop(T jk)|2
j+1 min(|E|−1,22 j+2)

∥

∥ f
∥

∥

L2 |E|

≤ C3∑
j

C02−2 j2 j+1 min(|E|−1,22 j+2)
∥

∥ f
∥

∥

L2 |E|

≤ 8C0C3∑
j

min(2− j|E|− 1
2 ,2 j|E| 1

2 )
∥

∥ f
∥

∥

L2 |E|
1
2

≤ C |E| 1
2
∥

∥ f
∥

∥

L2 .

This proves estimate (11.1.29).
It remains to construct a sequence of disjoint sets P j satisfying properties (1)–(5).

The selection of these sets is based on decreasing induction. We start the induction
at j = n0 by setting Pn0 = /0. Then (1), (2), and (5) are clearly satisfied, while

E ( f ;P\Pn0) = E ( f ;P) ≤ 2n0 ,

M (E;P\Pn0) = M (E;P) ≤ 22n0 ;

hence (3) and (4) are also satisfied for Pn0 .
Suppose we have selected pairwise disjoint sets Pn0 , Pn0−1, . . . ,Pn for some n <

n0 such that (1)–(5) are satisfied for all j ∈ {n0,n0 −1, . . . ,n}. We construct a set of
tiles Pn−1 disjoint from all P j with j ≥ n such that (1)–(5) are satisfied for j = n−1.

We define first an auxiliary set P′
n−1. If M

(

E;P\ (Pn0 ∪·· · ∪Pn)
)

≤ 22(n−1) set
P′

n−1 = /0. If M
(

E;P \ (Pn0 ∪ ·· · ∪Pn)
)

> 22(n−1) apply Lemma 11.1.8 to find a
subset P′

n−1 of P\ (Pn0 ∪·· ·∪Pn) such that

M
(

E;P\ (Pn0 ∪·· ·∪Pn ∪P′
n−1)

)

≤ 1
4

M
(

E;P\ (Pn0 ∪·· ·∪Pn)
)

≤ 22n

4
= 22(n−1)

[by the induction hypothesis (4) with j = n] and P′
n−1 is a union of trees T′

k satisfying

∑
k

|Itop(T′
k)
| ≤C1 M

(

f ;P\ (Pn0 ∪·· ·∪Pn)
)−1 ≤C1 2−2(n−1) . (11.1.34)

Likewise, if E
(

f ;P\(Pn0 ∪·· ·∪Pn)
)

≤ 2n−1 set P′′
n−1 = /0; otherwise, apply Lemma

11.1.9 to find a subset P′′
n−1 of P\ (Pn0 ∪·· ·∪Pn) such that

E
(

f ;P\ (Pn0 ∪·· ·∪Pn ∪P′′
n−1)

)

≤ 1
2

E
(

f ;P\ (Pn0 ∪·· ·∪Pn)
)

≤ 1
2

2n = 2n−1
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[by the induction hypothesis (3) with j = n] and P′′
n−1 is a union of trees T′′

k satisfy-
ing

∑
k

|Itop(T′′
k )| ≤C2 E

(

f ;P\ (Pn0 ∪·· ·∪Pn)
)−2 ≤C2 2−2(n−1). (11.1.35)

Whether the sets P′
n−1 and P′′

n−1 are empty or not, we note that

M
(

E;P\ (Pn0 ∪·· ·∪Pn ∪P′
n−1)

)

≤ 22(n−1) , (11.1.36)

E
(

f ;P\ (Pn0 ∪·· ·∪Pn ∪P′′
n−1)

)

≤ 2n−1 . (11.1.37)

We set Pn−1 = P′
n−1

⋃

P′′
n−1, and we verify properties (1)–(5) for j = n−1. Since

Pn−1 is contained in P\ (Pn0 ∪·· ·∪Pn) we have

E ( f ;Pn−1) ≤ E ( f ;P\ (Pn0 ∪·· ·∪Pn) ≤ 2n = 2(n−1)+1 ,

where the last inequality is a consequence of the induction hypothesis (3) for j = n;
thus (1) holds with j = n−1. Likewise,

M (E;Pn−1) ≤ M (E;P\ (Pn0 ∪·· ·∪Pn) ≤ 22n = 22(n−1)+2

in view of the induction hypothesis (4) for j = n; thus (2) holds with j = n−1.
To prove (3) with j = n− 1 notice that P \ (Pn0 ∪ ·· · ∪Pn ∪Pn−1) is contained

in P \ (Pn0 ∪ ·· · ∪Pn ∪P′′
n−1), and the latter has energy at most 2n−1 by (11.1.37).

To prove (4) with j = n− 1 note that P \ (Pn0 ∪ ·· · ∪Pn ∪ Pn−1) is contained in
P \ (Pn0 ∪ ·· · ∪ Pn ∪ P′

n−1) and the latter has mass at most 22(n−1) by (11.1.36).
Finally, adding (11.1.34) and (11.1.35) yields (5) for j = n−1 with C0 = C1 +C2.

Pick j ∈ Z with 0 < 22 j < mins∈P M (E;{s}). Then M
(

E;P\(Pn0 ∪·· ·∪P j)
)

=
0, and since the only set of tiles with zero mass is the empty set, we conclude that
(11.1.33) holds. It also follows that there exists an n1 such that for all n≤ n1, Pn = /0.
The construction of the P j’s is now complete.

11.1.5 Proof of the Mass Lemma 11.1.8

Proof. Given a finite set of tiles P, we set μ = M (E;P) to be the mass of P. We
define

P′ = {s ∈ P : M (E;{s}) > 1
4μ}

and we observe that M (E;P \P′) ≤ 1
4μ . We now show that P′ is a union of trees

whose tops satisfy (11.1.30).
It follows from the definition of mass that for each s ∈ P′, there is a tile u(s) ∈ D

such that u(s) > s and
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1
|E|

∫

E∩N−1[ωu(s) ]

|Iu(s)|−1 dx

(1 +
|x−c(Iu(s))|

|Iu(s) |
)10

>
μ
4

. (11.1.38)

Let U = {u(s) : s ∈ P′}. Also, let Umax be the subset of U containing all maximal
elements of U under the partial order of tiles <. Likewise define P′

max as the set of
all maximal elements in P′. Tiles in P′ can be grouped in trees T j = {s ∈ P′ : s < t j}
with tops t j ∈ P′

max. Observe that if t j < u and t j′ < u for some u ∈ Umax, then ωt j

and ωt j′ intersect, and since t j and t j′ are disjoint sets, it follows that It j and It j′ are
disjoint subsets of Iu. Consequently, we have

∑
j
|It j | = ∑

u∈Umax

∑
j: t j<u

|It j | ≤ ∑
u∈Umax

|Iu| .

Therefore, estimate (11.1.30) will be a consequence of

∑
u∈Umax

|Iu| ≤Cμ−1 (11.1.39)

for some constant C. For u ∈ Umax we rewrite (11.1.38) as

1
|E|

∞

∑
k=0

∫

E∩N−1[ωu]∩
(

2kIu\2k−1Iu
)

|Iu|−1 dx
(

1 + |x−c(Iu)|
|Iu|

)10 >
μ
8

∞

∑
k=0

2−k

with the interpretation that 2−1Iu = /0. It follows that for all u in Umax there exists an
integer k ≥ 0 such that

|E| μ
8
|Iu|2−k <

∫

E∩N−1[ωu]∩
(

2kIu\2k−1Iu
)

dx

(1 + |x−c(Iu)|
|Iu| )10

≤ |E ∩N−1[ωu]∩2kIu|
( 4

5 )10(1 + 2k−2)10
.

We therefore conclude that

Umax =
∞
⋃

k=0

Uk ,

where

Uk = {u ∈ Umax : |Iu| ≤ 8 ·510 2−9k μ−1 |E|−1|E ∩N−1[ωu]∩2kIu|} .

The required estimate (11.1.39) will be a consequence of the sequence of estimates

∑
u∈Uk

|Iu| ≤C 2−8kμ−1 , k ≥ 0 . (11.1.40)

We now fix a k ≥ 0 and we concentrate on (11.1.40). Select an element v0 ∈ Uk

such that |Iv0 | is the largest possible among elements of Uk. Then select an element
v1 ∈ Uk \ {v0} such that the enlarged rectangle (2kIv1)×ωv1 is disjoint from the
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enlarged rectangle (2kIv0)×ωv0 and |Iv1 | is the largest possible. Continue this pro-
cess by induction. At the jth step select an element of Uk \ {v0, . . . ,v j−1} such that
the enlarged rectangle (2kIv j )×ωv j is disjoint from all the enlarged rectangles of
the previously selected tiles and the length |Iv j | is the largest possible. This process
will terminate after a finite number of steps. We denote by Vk the set of all selected
tiles in Uk.

We make a few observations. Recall that all elements of Uk are maximal rectan-
gles in U and therefore disjoint. For any u ∈ Uk there exists a selected v ∈ Vk with
|Iu| ≤ |Iv| such that the enlarged rectangles corresponding to u and v intersect. Let
us associate this u to the selected v. Observe that if u and u′ are associated with the
same selected v, they are disjoint, and since bothωu andωu′ containωv, the intervals
Iu and Iu′ must be disjoint. Thus, tiles u ∈ Uk associated with a fixed v ∈ Vk have
disjoint Iu’s and satisfy

Iu ⊆ 2k+2Iv .

Consequently,

∑
u∈Uk

u associated with v

|Iu| ≤ |2k+2Iv| = 2k+2|Iv| .

Putting these observations together, we obtain

∑
u∈Uk

|Iu| ≤ ∑
v∈Vk

∑
u∈Uk

u associated with v

|Iu|

≤ 2k+2 ∑
v∈Vk

|Iv|

≤ 2k+5510μ−1 |E|−1 2−9k ∑
v∈Vk

|E ∩N−1[ωv]∩2kIv|

≤ 32 ·510μ−1 2−8k ,

since the enlarged rectangles 2kIv ×ωv of the selected tiles v are disjoint and there-
fore so are the subsets E∩N−1[ωv]∩2kIv of E . This concludes the proof of estimate
(11.1.40) and therefore of Lemma 11.1.8. �

11.1.6 Proof of Energy Lemma 11.1.9

Proof. We work with a finite set of tiles P. For a 2-tree T′, let us denote by

Δ( f ;T′) =
1

∥

∥ f
∥

∥

L2

{

1
|Itop(T′)| ∑s∈T′

∣

∣

〈

f |ϕs
〉∣

∣

2
} 1

2

the quantity associated with T′ appearing in the definition of the energy. Consider
the set of all 2-trees T′ contained in P that satisfy
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Δ( f ;T′) ≥ 1
2

E ( f ;P) (11.1.41)

and among them select a 2-tree T′
1 with c(ωtop(T′

1)) as small as possible. We let T1

be the set of s ∈ P satisfying s < top(T′
1). Then T1 is the largest tree in P whose top

is top(T′
1). We now repeat this procedure with the set P\T1. Among all 2-trees con-

tained in P \T1 that satisfy (11.1.41) we pick a 2-tree T′
2 with c(ωtop(T′

2)) as small
as possible. Then we let T2 be the s ∈ P\T1 satisfying s < top(T′

2). Then T2 is the
largest tree in P\T1 whose top is top(T′

2). We continue this procedure by induction
until there is no 2-tree left in P that satisfies (11.1.41). We have therefore constructed
a finite sequence of pairwise disjoint 2-trees T′

1,T
′
2,T

′
3, . . . ,T

′
q , and a finite sequence

of pairwise disjoint trees T1,T2,T3, . . . ,Tq , such that T′
j ⊆ T j, top(T j) = top(T′

j),
and the T′

j satisfy (11.1.41). We now let

P′′ =
⋃

j

T j ,

and observe that this selection of trees ensures that

E ( f ;P\P′′) ≤ 1
2

E ( f ;P) .

It remains to prove (11.1.31). Using (11.1.41), we obtain that

1
4

E ( f ;P)2∑
j
|Itop(T j)| ≤

1
∥

∥ f
∥

∥

2
L2

∑
j
∑

s∈T′
j

|
〈

f |ϕs
〉

|2

=
1

∥

∥ f
∥

∥

2
L2

∑
j
∑

s∈T′
j

〈

f |ϕs
〉〈

f |ϕs
〉

=
1

∥

∥ f
∥

∥

2
L2

〈

f |∑
j
∑

s∈T′
j

〈

f |ϕs
〉

ϕs
〉

≤ 1
∥

∥ f
∥

∥

L2

∥

∥

∥∑
j
∑

s∈T′
j

〈

ϕs | f
〉

ϕs

∥

∥

∥

L2
,

(11.1.42)

and we use this estimate to obtain (11.1.31). We set U =
⋃

j T′
j. We shall prove that

1
∥

∥ f
∥

∥

L2

∥

∥

∥∑
s∈U

〈

ϕs | f
〉

ϕs

∥

∥

∥

L2
≤ C

(

E ( f ;P)2∑
j

|Itop(T j)|
) 1

2
. (11.1.43)

Once this estimate is established, then (11.1.42) combined with (11.1.43) yields
(11.1.31). (All involved quantities are finite, since P is a finite set of tiles.)

We estimate the square of the left-hand side in (11.1.43) by

∑
s,u∈U
ωs=ωu

∣

∣

〈

ϕs | f
〉〈

ϕu | f
〉〈

ϕs |ϕu
〉∣

∣+ 2 ∑
s,u∈U
ωs�ωu

∣

∣

〈

ϕs | f
〉〈

ϕu | f
〉〈

ϕs |ϕu
〉∣

∣ ,
(11.1.44)
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since
〈

ϕs |ϕu
〉

= 0 unless ωs contains ωu or vice versa. We now estimate the quan-
tities

∣

∣

〈

ϕs | f
〉∣

∣ and
∣

∣

〈

ϕu | f
〉∣

∣ by the larger one and we use Exercise 11.1.4 to obtain
the following bound for the first term in (11.1.44):

∑
s∈U

∣

∣

〈

f |ϕs
〉∣

∣

2 ∑
u∈U
ωu=ωs

∣

∣

〈

ϕs |ϕu
〉∣

∣

≤ ∑
s∈U

∣

∣

〈

f |ϕs
〉∣

∣

2 ∑
u∈U
ωu=ωs

C′
∫

Iu

1
|Is|

(

1 +
|x− c(Is)|

|Is|

)−100

dx

≤C′′ ∑
s∈U

∣

∣

〈

f |ϕs
〉∣

∣

2

= C′′∑
j
∑

s∈T′
j

∣

∣

〈

f |ϕs
〉∣

∣

2

≤C′′∑
j
|Itop(T j)| |Itop(T j)|

−1 ∑
s∈T′

j

∣

∣

〈

f |ϕs
〉∣

∣

2

≤C′′∑
j

|Itop(T j)|E ( f ;P)2
∥

∥ f
∥

∥

2
L2 ,

(11.1.45)

where in the derivation of the second inequality we used the fact that for fixed s ∈ U,
the intervals Iu with ωu = ωs are pairwise disjoint.

Our next goal is to obtain a similar estimate for the second term in (11.1.44).
That is, we need to prove that

∑
s,u∈U
ωs�ωu

∣

∣

〈

f |ϕs
〉〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣≤CE ( f ;P)2
∥

∥ f
∥

∥

2
L2∑

j
|Itop(T j)| . (11.1.46)

Then the required estimate (11.1.43) follows by combining (11.1.45) and (11.1.46).
To prove (11.1.46), we argue as follows:

∑
s,u∈U
ωs�ωu

∣

∣

〈

f |ϕs
〉〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

= ∑
j
∑

s∈T′
j

∣

∣

〈

f |ϕs
〉∣

∣ ∑
u∈U
ωs�ωu

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

≤ ∑
j

|Itop(T j)|
1
2Δ( f ;T′

j)
∥

∥ f
∥

∥

L2

{

∑
s∈T′

j

(

∑
u∈U
ωs�ωu

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

)2} 1
2

≤ E ( f ;P)
∥

∥ f
∥

∥

L2∑
j
|Itop(T j)|

1
2

{

∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

)2} 1
2

,
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where we used the Cauchy–Schwarz inequality and the fact that if ωs � ωu and
〈

ϕs |ϕu
〉

�= 0, then ωs ⊆ ωu(1). The proof of (11.1.46) will be complete if we
can show that the expression inside the curly brackets is at most a multiple of
E ( f ;P)2

∥

∥ f
∥

∥

2
L2 |Itop(T j)|. Since any singleton {s} ⊆ P is a 2-tree, we have

E ( f ;{u}) =
1

∥

∥ f
∥

∥

L2

(
∣

∣

〈

f |ϕu
〉∣

∣

2

|Iu|

) 1
2

=
1

∥

∥ f
∥

∥

L2

∣

∣

〈

f |ϕu
〉∣

∣

|Iu|
1
2

≤ E ( f ;P) ;

hence
∣

∣

〈

f |ϕu
〉∣

∣≤
∥

∥ f
∥

∥

L2 |Iu|
1
2 E ( f ;P)

and it follows that

∑
s∈T′

j

[

∑
u∈U

ωs⊆ωu(1)

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

]2

≤ E ( f ;P)2
∥

∥ f
∥

∥

2
L2 ∑

s∈T′
j

[

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2
∣

∣

〈

ϕs |ϕu
〉∣

∣

]2

.

Thus (11.1.46) will be proved if we can establish that

∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2
∣

∣

〈

ϕs |ϕu
〉∣

∣

)2

≤C|Itop(T j)| . (11.1.47)

We need the following crucial lemma.

Lemma 11.1.11. Let T j , T′
j be as previously. Let s ∈ T′

j and u ∈ T′
k. Then if ωs ⊆

ωu(1), we have Iu ∩ Itop(T j) = /0. Moreover, if u ∈ T′
k and v ∈ T′

l are different tiles and
satisfy ωs ⊆ ωu(1) and ωs ⊆ ωv(1) for some fixed s ∈ T′

j , then Iu ∩ Iv = /0.

Proof. We observe that if s ∈ T′
j , u ∈ T′

k, and ωs ⊆ωu(1), then the 2-trees T′
j and T′

k
have different tops and therefore they cannot be the same tree; thus j �= k.

Next we observe that the center of ωtop(T′
j)

is contained in ωs, which is contained

in ωu(1). Therefore, the center of ωtop(T′
j)

is contained in ωu(1), and therefore it must

be smaller than the center of ωtop(T′
k)

, since T′
k is a 2-tree. This means that the 2-

tree T′
j was selected before T′

k, that is, we must have j < k. If Iu had a nonempty
intersection with Itop(T j) = Itop(T′

j)
, then since

|Itop(T′
j)
| = 1

|ωtop(T′
j)
| ≥

1
|ωs|

≥ 1
|ωu(1)|

=
2

|ωu|
= 2|Iu| ,

Iu would have to be contained in Itop(T′
j)

. Since also ωtop(T′
j)
⊆ ωs ⊆ ωu, it follows

that u < top(T′
j); thus u would belong to the tree T j [which is the largest tree with

top top(T′
j)], since this tree was selected first. But if u belonged to T j, then it could

not belong to T′
k, which is disjoint from T j; hence we get a contradiction. We con-

clude that Iu ∩ Itop(T j) = /0.
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Next assume that u ∈ T′
k, v ∈ T′

l , u �= v, and thatωs ⊆ωu(1)∩ωv(1) for some fixed
s ∈ T′

j. Since the left halves of two dyadic intervals ωu and ωv intersect, three things
can happen: (a) ωu ⊆ ωv(1), in which case Iv is disjoint from Itop(T′

k)
and thus from

Iu; (b) ωv ⊆ ωu(1), in which case Iu is disjoint from Itop(T′
l)

and thus from Iv; and
(c) ωu = ωv, in which case |Iu| = |Iv|, and thus Iu and Iv are either disjoint or they
coincide. Since u �= v, it follows that Iu and Iv cannot coincide; thus Iu ∩ Iv = /0. This
finishes the proof of the lemma. �

We now return to (11.1.47). In view of Lemma 11.1.11, different u ∈ U that
appear in the interior sum in (11.1.47) have disjoint intervals Iu, and all of these are
contained in (Itop(T j))

c. Set t j = top(T j). Using Exercise 11.1.4, we obtain

∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2
∣

∣

〈

ϕs |ϕu
〉∣

∣

)2

≤C ∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2

(

|Is|
|Iu|

) 1
2
∫

Iu

|Is|−1 dx
(

1 + |x−c(Is)|
|Is |

)20

)2

≤C ∑
s∈T′

j

|Is|
(

∑
u∈U

ωs⊆ωu(1)

∫

Iu

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
(
∫

(It j )
c

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
∫

(It j )
c

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)20 ,

since
∫

R(1+ |x|)−20 dx≤ 1. For each scale k≥ 0 the sets Is, s∈T′
j, with |Is|= 2−k|It j |

are pairwise disjoint and contained in It ; therefore, we have

∑
s∈T′

j

|Is|
∫

(It j )
c

|Is|−1 dx
(

1 + |x−c(Is)|
|Is |

)20 ≤
∞

∑
k=0

2k

|It j |
∑

s∈T′
j

|Is |=2−k|It j |

|Is|
∫

(It j )
c

dx
(

1 + |x−c(Is)|
|Is|

)20

≤C
∞

∑
k=0

2k

|It j |
∑

s∈T′
j

|Is |=2−k|It j |

∫

Is

∫

(It j )
c

dx
(

1 + |x−y|
|Is |
)20 dy

≤C
∞

∑
k=0

2k|It j |−1
∫

It j

∫

(It j )
c

1
(

1 + |x−y|
2−k|It j |

)20 dxdy

≤C′
∞

∑
k=0

2k|It j |−1(2−k|It j |)2

= C′′|It j | ,
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in view of Exercise 11.1.5. This completes the proof of (11.1.47) and thus of Lemma
11.1.9. �

11.1.7 Proof of the Basic Estimate Lemma 11.1.10

Proof. In the proof of the required estimate we may assume that
∥

∥ f
∥

∥

L2 = 1, for
we can always replace f by f/

∥

∥ f
∥

∥

L2 . Throughout this subsection we fix a square-
integrable function with L2 norm 1, a tree T contained in P, a measurable function
N : R → R+, and a measurable set E with finite measure.

Let J ′ be the set of all dyadic intervals J such that 3J does not contain any Is

with s ∈ T. It is not hard to see that any point in R belongs to a set in J ′. Let J
be the set of all maximal (under inclusion) elements of J ′. Then J consists of
disjoint sets that cover R; thus it forms a partition of R. This partition of R is shown
in Figure 11.3 when the tree consists of two tiles.

Fig. 11.3 A tree of two tiles and the partition J of R corresponding to it. The intervals J and J′

are members of the partition J .

For each s ∈ T pick an εs ∈ C with |εs| = 1 such that
∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣= εs
〈

f |ϕs
〉〈

ϕs |χE∩N−1[ωs(2)]
〉

.

We can now write the left-hand side of (11.1.32) as

∑
s∈T
εs
〈

f |ϕs
〉〈

ϕs |χE∩N−1[ωs(2)]
〉

≤
∥

∥

∥∑
s∈T
εs
〈

f |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥

∥

∥

L1(R)

= ∑
J∈J

∥

∥

∥∑
s∈T
εs
〈

f |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥

∥

∥

L1(J)

≤ Σ1 +Σ2 ,

where
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Σ1 = ∑
J∈J

∥

∥

∥ ∑
s∈T

|Is|≤2|J|

εs
〈

f |ϕs
〉

χE∩N−1[ωs(2) ]
ϕs

∥

∥

∥

L1(J)
, (11.1.48)

Σ2 = ∑
J∈J

∥

∥

∥ ∑
s∈T

|Is|>2|J|

εs
〈

f |ϕs
〉

χE∩N−1[ωs(2) ]
ϕs

∥

∥

∥

L1(J)
. (11.1.49)

We start with Σ1. Observe that for every s∈ T, the singleton {s} is a 2-tree contained
in T and we therefore have the estimate

∣

∣

〈

f |ϕs
〉∣

∣≤ |Is|
1
2 E ( f ;T) . (11.1.50)

Using this, we obtain

Σ1 ≤ ∑
J∈J

∑
s∈T

|Is|≤2|J|

E ( f ;T)
∫

J∩E∩N−1 [ωs(2)]
|Is|

1
2 |ϕs(x)|dx

≤ C ∑
J∈J

∑
s∈T

|Is|≤2|J|

E ( f ;T)|Is|
∫

J∩E∩N−1 [ωs(2)]

|Is|−1

(

1 + |x−c(Is)|
|Is |

)20 dx

≤ C ∑
J∈J

∑
s∈T

|Is|≤2|J|

E ( f ;T) |E|M (E;T)|Is|sup
x∈J

1
(

1 + |x−c(Is)|
|Is |

)10

≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

log2 2|J|

∑
k=−∞

2k ∑
s∈T

|Is|=2k

1
(

1 + dist (J,Is)
2k

)5

1
(

1 + dist (J,Is)
2k

)5 .

But note that all Is with s ∈ T and |Is| = 2k are pairwise disjoint and contained in
Itop(T). Therefore, 2−kdist (J, Is) ≥ |Itop(T)|−1dist (J, Itop(T)), and we have the esti-
mate

(

1 +
dist (J, Is)

2k

)−5

≤
(

1 +
dist (J, Itop(T))

|Itop(T)|

)−5

.

Moreover, the sum

∑
s∈T

|Is |=2k

1
(

1 + dist (J,Is)
2k

)5 (11.1.51)

is controlled by a finite constant, since for every nonnegative integer m there exist
at most two tiles s ∈ T with |Is| = 2k such that Is are not contained in 3J and m2k ≤
dist (J, Is) < (m+ 1)2k. Therefore, we obtain
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Σ1 ≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

log2 2|J|

∑
k=−∞

2k

(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

|J|
(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

∫

J

1
(

1 +
|x−c(Itop(T))|

|Itop(T)|
)5

dx

≤ C |Itop(T)|E ( f ;T) |E|M (E;T) ,

(11.1.52)

since J forms a partition of R. We need to justify, however, the penultimate in-
equality in (11.1.52). Since J and Itop(T) are dyadic intervals, there are only two pos-
sibilities: (a) J ∩ Itop(T) = /0 and (b) J ⊆ Itop(T). [The third possibility Itop(T) ⊆ J is
excluded, since 3J does not contain Itop(T).] In case (a) we have |J| ≤ dist (J, Itop(T)),
since 3J does not contain Itop(T). In case (b) we have |J| ≤ |Itop(T)|. Thus in both
cases we have |J| ≤ dist (J, Itop(T))+ |Itop(T)|. Consequently, for any x ∈ J one has

|x− c(Itop(T))| ≤ |J|+ dist (J, Itop(T))+
1
2
|Itop(T)|

≤ 2dist (J, Itop(T))+
3
2
|Itop(T)| .

Therefore, it follows that

∫

J

dx
(

1 +
|x−c(Itop(T))|

|Itop(T)|
)5

≥ |J|
(

5
2 +

2dist (J,Itop(T))
|Itop(T)|

)5
≥

(

2
5

)5|J|
(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

.

In case (b) we have J ⊆ Itop(T), and therefore any point x in J lies in Itop(T); thus
|x− c(Itop(T))| ≤ 1

2 |Itop(T)|. We conclude that

∫

J

dx
(

1 +
|x−c(Itop(T))|

|Itop(T) |
)5

≥ |J|
(3/2)5 =

(2
3

)5 |J|
(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

.

These observations justify the second-to-last inequality in (11.1.52) and complete
the required estimate for Σ1.

We now turn attention to Σ2. We may assume that for all J appearing in the sum
in (11.1.49), the set of s in T with 2|J| < |Is| is nonempty. Thus, if J appears in the
sum in (11.1.49), we have 2|J| < |Itop(T)|, and it is easy to see that J is contained in
3Itop(T). [The intervals J in J that are not contained in 3Itop(T) have size larger than
|Itop(T)|.]

We let T2 be the 2-tree of all s in T such that ωtop(T)(2) ⊆ ωs(2), and we also let
T1 = T\T2. Then T1 is a 1-tree minus its top. We set
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F1J = ∑
s∈T1

|Is|>2|J|

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]
,

F2J = ∑
s∈T2

|Is|>2|J|

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]
.

Clearly
Σ2 ≤ ∑

J∈J

∥

∥F1J
∥

∥

L1(J) + ∑
J∈J

∥

∥F2J
∥

∥

L1(J) = Σ21 +Σ22 ,

and we need to estimate both sums. We start by estimating F1J. If the tiles s and s′

that appear in the definition of F1J have different scales, then the sets ωs(2) and ωs′(2)

are disjoint and thus so are the sets E ∩N−1[ωs(2)] and E ∩N−1[ωs′(2)]. Let us set

GJ = J∩
⋃

s∈T
|Is|>2|J|

E ∩N−1[ωs(2)] .

Then F1J is supported in the set GJ and we have
∥

∥F1J
∥

∥

L1(J) ≤
∥

∥F1J
∥

∥

L∞(J)|GJ|

=
∥

∥

∥ ∑
k>log2 2|J|

∑
s∈T1
|Is|=2k

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]

∥

∥

∥

L∞(J)
|GJ|

≤ sup
k>log2 2|J|

∥

∥

∥ ∑
s∈T1
|Is|=2k

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]

∥

∥

∥

L∞(J)
|GJ|

≤ sup
k>log2 2|J|

sup
x∈J
∑

s∈T1
|Is |=2k

E ( f ;T)2k/2 2−k/2

(

1 + |x−c(Is)|
2k

)10 |GJ|

≤ CE ( f ;T)|GJ | ,

using (11.1.50) and the fact that all the Is that appear in the sum are disjoint. We
now claim that for all J ∈ J we have

|GJ| ≤C |E|M (E;T)|J| . (11.1.53)

Once (11.1.53) is established, summing over all the intervals J that appear in the
definition of F1J and keeping in mind that all of these intervals are pairwise disjoint
and contained in 3Itop(T), we obtain the desired estimate for Σ21.

To prove (11.1.53), we consider the unique dyadic interval ˜J of length 2|J| that
contains J. Then by the maximality of J , 3˜J contains the time interval IsJ of a
tile sJ in T. We consider the following two cases: (a) If IsJ is either

(

˜J − | ˜J|
)

∪ ˜J
or ˜J ∪

(

˜J + | ˜J|
)

, we let uJ = sJ; in this case |IuJ | = 2|˜J|. (This is the case for the
interval J in Figure 11.3.) Otherwise, we have case (b), in which IsJ is contained in
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one of the two dyadic intervals ˜J−|˜J|, ˜J + |˜J|. (This is the case for the interval J′ in
Figure 11.3.) Whichever of these two dyadic intervals contains IsJ is also contained
in Itop(T), since it intersects it and has smaller length than it. In case (b) there exists

a tile uJ ∈ D with |IuJ | = | ˜J| such that IsJ ⊆ IuJ ⊆ Itop(T) and ωtop(T) ⊆ ωuJ ⊆ ωsJ .
In both cases we have a tile uJ satisfying sJ < uJ < top(T) with |ωuJ | being either
1
4 |J|−1 or 1

2 |J|−1.
Then for any s ∈ T with |Is| > 2|J| we have |ωs| ≤ |ωuJ |. But since both ωs and

ωuJ contain ωtop(T), they must intersect, and thus ωs ⊆ ωuJ . We conclude that any
s ∈ T with |Is| > 2|J| must satisfy N−1[ωs] ⊆ N−1[ωuJ ]. It follows that

GJ ⊆ J∩E ∩N−1[ωuJ ] (11.1.54)

and therefore we have

|E|M (E;T) = sup
s∈T

sup
u∈D
s<u

∫

E∩N−1[ωu]

|Iu|−1

(

1 + |x−c(Iu)|
|Iu|

)10 dx

≥
∫

J∩E∩N−1 [ωuJ ]

|IuJ |−1

(

1 +
|x−c(IuJ )|

|IuJ |
)10

dx

≥ c |IuJ |−1 |J∩E ∩N−1[ωuJ ]|
≥ c |IuJ |−1 |GJ| ,

using (11.1.54) and the fact that for x ∈ J we have |x− c(IuJ )| ≤ 4|J| = 2|IuJ |. It
follows that

|GJ| ≤
1
c
|E|M (E;T)|IuJ | =

2
c
|E|M (E;T)|J| ,

and this is exactly (11.1.53), which we wanted to prove.
We now turn to the estimate for Σ22 = ∑J∈J

∥

∥F2J
∥

∥

L1(J). All the intervals ωs(2)

with s∈T2 are nested, since T2 is a 2-tree. Therefore, for each x∈ J for which F2J(x)
is nonzero, there exists a largest dyadic interval ωux and a smallest dyadic interval
ωvx (for some ux,vx ∈ T2 ∩{s : |Is| ≥ 4|J|}) such that for s ∈ T2 ∩{s : |Is| ≥ 4|J|}
we have N(x) ∈ ωs(2) if and only if ωvx ⊆ ωs ⊆ ωux . Then we have

F2J(x) = ∑
s∈T2

|Is|≥4|J|

εs
〈

f |ϕs
〉

(ϕsχE∩N−1[ωs(2) ]
)(x)

= χE(x) ∑
s∈T2

|ωvx |≤|ωs|≤|ωux |

εs
〈

f |ϕs
〉

ϕs(x) .

Pick a Schwartz function ψ whose Fourier transform ψ̂(t) is supported in |t| ≤
1 + 1

100 and that is equal to 1 on |t| ≤ 1. We can easily check that for all z ∈ R, if
|ωvx | ≤ |ωs| ≤ |ωux |, then
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(

ϕs ∗
{

Mc(ωux )D|ωux |−1
(ψ)

|ωux |
− 1

2
−M

c(ωvx (2))D
|ωvx(2)|

−1
(ψ)

|ωvx(2)|
− 1

2

})

(z) = ϕs(z) (11.1.55)

by a simple examination of the Fourier transforms. Basically, the Fourier transform
(in z) of the function inside the curly brackets is equal to

ψ̂
(

ξ−c(ωux )
|ωux |

)

− ψ̂
( ξ−c(ωvx(2))

|ωvx(2)|

)

,

which is equal to 1 on the support of ϕ̂s for all s in T2 that satisfy |ωvx | ≤ |ωs| ≤ |ωux |
but vanishes on ωvx(2). Taking z = x in (11.1.55) yields

F2J(x) = ∑
s∈T2

|ωvx |≤|ωs|≤|ωux |

εs
〈

f |ϕs
〉

ϕs(x)χE(x)

=
[

∑
s∈T2

εs
〈

f |ϕs
〉

ϕs

]

∗
{

Mc(ωux )D|ωux |−1
(ψ)

|ωux |
− 1

2
−M

c(ωvx(2))D
|ωvx(2) |

−1
(ψ)

|ωvx(2)|
− 1

2

}

(x)χE(x) .

Since all s that appear in the definition of F2J satisfy |ωs| ≤ (4|J|)−1, it follows
that we have the estimate

|F2J(x)| ≤ 2χE(x) sup
δ>|ωux |−1

∫

R

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣
1
δ
∣

∣ψ
(

x−z
δ
)∣

∣dz

≤ C sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣dz . (11.1.56)

(The last inequality follows from Exercise 2.1.14.) Observe that the maximal func-
tion in (11.1.56) satisfies the property

sup
x∈J

sup
δ>4|J|

1
2δ

∫ x+δ

x−δ
|h(t)|dt ≤ 2 inf

x∈J
sup
δ>4|J|

1
2δ

∫ x+δ

x−δ
|h(t)|dt .

Using this property, we obtain

Σ22 ≤ ∑
J∈J

∥

∥F2J
∥

∥

L1(J) ≤ ∑
J∈J

∥

∥F2J
∥

∥

L∞(J)|GJ |

≤ C ∑
J∈J

J⊆3Itop(T)

|E|M (E;T)|J|sup
x∈J

sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣dz

≤ 2C |E|M (E;T) ∑
J∈J

J⊆3Itop(T)

∫

J
sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣dzdx

≤ C |E|M (E;T)
∥

∥

∥M
(

∑
s∈T2

εs
〈

f |ϕs
〉

ϕs
)

∥

∥

∥

L1(3Itop(T))
,
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where M is the Hardy–Littlewood maximal operator. Using the Cauchy–Schwarz
inequality and the boundedness of M on L2(R), we obtain the following estimate:

Σ22 ≤C |E|M (E;T) |Itop(T)|
1
2

∥

∥

∥ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs

∥

∥

∥

L2
.

Appealing to the result of Exercise 11.1.6(a), we deduce

∥

∥

∥ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs

∥

∥

∥

L2
≤C

(

∑
s∈T2

∣

∣εs
〈

f |ϕs
〉∣

∣

2
)1

2 ≤C′|Itop(T)|
1
2 E ( f ;T) .

The first estimate was also shown in (11.1.43); the same argument applies here, and
the presence of the εs’s does not introduce any change. We conclude that

Σ22 ≤C |E|M (E;T)|Itop(T)|E ( f ;T) ,

which is what we needed to prove. This completes the proof of Lemma 11.1.10. �

The proof of the theorem is now complete. �

Exercises

11.1.1. Show that for every f in the Schwartz class, x,ξ ∈ R, and λ ∈ [0,1], the
function (y,η) �→ Bm

ξ ,y,η,λ ( f )(x) is periodic in y with period 2m−λ and periodic in η
with period 2−m+λ .

11.1.2. Fix a function h in the Schwartz class, ξ ,y,η ∈ R, s ∈ Dm, and λ ∈ [0,1].
Suppose that 2−λ (ξ +η) ∈ ωs(2).
(a) Assume that m ≤ 0 and that 2−m ≥ 40|ξ |. Show that for some C that does not
depend on y, η , and λ we have

∣

∣

〈

D2λ τyMη(h) |ϕs
〉∣

∣ =
∣

∣

〈

h |M−ητ−yD2−λ (ϕs)
〉∣

∣

≤C2
m
2
∥

∥̂h
∥

∥

L1((−∞,− 1
40·2m )∪( 1

40·2m ,∞)) .

[

Hint: Use Plancherel’s theorem, noting that η ≥ 2λ c(ωs(1))+ 9
40 2−m.

]

(b) Using the trivial fact that
∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣ ≤ C
∥

∥h
∥

∥

L2 , conclude that when-
ever |m| is large with respect to ξ , we have

χωs(2) (2
−λ (ξ +η))|

〈

D2λ τyMη (h) |ϕs
〉

| ≤Ch min(1,2m) ,

where Ch may depend on h but is independent of y, η , and λ .

11.1.3. (a) Let g be a bounded periodic function on R with period κ . Show that
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lim
K→∞

1
2K

∫ K

−K
g(t)dt → 1

κ

∫ κ

0
g(t)dt .

(b) Let g be a bounded periodic function on Rn that is periodic with period
(κ1, . . . ,κn). Show that

lim
K1,...,Kn→∞

2−n

K1 · · ·Kn

∫ K1

−K1

· · ·
∫ Kn

−Kn

g(t)dt =
1

κ1 · · ·κn

∫ κ1

0
· · ·
∫ κn

0
g(t)dt

11.1.4. Use the result in Appendix K.1 to obtain the size estimate

∣

∣

〈

ϕs |ϕu
〉∣

∣≤CM

min

(

|Is|
|Iu|

,
|Iu|
|Is|

) 1
2

(

1 +
|c(Is)− c(Iu)|
max(|Is|, |Iu|)

)M

for every M > 0. Conclude that if |Iu| ≤ |Is|, then

∣

∣

〈

ϕs |ϕu
〉∣

∣≤C′
M

(

|Is|
|Iu|

) 1
2
∫

Iu

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)M .

[

Hint: Use that
∣

∣

∣

∣

|x− c(Is)|
|Is|

− |c(Iu)− c(Is)|
|Is|

∣

∣

∣

∣

≤ 1
2

for all x ∈ Iu.
]

11.1.5. Prove that there is a constant C > 0 such that for any interval J and any
b > 0,

∫

J

∫

Jc

1
(

1 + |x−y|
b|J|

)20 dxdy ≤Cb2|J|2 .

[

Hint: Translate J to the interval [− 1
2 |J|,

1
2 |J|] and change variables. The resulting

integral can be computed explicitly.
]

11.1.6. Let ϕs be as in (11.1.3). Let T2 be a 2-tree and f ∈ L2(R).
(a) Show that there is a constant C such that for all sequences of complex scalars
{λs}s∈T2 we have

∥

∥

∥ ∑
s∈T2

λsϕs

∥

∥

∥

L2(R)
≤C

(

∑
s∈T2

|λs|2
)1

2

.

(b) Use duality to conclude that

∑
s∈T2

∣

∣

〈

f |ϕs
〉∣

∣

2 ≤C2
∥

∥ f
∥

∥

2
L2 .
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[

Hint: To prove part (a) define Gm = {s ∈ T2 : |Is| = 2m}. Then for s ∈ Gm and
s′ ∈ Gm′ , the functions ϕs and ϕs′ are orthogonal to each other, and it suffices to
obtain the corresponding estimate when the summation is restricted to a given Gm.
But for s in Gm, the intervals Is are disjoint, and we may use the idea of the proof of
Lemma 11.1.2. Use that ∑u: ωu=ωs

∣

∣

〈

ϕs |ϕu
〉∣

∣≤C for every fixed s.
]

11.1.7. Fix A ≥ 1. Let S be a finite collection of dyadic tiles such that for all s1, s2

in S we have either ωs1 ∩ωs2 = /0 or AIs1 ∩AIs2 = /0. Let NS be the counting function
of S, defined by

NS = sup
x∈R

#{Is : s ∈ S and x ∈ Is}.

(a) Show that for any M > 0 there exists a CM > 0 such that for all f ∈ L2(R) we
have

∑
s∈S

∣

∣

∣

∣

〈

f , |Is|−
1
2

(

1 +
dist(·, Is)

|Is|

)−M
2
〉

∣

∣

∣

∣

2

≤CMNS
∥

∥ f
∥

∥

2
L2 .

(b) Let ϕs be as in (11.1.3). Show that for any M > 0 there exists a CM > 0 such that
for all finite sequences of scalars {as}s∈S we have

∥

∥

∥∑
s∈S

asϕs

∥

∥

∥

2

L2
≤CM(1 + A−MNS)∑

s∈S
|as|2 .

(c) Conclude that for any M > 0 there exists a CM > 0 such that for all f ∈ L2(R)
we have

∑
s∈S

∣

∣

〈

f ,ϕs
〉∣

∣

2 ≤CM(1 + A−MNS)
∥

∥ f
∥

∥

2
L2 .

[

Hint: Use the idea of Lemma 11.1.2 to prove part (a) when NS = 1. Suppose now
that NS > 1. Call an element s ∈ S h-maximal if the region in R2 that is directly
horizontally above the tile s does not intersect any other tile s′ ∈ S. Let S1 be the set
of all h-maximal tiles in S. Then NS1 = 1; otherwise, some x ∈ R would belong to
both Is and Is′ for s �= s′ ∈ S1, and thus the horizontal regions directly above s and
s′ would have to intersect, contradicting the h-maximality of S1. Now define S2 to
be the set of all h-maximal tiles in S\S1. As before, we have NS2 = 1. Continue in
this way and write S as a union of at most NS families of tiles S j, each of which
has the property NS j = 1. Apply the result to each S j and then sum over j. Part (b):
observe that whenever s1,s2 ∈ S and s1 �= s2 we must have either

〈

ϕs1 ,ϕs2

〉

= 0 or
dist(Is1 , Is2) ≥ (A−1)max(|Is1 |, |Is2 |), which implies

(

1 +
dist(Is1 , Is2)

max(|Is1 |, |Is2 |)

)−M
≤ A−M

2

(

1 +
dist(Is1 , Is2)

max(|Is1 |, |Is2 |)

)−M
2

.

Use this estimate to obtain

∥

∥∑
s∈S

asϕs
∥

∥

2
L2 ≤∑

s∈S
|as|2 +

CM

A
M
2

∥

∥

∥

∥
∑
s∈S

|as|
|Is|

1
2

(

1 +
dist(x, Is)

|Is|

)−M
2

∥

∥

∥

∥

2

L2
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by expanding the square on the left. The required estimate follows from the dual
statement to part (a). Part (c) follows from part (b) by duality.

]

11.1.8. Let ϕs be as in (11.1.3) and let Dm be the set of all dyadic tiles s with
|Is| = 2m. Show that there is a constant C (independent of m) such that for square-
integrable sequences of scalars {as}s∈Dm we have

∥

∥

∥ ∑
s∈Dm

asϕs

∥

∥

∥

2

L2
≤C ∑

s∈Dm

|as|2 .

Conclude from this that

∑
s∈Dm

∣

∣

〈

f ,ϕs
〉∣

∣

2 ≤C
∥

∥ f
∥

∥

2
L2 .

11.1.9. Fix a Schwartz function ϕ whose Fourier transform is supported in the in-
terval [− 3

8 , 3
8 ] and that satisfies

∑
l∈Z

|ϕ̂(t + l
2)|2 = c0

for all real numbers t. Define functions ϕs as follows. Fix an integer m and set

ϕs(x) = 2−
m
2 ϕ(2−mx− k)e2π i2−mx l

2

whenever s = [k2m,(k + 1)2m)× [l2−m,(l + 1)2−m) is a tile in D. Prove that for all
Schwartz functions f we have

∑
s∈Dm

〈

f |ϕs
〉

ϕs = c0 f .

Observe that m does not appear on the right of this identity.
[

Hint: First prove that

∑
s∈Dm

ϕs(x)ϕ̂s(y) = c0 e2π ixy

using the Poisson summation formula.
]

11.1.10. This is a continuous version of Exercise 11.1.9. Fix a Schwartz function ϕ
on Rn and define a continuous wave packet

ϕy,ξ (x) = ϕ(x− y)e2π iξ ·x .

Prove that for all f Schwartz functions on Rn, the following identity is valid:

∥

∥ϕ
∥

∥

2
L2 f (x) =

∫

Rn

∫

Rn
ϕy,ξ (x)

〈

f |ϕy,ξ
〉

dydξ .

[

Hint: Prove first that
∫

Rn

∫

Rn
ϕy,ξ (x)ϕ̂y,ξ (z)dydξ =

∥

∥ϕ
∥

∥

2
L2 e2π ix·z.

]
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11.2 Distributional Estimates for the Carleson Operator

In this section we derive estimates for the distribution function of the Carleson op-
erator acting on characteristic functions of measurable sets. These estimates imply,
in particular, that the Carleson operator is bounded on Lp(R) for 1 < p < ∞. To
achieve this we build on the time–frequency analysis approach developed in the
previous section. Working with characteristic functions of measurable sets of finite
measure is crucial in obtaining an improved energy estimate, which is the key to the
proof. Later in this section we obtain weighted estimates for the Carleson operator
C . These estimates are reminiscent of the corresponding estimates for the maximal
singular integrals we encountered in the previous chapter.

11.2.1 The Main Theorem and Preliminary Reductions

In the sequel we use the notation introduced in Section 11.1. The following is the
main result of this section.

Theorem 11.2.1. (a) There exist finite constants C,κ > 0 such that for any measur-
able subset F of the reals with finite measure we have

∣

∣{x∈R : C (χF)(x) >α
}∣

∣≤C |F |

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
α

(

1 + log
(

1
α
)

)

when 0 < α < 1,

e−κα when α ≥ 1.

(11.2.1)

(b) For any 1 < p < ∞ there is a constant Cp > 0 such that for all f in Lp(R) we
have the estimate

∥

∥C ( f )
∥

∥

Lp(R) ≤Cp
∥

∥ f
∥

∥

Lp(R) . (11.2.2)

Proof. Assuming statement (a), we obtain

∥

∥C (χF)
∥

∥

p
Lp = p

∫ ∞

0

∣

∣{C (χF) > α
}∣

∣λ p−1 dα ≤ pCp|F |
∫ ∞

0
ϕ(α)α p−1 dα ,

where ϕ(α) = α−1(1 + log(α)−1) for α < 1 and ϕ(α) = e−κα for α ≥ 1. The last
integral is convergent, and consequently one obtains a restricted strong type (p, p)
estimate

∥

∥C (χF)
∥

∥

Lp(R) ≤C′
p|F |

1
p

for the Carleson operator. The required strong type (p, p) estimate follows by ap-
plying Theorem 1.4.19. Thus (a) implies (b).

It remains to prove (a). This follows from the corresponding estimate for C1 and
requires a considerable amount of work. The proof of (a) is based on a modification
of the proof of Theorem 11.1.1. Recall that in (11.1.21) we identified the one-sided
Carleson operator C1( f ) with
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C1( f )(x) = sup
N>0

∣

∣

∣

∣

∫ N

−∞
̂f (η)e2π ix·η dη

∣

∣

∣

∣

=
1
|c| sup

ξ>0
|Πξ ( f )| , (11.2.3)

where c �= 0 and Πξ , ξ ∈ R is given by

Πξ ( f ) = lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
Gξ ,y,η,λ ( f )dλ dydη . (11.2.4)

Also recall that Gξ ,y,η,λ ( f ) is

Gξ ,y,η,λ ( f ) = M−ητ−yD2−λA ξ+η
2λ

D2λ τyMη ( f ) , (11.2.5)

where Aξ is defined in (11.1.6). Note that

Gξ ,y,η,λ ( f )(x) = ∑
s∈D

ξ∈ωu(2)

〈

f |M−ητ−yD2−λ ϕu
〉

M−ητ−yD2−λ ϕu(x)

= ∑
s∈Dy,η,λ
ξ∈ωs(2)

〈

f |ϕs
〉

ϕs(x) ,

where Dy,η,λ is the set of all rectangles of the form (2λ ⊗ Iu − y)× (2−λ ⊗ωu −η),
where u ranges over D. Here a⊗ I denotes the set {ax : x ∈ I}. For such s, ϕs is
defined in (11.1.3). The rectangles in Dy,η,λ are formed by dilating the dyadic tiles
in D by the amount 2λ in the time coordinate axis and by 2−λ in the frequency
coordinate axis and then translating them by the amounts y and η , respectively.

In view of identity (11.1.12), for a Schwartz function f we have

|Πξ ( f )(x)| =
∣

∣

∣

∣

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑

s∈Dy,η,λ
ξ∈ωs(2)

〈

f |ϕs
〉

ϕs(x)dλ dydη
∣

∣

∣

∣

.

Since both terms of this identity are well defined L2-bounded operators, (11.2.1)
is also valid for L2 functions f . For such functions f , for a measurable function
N : R → R+, y,η ∈ R, and λ ∈ [0,1] we define operators

DN,y,η,λ ( f ) = ∑
s∈Dy,η,λ

〈

f |ϕs
〉

(χωs(2) ◦N)ϕs

and

DN( f ) = lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑

s∈Dy,η,λ

〈

f |ϕs
〉

(χωs(2) ◦N)ϕs dλ dydη .
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For every square-integrable function f and x ∈ R we pick, in a measurable way, a
positive real number ξ = Nf (x) such that

sup
ξ>0

|Πξ ( f )(x)| ≤ 2 |ΠNf (x)( f )(x)| ≤ 2DNf ( f )(x) .

Then

C1( f ) ≤ 2
|c| |DNf ( f )| . (11.2.6)

We work with functions f = χF , where F is a measurable set of finite measure; cer-
tainly such functions are square-integrable. We show the validity of statement (a) of
Theorem 11.2.1 for DN , where N : R→ R+ is measurable with bounds independent
of N. Then (11.2.6) implies the same statement for C1.

We claim that the following estimate is valid for DN . There is a constant C′ such
that for any pair of measurable subsets (E,F) of the real line with nonzero finite
measure there is a subset E ′ of E with |E ′| ≥ 1

2 |E| such that for any measurable
function N : R → R+ we have

∣

∣

∣

∣

∫

E ′
DN(χF)(x)dx

∣

∣

∣

∣

≤ 2C′ min(|E|, |F |)
(

1 +
∣

∣

∣ log
|E|
|F |

∣

∣

∣

)

. (11.2.7)

This is a fundamental estimate that implies (11.2.1). We derive this estimate from an
analogous estimate for the operators DN,y,η,λ by picking a set E ′ that is independent
of y,η , and λ .

We introduce a set

ΩE,F =
{

M(χF) > 8 min
(

1, |F |
|E|
)}

.

It follows that |ΩE,F | ≤ 1
2 |E|, since the Hardy–Littlewood maximal operator is of

weak type (1,1) with norm 2. We conclude that the set

E ′ = E \ΩE,F

satisfies |E ′| ≥ 1
2 |E|. (Notice that in the case |F | ≥ |E| the set ΩE,F is empty.)

Let P be a finite subset of Dy,η,λ . The required inequality (11.2.7) will be a con-
sequence of the following two estimates:

∣

∣

∣

∣

∫

E ′ ∑
s∈P

Is⊆ΩE,F

〈

χF |ϕs
〉

(χωs(2) ◦N)ϕs dx

∣

∣

∣

∣

≤C′ min(|E|, |F |) (11.2.8)

and
∣

∣

∣

∣

∫

E ′ ∑
s∈P

Is�ΩE,F

〈

χF |ϕs
〉

(χωs(2) ◦N)ϕs dx

∣

∣

∣

∣

≤C′ min(|E|, |F |)
(

1+
∣

∣

∣ log
|E|
|F |

∣

∣

∣

)

, (11.2.9)
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where the constant C′ is independent of the sets E,F , of the measurable function N,
and of the finite subset P of Dy,η,λ . Estimates (11.2.8) and (11.2.9) are proved in the
next three subsections.

In the rest of this subsection we show that (11.2.7) implies statement (a) of The-
orem 11.2.1. Given α > 0 we define sets

E1
α =

{

ReDN(χF) > α
}

, E2
α =

{

ReDN(χF) < −α
}

,

E3
α =

{

ImDN(χF) > α
}

, E4
α =

{

ImDN(χF) < −α
}

.

We apply (11.2.7) to the pair (E j
α ,F) for any j = 1,2,3,4. We find a subset (E j

α)′ of
E j
α of at least half its measure so that (11.2.7) holds for this pair. Then we have

α
2
|E j
α | ≤ α|(E j

α )′| ≤
∣

∣

∣

∣

∫

(E j
α )′

DN(χF)(x)dx

∣

∣

∣

∣

≤ 2C′ min(|E j
α |, |F |)

(

1 +
∣

∣

∣ log
|E j
α |

|F |

∣

∣

∣

)

. (11.2.10)

If |E j
α | ≤ |F|, this estimate implies that

|E j
α | ≤ |F|ee−

1
4C′ α , (11.2.11)

while if |E j
α | > |F |, it implies that

α ≤ 4C′ |F |
|E j
α |

(

1 + log
|E j
α |

|F|

)

. (11.2.12)

Case 1: α > 4C′. If |E j
α | > |F |, setting t = |E j

α |/|F | > 1 and using the fact that
sup1<t<∞

1
t (1+ logt) = 1, we obtain that (11.2.12) fails. In this case we must there-

fore have that |E j
α | ≤ |F |. Applying (11.2.11) four times, we deduce

|{DN(χF) > 4α}| ≤ 4e |F |e−
1

4C′ α . (11.2.13)

Case 2: α ≤ 4C′. If |E j
α | > |F |, we use the elementary fact that if t > 1 satisfies

t(1 + logt)−1 < B
α , then t < 2B

α (1 + log 2B
α ); to prove this fact one may use the in-

equalities t < 2B
α (1+ log

√
t) and log

√
t ≤ log t− log(1+ log

√
t)≤ log 2B

α for t > 1.

Taking t = |E j
α |/|F| and B = 4C′ in (11.2.12) yields

|E j
α |

|F | ≤ 8C′

α

(

1 + log
8C′

α

)

. (11.2.14)

If |E j
α | ≤ |F |, then we use (11.2.11), but we note that for some constant c′ > 1 we

have

ee−
1

4C′ α ≤ c′
8C′

α

(

1 + log
8C′

α

)
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whenever α ≤ 4C′. Thus, when α ≤ 4C′ we always have

|{DN(χF) > 4α}| ≤ c′
32C′

α
|F|
(

1 + log
8C′

α

)

. (11.2.15)

Combining (11.2.13) and (11.2.15), we obtain estimate (11.2.7) for DN . The

same estimate holds for C1 in view of (11.2.6). Since ˜C2( f ) = C1(˜f ), where
˜f (x) = f (−x), the same estimate holds for C2 and hence estimate (11.2.7) is valid
for C . �

11.2.2 The Proof of Estimate (11.2.8)

In proving (11.2.8), we may assume that |F | ≤ |E|; otherwise, the setΩE,F is empty
and there is nothing to prove.

Let P be a finite subset of Dy,η,λ . We denote by I (P) the grid that consists of all
the time projections Is of tiles s in P. For a fixed interval J in I (P) we define

P(J) = {s ∈ P : Is = J}

and a function

ψJ(x) = |J|− 1
2

(

1 +
|x− c(J)|

|J|

)−M

,

where M is a large integer to be chosen momentarily. We note that for each s ∈ P(J)
we have |ϕs(x)| ≤CMψJ(x).

For each k = 0,1,2, . . . we introduce families

Fk =
{

J ∈ I (P) : 2kJ ⊆ΩE,F , 2k+1J �ΩE,F
}

.

We begin by writing the left-hand side of (11.2.8) as

∑
J∈I (P)
J⊆ΩE,F

∣

∣

∣

∣
∑

s∈P(J)

∫

E ′

〈

χF |ϕs
〉

χωs(2) (N(x))ϕs(x)dx

∣

∣

∣

∣

=
∞

∑
k=0
∑

J∈I (P)
J∈Fk

∣

∣

∣

∣

∫

E ′ ∑
s∈P(J)

〈

χF |ϕs
〉

χωs(2) (N(x))ϕs(x)dx

∣

∣

∣

∣

.

(11.2.16)

Using Exercise 9.2.8(b) we obtain the existence of a constant C0 < ∞ such that
for each k = 0,1, . . . and J ∈ Fk we have
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〈

χF ,ψJ
〉

≤ |J| 1
2 inf

J
M(χF)

≤ |J| 1
2 Ck

0 inf
2k+1J

M(χF )

≤ 4Ck
0|J|

1
2
|F|
|E| ,

(11.2.17)

since 2k+1J meets the complement of ΩE,F .
For J ∈ Fk we also have that E ′ ∩2kJ = /0 and hence

∫

E ′
ψJ(y)dy ≤

∫

(2kJ)c
ψJ(y)dy ≤ |J| 1

2 CM2−kM . (11.2.18)

Next we note that for each J ∈I (P) and x ∈ R there is at most one s = sx ∈ P(J)
such that N(x) ∈ ωsx(2). Using this observation along with (11.2.17) and (11.2.18),
we can therefore estimate the expression on the right in (11.2.16) as follows:

∞

∑
k=0
∑

J∈I (P)
J∈Fk

∣

∣

∣

∣

∫

E ′

〈

χF |ϕsx

〉

χωsx(2) (N(x))ϕsx (x)dx

∣

∣

∣

∣

≤C2
M

∞

∑
k=0
∑

J∈I (P)
J∈Fk

∫

E ′

〈

χF ,ψJ
〉

ψJ(x)dx

≤C2
M 4

|F |
|E|

∞

∑
k=0

Ck
0 ∑

J∈Fk

|J| 1
2

∫

E ′
ψJ(x)dx

≤ 4C3
M
|F |
|E|

∞

∑
k=0

(C02−M)k ∑
J∈Fk

|J| , (11.2.19)

and we pick M > logC0/ log2. It remains to control

∑
J∈Fk

|J|

for each nonnegative integer k. In doing this we let F ∗
k be all elements of Fk that

are maximal under inclusion. Then we observe that if J ∈ F ∗
k and J′ ∈ Fk satisfy

J′ ⊆ J then
dist (J′,Jc) = 0 ,

otherwise 2J′ would be contained in J and thus

2k+1J′ ⊆ 2kJ ⊆ΩE,F .

Therefore, for any J in F ∗
k and any scale m there are at most two intervals J′ from

Fk contained in J with |J′| = 2m. Summing over all possible scales, we obtain a
bound of at most four times the length of J. We conclude that
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∑
J∈Fk

|J| = ∑
J∈F ∗

k

∑
J′∈Fk
J′⊆J

|J′| ≤ ∑
J∈F ∗

k

4 |J| ≤ 4 |ΩE,F | ,

since elements of F ∗
k are disjoint and contained in ΩE,F . Inserting this estimate in

(11.2.19), we obtain the required bound

C′
M
|F |
|E| |ΩE,F | ≤C′′

M |F | = C′′
M min(|E|, |F |)

for the expression on the right in (11.2.16). This concludes the proof of (11.2.8).

11.2.3 The Proof of Estimate (11.2.9)

For fixed y,η ,λ we define a partial order in the set of tiles in Dy,η,λ just as in
Definition 11.1.3. All properties of dyadic tiles obtained in the previous section also
hold for the tiles in Dy,η,λ . Throughout this section, P is a finite subset of Dy,η,λ .

To simplify notation, in the sequel we set

PE,F =
{

s ∈ P : Is �ΩE,F
}

.

Setting N−1[A] = {x : N(x) ∈ A} for a set A � R, we note that (11.2.9) is a
consequence of

∑
s∈PE,F

∣

∣

〈

χF ,ϕs
〉〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣

∣≤C min(|E|, |F |)
(

1 +
∣

∣

∣ log
|E|
|F|

∣

∣

∣

)

. (11.2.20)

The following lemma is the main ingredient of the proof and is proved in the next
section.

Lemma 11.2.2. There is a constant C such that for all measurable sets E and F of
finite measure we have

E
(

χF ;PE,F
)

≤C |F |− 1
2 min

(

|F |
|E| ,1

)

. (11.2.21)

Assuming Lemma 11.2.2, we argue as follows to prove (11.2.9). Given the finite
set of tiles PE,F , we write it as the union

PE,F =
n0
⋃

j=−∞
P j ,

where the sets P j satisfy properties (1)–(5) of page 437.
Given the sequence of sets P j, we use properties (1), (2), (5) on page 437, the

observation that the mass is always bounded by |E|−1, and Lemmas 11.2.2 and
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11.1.10 to obtain the following bound for the expression on the left in (11.2.9):

∑
s∈PE,F

∣

∣

〈

χF |ϕs
〉∣

∣

∣

∣

〈

χE ′∩N−1[ωs(2) ]
,ϕs
〉∣

∣

= ∑
j∈Z
∑

s∈P j

∣

∣

〈

χF |ϕs
〉∣

∣

∣

∣

〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣

∣

≤ ∑
j∈Z
∑
k
∑

s∈T jk

∣

∣

〈

χF |ϕs
〉∣

∣

∣

∣

〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣

∣

≤C3∑
j
∑
k

|Itop(T jk)|E ( f ;T jk)M (E ′,T jk) |E ′| |F | 1
2

≤ C3 ∑
j∈Z
∑
k

|Itop(T jk)| min
(

2 j+1,C
|F | 1

2

|E| ,C |F |− 1
2
)

min(|E ′|−1,22 j+2) |E| |F | 1
2

≤C4∑
j∈Z

2−2 j min
(

2 j, |F | 1
2 |E|−1, |F |− 1

2
)

min(|E|−1,22 j) |E| |F | 1
2

≤C5 ∑
j∈Z

min

(

2 j|E| 1
2 ,min

( |F |
|E| ,

|E|
|F |

) 1
2
)

min
(

(2 j|E| 1
2 )−2,1

)

|E| 1
2 |F | 1

2

≤C6 ∑
j∈Z

min

(

2 j,min
( |F|
|E| ,

|E|
|F |

) 1
2
)

min(2−2 j,1) |E| 1
2 |F | 1

2

≤C7 min(|E|, |F |)
(

1 +
∣

∣

∣ log
|E|
|F |

∣

∣

∣

)

.

The last estimate follows by a simple calculation considering the three cases 1 < 2 j,

min
(

|F |
|E| ,

|E|
|F |

) 1
2 ≤ 2 j ≤ 1, and 2 j < min

(

|F |
|E| ,

|E|
|F |

) 1
2
.

11.2.4 The Proof of Lemma 11.2.2

It remains to prove Lemma 11.2.2.
Fix a 2-tree T contained in PE,F and let t = top(T) denote its top. We show that

1
|It | ∑s∈T

∣

∣

〈

χF |ϕs
〉∣

∣

2 ≤C min

(

|F |
|E| ,1

)2

(11.2.22)

for some constant C independent of F,E , and T. Then (11.2.21) follows from
(11.2.22) by taking the supremum over all 2-trees T contained in PE,F .

We decompose the function χF as follows:

χF = χF∩3It + χF∩(3It )c .

We begin by observing that for s in PE,F we have
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∣

∣

〈

χF∩(3It )c |ϕs
〉∣

∣ ≤
CM|Is|

1
2 inf

Is
M(χF)

(

1 +
dist((3It)c,c(Is))

|Is|

)M

≤ 8CM|Is|
1
2 min

(

|F |
|E| ,1

)(

|Is|
|It |

)M

,

since Is meets the complement of ΩE,F for every s ∈ PF . Square this inequality and
sum over all s in T to obtain

∑
s∈T

|〈χF∩(3It )c |ϕs〉|2 ≤C |It | min

(

|F|
|E| ,1

)2

,

using Exercise 11.2.1.
We now turn to the corresponding estimate for the function χF∩3It . At this point

it is convenient to distinguish the simple case |F| > |E| from the difficult case |F | ≤
|E|. In the first case the set ΩE,F is empty and Exercise 11.1.6(b) yields

∑
s∈T

∣

∣

〈

χF∩3It |ϕs
〉∣

∣

2 ≤C
∥

∥χF∩3It

∥

∥

2
L2

≤C |It |

= C |It | min

(

|F |
|E| ,1

)2

,

since |F| > |E|.
We may therefore concentrate on the case |F| ≤ |E|. In proving (11.2.21) we may

assume that there exists a point x0 ∈ It such that

M(χF )(x0) ≤ 8
|F |
|E| ;

otherwise there is nothing to prove.
We write the set ΩE,F =

{

M(χF) > 8 |F |
|E|
}

as a disjoint union of dyadic intervals

J′� such that the dyadic parent ˜J′� of J′� is not contained in ΩE,F and therefore

|F ∩ J′�| ≤ |F ∩ ˜J′�| ≤ 16
|F|
|E| |J

′
�| .

Now some of these dyadic intervals may have size larger than or equal to |It |. Let J′�
be such an interval. Then we split J′� into

|J′�|
|It | intervals J′�,m each of size exactly |It |.

Since there is an x0 ∈ It with

M(χF)(x0) ≤ 8
|F |
|E| ,
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if K is the smallest interval that contains x0 and J′�,m, then

1
|K|

∫

K
χF dx ≤ 8

|F |
|E| =⇒ |F ∩ J′�,m| ≤ 8

|F|
|E| |It |

|K|
|It |

.

We conclude that

|F ∩ J′�,m| ≤ c
|F |
|E| |It |

(

1 +
dist(It ,J′�,m)

|It |

)

. (11.2.23)

We now have a new collection of dyadic intervals {Jk}k contained inΩE,F consisting
of all the previous J′� when |J′�| < |It | and the J′�,m’s when |J′�| ≥ |It |. In view of the
construction we have

|F ∩ Jk| ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2c
|F|
|E| |Jk| when |Jk| < |It |,

2c
|F|
|E| |Jk|

(

1 +
dist(It ,Jk)

|It |

)

when |Jk| = |It |,

(11.2.24)

for all k. We now define the “bad functions”

bk(x) =
(

e−2π ic(ωt)xχF∩3It (x)−
1
|Jk|

∫

Jk

e−2π ic(ωt)yχF∩3It (y)dy

)

χJk (x) ,

which are supported in Jk, have mean value zero, and satisfy

∥

∥bk

∥

∥

L1 ≤ 2c |F | |Jk|
(

1 +
dist(It ,Jk)

|It |

)

.

We also set
g(x) = e−2π ic(ωt)xχF∩3It (x)−∑

k

bk(x) ,

the “good function” of this Calderón–Zygmund-type decomposition. We have there-
fore decomposed the function χF∩3It as follows:

χF∩3It (x) = g(x)e2π ic(ωt)x +∑
k

bk(x)e2π ic(ωt)x . (11.2.25)

We show that
∥

∥g
∥

∥

L∞ ≤C |F |
|E| . Indeed, for x in Jk we have

g(x) =
1
|Jk|

∫

Jk

e−2π ic(ωt)yχF∩3It (y)dy ,

which implies
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|g(x)| ≤ |F ∩3It ∩ Jk|
|Jk|

≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|F ∩ Jk|
|Jk|

when |Jk| < |It |,

|F ∩3It |
|It |

when |Jk| = |It |,

and both of the preceding are at most a multiple of |F |
|E| ; the latter is because there is

an x0 ∈ It with M(χF)(x0) ≤ 8 |F|
|E| . Also, for x ∈ (

⋃

k Jk)c = (ΩE,F)c we have

|g(x)| = χF∩3It (x) ≤ M(χF)(x) ≤ 8
|F |
|E| .

We conclude that
∥

∥g
∥

∥

L∞ ≤C |F |
|E| . Moreover,

∥

∥g
∥

∥

L1 ≤∑
k

∫

Jk

|F ∩3It ∩ Jk|
|Jk|

dx +
∥

∥χF∩3It

∥

∥

L1 ≤C |F ∩3It| ≤C
|F |
|E| |It | ,

since the Jk are disjoint. It follows that

∥

∥g
∥

∥

L2 ≤C
( |F|
|E|

) 1
2
( |F |
|E|

) 1
2 |It |

1
2 = C

|F|
|E| |It |

1
2 .

Using Exercise 11.1.6, we have

∑
s∈T

∣

∣

〈

ge2π ic(ωt)(·) |ϕs
〉∣

∣

2 ≤C
∥

∥g
∥

∥

2
L2 ,

from which we obtain the required conclusion for the first function in the decompo-
sition (11.2.25).

Next we turn to the corresponding estimate for the second function,

∑
k

bke2π ic(ωt)(·) ,

in the decomposition (11.2.25), which requires some further analysis. We have the
following two estimates for all s and k:

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣ ≤ CM |F | |E|−1 |Jk|2 |Is|−
3
2

(1 + dist (Jk,Is)
|Is| )M

, (11.2.26)

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣ ≤ CM |F | |E|−1 |Is|
1
2

(1 + dist (Jk ,Is)
|Is| )M

, (11.2.27)

for all M > 0, where CM depends only on M.
To prove (11.2.26) we use the mean value theorem together with the fact that bk

has vanishing integral to write for some ξy,
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∣

∣

〈

bk e2π ic(ωt)(·) |ϕs
〉∣

∣

=
∣

∣

∣

∫

Jk

bk(y)e2π ic(ωt)yϕs(y)dy
∣

∣

∣

=
∣

∣

∣

∫

Jk

bk(y)
(

e2π ic(ωt)yϕs(y)− e2π ic(ωt)c(Jk)ϕs(c(Jk))dy
∣

∣

∣

≤ |Jk|
∫

Jk

|bk(y)|
[

2π |c(ωs)−c(ωt)|
|Is |

1
2

∣

∣ϕ
( ξy−c(Is)

|Is|
)∣

∣+ |Is|−
3
2
∣

∣ϕ ′( ξy−c(Is)
|Is|

)∣

∣

]

dy

≤
∥

∥bk

∥

∥

L1 |Jk| sup
ξ∈Jk

CM|Is|−
3
2

(1 + |ξ−c(Is)|
|Is| )M+1

≤CM
|F |
|E| |Jk|

(

1 +
dist (Jk, It)

|It |

) |Jk| |Is|−
3
2

(1 + dist (Jk,Is)
|Is| )M+1

≤ CM |F | |E|−1 |Jk|2 |Is|−
3
2

(1 + dist (Jk,Is)
|Is| )M

,

where we used the fact that 1+ dist (Jk,It )
|It | ≤ 1+ dist (Jk ,Is)

|Is| . To prove estimate (11.2.27)
we note that

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣≤
CM |Is|

1
2 inf

Is
M(bk)

(1 + dist (Jk,Is)
|Is| )M

and that

M(bk) ≤ M(χF)+
|F ∩3It ∩ Jk|

|Jk|
M(χJk ) ,

and since Is �ΩE,F , we have infIs M(χF) ≤ 8 |F |
|E| , while the second term in the sum

was observed earlier to be at most C |F |
|E| .

Finally, we have the estimate

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣≤ CM |F | |E|−1 |Jk| |Is|−
1
2

(1 + dist (Jk ,Is)
|Is | )M

, (11.2.28)

which follows by taking the geometric mean of (11.2.26) and (11.2.27).
Now for a fixed s ∈ PE,F we may have either Jk ⊆ Is or Jk ∩ Is = /0 (since Is is not

contained in ΩE,F ). Therefore, for fixed s ∈ PE,F there are only three possibilities
for Jk:

(a) Jk ⊆ 3Is;

(b) Jk ∩3Is = /0;

(c) Jk ∩ Is = /0, Jk ∩3Is �= /0, and Jk � 3Is.

Observe that case (c) is equivalent to the following statement:
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(c) Jk ∩ Is = /0, dist (Jk, Is) = 0, and |Jk| ≥ 2|Is|.

Note that in case (c), for each Is there exists exactly one Jk = Jk(s) with the previous
properties; but for a given Jk there may be a sequence of Is’s that lie on the left
of Jk such that |Jk| ≥ 2|Is| and dist (Jk, Is) = 0 and another sequence with similar
properties on the right of Jk. The Is’s that lie on either side of Jk must be nested, and
their lengths must add up to |IL

sk
|+ |IR

sk
|, where IL

sk
is the largest one among them on

the left of Jk and IR
sk

is the largest one among them on the right of Jk. Using (11.2.27),
we obtain

∑
s∈T

∣

∣

∣ ∑
k: Jk∩Is= /0

dist (Jk,Is)=0
|Jk |≥2|Is|

〈

bke2π ic(ωt)(·) |ϕs
〉

∣

∣

∣

2
= ∑

s∈T

∣

∣

∣

〈

bk(s)e
2π ic(ωt)(·) |ϕs

〉

∣

∣

∣

2

≤C
( |F|
|E|

)2

∑
s∈T: Jk∩Is= /0
dist (Jk ,Is)=0
|Jk |≥2|Is|

|Is|

≤C
( |F|
|E|

)2

∑
k

(

|IL
sk
|+ |IR

sk
|
)

.

But note that IL
sk
⊆ 2Jk, and since IL

sk
∩ Jk = /0, we must have IL

sk
⊆ 2Jk \ Jk (and

likewise for IR
sk

). We define sets

IL+
sk

= IL
sk

+
1
2
|Jk| ,

IR−
sk

= IR
sk
− 1

2
|Jk| .

We have IL+
sk

∪ IR−
sk

⊆ Jk, and hence the sets IL+
sk

are pairwise disjoint for different

k, and the same is true for the IR−
sk

. Moreover, since 1
2 |Jk| ≤ 1

2 |It | for all k, all the
shifted sets IL+

sk
, IR−

sk
are contained in 3It . We conclude that

∑
k

|IL
sk
|+∑

k

|IR
sk
| = ∑

k

(

|IL+
sk

|+ |IR−
sk

|
)

≤
∣

∣

⋃

k

IL+
sk

∣

∣+
∣

∣

⋃

k

IR−
sk

∣

∣

≤ 2 |3It | ,

which combined with the previously obtained estimate yields the required result in
case (c).

We now consider case (a). Using (11.2.26), we can write

(

∑
s∈T

∣

∣

∣ ∑
k:Jk⊆3Is

〈

bke2π ic(ωt)(·) |ϕs
〉

∣

∣

∣

2
)1

2

≤CM

( |F |
|E|

)2
(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3Is

|Jk|
1
2
|Jk|

3
2

|Is|
3
2

∣

∣

∣

2
)1

2

,
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and we control the second expression by

CM
|F|
|E|

{

∑
s∈T

(

∑
k: Jk⊆3Is

|Jk|
)(

∑
k: Jk⊆3Is

|Jk|3
|Is|3

)}1
2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

|Jk|3 ∑
s∈T

Jk⊆3Is

1
|Is|2

}1
2

,

where we used that the dyadic intervals Jk are disjoint and the Cauchy–Schwarz
inequality. We note that the last sum is equal to at most C|Jk|−2, since for every
dyadic interval Jk there exist at most three dyadic intervals of a given length whose
triples contain it. The required estimate C |F | |E|−1 |It |

1
2 now follows in case (a).

Finally, we deal with case (b), which is the most difficult case. We split the set of
k into two subsets, those for which Jk ⊆ 3It and those for which Jk � 3It (recall that
|Jk| ≤ |It |). Whenever Jk � 3It , we have

dist (Jk, Is) ≈ dist (Jk, It) .

In this case we use Minkowski’s inequality and estimate (11.2.28) to deduce

(

∑
s∈T

∣

∣

∣ ∑
k: Jk�3It

〈

bke2π ic(ωt)(·) |ϕs
〉

∣

∣

∣

2
)1

2

≤ ∑
k: Jk�3It

(

∑
s∈T

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣

2
)1

2

≤CM
|F|
|E| ∑

k: Jk�3It

|Jk|
(

∑
s∈T

|Is|2M−1

dist (Jk, Is)2M

)1
2

≤CM
|F|
|E| ∑

k: Jk�3It

|Jk|
dist (Jk, It)M

(

∑
s∈T

|Is|2M−1
)1

2

≤CM
|F|
|E| |It |

M− 1
2 ∑

k: Jk�3It

|Jk|
dist (Jk, It)M

≤CM
|F|
|E| |It |

M− 1
2

∞

∑
l=1

∑
k:

dist (Jk,It )≈2l |It |

|Jk|
(2l|It |)M

,

where dist (Jk, It) ≈ 2l|It | means that dist (Jk, It) ∈ [2l|It |,2l+1|It |]. But note that all
the Jk with dist (Jk, It)≈ 2l|It | are contained in 2l+2It , and since they are disjoint, we

estimate the last sum by C2l|It |(2l|It |)−M . The required estimate CM|F | |E|−1|It |
1
2

follows.
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Next we consider the case Jk ⊆ 3It , Jk ∩3Is = /0, and |Jk| ≤ |Is|, in which we use
estimate (11.2.26). We have

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk|≤|Is |

〈bke2π ic(ωt)(·) |ϕs〉
∣

∣

∣

2
)1

2

≤CM
|F|
|E|

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|2|Is|−
3
2

|Is|M
dist (Jk, Is)M

∣

∣

∣

2
)1

2

≤CM
|F|
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|
|Is|

(dist (Jk, Is)
|Is|

)−M
]}1

2

≤CM
|F|
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

∫

Jk

( |x− c(Is)|
|Is|

)−M dx
|Is|

]}1
2

≤CM
|F|
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[
∫

(3Is)c

( |x− c(Is)|
|Is|

)−M dx
|Is|

]}1
2

≤CM
|F|
|E|

{

∑
s∈T
∑

k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3|Is|−2
( |Is|

dist (Jk, Is)

)M
}1

2

.

But since the last integral contributes at most a constant factor, we can estimate the
last displayed expression by
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CM
|F |
|E|

{

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3 ∑
m≥log |Jk |

2−2m ∑
s∈T

|Is|=2m

(dist (Jk, Is)
2m

)−M
}1

2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3 ∑
m≥log |Jk|

2−2m
}1

2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3|Jk|−2
}1

2

≤CM
|F |
|E| |It |

1
2 .

There is also the subcase of case (b) in which |Jk| > |Is|. Here we have the two
special subcases Is ∩ 3Jk = /0 and Is ⊆ 3Jk. We begin with the first of these special
subcases, in which we use estimate (11.2.27). We have

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk|>|Is |

Is∩3Jk= /0

〈bke2π ic(ωt)(·) |ϕs〉
∣

∣

∣

2
)1

2

≤CM
|F |
|E|

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|
1
2

|Is|M
dist (Jk, Is)M

∣

∣

∣

2
)1

2

≤CM
|F |
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

][

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

]}1
2

.

Since Is ∩3Jk = /0, we have that dist (Jk, Is) ≈ |x− c(Is)| for every x ∈ Jk, and there-
fore the second term inside square brackets satisfies

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M ≤∑

k

∫

Jk

( |x− c(Is)|
|Is|

)−M dx
|Is|

≤CM .

Using this estimate, we obtain
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CM
|F |
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is |

Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

][

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

]}1
2

≤CM
|F |
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

]} 1
2

= CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk| ∑s∈T

Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|2
|Is|M

dist (Jk, Is)M

} 1
2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk|

log2 |Jk |

∑
m=−∞

22m ∑
s∈T: |Is|=2m

Jk∩3Is= /0
|Jk|>|Is |

Is∩3Jk= /0

|Is|M
dist (Jk, Is)M

} 1
2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk|

log2 |Jk |

∑
m=−∞

22m
} 1

2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk|

|Jk|2
} 1

2

≤CM
|F |
|E| |It |

1
2 .

Finally, there is the subcase of case (b) in which |Jk| ≥ |Is| and Is ⊆ 3Jk. Here
again we use estimate (11.2.27). We have

{

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

〈bke2π ic(ωt)(·) |ϕs〉
∣

∣

∣

2
}1

2

≤ CM
|F |
|E|

{

∑
s∈T

|Is|
∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is |
Is⊆3Jk

|Is|M
dist (Jk, Is)M

∣

∣

∣

2
}1

2

.

(11.2.29)

Let us make some observations. For a fixed s there exist at most finitely many
Jk’s contained in 3It with size at least |Is|. Let J1

L(s) be the interval that lies to the
left of Is and is closest to Is among all Jk that satisfy the conditions in the preceding
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sum. Then |J1
L(s)| > |Is| and

dist(J1
L(s), Is) ≥ |Is| .

Let J2
L(s) be the interval to the left of J1

L(s) that is closest to J1
L(s) and that satisfies

the conditions of the sum. Since 3J2
L(s) contains Is, it follows that |J2

L(s)|> 2|Is| and

dist(J2
L(s), Is) ≥ 2|Is| .

Continuing in this way, we can find a finite number of intervals Jr
L(s) that lie to the

left of Is and inside 3It , satisfy |Jr
L(s)| > 2r|Is| and dist(Jr

L(s), Is)≥ 2r|Is|, and whose
triples contain Is. Likewise we find a finite collection of intervals J1

R(s),J2
R(s), . . .

that lie to the right of Is and satisfy similar conditions. Then, using the Cauchy–
Schwarz inequality, we obtain

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

|Is|M
dist (Jk, Is)M

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

∞

∑
r=1

|Is|
M
2

dist(Jr
L(s), Is)

M
2

1

2
rM
2

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∞

∑
r=1

|Is|
M
2

dist(Jr
R(s), Is)

M
2

1

2
rM
2

∣

∣

∣

∣

2

≤CM

∞

∑
r=1

|Is|M
dist(Jr

L(s), Is)M +CM

∞

∑
r=1

|Is|M
dist(Jr

R(s), Is)M

≤CM ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

|Is|M
dist (Jk, Is)M .

We use this estimate to control the expression on the left in (11.2.29) by

CM
|F |
|E|

{

∑
s∈T

|Is| ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

|Is|M
dist (Jk, Is)M

}1
2

≤ CM
|F|
|E|

{

∑
k:Jk⊆3It

|Jk|
∞

∑
m=0

2−m ∑
s: Is⊆3Jk
Jk∩3Is= /0

|Is|=2−m|Jk|

|Is|M
dist (Jk, Is)M

}1
2

.

Since the last sum is at most a constant, it follows that the term on the left in
(11.2.29) also satisfies the estimate CM

|F |
|E| |It |

1
2 . This concludes the proof of Lemma

11.2.2.
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Exercises

11.2.1. Let T be a 2-tree with top It and let M > 1 and L be such that 2L < |It |. Show
that there exists a constant CM > 0 such that

∑
s∈T

|Is|M ≤ CM|It |M ,

∑
s∈T

|Is|≥2L

|Is|−M ≤ CM
|It |

(2L)M+1 ,

∑
s∈T

|Is|≤2L

|Is|M ≤ CM|It |(2L)M−1 .

[

Hint: Group the s that appear in each sum in families Gm such that |Is| = 2−m|It |
for each s ∈ Gm.

]

11.2.2. Show that the operator

g �→ sup
−∞<a<b<∞

∣

∣(ĝχ[a,b])
∨∣
∣

defined on the line is Lp bounded for all 1 < p < ∞.

11.2.3. On Rn fix a unit vector b and consider the maximal operator

T (g)(x) = sup
N>0

∣

∣

∣

∣

∫

|b·ξ |≤N

ĝ(ξ )e2π ix·ξ dξ
∣

∣

∣

∣

.

Show that T maps Lp(Rn) to Lp(Rn) for all 1 < p < ∞.
[

Hint: Apply a rotation.
]

11.2.4. Define the directional Carleson operators by

C θ ( f )(x) = sup
a∈R

∣

∣

∣

∣

lim
ε→0

∫

ε<|t|<ε−1
e2π iat f (x− tθ )

dt
t

∣

∣

∣

∣

,

for functions f on Rn. Here θ is a vector in Sn−1.
(a) Show that C θ is bounded on Lp(Rn) for all 1 < p <∞.
(b) Let Ω be an odd integrable function on Sn−1. Define an operator

CΩ ( f )(x) = sup
ξ∈Rn

∣

∣

∣

∣

lim
ε→0

∫

ε<|y|<ε−1
e2π iξ ·y f (x− y)

Ω
( y
|y|
)

|y|n dy

∣

∣

∣

∣

.

Show that C Ω is bounded on Lp(Rn) for 1 < p < ∞.
[

Hint: Part (a): Reduce to the case θ = e1 = (1,0, . . . ,0) via a rotation and use
Theorem 11.2.1(b). Part (b): Use the method of rotations and part (a).

]
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11.3 The Maximal Carleson Operator and Weighted Estimates

Recall the one-sided Carleson operator C1 defined in the previous section:

C1( f )(x) = sup
N>0

∣

∣

∣

∣

∫ N

−∞
̂f (ξ )e2π ixξ dξ

∣

∣

∣

∣

.

Recall also the modulation operator Ma(g)(x) = g(x)e2π iax. We begin by observing
that the following identity is valid:

(

̂f χ(−∞,b]
)∨ = Mb I− iH

2
M−b( f ) =

1
2

f − i
2

MbHM−b( f ) , (11.3.1)

where H is the Hilbert transform. It follows from (11.3.1) that

C1( f ) ≤ 1
2
| f |+ 1

2
sup
ξ∈R

|H(Mξ ( f ))|

and that
sup
ξ∈R

|H(Mξ ( f ))| ≤ | f |+ 2C1( f ) .

We conclude that the Lp boundedness of the sublinear operator f �→ C1( f ) is equiv-
alent to that of the sublinear operator

f �→ sup
ξ∈R

|H(Mξ ( f ))| .

Definition 11.3.1. The maximal Carleson operator is defined by

C∗( f )(x) = sup
ε>0

sup
ξ∈R

∣

∣

∣

∣

∫

|x−y|>ε
f (y)e2π iξy dy

x− y

∣

∣

∣

∣

= sup
ξ∈R

∣

∣H(∗)(Mξ ( f ))(x)
∣

∣ ,
(11.3.2)

where H(∗) is the maximal Hilbert transform. Observe that C∗( f ) is well defined for
all f in

⋃

1≤p<∞Lp(R) and that C∗( f ) controls the Carleson operator C ( f ) point-
wise.

We begin with the following pointwise estimate, which reduces the boundedness
of C∗ to that of C :

Lemma 11.3.2. There is a positive constant c > 0 such that for all functions f in
⋃

1≤p<∞Lp(R) we have

C∗( f ) ≤ cM( f )+ M(C ( f )) , (11.3.3)

where M is the Hardy–Littlewood maximal function.
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Proof. The proof of (11.3.3) is based on the classical inequality

H(∗)(g) ≤ cM(g)+ M(H(g))

obtained in (4.1.32). Applying this to the functions Mξ ( f ) and taking the supremum
over ξ ∈ R, we obtain

C∗( f ) ≤ cM( f )+ sup
ξ∈R

M
(

H(Mξ ( f ))
)

,

from which (11.3.3) easily follows by passing the supremum inside the maximal
function. �

It is convenient to work with a variant of the Hardy–Littlewood maximal opera-
tor. For 0 < r < ∞ define

Mr( f ) = M(| f |r) 1
r

for f such that | f |r is locally integrable over the real line. Note that M( f ) ≤ Mr( f )
for any r ∈ (1,∞). Our next goal is to obtain the boundedness of the Carleson oper-
ator on weighted Lp spaces.

Theorem 11.3.3. For every p ∈ (1,∞) and w ∈ Ap there is a constant C(p, [w]Ap)
such that for all f ∈ Lp(R) we have

∥

∥C ( f )
∥

∥

Lp(w) ≤C(p, [w]Ap)
∥

∥ f
∥

∥

Lp(w) , (11.3.4)
∥

∥C∗( f )
∥

∥

Lp(w) ≤C(p, [w]Ap)
∥

∥ f
∥

∥

Lp(w) . (11.3.5)

Proof. Fix a 1 < p < ∞ and pick an r ∈ (1, p) such that w ∈ Ar. We show that for
all f ∈ Lp(w) we have the estimate

∫

R
C ( f )(x)p w(x)dx ≤Cp([w]Ap)

∫

R
Mr( f )(x)pw(x)dx . (11.3.6)

Then the boundedness of C on Lp(w) is a consequence of the boundedness of the
Hardy–Littlewood maximal operator on L

p
r (w).

If we show that for any w ∈ Ap there is a constant Cp([w]Ap) such that

∫

R
M(C ( f ))p wdx ≤Cp([w]Ap)

∫

R
Mr( f )p wdx , (11.3.7)

then the trivial fact C ( f ) ≤ M(C ( f )), inserted in (11.3.7), yields (11.3.6).
Estimate (11.3.7) will be a consequence of the following two important observa-

tions:
M#(C ( f )) ≤Cr Mr( f ) a.e. (11.3.8)

and
∥

∥M(C ( f ))
∥

∥

Lp(w) ≤ cp([w]Ap)
∥

∥M#(C ( f ))
∥

∥

Lp(w) , (11.3.9)

where cp([w]Ap) depends on [w]Ap and Cr depends only on r.
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We begin with estimate (11.3.8), which was obtained in Theorem 7.4.9 for sin-
gular integral operators. Here this estimate is extended to maximally modulated
singular integrals. To prove (11.3.8) we use the result in Proposition 7.4.2 (2). We
fix x ∈ R and we pick an interval I that contains x. We write f = f0 + f∞, where
f0 = f χ3I and f∞ = f χ(3I)c . We set aI = C ( f∞)(cI), where cI is the center of I.
Then we have

1
|I|

∫

I
|C ( f )(y)−aI|dx ≤ 1

|I|

∫

I
sup
ξ∈R

∣

∣H(Mξ ( f ))(y)−H(Mξ ( f∞))(cI)
∣

∣dy

≤ B1 + B2 ,

where

B1 =
1
|I|

∫

I
sup
ξ∈R

∣

∣H(Mξ ( f0))(y)
∣

∣dy ,

B2 =
1
|I|

∫

I
sup
ξ∈R

∣

∣H(Mξ ( f∞))(y)−H(Mξ ( f∞))(cI)
∣

∣dy .

But

B1 ≤ 1
|I|

∫

I
C ( f0)(y)dy

≤ 1
|I|
∥

∥C ( f0)
∥

∥

Lr

∥

∥χI
∥

∥

Lr′

≤
∥

∥C
∥

∥

Lr→Lr

|I|
∥

∥ f0
∥

∥

Lr |I|
1
r′

≤CrMr( f )(x) ,

where we used the boundedness of the Carleson operator C from Lr to Lr and The-
orem 1.4.17 (v).

We turn to the corresponding estimate for B2. We have

B2 ≤ 1
|I|

∫

I

∫

Rn
| f∞(z)|

∣

∣

∣

1
y− z

− 1
cI − z

∣

∣

∣dzdy

=
1
|I|

∫

I

∫

(3I)c
| f (z)|

∣

∣

∣

y− cI

(y− z)(cI − z)

∣

∣

∣dzdy

≤
∫

I

(
∫

(3I)c
| f (z)| C

(|cI − z|+ |I|)2 dz

)

dy

≤
∫

I

C
|I|M( f )(x)dy

≤CM( f )(x)
≤CMr( f )(x) .
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This completes the proof of estimate (11.3.8), and we now turn to the proof of
estimate (11.3.9). We derive (11.3.9) as a consequence of Exercise 9.4.9, provided
we have that

∥

∥M(C ( f ))
∥

∥

Lr(w) < ∞ . (11.3.10)

Unfortunately, the finiteness estimate (11.3.10) for general functions f in Lp(w)
cannot be deduced easily without knowledge of the sought estimate (11.3.4) for
p = r. However, we can show the validity of (11.3.10) for functions f with compact
support and weights w ∈ Ap that are bounded. This argument requires a few tech-
nicalities, which we now present. For a fixed constant B we introduce a truncated
Carleson operator

C B( f ) = sup
|ξ |≤B

|H(Mξ ( f ))| .

Next we work with a weight w in Ap that is bounded. In fact, we work with wk =
min(w,k), which satisfies

[wk]Ap ≤ (1 + 2p−2)
(

1 +[w]Ap

)

for all k ≥ 1 (see Exercise 9.1.9). Finally, we take f = h to be a smooth function
with support contained in an interval [−R,R]. Then for |ξ | ≤ B we have

|H(Mξ (h))(x)| ≤ 2R
∥

∥(Mξ (h))′
∥

∥

L∞χ|x|≤2R +

∥

∥h
∥

∥

L1

|x|+ R
χ|x|>2R ≤ BCh R

|x|+ R
,

where Ch is a constant that depends on h. This implies that the last estimate also
holds for C B(h). Using Example 2.1.8, we now obtain

M(C B(h))(x) ≤ BCh
log
(

1 + |x|
R

)

1 + |x|
R

.

It follows that M(C B(h)) lies in Lr(wk), since r > 1 and wk ≤ k. Therefore,
∥

∥M(C B( f ))
∥

∥

Lr(wk)
< ∞ ,

and thus (11.3.10) holds in this setting. Applying the previous argument to C B(h)
and the weight wk [in lieu of C ( f ) and w], we obtain (11.3.7) and thus (11.3.4) for
M(C B(h)) and the weight wk. This establishes the estimate

∥

∥C B(h)
∥

∥

Lp(wk)
≤ C(p, [w]Ap)

∥

∥h
∥

∥

Lp(wk)
(11.3.11)

for some constant C(p, [w]Ap) that is independent of B and k, for functions h that are
smooth and compactly supported. Letting k → ∞ in (11.3.11) and applying Fatou’s
lemma, we obtain (11.3.4) for smooth functions h with compact support. From this
we deduce the validity of (11.3.4) for general functions f in Lp(w) by density (cf.
Exercise 4.3.11).
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Finally, to obtain (11.3.5) for general f ∈ Lp(w), we raise (11.3.3) to the power
p, use the inequality (a + b)p ≤ 2p(ap + bp), and integrate over R with respect to
the measure wdx to obtain

∫

R
C∗( f )pwdx ≤ 2pc

∫

R
M( f )pwdx + 2p

∫

R
M(C ( f ))pwdx . (11.3.12)

Then we use estimate (11.3.4) and the boundedness of the Hardy–Littlewood maxi-
mal operator on Lp(w) to obtain the required conclusion. �

Exercises

11.3.1. (a) Let θ ∈ Sn−1. Define the maximal directional Carleson operator

C θ∗ ( f )(x) = sup
a∈R

sup
ε>0

∣

∣

∣

∣

∫

ε<|t|<ε−1
e2π iat f (x− tθ )

dt
t

∣

∣

∣

∣

for functions f on Rn. Prove that C θ∗ is bounded on Lp(Rn,w) for any weight w ∈Ap

and 1 < p < ∞.
(b) LetΩ be an odd integrable function on Sn−1. Obtain the same conclusion for the
maximal operator

CΩ∗ ( f )(x) = sup
ξ∈Rn

sup
ε>0

∣

∣

∣

∣

∫

ε<|y|<ε−1
e2π iξ ·y f (x− y)

Ω
( y
|y|
)

|y|n dy

∣

∣

∣

∣

.

[

Hint: Part (a): Reduce to the case θ = e1 = (1,0, . . . ,0) via a rotation and use
Theorem 11.3.3 with w = 1. Part (b): Use the method of rotations and part (a).

]

11.3.2. For a fixed λ > 0 write
{

x ∈ R : C∗( f )(x) > λ
}

=
⋃

j

I j ,

where I j = (α j,α j + δ j) are open disjoint intervals. Let 1 < r < ∞. Show that there
exists a γ0 > 0 such that for every 0 < γ < γ0 there exists a constant Cγ > 0 such that
limγ→0 Cγ = 0 and

∣

∣{x ∈ I j : C∗( f )(x) > 3λ , Mr( f )(x) ≤ γ λ}
∣

∣≤Cγ
∣

∣I j
∣

∣

for all f for which C∗( f ) is defined.
[

Hint: Note that we must have C∗( f )(α j) ≤ λ and C∗( f )(α j + δ j) ≤ λ for all j.
Set I∗j = (α j − 5δ j,α j + 6δ j), f1(x) = f (x) for x ∈ I∗j , f1(x) = 0 for x /∈ I∗j , and
f2(x) = f (x)− f1(x). We may assume that for all j there exists a z j in I j such that
Mr( f )(z j)≤ γλ . For fixed x ∈ I j estimate |H(ε)( f2)(x)−H(ε)( f2)(α j)| by the three-
fold sum
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∣

∣

∣

∣

∫

|α j−t|>ε
f2(t)e2π iξ t

(

2
α j − t

− 2
x− t

)

dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

|x−t|>ε≥|α j−t|
f2(t)e2π iξ t 1

x− t
dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

|α j−t|>ε≥|x−t|
f2(t)e2π iξ t 1

α j − t
dt

∣

∣

∣

∣

,

which is easily shown to be controlled by c0 M( f )(z j) for some constant c0. Thus
C∗( f2)(x) ≤ C∗( f2)(α j)+ c0 M( f )(z j) ≤ λ + c0 γ λ . Select γ0 such that c0 γ0 < 1

2 .
Then λ + c0 γ λ < 3

2 λ for γ < γ0; hence we have C∗( f )(x) ≤ C∗( f1)(x)+ 3
2λ for

x ∈ I j and thus I j ∩{C∗( f ) > 3λ} ⊆ {C∗( f1) > λ}. Using the boundedness of C∗
on Lr and the fact that Mr( f )(z j) ≤ γ λ , we obtain that the last set has measure at
most a constant multiple of γr|I j|.

]

11.3.3. (Hunt and Young [173] ) Show that for every w in A∞ there is a finite con-
stant γ0 > 0 such that for all 0 < γ < γ0 and all 1 < r <∞ there is a constant Bγ such
that

w
(

{C∗( f ) > 3λ}∩{Mr( f ) ≤ γλ}
)

≤ Bγw
(

{C∗( f ) > λ}
)

for all f for which C∗( f ) is finite. Moreover, the constants Bγ satisfy Bγ → 0 as
γ → 0.
[

Hint: Start with positive constants C0 and δ such that for all intervals I and any
measurable set E we have |E∩I|≤ ε|I| =⇒ w(E∩I)≤C0 εδw(I) . Use the estimate
of Exercise 11.3.3 with I = I j and sum over j to obtain the required estimate with
Bγ = C0 (Cγ )δ .

]

11.3.4. Prove the following vector-valued version of Theorem 11.2.1:

∥

∥

∥

(

∑
j

|C ( f j)|r
) 1

r
∥

∥

∥

Lp(w)
≤Cp,r(w)

∥

∥

∥

(

∑
j

| f j|r
) 1

r
∥

∥

∥

Lp(w)

for all 1 < p,r <∞, all weights w ∈ Ap, and all sequences of functions f j in Lp(w).
[

Hint: You may want to use Corollary 9.5.7.
]

HISTORICAL NOTES

A version of Theorem 11.1.1 concerning the maximal partial sum operator of Fourier series of
square-integrable functions on the circle was first proved by Carleson [55]. An alternative proof
of Carleson’s theorem was provided by Fefferman [126], pioneering a set of ideas called time–
frequency analysis. Lacey and Thiele [205] provided the first independent proof on the line of the
boundedness of the maximal Fourier integral operator (11.1.1). The proof of Theorem 11.1.1 given
in this text follows closely the one given in Lacey and Thiele [205], which improves in some ways
that of Fefferman’s [126], by which it was inspired. One may also consult the expository article
of Thiele [312]. The proof of Lacey and Thiele was a byproduct of their work [203], [204] on
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the boundedness of the bilinear Hilbert transforms Hα( f1, f2)(x) = 1
π p.v.

∫

R f1(x− t) f2(x−αt) dt
t .

This family of operators arose in early attempts of A. Calderón to show that the first commutator
(Example 8.3.8, m = 1) is bounded on L2 when A′ is in L∞, an approach completed only using the
uniform boundedness of Hα obtained by Thiele [311], Grafakos and Li [150], and Li [212].

A version of Theorem 11.2.1 concerning the Lp boundedness, 1 < p < ∞, of the maximal par-
tial sum operator on the circle was obtained by Hunt [170]. Sjölin [283] extended this result to
L(log+ L)(log+ log+ L) and Antonov [5] to L(log+ L)(log+ log+ log+ L). Counterexamples of Kol-
mogorov [191], [192], Körner [197], and Konyagin [193] indicate that the everywhere convergence
of partial Fourier sums (or integrals) may fail for functions in L1 and in spaces near L1. The ex-
ponential decay estimate for α ≥ 1 in (11.2.1) and the restricted weak type (p, p) estimate with
constant C p2(p−1)−1 for the maximal partial sum operator on the circle are contained in Hunt’s
article [170]. The estimate for α < 1 in (11.2.1) appears in the article of Grafakos, Tao, and Ter-
willeger [153]; the proof of Theorem 11.2.1 is based on this article. This article also investigates
higher-dimensional analogues of the theory that were initiated in Pramanik and Terwilleger [266].
Theorem 11.3.3 was first obtained by Hunt and Young [173] using a good lambda inequality for
the Carleson operator. An improved good lambda inequality for the Carleson operator is contained
in of Grafakos, Martell, and Soria [152]. The particular proof of Theorem 11.3.3 given in the
text is based on the approach of Rubio de Francia, Ruiz, and Torrea [276]. The books of Jørsboe
and Melbro [179], Mozzochi [236], and Arias de Reyna [6] contain detailed presentations of the
Carleson–Hunt theorem on the circle.

The subject of Fourier analysis is currently enjoying a surge of activity. Emerging connec-
tions with analytic number theory, combinatorics, geometric measure theory, partial differential
equations, and multilinear analysis introduce new dynamics and present promising developments.
These connections are also creating new research directions that extend beyond the scope of this
book.



Glossary

A ⊆ B A is a subset of B (not necessarily a proper subset)

A � B A is a proper subset of B

Ac the complement of a set A

χE the characteristic function of the set E

d f the distribution function of a function f

f ∗ the decreasing rearrangement of a function f

fn ↑ f fn increases monotonically to a function f

Z the set of all integers

Z+ the set of all positive integers {1,2,3, . . .}
Zn the n-fold product of the integers

R the set of real numbers

R+ the set of positive real numbers

Rn the Euclidean n-space

Q the set of rationals

Qn the set of n-tuples with rational coordinates

C the set of complex numbers

Cn the n-fold product of complex numbers

T the unit circle identified with the interval [0,1]

Tn the n-dimensional torus [0,1]n,

|x|
√

|x1|2 + · · ·+ |xn|2 when x = (x1, . . . ,xn) ∈ Rn

Sn−1 the unit sphere {x ∈ Rn : |x| = 1}
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e j the vector (0, . . . ,0,1,0, . . . ,0) with 1 in the jth entry and 0 elsewhere

log t the logarithm to base e of t > 0

loga t the logarithm to base a of t > 0 (1 �= a > 0)

log+ t max(0, logt) for t > 0

[t] the integer part of the real number t

x · y the quantity ∑n
j=1 x jy j when x = (x1, . . . ,xn) and y = (y1, . . . ,yn)

B(x,R) the ball of radius R centered at x in Rn

ωn−1 the surface area of the unit sphere Sn−1

vn the volume of the unit ball {x ∈ Rn : |x| < 1}
|A| the Lebesgue measure of the set A ⊆ Rn

dx Lebesgue measure

AvgB f the average 1
|B|
∫

B f (x)dx of f over the set B
〈

f ,g
〉

the real inner product
∫

Rn f (x)g(x)dx
〈

f |g
〉

the complex inner product
∫

Rn f (x)g(x)dx
〈

u, f
〉

the action of a distribution u on a function f

p′ the number p/(p−1), whenever 0 < p �= 1 < ∞

1′ the number ∞

∞′ the number 1

f = O(g) means | f (x)| ≤ M|g(x)| for some M for x near x0

f = o(g) means | f (x)| |g(x)|−1 → 0 as x → x0

At the transpose of the matrix A

A∗ the conjugate transpose of a complex matrix A

A−1 the inverse of the matrix A

O(n) the space of real matrices satisfying A−1 = At

‖T‖X→Y the norm of the (bounded) operator T : X → Y

A ≈ B means that there exists a c > 0 such that c−1 ≤ B
A ≤ c

|α| indicates the size |α1|+ · · ·+ |αn| of a multi-index α = (α1, . . . ,αn)

∂m
j f the mth partial derivative of f (x1, . . . ,xn) with respect to x j

∂α f ∂α1
1 · · ·∂αn

n f

C k the space of functions f with ∂α f continuous for all |α| ≤ k
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C0 space of continuous functions with compact support

C00 the space of continuous functions that vanish at infinity

C ∞0 the space of smooth functions with compact support

D the space of smooth functions with compact support

S the space of Schwartz functions

C ∞ the space of smooth functions
⋂∞

k=1 C k

D ′(Rn) the space of distributions on Rn

S ′(Rn) the space of tempered distributions on Rn

E ′(Rn) the space of distributions with compact support on Rn

P the set of all complex-valued polynomials of n real variables

S ′(Rn)/P the space of tempered distributions on Rn modulo polynomials

�(Q) the side length of a cube Q in Rn

∂Q the boundary of a cube Q in Rn

Lp(X ,μ) the Lebesgue space over the measure space (X ,μ)

Lp(Rn) the space Lp(Rn, | · |)
Lp,q(X ,μ) the Lorentz space over the measure space (X ,μ)

Lp
loc(R

n) the space of functions that lie in Lp(K) for any compact set K in Rn

|dμ | the total variation of a finite Borel measure μ on Rn

M (Rn) the space of all finite Borel measures on Rn

Mp(Rn) the space of Lp Fourier multipliers, 1 ≤ p ≤ ∞
M p,q(Rn) the space of translation-invariant operators that map Lp(Rn) to Lq(Rn)
∥

∥μ
∥

∥

M

∫

Rn |dμ | the norm of a finite Borel measure μ on Rn

M the centered Hardy–Littlewood maximal operator with respect to balls

M the uncentered Hardy–Littlewood maximal operator with respect to balls

Mc the centered Hardy–Littlewood maximal operator with respect to cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to cubes

Mμ the centered maximal operator with respect to a measure μ

Mμ the uncentered maximal operator with respect to a measure μ

Ms the strong maximal operator

Md the dyadic maximal operator

M# the sharp maximal operator
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M the grand maximal operator

Lp
s (Rn) the inhomogeneous Lp Sobolev space

L̇p
s (Rn) the homogeneous Lp Sobolev space

Λα(Rn) the inhomogeneous Lipschitz space

Λ̇α(Rn) the homogeneous Lipschitz space

H p(Rn) the real Hardy space on Rn

Bp
s,q(Rn) the inhomogeneous Besov space on Rn

Ḃp
s,q(Rn) the homogeneous Besov space on Rn

Ḃp
s,q(Rn) the homogeneous Besov space on Rn

F p
s,q(Rn) the inhomogeneous Triebel–Lizorkin space on Rn

Ḟ p
s,q(Rn) the homogeneous Triebel–Lizorkin space on Rn

BMO(Rn) the space of functions of bounded mean oscillation on Rn
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16. B. Barceló, The restriction of the Fourier transform to some curves and surfaces, Studia
Math. 84 (1986), 39–69.

17. J. Barrionuevo, A note on the Kakeya maximal operator, Math. Res. Lett. 3 (1995), 61–65.
18. W. Beckner, A. Carbery, S. Semmes, and F. Soria, A note on restriction of the Fourier

transform to spheres, Bull. London Math. Soc. 21 (1989), 394–398.
19. C. Bennett, R. A. DeVore, and R. Sharpley, Weak L∞ and BMO, Ann. of Math. 113 (1981),

601–611.

487



488 References
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90. A. Córdoba, A note on Bochner–Riesz operators, Duke Math. J. 46 (1979), 505–511.
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103. G. David and J.-L. Journé, A boundedness criterion for generalized Calderón–Zygmund

operators, Ann. of Math. 120 (1984), 371–397.
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pyramidal tent, 144

quadratic T (1) type theorem, 246
quadratic T (b) theorem, 251

real inner product, 169
resolution of an operator, 243
resolution of the Cauchy integral, 245
restriction condition, 387
restriction of the Fourier transform

on a hypersurface, 387
restriction theorem

in R2, 397
reverse Hölder condition

of order q, 301
reverse Hölder property of Ap weights, 293
RHq(μ), 301
Riesz potential Is, 2
Rubio de Francia’s extrapolation theorem, 326

Schwartz kernel, 173
Schwartz kernel theorem, 173
selection of trees, 434
self-adjoint operator, 170
self-transpose operator, 170
semitile, 425, 435
sharp maximal function, 146

controls singular integrals, 153
with respect to a measure, 155

singular integral characterization of H1, 104
singular integral characterization of H p, 111
singular integrals on function spaces, 93
singular integrals on Hardy spaces, 58
SK(δ ,A), 171
smooth atom, 78
smooth atomic decomposition, 78
smooth maximal function, 56
smoothing operators, 3
smoothly truncated singular integral, 97
Sobolev embedding theorem, 15
Sobolev space, 12

homogeneous, 16
inhomogeneous, 13



504 Index

space
BMO, 118
BMOd , 156
Bα,q

p , 69
Fα,q

p , 69
H p(Rn), 39
Λγ (Rn), 26
D0(Rn), 179
Ḃα,q

p , 69
Ḟα,q

p , 69
Λ̇γ , 26

sprouting of a triangle, 341
square root operator, 256, 275
standard kernel, 171
symbol of class S0

1,0, 237
symbol of class Sm

ρ,δ , 233

T (1) reduced theorem, 227
T (1) theorem, 194, 230
T (b) theorem, 255
tent

conical, 144
cylindrical, 136
hemispherical, 144
over a set, 136
pyramidal, 144

tile, 425
of a given scale, 426

time projection of a tile, 425
translation operator, 424
transpose kernel, 171
transpose of an operator, 170
tree of tiles, 434

1-tree of tiles, 435
2-tree of tiles, 435

Triebel–Lizorkin space
homogeneous, 69
inhomogeneous, 69

truncated kernel, 176
tube, 380

vector-valued
extrapolation theorem, 332
Hardy–Littlewood maximal inequality, 335
inequalities, 332

vector-valued Hardy space, 57
vector-valued inequalities

for half-plane multipliers, 347
for the Carleson operator, 480

wave packet, 455
WBP weak boundedness property, 194
weak type Orlicz estimate, 166
weight, 279

of class A1, 282
of class A∞, 303
of class Ap, 283

weighted estimates
for singular integral operators, 317
for the Carleson operator, 475

Whitney decomposition, 138

Young’s function, 158
Young’s inequality

for Orlicz spaces, 165
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