

Evolutionary Optimization: the GP toolkit

Ernesto Sanchez • Massimiliano Schillaci
Giovanni Squillero

Evolutionary Optimization:
the GP toolkit

1 C

Ernesto Sanchez
Politecnico di Torino
Dipto. Automatica e Informatica
Corso Duca degli Abruzzi 24
10129 Torino
Italy
ernesto.sanchez@polito.it

Massimiliano Schillaci
ICT Consultant
massimiliano.schillaci@gmail.com

Giovanni Squillero
Politecnico di Torino
Dipto. Automatica e Informatica
Corso Duca degli Abruzzi 24
10129 Torino
Italy
giovanni.squillero@polito.it

ISBN 978-0-387-09425-0 e-ISBN 978-0-387-09426-7
DOI 10.1007/978-0-387-09426-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011923862

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

A life spent making mistakes is not only more
honorable, but more useful than a life spent
doing nothing.

George Bernard Shaw

Preface

Any sufficiently advanced technology is indistinguishable from
magic.

Sir Arthur Charles Clarke

μGP is a computational approach for autonomously pursuing a goal defined by
the user. To this end, candidate solutions for the given task are repeatedly modi-
fied, evaluated and enhanced. The alteration process mimics some principles of the
Neo-Darwinian paradigm, such as variation, inheritance, and selection. μGP has
been developed in Politecnico di Torino since 2000. Its original application was the
generation of assembly-language programs for different types of microprocessors,
hence the Greek letter micro in the name. Its name is sometimes spelled MicroGP
or uGP due to typographic limitations. μGP is free software: it can be redistributed
and modified under the terms of the GNU General Public License1.

μGP is ordinarily utilized to find the optimal solution of hard problems, and it
has been demonstrated able to outperform both human experts and conventional
heuristics in such a task. In order to exploit the approach, the user describes the
appearance of the solutions to his problem and provides a program able to evaluate
them. The tool implementing the approach fosters a set of random solutions, and
iteratively refines them in discrete steps. Its heuristic local-search algorithm uses
the result of the evaluations, together with other internal information, to focus on
the regions of the search space that look more promising, and eventually to produce
an optimal solution.

μGP is an evolutionary algorithm. Different candidate solutions are considered
in each step of the search process, and new ones are generated through mecha-
nisms that ape both sexual and asexual reproduction. New solutions inherit distinc-
tive traits from existing ones, and may coalesce the good characteristics of different
parents. Better solutions have a greater chance to reproduce, and to succeed in the
simulated struggle for existence.

Candidate solutions are internally encoded as graphs, or, more precisely, as di-
rected multigraphs2. During the search process, multigraphs are constrained by a
user-defined set of rules to conform to sensible structures. They are transformed

1 For more information, and how to apply and follow the GNU GPL, see http://www.gnu.org/
licenses/
2 A directed multigraph is a graph where a direction is assigned to each edge, and the same pair of
vertices may be joined by more than one edge

vii

viii Preface

to text files according to user-defined rules, and fed to a user-defined evaluation
program. Thus, no knowledge about the problem being solved is included in μGP
itself.

For an industry practitioner, μGP is a versatile optimizer able to tackle almost
any problem with a limited setup effort. All the configuration is contained in XML3

files, that can be created with simple text editors or powerful ad-hoc tools. μGP rou-
tinely handles problems that require solutions in the form of full-fledged assembly
programs, including functions, interrupt handlers and data. But a much wider range
of different problems can be tackled, including optimization of mathematical func-
tions represented as trees, integer and combinatorial optimization, and real value
optimization. While μGP is theoretically able to work with a problem that requires
a simple unstructured solution, it may not be the best option in such cases, except,
perhaps, for the easiness of set up. On the contrary, it should be exploited on tasks
that involve the concurrent optimization of different data types, and when solutions
exhibit quite complex structures.

This book shows how to effectively use μGP to solve an industrial problem. For
this purpose, the text assumes that the user is competent in the application domain,
but requires only a basic understanding of information technology. Moreover, only
limited knowledge of the evolutionary computation field is required. The practi-
tioner is guided through a list of easy steps to complete the setup. Moreover, an
extensive discussion on the meaning and effect of the various parameters that can
be tuned to increase the overall performance is provided.

For an evolutionary computation scholar, μGP may be regarded as a platform
where new operators and strategies can be easily tested. Additionally, it presents
some features that may be considered of interest: the possibility to shape the behav-
ior smoothly from steady-state to generational, including several degrees of elitism;
self adaptation of operator strength, operator activation probability, tournament size,
population size and number of applied operators; diversity protection, trough popu-
lation entropy and delta-entropy of individuals; fitness holes; clone detection, with
optional scaling or extermination; support for different population topologies, from
panmictic to lattice; multiple populations, including support for migrations; sup-
port for dynamic fitness functions; support for parallel fitness evaluation; multiple
fitness, either priority-based or multi-objective.

Considering this latter goal, the book details the conceptual architecture and the
implementation of the tool. While the text aims at self-containment, a basic knowl-
edge of the evolutionary computation theory may be useful. Indeed, to fully under-
stand the implementation details, a good knowledge of the C++ language is also
required.

The book is organized in several broad sections. Chapters 1 and 2 introduce the
reader to the field of evolutionary computation and provide a rationale for the whole
book. Chapters 3 and 4 outline the main features of μGP from a theoretical point of

3 XML stands for extensible markup language. It was developed by the World Wide Web Consor-
tium (W3C) in the late 1990s, and defines a set of rules for encoding generic documents electroni-
cally.

Preface ix

view. Chapter 5 introduces the complete work flow for using μGP, and may provide
a quick start for the impatient reader. Chapters 6, 7, 8, 9 and 10 cover the gory de-
tails of configuring the tool, running it and tweaking its many parameters. Chapter
11 illustrates the details of the μGP architecture and its implementation. Chapter 12
provides several examples of use of the tool, showing both the effect of tuning the
evolution parameters, and several possible ways to approach problems to which the
tool does not seem directly applicable. Finally, a couple of appendixes list all the
possible options, parameters and special values that the tool recognizes inside its
configuration files, together with a brief explanation of their use.

We would like to acknowledge some colleagues and friends who helped us in this
project over the past ten years: Alessandro Aimo, Antonio Casaschi, Paolo Bernardi,
Fulvio Corno, Gianluca Cumani, Davide Decicco, Sonia Drappero, Paolo Ferretti,
Michelangelo Grosso, Germán Labarga, William Lindsay, Marco Loggia, Giuseppe
Macchia, Onofrio Mancuso, Luca Motta, Zul Nazdri, Danilo Ravotto, Tommaso
Rosato, Alessandro Salomone, Fabio Salto, Matteo Sonza Reorda, Luca Sterpone,
Antonio Tomasiello, Giuseppe Trovato, Pier Paolo Ucchino, Massimo Violante, Gi-
anluca Zaniolo.

We must dedicate a special thank to Alberto Tonda, who spent his Ph.D. enhanc-
ing and tweaking μGP. This book would not have been possible without his work
and passion.

Torino, Ernesto Sanchez
Winter 2010 Massimiliano Schillaci

Giovanni Squillero

Contents

1 Evolutionary computation . 1
1.1 Natural and artificial evolution . 1
1.2 The classical paradigms . 4
1.3 Genetic programming . 7

2 Why yet another one evolutionary optimizer? . 9
2.1 Background . 9
2.2 Where to draw the lines . 10
2.3 Individuals . 11
2.4 Problem specification . 13
2.5 Coding Techniques . 14

3 The μGP architecture . 17
3.1 Conceptual design . 18
3.2 The evolutionary core . 18

3.2.1 Evolutionary Operators . 19
3.2.2 Population . 20

3.3 The Evolutionary Cycle . 21
3.3.1 Genetic operator selection . 21
3.3.2 Parents selection . 22
3.3.3 Offspring Generation . 23
3.3.4 Individual Evaluation and Slaughtering 24
3.3.5 Termination and Aging . 24

4 Advanced features . 27
4.1 Self adaptation for exploration or exploitation 27

4.1.1 Self-adaptation inertia . 28
4.1.2 Operator strength . 28
4.1.3 Tournament size . 29

4.2 Escaping local optimums . 29
4.2.1 Operator activation probability . 30

xi

xii Contents

4.2.2 Tuning the elitism . 30
4.3 Preserving diversity . 31

4.3.1 Clone detection, scaling and extermination 32
4.3.2 Entropy and delta-entropy computation 32
4.3.3 Fitness holes . 33
4.3.4 Population topology and multiple populations 34

4.4 Coping with the real problems . 35
4.4.1 Parallel fitness evaluation . 36
4.4.2 Multiple fitness . 37

5 Performing an evolutionary run . 39
5.1 Robot Pathfinder . 41
5.2 μGP Settings . 43
5.3 Population Settings . 45
5.4 Library of Constraints . 49
5.5 Launching the experiment . 53
5.6 μGP Extractor . 55

6 Command line syntax . 57
6.1 Starting a run . 57
6.2 Controlling messages to the user . 58
6.3 Getting help and information . 59
6.4 Controlling logging . 59
6.5 Controlling recovery . 60
6.6 Controlling evolution . 61
6.7 Controlling evaluation . 62

7 Syntax of the settings file . 65
7.1 Controlling evolution . 66
7.2 Controlling logging . 68
7.3 Controlling recovery . 69

8 Syntax of the population parameters file . 71
8.1 Strategy parameters . 71

8.1.1 Base parameters . 72
8.1.2 Parameters for self adaptation . 75
8.1.3 Other parameters . 78

9 Syntax of the external constraints file . 81
9.1 Purposes of the constraints . 81
9.2 Organization of constraints and hierarchy . 82
9.3 Specifying the structure of the individual . 87
9.4 Specifying the contents of the individual . 90

Contents xiii

10 Writing a compliant evaluator . 97
10.1 Information from μGP to the fitness evaluator 97
10.2 Expected fitness format . 98

10.2.1 Good Examples . 99
10.2.2 Bad Examples . 100

11 Implementation details . 103
11.1 Design principles . 103
11.2 Architectural choices . 104

11.2.1 The Graph library . 105
11.2.2 The Evolutionary Core library . 107
11.2.3 Front end . 114

11.3 Code organization and class model . 114

12 Examples and applications . 125
12.1 Classical one-max . 125

12.1.1 Fitness evaluator . 126
12.1.2 Constraints . 128
12.1.3 Population settings . 130
12.1.4 μGP settings . 132
12.1.5 Running . 133

12.2 Values of parameters and their influence on the evolution:
Arithmetic expressions . 134
12.2.1 De Jong 3 . 134
12.2.2 De Jong 4 - Modified . 139
12.2.3 Carrom . 140

12.3 Complex individuals’ structures and evaluation:
Bit-counting in Assembly . 146
12.3.1 Assembly individuals representation . 146
12.3.2 Evaluator . 149
12.3.3 Running . 151

Argument and option synopsis . 153

External constraints synopsis . 169

References . 177

Chapter 1

Evolutionary computation

It always is advisable to perceive clearly our ignorance.
Charles Robert Darwin

Evolution is the theory postulating that all the various types of living organisms
have their origin in other preexisting types, and that the differences are due to modi-
fications inherited through successive generations. Evolutionary computation is the
offshoot of computer science focusing on algorithms inspired by the theory of evo-
lution. The definition is deliberately vague since the boundaries of the field are not,
and cannot be, defined clearly. Evolutionary computation is a branch of compu-
tational intelligence, and it is included into the broad framework of bio-inspired
heuristics. We shall distinguish explicitly between natural evolution and artificial
evolution to avoid confusion whenever necessary.

This chapter sketches the basics of evolutionary computation and introduces its
terminology. A comprehensive compendium of the field is out of the scope of this
book, and most concepts are defined only to the extent they are required in what
follows. Interested readers will find several fascinating books on the topic, such as
[6]. Moreover, a survey of evolutionary theories is beyond our knowledge. We can
only suggest [5] and [12] as starting points into the vast and fascinating world of
biology.

1.1 Natural and artificial evolution

Natural evolution is a cornerstone of modern biology, and scientists show a remark-
able consensus on the topic. The original theories of evolution and natural selection
proposed almost concurrently and independently by Charles Robert Darwin [4] and
Alfred Russel Wallace [21] in 19th century, combined with selectionism by Charles
Weismann [23] and genetics by Gregor Mendel [22], are accepted ubiquitously in
the scientific community, as well as widespread among the general public. This
coherent corpus, often named Neo-Darwinism, acts as a grand unifying theory for
biology: it is able to explain the wonders of life, and, most noticeably, it does it start-
ing from a limited number of relatively simple and intuitively plausible concepts. It
describes the whole process of evolution through notions such as reproduction, vari-

1E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_1, © Springer Science+Business Media, LLC 2011

2 1 Evolutionary computation

ation, competition, and selection. Reproduction is the process of generating an off-
spring from parents where the progeny inherit traits of their predecessors. Variation
is the unexpected alteration of a trait. Competition and selection are the inevitable
results of the strive for survival caused by an environment with limited resources.

Evolution can be easily described as a sequence of steps, some mostly deter-
ministic and some mostly random [15]. Such an idea of random forces shaped by
deterministic pressures is inspiring and, not surprisingly, has been exploited to de-
scribe phenomena quite unrelated to biology. Notable examples include alternatives
conceived during learning [3], ideas striving to survive in our culture [5], or even
possible universes [24] [18].

Evolution may be seen as an improving process that perfect raw features. In-
deed, this is a mistake that eminent biologists like Richard Dawkins and Stephen Jay
Gould warn us not to do. Nevertheless, if evolution is seen as a force pushing toward
a goal, another terrible misunderstanding, it must be granted that it worked quite
well: in some billion years, it turned unorganized cells into wings, eyes, and other
amazingly complex structures without requiring any a priori design. The whole neo-
Darwinist paradigm may thus be regarded as a powerful optimization tool able to
produce great results starting from scratch, not requiring a plan, and exploiting a
mix of random and deterministic operators.

Dismissing biologists’ complaints, evolutionary computation practitioners
loosely mimic the natural process to solve their problems. Since they do not know
how their goal could be reached, at least not in details, they exploit some neo-
Darwinian principles to cultivate sets of solutions in artificial environments, iter-
atively modifying them in discrete steps. The problem indirectly defines the envi-
ronment where solutions strive for survival. The process has a defined goal. The
simulated evolution is simplistic, when not even implausible. Notwithstanding, suc-
cesses are routinely reported in the scientific literature. Solutions in a given step
inherit qualifying traits from solutions in the previous ones, and optimal results
emerge from the artificial primeval soup.

In evolutionary computation, a single candidate solution is termed individual;
the set of all candidate solutions that exists at a particular time is called population,
and each step of the evolution process a generation. The ability of an individual to
solve the given problem is measured by the fitness function, which ranks how likely
one solution is to propagate its characteristics to the next generations. Most of the
jargon of evolutionary computation mimics the precise terminology of biology. The
word genome denotes the whole genetic material of the organism, although its actual
implementation differs from one approach to another. The gene is the functional
unit of inheritance, or, operatively, the smallest fragment of the genome that may
be modified during the evolution process. Genes are positioned in the genome at
specific positions called loci, the plural of locus. The alternative genes that may
occur at a given locus are called alleles.

The natural processes that lead to mutations, reproduction, competition and se-
lection are emulated by operators. Operators act on genes, single individuals, groups
or entire populations, usually producing a modified version of the entity they ma-
nipulate.

1.1 Natural and artificial evolution 3

Biologists need to distinguish between the genotype and the phenotype: the for-
mer is all the genetic constitution of an organism; the latter is the set of observable
properties that are produced by the interaction between the genotype and the envi-
ronment. In many implementations, evolutionary computation practitioners do not
require such a precise distinction. The numerical value representing the fitness of an
individual is sometimes assimilated to its phenotype.

To generate the offspring for the next generation, most evolutionary algorithms
implement sexual and asexual reproduction. The former is usually named recom-
bination; it necessitates two or more participants, and implies the possibility for
the offspring to inherit different characteristics from different parents. When re-
combination is achieved through a simple exchange of genetic material between
the parents, it often takes the name of crossover. The latter is named replication,
to indicate that a copy of an individual is created, or, more commonly, mutation,
to stress that the copy is not exact. Almost no evolutionary algorithm takes gender
into account; hence, individuals do not have distinct reproductive roles. In some
implementations, mutation takes place only after the sexual recombination. Notice-
ably, some evolutionary algorithms do not store a collection of distinct individuals,
and therefore reproduction is performed modifying the statistical parameters that
describe the current population. All operators exploited during reproduction can be
cumulatively called evolutionary operators, or genetic operators stressing that they
act at the genotypical level.

Mutation and recombination introduce variability in the population. Parent selec-
tion is also usually a stochastic process, albeit biased by the fitness. The population
broadens and contracts rhythmically at each generation. First, it widens when the
offspring are generated. Then, it shrinks when individuals are discarded. The de-
terministic step usually involves deciding which individuals are chosen for survival
from one generation to the next. This step may be called survivor selection, or just
selection.

Evolutionary algorithms may be defined local search algorithms since they sam-
ple a region of the search space dependent upon their actual state, and the offspring
loosely define the concept of neighborhood. Since they are based on the trial and
error paradigm, they are heuristic algorithms. They are not usually able to mathe-
matically guarantee an optimal solution in a finite time, whereas interesting mathe-
matical properties have been proven over the years.

If the current boundary of evolutionary computation may seem not clear, its in-
ception is even more vague. The field does not have a single recognizable origin.
Some scholars identify its starting point in 1950, when Alan Turing pointed out the
similarities between learning and natural evolutions [20]. Others pinpoint the inspir-
ing ideas that appeared in the end of the decade [11] [16] [1], despite the fact that
the lack of computational power significantly impaired their diffusion in the broader
scientific community. More commonly, the birth of evolutionary computation is set
in the 1960s with the appearance of three independent research lines, namely: ge-
netic algorithms, evolutionary programming, and evolution strategies. Despite some
minor disagreements, the pivotal importance of these researches is unquestionable.

4 1 Evolutionary computation

1.2 The classical paradigms

Genetic algorithm is probably the most popular term in evolutionary computation.
It is abbreviated as GA, and it is so popular that in the non-specialized literature
it is sometimes used to denote any kind of evolutionary algorithm. The fortune of
the paradigm is linked to the name of John Holland and his 1975 book [14], but the
methodology was used and described much earlier by several researchers, including
many of Holland’s own students [9] [10] [2]. Genetic algorithms have been proposed
as a step in classifier systems, a technique also proposed by Holland. They have
been originally exploited more to study the evolution mechanisms itself, rather than
solving actual problems. Very simple test benches, as trying to set a number of bits
to a specific value, were used to analyze different strategies and schemes.

In a genetic algorithm, the individual, i.e., the evolving entity, is a sequence of
bits, and this is probably the only aspect common to all the early implementations.
The number of offspring is usually larger than the size of the original population.
Various crossover operators have been proposed by different researchers. The par-
ents are chosen using a probability distribution based on their fitness. How much a
highly fit individual is favored determines the selective pressure of the algorithm.
After evaluating all new individuals, the population is reduced back to its original
size. Several different schemes have been proposed to determine which individuals
survive and which are discarded, but interestingly most schemes are deterministic.
When all parents are discarded, regardless their fitness, the approach is called gen-
erational. Conversely, if parents and offspring compete for survival regardless their
age, the approach is steady-state. Any mechanism that preserves the best individuals
through generations is called elitist.

Evolutionary programming, abbreviated as EP, was proposed by Lawrence J. Fo-
gel in a series of works in the beginning of 1960s [7] [8]. Fogel highlighted that
an intelligent behavior requires the ability to forecast changes in the environment,
and therefore focused his work on the evolution of predictive capabilities. He chose
finite state machines as evolving entities, and the predictive capability measured the
ability of an individual to anticipate the next symbol in the input sequence provided
to it. Later, the technique was successfully applied to diverse combinatorial prob-
lems.

Fogel’s original algorithm considered a set of P automata. Each individual in
such population was tested against the current sequence of input symbols, i.e., its
environment. Different payoff functions could be used to translate the predictive
capability into a single numeric value called fitness, including a penalty for the
complexity of the machine. Individuals were ranked according to their fitness. Then,
P new automata were added to the population. Each new automaton was created by
modifying one existing automaton. The type and extent of the mutation was random
and followed certain probability distributions. Finally, half of the population was
retained and half discarded, thus the size of the population remained constant. These
steps were iterated until a specific number of generations has passed, at which point
the best finite state machine was used to predict the actual next symbol. That symbol
was added to the environment and process repeated.

1.2 The classical paradigms 5

In his basic algorithm, each automaton generated exactly one descendant through
a mutation operator, but there was no firm constraint that only one offspring had to
be created from each parent. After all the offspring are added to the population, half
of the individuals are discarded. Survivals were chosen at random, with a probability
influenced by their fitness. Thus, how much a highly fit individual is likely to survive
in the next generation represent the selective pressure is evolutionary programming.

The third approach is evolution strategies, ES for short, and was proposed by
Ingo Rechenberg and Hans-Paul Schwefel in early 1960s [13] [17]. It has been orig-
inally developed as an optimization tool to solve a practical optimization problem.
In evolution strategies, the individual is a set of parameters, usually encoded as
numbers, either discrete or continuous. Mutation simply consists in the simulta-
neous modification of all parameters, with small alterations being more probable
than larger ones. On the other hand, recombination can implement diverse strate-
gies, like copying different parameters from different parents, or averaging them.
Remarkably, the very first experiments with evolution strategies used a population
of one individual, and dice tossed by hands.

Scholars developed a unique formalism to describe the characteristics of their
evolution strategies. The size of the population is commonly denoted with the Greek
letter mu (μ), and the size of the offspring with the Greek letter lambda (λ). When
the offspring is added to the current population before choosing which individu-
als survive in the next generation, the algorithm is denoted as a (μ + λ)-ES. In
this case, a particularly fit solution may survive through different generations as
in steady-state genetic algorithms or evolutionary programming. Conversely, when
the offspring replace the current population before choosing which individuals sur-
vive in the next generation, the algorithm is denoted as a (μ,λ)-ES. This approach
resembles a generational genetic algorithm or evolutionary programming, and the
optimum solution may be discarded during the run. For short, the two approaches
are called plus and comma selection, respectively. And in the 2000s, these two terms
can be found in the descriptions of completely of different evolutionary algorithms.
When comma selection is used, μ < λ must hold. No matter the selection scheme,
the size of the offspring is much larger than the size of the population in almost all
implementations of evolution strategies.

When recombination is implemented, the number of parents required by the
crossover operator is denoted with the Greek letter rho (ρ) and the algorithm written
as (μ/ρ +, λ)-ES. Indeed, the number of parents is smaller than the number of indi-
viduals in the population, i.e., ρ < μ . (μ +, 1)-ES are sometimes called steady-state
evolution strategies.

Evolution strategies may be nested. That is, instead of generating the offspring
using conventional operators, a new evolution strategy may be started. The result of
the sub-strategy is used as the offspring of the parent strategy. This scheme can be
found referred as nested evolution strategies, or hierarchical evolution strategies, or
meta evolution strategies. The inner strategy acts as a tool for local optimizations
and commonly has different parameters from the outer one. An algorithm that runs
for γ generations a sub-strategy is denoted with (μ/ρ +, (μ/ρ +, λ)γ)-ES. Where γ
is also called isolation time. Usually, there is only one level of recursion, although a

6 1 Evolutionary computation

deeper nesting is theoretically possible. Such a recursion is rarely used in evolution-
ary programming or genetic algorithms, although it has been successfully exploited
in peculiar approaches, such as [19].

Since evolution strategies are based on mutations, the search for the optimal
amplitude of the perturbations kept researchers busy throughout the years. In real-
valued search spaces, the mutation is usually implemented as a random perturbation
that follows a normal probability distribution centered on the zero. Small mutations
are more probable than larger ones, as desired, and the variance may be used as a
knob to tweak the average magnitude. The variance used to mutate parameters, and
the parameters themselves may also be evolved concurrently. Furthermore, because
even the same problem may call for different amplitudes in different loci, a dedi-
cated variance can be associated to each parameter. This variance vector is mod-
ified using a fixed scheme, while the object parameter vector, i.e., the values that
should be optimized, are modified using the variance vector. Both vectors are then
evolved concurrently as parts of a single individual. Extending the idea, the optimal
magnitudes of mutation may be correlated. To take into account this phenomenon,
modern evolution strategies implement a covariance matrix.

All evolutionary algorithms show the capacity to adapt to different problems, thus
they can sensibly be labeled as adaptive. An evolutionary algorithm that also adapts
the mechanism of its adaptation, i.e., its internal parameters, is called self adap-
tive. Parameters that are self adapted are sometimes named endogenous, borrowing
the term describing the hormones synthesized within an organism. Self adaptation
mechanisms have been routinely exploited both in the evolution strategies and evo-
lutionary programming paradigms, and sometimes used in genetic algorithms.

Since the 2000s, evolution strategies have been used mainly as a numerical op-
timization tool for continuous problems. Several implementations, written either in
general-purpose programming languages or commercial mathematical toolboxes,
like MatLab, are freely available. And they are sometimes exploited by practition-
ers overlooking their bio-inspired origin. Evolutionary programming is also mostly
used for numerical optimization problems. The practical implementations of the
two approaches have mostly converged, although the scientific communities remain
deeply distinct.

Over the years, researchers have also broadened the scope of genetic algorithms.
They have been used for solving problems whose results are highly structured, like
the traveling salesman problem where the solution is a permutation of the nodes in
a graph. However, the term genetic algorithm remained strongly linked to the idea
of fixed-length bit strings.

If not directly applicable within a different one, the ideas developed by re-
searchers for one paradigm are at least inspiring for the whole community. The
various approaches may be too different to directly interbreed, but many key ideas
are now shared. Moreover, over the year a great number of minor and hybrid algo-
rithms, not simply classifiable, have been described.

1.3 Genetic programming 7

1.3 Genetic programming

The fourth and last evolutionary algorithm sketched in this is introduction is genetic
programming, abbreviated as GP. Whereas μGP shares with it more in its name
than in its essence, the approach presented in this book owes a deep debit to its
underlying ideas.

Genetic programming was popularized by John Koza, who described it after hav-
ing applied for a patent in 1989. The ambitious goal of the methodology is to create
computer programs in a fully automated way, exploiting neo-Darwinism as an opti-
mization tool. The original version was developed in Lisp, an interpreted computer
language that dates back to the end of the 1950s. The Lisp language has the ability to
handle fragments of code as data, allowing a program to build up its subroutines be-
fore evaluating them. Everything in Lisp is a prefix expression, except variables and
constants. Genetic programming individuals were lisp programs, thus, they were
prefix expressions too. Since the Lisp language is as flexible as inefficient, in the
following years, researchers moved to alternative implementations, mostly using
compiled language. Indeed, the need for computational power and the endeavor for
efficiency have been constant pushes in the genetic programming research since its
origin. While in Lisp the difference between an expression and a program was sub-
tle, it became sharper in later implementations. Many algorithms proposed in the
literature clearly tackle the former, and are hardly applicable to the latter.

Regardless of the language used, in genetic programming individuals are almost
always represented internally as trees. In the simplest form, leaves, or terminals, are
numbers. Internal nodes encode operations. More complex variations may take into
account variables, complex functions, and programming structures. The offspring
may be generated applying either recombination or, in recent implementations, mu-
tation. The former is the exchange of sub-trees between the two parents. The latter
is the random modification of the tree. Original genetic programming used huge
populations, and emphasized recombination, with no, or very little, mutations. In
fact, the substitution of a sub-tree is highly disruptive operation and may introduce
a significant amount of novelty. Moreover, a large population ensures that all pos-
sible symbols are already available in the gene pool. Several mutations have been
proposed, like promoting a sub-tree to a new individual, or collapsing a sub-tree to
a single terminal node.

The genetic-programming paradigm attracted many researchers. Results were
used as test benches for new practical techniques, as well as theoretical studies.
It challenged and stimulated new lines of research. The various topics tackled in-
cluded: representation of individuals; behavior of selection in huge populations;
techniques to avoid the growth of trees; type of initializations. Some of this research
has been inspiring for the development μGP.

Chapter 2

Why yet another one evolutionary optimizer?

He who lives without folly isn’t so wise as he thinks.
Francois de La Rochefoucauld

The idea of Evolutionary computation implies the existence of suitable tools to per-
form computations. Such tools have to be designed pondering the environment in
which they will operate and the problems to which they will be applied, together
with the chosen evolutionary technique. Every design process implies choices, some
of which may not be immediately clear to the end user, but can have far-reaching
consequences.

The chapter tries to motivate the creation of μGP, yet another one evolutionary
optimizer. Its goal is to provide the reader with a rationale for the perceived needs
and the consequent taken decisions. The text shows, in an uttermost narrative style,
some of the possible alternatives faced during the early design phase.

2.1 Background

The term “evolutionary optimizer” does not indicate a well-defined program struc-
ture or user interface, exactly as “word processor” is suitable for a wide range of
functional approaches and interfaces. It may be maintained that the purpose of an
evolutionary tool is to automate the artificial evolution of a set of solutions to a
given problem. This definition brings to light several related, although almost in-
dependent, concepts: the definition of the problem itself; the structure of possible
solutions to that problem; the evaluation of the goodness of candidate solutions; the
operations that allow to manipulate candidate solutions.

In many cases these parts are known from the outset: the problem is well defined;
the structure of its possible solutions is known; the evaluation of such solutions
straightforward; the most sensible transformations on these solutions simply follows
from their structure. For example, one may want to solve the traveling salesman’s
problem (TSP). In this case the problem requires to minimize the total length of a

9E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_2, © Springer Science+Business Media, LLC 2011

10 2 Why yet another one evolutionary optimizer?

path that passes through a number of fixed points and returns to the start1. Since it is
known from the start that all must be visited once and only once, a possible solution
is a permutation of the points. The goodness of a route is the inverse of its length.
And it is intuitive that to transform one permutation into another one some form of
reordering, such as a swap, has to be performed2.

The straightforward approach would be to embed all this information in the tool,
resulting in a problem-specific application that performs all the computation and
eventually provides the user with one or more optimal results. It could be possible
to choose in advance the evolutionary approach, tuning the genetic operators for
performance. It could also be possible to write some information about the problem
directly in the code.

However, it is often perceived as more efficient to reuse the same approach for
different, although related, problems. One more mundane example of this is the
generation of assembly programs for two different microprocessors. In this case the
goal of the programs may be the same, say verifying the design, but their form is
necessarily different. Conversely, another example is the generation of programs for
a single microprocessor, but with different goals. In this case the form is kept, but
the fitness function changes.

We are incline to believe that a truly versatile evolutionary tool is not available at
the time we are writing. And such a tool would be useful both for the practitioners
and for the researchers. μGP is meant to be able to solve quite different problems,
this means that it has to be able to represent quite diverse objects and to assess them
using a fitness function which is not known in advance. Thus, both the form and
meaning of the individuals cannot be fixed in the code, but a flexible internal repre-
sentation must be used. This is not just convenient to avoid redundant design efforts,
but allows using several different evolutionary approaches for the same problem, or,
conversely, to perform evolution on different kinds of individuals, possibly at the
same time. The fitness function is unknown to the tool developer not only regarding
its possible values, but also regarding its general form.

2.2 Where to draw the lines

From the above discussion it is clear that not all the work can be performed by
the evolutionary tool itself: μGP cannot compute the fitness function for a given
individual without external help. This stress out the difference between genotype
and phenotype. The tool is able to manipulates solutions at the level of phenotype,
while fitness can be defined only at the level of genotype. Indeed, μGP could not
even map the phenotype to a sensible genotype, creating a meaningful description
of that individual, without additional information. One of the first issues to take care

1 In graph theory, TSP corresponds to the NP-hard problem of finding the Hamiltonian cycle with
the minimal weight.
2 Remarkably, several approaches in the evolutionary computation literature do neglect this con-
sideration.

2.3 Individuals 11

of, then, is a classical interface definition problem: it must be decided what part of
the work is done at the phenotypic level by the evolutionary engine and what has to
be done otherwise, such as by post-processing some results.

An evolutionary process is a closed loop: a population is transformed in a dif-
ferent one by recombining and modifying its component individuals, every new
individual is assigned a fitness value and the new population undergoes a survival
phase. After that the cycle begins anew. There is a feedback from the individuals
to the evolutionary core, in the form of a fitness value. The standard practice in
electronic design, when implementing a circuit with feedback, is to isolate an inner
amplifying block and select the overall system function changing the feedback func-
tion. In an analogous way, the evolution of the individuals may be isolated from their
fitness computation. This may be done in different ways, changing the definition of
what the evolutionary core provides as output and what it accepts as feedback.

This analogy between an electronic circuit and an evolutionary tool is loose, but
intuitively it makes sense. In an electronic circuit the purpose of the amplifier is
to provide energy to the signals, while the feedback block tells “how wrong” the
output is. In an evolutionary process the reproduction phase produces new features
(the “energy” of the process), and the fitness function tells how good every solution
is. The analogy should not be taken further, as the two domains are too different, but
it gives a good starting point to decompose the entire approach.

Another part of the loop that could be separated from the rest is the transforma-
tion of the individuals to an external form. The tool does not know, and indeed it
should not know, whether it is generating assembly programs, Hamiltonian paths in
a graph or coefficients of a polynomial. It stores an internal representation of the
evolved individuals, that does not contain information neither about their semantics,
nor regarding their final appearance.

The main decomposition of the μGP approach is related to the phases of the
evolutionary process involved. Every individual is first generated, either during an
initial phase or from other individuals, then transformed into the object it represents,
and eventually assigned a fitness value. These three phases must be kept as distinct
as possible in order to achieve versatility.

2.3 Individuals

There are two main requirements for the internal format of individuals in a ver-
satile evolutionary tool: the representation must allow mapping arbitrary concepts;
the representation must allow arbitrary manipulation. The first requirement is strin-
gent, but the latter can be slightly soften. The bottom line is that the representation
must guarantee a great expressive power, while permitting a reasonable amount of
manipulation without excessive computational effort. Indeed, the design of the indi-
viduals is strongly related to the design of the genetic operators manipulating them.
Amongst the cornerstones of natural evolution are the idea of small variations ac-
cumulated over generations, and the concept that the offspring inherits from parents

12 2 Why yet another one evolutionary optimizer?

qualifying traits. The artificial evolution process must conform as much as possible:
the tool must be able to mutate individuals slightly, and breed new specimen without
loosing too much information.

The two main aspects in defining individuals are: what types of data are stored
and how they are structured. Types of data and structure are almost orthogonal as-
pects. Thus, the two choices may be approached quite independently. Regarding the
type of data, there are several alternatives not to limit the application scope. At the
two extremes of the spectrum one may find: adopt an extremely generic represen-
tation that can be tight to any specific problem at a later time; embed all kind of
possible representation in the tool and let the final user pick up one for his problem.

The solution adopted in μGP is to embed a limited number of standard data
types, and let the final user exploit the ones needed. Among the standard types are:
integer numbers and real numbers, both with definable ranges. A generic enumer-
able data type with a user-defined set of possible vales, like {0,1}3, {true, f alse}
or {red,blue,green}.

Choosing the most generic data and the simplest possible structure, the represen-
tation would be is a fixed-length vector. Moving toward the other extreme, there is
no clear end to the complexity that can be reached. Indeed, a fixed-length bit vector
also allows implementing a wide range of genetic operators with negligible effort.
However, while it is theoretically possible to represent any object as a bit vector, this
is not unusually a good idea. When solving the TSP, one may encode the vertexes as
binary numbers and simply juxtapose them to represent a path. Thus, a fixed-length
bit vector would be suitable to encode all possible solutions. It is manifest, however,
that such a choice would cause most bit vectors not to encode any solution at all,
broadening the search space over useless regions.

The problem exists because the concepts that the individuals represent can have
some structure, and loosing this information always leads to an unreasonable widen-
ing of the search space. Dependencies between one part of the individual and an-
other are precious hints in building a viable solution. For example, if an individual
expresses a function, there can be dependencies between an operator and other ones,
whose result is used as an operand. While the simple vector structure is able to con-
tain a representation of the function, it would not be easy to manipulate it without
disrupting the underlying structure, especially if recombination is used.

Moreover, the fixed length of the individuals put an arbitrary limit on the com-
plexity of the possible solutions to the problem. In the cases where this complexity
cannot be predicted in advance, it forces the user to either oversize the individuals,
or to make (un)educated guesses on the expected optimum solution. Both solutions
are plainly unacceptable. Variable-length bit vector would solve the latter problem,
introducing only a slight increment in the complexity of the operators.

A far more better possibility in this respect is a tree representation, like the stan-
dard genetic programming. It would allow to perform some recombination without
disrupting the structure of the individuals, for example by exchanging entire sub-
trees between two genotypes. When the data inside the tree structure are of different

3 Why ”0” and ”1” are considered two constants and not two integer numbers will become clearer
in the following.

2.4 Problem specification 13

types, a blind exchange becomes almost unusable. But it is always possible to add
information to leaves and nodes to prevent disruptive operations. The only true lim-
itation with a tree structure is that it inherently disallows cyclic dependencies. For
example, it would be both tricky and unnatural to represent the recursive defini-
tion of the factorial function using a tree, or a backward jump inside an assembly
function.

To overcome this limitation, the structure adopted in μGP is based on graphs.
More precisely, as it will be apparent in chapter 3, an individual is encoded as a set
of directed multigraphs. That is, graphs where a direction is assigned to each edge,
and the same pair of vertexes may be joined by more than one edge. Since graphs
are not required to be connected4, the use of a set of graphs instead of a single one is
not imposed by necessity, it may nevertheless ease the task for the end users. In μGP
individuals, some data are inside nodes. Additionally, together with the data types
mentioned above, the edges themselves are used to store information. The offspring
is thus bred by swapping subgraphs between parents, modifying the graphs structure
and altering the data stored inside nodes.

2.4 Problem specification

Tackling a specific problem implies defining an appropriate fitness function. That
is, how candidate solutions are appraised with respect to the pursued goal. It is not
limiting to maintain that the result of an evaluation can be expressed as a positive
real value, and that higher scores are better than lower ones. In μGP the fitness is
actually a vector of real positive values, but this can be seen as a mere simplification
when exploiting the tool.

The fitness function cannot be included in the evolutionary core, and there are
several alternative to let the user provide it. The fitness function may be added to the
evolutionary tool source code and eventually compiled and linked with it. Or it may
be provided as an external library dynamically loadable. μGP adopts a quite radical
approach: the fitness function is calculated by an external program that is simply
invoked by the tool.

The nature of the problem also calls for a certain appearance of the solutions.
Internally, individuals are encoded as multigraph, but they presumably need to be
transformed in some way before being evaluated. Since the fitness evaluator is an
external tool, it would be theoretically possible to select a canonical form for repre-
senting a multigraph and leave to the fitness evaluator the burden to transform it to a
more convenient format. However, to ease the employ of the tool, μGP provides the
external evaluator a file describing the individual in a suitable format. Fort example,
an assembly program ready to be assembled and linked, or a sequence of cities.

Encoding an individual as a multigraph allows a great generality. However, too
much versatility may be deleterious. It must be remembered that an evolutionary

4 There is a path linking any two vertices in the graph.

14 2 Why yet another one evolutionary optimizer?

optimizer needs to know at least some information about the structure of the in-
dividuals to evolve. Questions such as “how many cities does the considered TSP
instance include?” or “should there be functions in the assembly program, and what
is their form?” directly affect the possible operations on the individuals. The answers
to questions like these define what is a legal individual. That information has to be
provided to the tool before evolution can be started. It composes a set of constraints
that describe the allowed structure of an individual, thus limiting the potentially in-
finite productions of the tool and avoiding useless computation. For instance, such
constraints should not only specify that an assembly function always begin with a
certain prologue and end with an epilogue that contain a limited number of param-
eters, but also what assembly instructions compose them, as well as the body of the
function.

To maximize the applicability of the tool, the problem must be specified in a
standardized format, readable both by humans and by mechanical tool. Hence, μGP
adopts XML for all its input files.

2.5 Coding Techniques

The idea of maximizing the applicability also impact the adopted coding techniques.
μGP was originally conceived as a tool to generate assembly test programs for test
and validation. It was, nevertheless, a versatile tool, in the sense that it could handle
the assembly language of different microprocessors.

The first fully operational version was developed in 2002 and it was composed
of a few hundred lines of C code and a collection of scripts. The second version
was developed in 2003 and maintained since 2006; it consisted of about 15,000
lines in C. This version added several new features and significantly broadened the
applicability of the tool. It was able to load a list of parametric code fragments,
called macros, and optimize their order inside a test program. With time, it has been
coerced into solving problems it was not meant for. While useful for improving its
performance, this extended usage made the basic limitations of the tool clear, and
ultimately led to the need to re-implement μGP from scratch.

This decision follows a complete change of paradigm: the focus passes from the
problem to the tool, and the main design goal shift from the solution of a specific
class of problems to the development of a tool that can include as many as possible.
The development of the third version started in 2006 with the intent to provide a
clean implementation able to replicate the behavior of the previous version. Addi-
tional goals were: maintainability, extendability, and portability. At the end of 2010,
the third version of μGP counted up to more than 50,000 lines of C++.

From the programmer perspective, the optimization tool is merely a frontend
that parses options and configuration files, and eventually calls functions from a set
of libraries. Thus, the command-line frontend provided in the distribution can be
regarded as a simple example of the use of the underlying libraries.

2.5 Coding Techniques 15

Libraries themselves are internally organized in layers. The foundation is com-
posed of the routines for handling graphs, taking into account all the user-defined
constraints. Piled up on this layer, the user will find the functions for handling in-
dividuals, then populations. The whole structure of layers is implemented in C++
trough an extensive use of overloading and inheritance mechanisms.

All genetic operators have been packed inside a different library that make use
of the functions to work on individuals. Routines for handling populations and the
alternative core evolutionary process are also available. Thus, a programmer may
choose at exactly which level insert his code.

Finally, two auxiliary libraries complete the set. A powerful mechanism for log-
ging the current status of the process, able to handle different files and different
levels of verbosity; and a parser for XML files that have been simply included in the
project, but it has been developed externally5.

A number of ancillary programs are also included in the basic distributions.
These programs do not run or control the evolution process itself, but perform useful
actions, easing the work for the final user. Such utilities also exploit the μGP core
libraries.

5 TinyXML was initially written by Lee Thomason, and it is now maintained by the original au-
thor with help from Yves Berquin, Andrew Ellerton, and the tinyXml community. The library is
available under the zlib license on SourceForge from http://sourceforge.net/projects/

tinyxml/.

Chapter 3

The μGP architecture

I’m afraid that if you look at a thing long enough, it loses all of
its meaning.

Andy Warhol

μGP conceptual design is based on three macro blocks: the evolutionary core, the
external evaluator, and the constraints library. The evolutionary core cultivates one
or more populations of individuals. The external evaluator assigns a fitness value to
individuals. The constraints library defines the appearance of individuals.

Fig. 3.1 μGP conceptual design

As introduced in chapter 2, in μGP the evolutionary core is completely indepen-
dent from the application. It may be regarded as a general-purpose optimizer that can
be exploited out-of-the-box. Conversely, the external evaluator defines the environ-
ment in which specimens strive for survival. Thus, it describes the target problem,
evaluating how well a given solution satisfies the specific requirements. That is, bor-
rowing the term from biology, how much is an individual fit. The constraints library
can be regarded as the bridge between the former and the latter block. It does not
define the meaning of the individuals, but rather their mere appearance. Its purpose
is to enable the evolutionary core to create a specimen that can be sensibly evaluated
by the external evaluator at a later time.

17E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_3, © Springer Science+Business Media, LLC 2011

18 3 The μGP architecture

The chapter describes the conceptual design of μGP and sketches the main pro-
cesses that take places during the optimization process. Evolutionary computation
scholars would find themselves familiar with most of the latter topic, nevertheless
some traits are quite distinctive and may be found worth reading. Implementation
details are discussed in chapter 11.

3.1 Conceptual design

The evolutionary core creates new individuals by modifying and mixing existing
ones by means of genetic operators. It transform the individual phenotype to its
genotype, that is, it creates a text file representing the individual structure. Then, it
sends it to the external evaluator and collects the results. Eventually, it uses these in-
formation, among some structural considerations, to decide whether the individual
should be kept alive and how likely it is to reproduce. The purpose of the evolution-
ary core is to evolve one or more populations. At the end of the process, it is still
necessary to extract the best solution with a tool named ugp3-extractor.

The external evaluator is a user-defined program or script. It takes as input a text
file describing the individual, and produce a text file containing the result of its eval-
uation. All the interactions between the external evaluator and the evolutionary core
are performed through text files. The choice to rely on the filesystem introduces
some overhead1, but minimize the effort to exploit μGP in a new environment. Fur-
thermore, the computational effort to compute the fitness is supposed preponderant
in the application of the tool.

Constraints are a set of XML files. They directly correspond to the user’s percep-
tion of how a legal solution to the target problem is structured. Thus, structural and
morphological information have been merged. Chapter 9 describes their syntax.

3.2 The evolutionary core

The evolutionary core is structured as a stack of layers, each one built on top of
the previous one. Every layer provides the service for the upper ones and relies on
the lower part of the architecture. The actual evolutionary algorithm, hence, is a
relatively simple block that uses extensively the underlying infrastructure. In this
way, it is relatively easy to change the various parts of the code and add operators
or experiment different high-level schemes.

Additionally, the core regularly dumps the complete status of the evolution pro-
cess, including all the endogenous parameters, the populations and the operator
statistics. This is done mainly to allow resuming an evolutionary process after it

1 It is though possible to reduce the overhead by evaluating a set of individual. See chapter 4 for
details.

3.2 The evolutionary core 19

Fig. 3.2 Evolutionary core layers

has reached termination without having to repeat it. It also provides a limited crash
recovery capability.

3.2.1 Evolutionary Operators

All procedures that create one or more new individuals are termed genetic operators.
Special care has been taken to make addition of further genetic operators as easy as
possible. And to allow different versions of the tool operating correctly on the very
same populations, even if their cores possess different operator sets. This may be
useful whenever the user adds an operator to his own copy of μGP but has to use
results produced with a different version.

The current evolutionary core provides different genetic operators that can be
roughly grouped into three categories: mutation operators, recombination opera-
tors, and search operators. Mutation operators, consistently with the terminology
adopted by the evolutionary-algorithm community, are those operators that start
from one single parent and create one single descendant by copying and then modi-
fying it. Recombination operators start from two parents and generate the offspring
recombining them. Search operators explore the individual neighborhood by sys-
tematically modifying only one individual parameter in a predefined range of values.

Genetic operators act at the genotypical level. That is, they cannot rely on any
information about the problem currently faced. Thus, they cannot use information

20 3 The μGP architecture

about the eventual phenotypical representation and validity of the individual. Thus,
it is possible that the offspring generated by a genetic operator does not meet the
required specification for the actual environment. Such an illegal individual is syn-
tactically and not semantically incorrect. The difference may looks subtle, but, sim-
ply speaking, an individual of the second type may be evaluated, while an individ-
ual syntactically incorrect may not. Genetic operators may not be bound to always
produce syntactically correct individual simply because the such constraints are de-
fined after the creation of the operators. Thus, μGP include a filter able to block
syntactically incorrect offspring from being added to the population. It is also worth
stressing that no mechanism permits to modify an existing specimen once it has been
inserted into a population.

3.2.2 Population

Specimens are grouped into one or more populations, inside which they compete for
survival and mating. In μGP, a population stores a set of individuals together with all
the data required to operate on them. That is, how they are organized topologically
and all the statistics that are relevant for the evolutionary process. Coherently to the
object-oriented paradigm, populations take an active role providing functions for
higher layers in the evolutionary core, and are not mere container.

The population makes available mechanisms of selection for both the contained
specimens and the genetic operators. The former selection process takes into ac-
count the fitness of the individuals, the topological structure of the population, and
their phenotypes.

The fitness represent a measure of how good an individual is in the task of solving
the given problem. A higher fitness correspond to a better solution. In some prob-
lems, however, a variety of conflicting goals are pursued concurrently. Thus, it is
not always possible to decide if a given individual is fitter than another one. For in-
stance, a travel itinerary quite long but very cheap, is not definitely better nor worse
than an expensive direct flight. How to handle multi-objective problems will be dis-
cussed in chapter 12. Nevertheless, despite the practical difficulties in handling such
cases, the idea of favoring the fitter individuals is inherent of the Darwinian theory.

The population internal topology is discussed in section 4.3.4. Roughly speaking,
it may be beneficial to limit the interactions between specimen in the population,
so not all individuals compete withe very other one. Finally, the phenotype of the
individuals can be also taken into account by the selection mechanism. This point
may sound quite weird, since it apparently negates a basic principle of the Darwinian
theory. Such a complaint is probably correct, nevertheless it have been demonstrated
highly beneficial to consider the phenotypical expression during selection.

Intuitively, it is based on the idea of favoring those individuals that contains un-
common structures into their genotype. Indeed, such a mechanism is an evident
inconsistency with a pure Darwinian approach.

3.3 The Evolutionary Cycle 21

The second mechanism of selection provided by the population is for genetic
operators. Genetic operators are not part of the population themselves, but their
selection mechanism is. In the beginning of a run, genetic operators are declared
and made available in specific populations. Each operator has associated a certain
probability of being used, named activation probability. The population amongst
individuals stores all the statistics of the evolution process, and such data include
the history of application successes and failures for all the genetic operators. Using
these statistics, the population is able to modify the activation probability associated
to operators. When asked, the population is able to point out which operator should
be used.

Different populations may be of different size, and may have different activation
probabilities. Indeed, different populations may also use different sets of genetic
operators.

There are two population types already available in the distribution of the tool:
enhanced and multi-objective. The enhanced population supports several features,
including clone detection and optional extermination with fitness scaling. The multi-
objective one, in addition, incorporates the concepts of Pareto dominance and lev-
elization. A third type, denoted as simple, also exists, but it is only intended as a
superclass for the others.

3.3 The Evolutionary Cycle

The evolutionary process is performed in discrete steps called generations. In each
generation the population is first expanded and then collapsed, mimicking the pro-
cesses of breeding and struggling for survival. This chapter describes the mecha-
nisms used to select parents, produce offspring and eventually eliminate individuals.
The first task is called selection, and the last one slaughtering. The chapter focuses
on the underlying ideas and design choices, whereas the implementation details are
detailed in chapter 11.

In every generation a population is transformed into a new one. Both the starting
and the resulting populations are completely characterized, meaning that all indi-
viduals have been evaluated and ranked; all the statistics of the process gathered;
and all endogenous parameters updated. This synchronous, fully defined, state of
the population is the defining property of a generation.

3.3.1 Genetic operator selection

The first step of the evolutionary cycle is the selection of a genetic operator. μGP
randomly picks one from a pool. Each operator has a defined activation probabil-
ity that influences how frequently it is chosen. These probabilities are endogenous
parameters: μGP tunes them during the evolution process monitoring how different

22 3 The μGP architecture

operators behave. The general idea is to increase the activation probability of those
operators that are more useful in the current stage of the process. It is important to
note that an optimization process goes through different stages. It is widely believed
that in the beginning the best strategy is to sample distant points in the search space,
while at the end, it is more profitable to tweak the solutions with small variations.
The former behavior is sometimes referred as exploration and the latter exploitation.
Besides, neglecting terminology, it must be acknowledged that the optimal strategy
is not only problem dependent, but also varies while tackling a single problem. In-
deed, this is one of the reason why sharply self-adapting the amount of change intro-
duced in each generation brings such a dramatic enhancement in evolution strate-
gies. Remarkably, μGP adapts both which operators are used and the amount of
change brought by those operators. More details on this topic are provided in chap-
ter 4.

There is another motivation to use endogenous activation probabilities, perhaps
even more important. μGP is able to exploit a large number of different operators.
Moreover, it is designed to ease the creation and insertion of new operators. Some
of the genetic operators in the pool may not be compatible or even applicable in a
given context, and μGP is able not to waste time keep trying them.

The first rule adopted is to reduce the activation probability of an operator if it
always fails, that is, it is not able to produce any offspring in the given context.
It must be acknowledged that the self adaptation of activation probabilities is still
a controversial issue, but empirical studies demonstrate that the tool stops trying to
use completely useless operators in a few generations. The goodness of the offspring
may be defined comparing the fitness achieved by the newly generated individuals
with the fitness of the parents. Intuitively plausible rules are used to increase the
probability of an operator if it is able to generate good offspring, or even find the
best solution so far; and to decrease the probability of the operators producing poor
individuals.

Changes in activation probabilities are smooth. Such smoothness is controllable,
but its default value usually fits all scenarios. Moreover, the user may define thresh-
olds for the activation probabilities of different operators, bounding the minimum
and maximum values both when designing a new operator and in the problem-
specific parameters.

3.3.2 Parents selection

After selecting an operator, μGP prepares a list of individuals to activate it. In order
to compile such list, it checks the number of parents required by the operator and
picks them up in the population one by one.

Individuals in a population are ranked based on their fitness value, the greater the
fitness the higher the rank. The ordering can be either total or partial, depending on
the nature of the problem tackled. It is total when the algorithm is used to maximize
a single objective function; or different objectives, but in a fixed priority; or when

3.3 The Evolutionary Cycle 23

a plurality of goals may be expressed as a single one using an aggregating func-
tion such as a weighted sum. On the other way, the order is partial in the so-called
multi-objective problems, where a plurality of mutually incompatible goals are pur-
sued simultaneously. In this case, different solutions may not be comparable. For
instance, a fast but expensive car is not definitely better nor definitely worse than a
cheaper but less performing one.

The function used for selecting parents is based on tournament selection, that is,
a certain number of individuals are randomly picked up, compared, and the highest
in rank is returned. Gender is not considered, and individuals do not have distinct
reproductive roles. Thus, if an operator requires NP parents, μGP simply runs NP
tournaments. The tournaments are completely independent, and it is possible, al-
though improbable, that the resulting list is composed by identical individuals.

The number of individuals chosen to compete in the tournament is called size of
the tournament, and denoted with the Greek letter tau (τ). The size of the tournament
is the parameters that most closely defines the selective pressure of the environment.
When τ = 1, every individual in the current population has exactly the same prob-
ability to transmit its genetic materials into future generations. When τ → ∞, only
the fittest individual is able to reproduce. With τ = 2, tournament selection is statis-
tically equivalent to a classical roulette wheel on linearized fitness.

A peculiarity in μGP is that the size of the tournament is expressed as a real num-
ber. The integer part represents the number of individual that will certainly compete
in the tournament, while the fractional part is the probability that an additional indi-
vidual joins the struggle. For example, with τ = 1.75 the size of the tournament will
be 2 three times out of four, and 1 the remaining one fourth of the times. Expressing
tau as a real number allows to change seamlessly the selective pressure, and thus to
self adapt its value during the evolution.

Since the selection of the parents is a task performed at the level of population,
different populations may use different selective pressure or even different selection
schemes during their concurrent evolution.

3.3.3 Offspring Generation

After the selection of an operator and its list of individual, the operator is applied.
In μGP genetic operators are not bounded neither on the number of parents, nor on
the size of the offspring. As seen in section 3.2.1, a search operator starts from a
single individual and generates hundreds of slightly mutated replica. Furthermore,
a genetic operator can fail and produces no offspring at all. Most commonly, this
happens because it cannot be applied on the chosen set of parents. For example, the
operator for randomly changing a parameter inside a macro may be invoked on an
individual composed of constant macros only. When a new operator is designed, it
is necessary to define and handle all possible failures.

When an operator succeeds generating new individuals, μGP validates them
against the current set of constraints and eventually add the acceptable ones to a

24 3 The μGP architecture

temporary set. This final check is necessary because the newly generated individu-
als may not fully comply with the current requirements, for instance, after removing
some nodes, the resulting individual may be smaller than the minimum allowed in
the current context. It must be noted that constraints are chosen by the final user
who is likely not to have played any part in the design of the operators.

The process is repeated for all the lambda genetic operators. Then, all new indi-
viduals stored in the temporary set are eventually added to the population.

3.3.4 Individual Evaluation and Slaughtering

For the population is completely characterized, μGP starts filling in all missing
information. In a stationary environment, like the vast majority of applications, if
a new individual is identical2 to an existing one, its fitness may be simply copied
from its older clone. In a non stationary environment, almost all individuals need to
be evaluated because the environment may have changed and the current fitness is
not representative anymore. Indeed, in both cases only one representative for each
class of exactly identical individuals, or clones, need to be explicitly appraised.

The list containing all individuals requiring evaluation is compiled, and then the
external evaluator is eventually invoked. Due to the internal architecture, it is not
possible to foresee any order in the process and thus all the evaluations must be
assumed completely independent.

In the last phase of the generation, exceeding individuals are removed from the
population. This removal may be due to natural aging, or the effect of more violent
competition. First, μGP select individuals that have died of old age, if any. Then,
it proceeds to remove less fit individuals until the population size goes back to μ .
Unlikely reproductive selection, survival selection is a deterministic process.

3.3.5 Termination and Aging

The whole process ends when one of three possible termination conditions, all set
by the user, is met. The first is that the maximum number of generations has been
performed. The second is that a predefined fitness value has been reached. The third
is that a given number of fitness evaluations has been performed without any im-
provement in the best fitness. Additionally, the process may be interrupted by the
user.

To enforce aging of the individuals while ensuring that the best ones are not lost
the user can define the size of an elite group of individuals. The elite is composed
of the top-rank individuals. These never get old, as long as they belong to the elite.
Save for their prolonged youth, the elite individuals are treated exactly as every

2 μGP exploits internal hash function to very efficiently detect whenever two individuals are iden-
tical.

3.3 The Evolutionary Cycle 25

other individual in the population. The use of the elite group allows further tuning
of the evolutionary strategy.

This basic scheme can be changed in several ways to suit different needs. Indi-
viduals can be assigned a maximum age, expressed in generations, after which they
die and are removed from the population, regardless of their rank. This maximum
age is the same for all individuals belonging to a population. This allows striking
a balance between the plus and comma strategy. To obtain a plus strategy the user
lets the individuals live forever, so that they are removed only on the basis of their
fitness. To get a comma strategy it is enough to assign a maximum age equal to one
generation. Every number between one and the maximum number of generations
leads to an intermediate behavior.

Chapter 4

Advanced features

The golden rule is that there are no golden rules.
George Bernard Shaw

Finding a good solution to a problem using evolution can be a lengthy process.
Practical, real-world problems often have huge search spaces, so many candidate
solutions exist. The fitness function, especially in the case of multi-objective opti-
mization, may be deceptive, meaning that a large number of possibilities have to be
explored in order to obtain with confidence a high quality solution. The evaluation
process can require a high computational effort, and thus a long time to complete,
exacerbating the effects of having to assess many different solutions.

Reducing the number of evaluations needed to reach a “good enough” solution
is therefore critical to make an evolutionary methodology effective from a practical
point of view. In the μGP several features are directed towards this goal.

In this chapter these features are described in detail. The discussion should pro-
vide the reader with an indication of what they do, what they don’t, and when to use
them. Some are always active, either because they are universally useful or because
it would be impractical for an user to activate or tune them. Some, however, may
not always be useful, or need tuning to provide the greatest benefits, so they have to
be activated and possibly configured by the user.

4.1 Self adaptation for exploration or exploitation

Evolutionary processes are sometimes described as having an initial exploration
phase, in which the search space is sampled finding the most promising regions,
and a subsequent exploitation phase, in which the solutions cluster together within
those promising regions. The amount of modification that a given solution should
undergo in the two phases is different: in the exploration phase it is useful to pick
samples from the larget possible part of the search space, to avoid leaving “blank”,
unexplored regions. When a promising region has been found and the solutions
begin clustering together, on the contrary, it is better to perform small modifications
on the individuals, to fine tune the obtained solutions. The same concept is employed
in simulated annealing, where a temperature parameter decreases over time. The

27E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_4, © Springer Science+Business Media, LLC 2011

28 4 Advanced features

scheme for simulated annealing, however, is fixed. In contrast, the μGP employs a
self adaptation scheme for several of its parameters. In most cases the user is able to
determine the allowed range for each parameter. For some parameters, only an initial
value can be set. Where a range can be set, it is possible to turn off self adaptation
altogether by setting the minimum and maximum of the range to the same value.

The common criterion for deciding the necessary corrections to parameters is the
rate of success obtained in the last generation. If a large enough fraction of the off-
spring is better than its parents, then implicitly the hypothesis is put forward that the
current state of the evolution is initial, since it is very easy to improve the solutions
found so far. If, instead, very few or no offspring fares better than its parents, then
the work hypothesis becomes that the evolution is reaching an optimum.

4.1.1 Self-adaptation inertia

All parameters subject to self adaptation are not modified setting them instanta-
neously to any desired value in their range. To avoid large and unpredictable changes
in the parameters the concept of inertia is used. When a paramer has to be increased
it is pushed towards the upper end of its range, whereas if it has to be decreased it is
pushed towards its lower bound.

Given a parameter p and inertia α , the new value for the parameter is computed
as pn = α p+(1−α)pd , where pn is the new value of the parameter, p is its current
value and pd is its “desired” value, that is the value towards which it is pushed.

In general, the higher the value of α the slower the self-adaptation process, but
very low values make self adaptation too susceptible to the random statistical fluc-
tuations of the success rate across generations.

4.1.2 Operator strength

Mutation operators and some search operators, namely the local scan mutation and
the random walk mutation, support the concept of strength. The strength describes
how big the impact of an operator is on its input individual. The rationale behind its
use is that in the initial phases of the evolution the individuals should be changed by
a large amount, to effectively explore the search space. In later phases the changes
should be smaller, since presumably the solutions are converging towards an opti-
mum. The strength parameter, σ , is a number between 0 and 1. For mutation oper-
ators, it is the probability of repeating the mutation after it has been performed. At
the end of the mutation a random number is extracted, to decide whether the opera-
tor should be applied again. If not, the obtained individual will be evaluated. If the
mutation is repeated then another probabilistic check is performed, and so on. The
first time the operator is applied without checking. The expected number of repeated
operator applications is then 1

1−σ .

4.2 Escaping local optimums 29

The value of σ is increased when the tool detects a high success rate, and de-
creased when success is low.

4.1.3 Tournament size

Individuals are selected for reproduction using a tournament selection scheme. If
an operator needs n parents then an equal number of tournaments is performed. For
each tournament τ individuals are selected, and the best of them, the one with the
highest fitness, is allowed to reproduce.

However, there is a catch: τ is a floating point number, so it has an integer part
and a decimal part. The interpretation is probabilistic. If τ is equal to τi + τ f , where
τi = �τ� and τ f = τ−τi, then τi individually are selected for the tournament, and an
additional one is picked with probability τ f .

In this way it is possible to tune the selective pressure in a much finer way than
only using integer values for τ .

The selective pressure is increased when a high success rate is detected, and de-
creased otherwise. A high selective pressure favors especially the highest-ranking
individuals. In the extreme situation where τ is infinite, only the best individual
would ever be selected, effectively turning the evolutionar process into a sophisti-
cated hill-climbing procedure. The opposite situation, where τ = 1, gives all mem-
bers of the population the same chance of reproduction, resulting in a much broader
exploration of the search space. No value of τ can cause the tool to replicate a
Monte-Carlo search, since the population is always limited. τ should never be less
than 1.

4.2 Escaping local optimums

Many real problems are characterized by fitness functions that possess more than
one local optimum, perhaps many ones. It is therefore possible that the individuals
soon begin clustering around one of those optimums, without any guarantee that it
is the global one.

Actually, apart from the case of toy problems or well-characterized benchmarks,
this is the usual situation. When the success rate approaches zero, it can be safely
assumed that a local maximum in fitness has been reached, but it should be taken
for granted that another, better, optimum exists.

The following features are especially useful to allow exploration of a larger part
of the search space when an optimum has been reached, although they also affect
other behaviors of the tool.

30 4 Advanced features

4.2.1 Operator activation probability

Individuals reproduce through the application of genetic operators upon them. The
operators to apply to the population are chosen probabilistically, and after the oper-
ators are chosen the tournament selection takes place.

The activation probability for every operator is not fixed, but is self-adapted on
the basis of the success record for the single operators. When an operator is success-
ful, producing offspring better than its input individuals, its probability is marked
for an increase. When it is unsuccessful, giving rise to individuals with worse fitness
than their parents, its probability is pushed downwards.

Probabilities are modified at the end of a generation. The success statistics for
every operator are collected, and probabilities are pushed upwards or downwards
based on that record. After this stage they are normalized to ensure they add up to 1.
Since the amount of self adaptation is not fixed the normalization may cause some
probabilities to change in the opposite direction of the push.

The user can specify a range and an initial value for the operator activation prob-
abilities. However, to relieve the user from the burden of recomputing all probabil-
ities every time he wants to change the settings, the initial values are automatically
normalized. If the tool is unable to keep all probabilities within the specified range
it issues a warning and carries on the computation.

With this self adaptation, as soon as the operators that allowed reaching a partic-
ular plateau in the fitness values are no longer effective, other operators are used,
driving the evolution in different directions.

4.2.2 Tuning the elitism

When employing a comma (μ ,λ) strategy, that completely replaces a populaton
with the next, it can be convenient to preserve a few best individuals across gener-
ations. This can be done using two different schemes, one that copies the replaced
individuals in a special repository, separate from the main population, the other that
keeps everything in one population, just avoiding replacement of the best individ-
uals. This second scheme is named elitism. The difference between the two is that
with elitism the genes of the best individuals are always available for reproduction,
whereas in the other case special mechanisms must be put in place to inject them
back into the population.

In contrast the plus (μ +λ) strategy, originally employed in the μGP, is a totally
elitist scheme. No individual is ever lost to generations passing, but only because of
insufficient fitness.

A plus strategy tends to cluster solutions nearer together than a comma strat-
egy. The first may be more useful for problems with a very narrow maximum, or
where solutions have a very complex structure. The second may be more useful for
problems with many local optimums, or deceptive fitness functions.

4.3 Preserving diversity 31

The μGP allows the user to choose an intermediate behavior between a pure plus
strategy and a comma strategy. This is achieved through the use of two parameters:
the maximum age of the individuals and the size of the elite. It has to be noted that
these two parameters are not adapted during evolution.

When the user specifies a maximum age for the individuals they “die of old age”
after that number of generations, and are consequently removed from the population.

The user can also specify a nonzero size for the elite: this is the group of the first
n individuals in the population, ranked by fitness. The individuals inside the elite do
not grow old. Once they are pushed off the elite by better individuals, however, they
begin aging.

The effects of these two parameters compose together to provide a range of pos-
sible behaviors of the tool. Basically the user has to decide how much effort the
tool should devote to search space exploration (low maximum age, small elite) or to
optimization of existing solutions (high maximum age, large elite).

4.3 Preserving diversity

One vexing problem with simple evolutionary schemes is that solutions may clus-
ter too tightly inside a very small region of the search space. Often the population
becomes filled with clones, that is individuals exactly identical to each other. Even
when individuals are all different, they may be too similar to each other.

Indeed, this behavior is strikingly different from the natural world. Here, the
phenomenon called by Darwin the principle of divergence can be easily motivated
taking into consideration the great complexity of the natural environment. Different
specimens are likely to find advantageous to specialize their abilities and exploit a
particular niche. The natural process tends to emphasize differences, leading on the
long run to the formation of different species.

On the contrary, in the oversimplified artificial environment implicitly defined
by the fitness function, no push toward diversity exists. Consequently, individuals
tends to become almost identical, significantly impairing the whole evolution pro-
cess. This has been acknowledged as a big problem in the evolutionary computation
world.

When solving an optimization problem, the presence of many similar individuals
provides a positive feedback effect for the exploitation of a particular optimum, thus
speeding up the convergence. However, the same positive feedback may effectively
get the algorithm stuck into a local optimum, forbidding the effective exploration of
different regions of the search space.

To avoid premature convergence the μGP employs several techniques that en-
hance or preserve as much as possible the genetic diversity between the individuals.

32 4 Advanced features

4.3.1 Clone detection, scaling and extermination

Clones are individuals genotipically identical to a prototypical one. The only thing
that distinguishes clones from each other is the moment they entered the population,
reflected in their age. In the μGP the prototype individual is called master clone,
and is just the first that has appeared during evolution. Of course the clones of a
given individual also have equal fitness, since the mapping process to solutions is
deterministic.

During the evolution a population may fill up with clones of one or a few indi-
viduals, usually ranking high in the population. This is not the effect of some bug
with the genetic operators, but just the consequence of their reversibility. Clones,
in fact, often arise as the effect of undoing some mutation on a descendant of the
master clone. Otherwise, they may also appear as the offspring of a recombination
operator applied upon two instances of the first individual.

In any case, their presence triggers a positive feedback mechanism: more clones
in the population means more descendants of those cloones, and greater chances of
recreating the original individual by the random application of a genetic operator. If
the master clone is a high-rank individual, the others are also retained.

The first step to limit the presence of clones in the population is detecting them.
This has also the useful, but secondary, side effect of allowing to avoid the useless
evaluation of individuals whose fitness is already known. In μGP the detection is
helped by the computation of a global hash value for every individual.

The user can set a scaling factor S for the fitness of every clone after the master
clone. The scaling factor should lie in the range [0 . . .1]. The effective fitness of
every individual, used for ranking, selection and survival, is then the scaled fitness
fs. Every clone is scaled with respect to the previous one, resulting in ever smaller
fitess values as more clones are added to the population. The general formula for
scaled fitness is

fs = Si f (4.1)

where i is the positional number of the clone, starting at 0 for the master clone.
So, the scaled fitness will be fs = f for the master clone, fs = S f for the first clone,
fs = S2 f for the second clone, and so on.

Using the scaling factor the user can decide to keep all the clones, setting S = 1,
scale them to limit their number in the population, by setting S to a value less than
1, or make their fitness zero, setting S = 0 and effectively exterminating them.

4.3.2 Entropy and delta-entropy computation

Even if two individuals are not exactly equal, they may still be very similar to each
other. This, too, may hamper diversity. Intuitively, an individual which is very dif-
ferent from all the others in its population brings a large contribution to diversity,

4.3 Preserving diversity 33

while another individual, very similar to many others, does not make the population
more varied than if it was not there.

In μGP the diversity of a population is measured computing its entropy. Every
vertex of every individual, including its parameters, is transformed into a symbol.
Two symbols are equal if and only if their corresponding vertices are equal, refer-
ring to the same macro, and with the same parameters. The complete population
is then transformed into a message, and the entropy of that message is computed.
The higher the entropy, and the greater the number of distinct symbols inside the
message, the higher the diversity.

In formulas, the entropy of the population is computed as

H =
N

∑
j=1

p j
1

ln(p j)
(4.2)

In this formula H indicates the total entropy value for the population. In the sum
p j is the probability of occurrence of the j-th symbol in the entire population, and
N is the number of distinct symbols in the population. It is important to note that N
is not the sum of the number of vertices of all individuals in the population, because
if a vertex repeats it is only considered once. The fact that a vertex repeats several
times only affects its occurrence probability.

To measure the contribution of every individual to population diversity the en-
tropy is used again. Not the entropy of the individual, though, but the contribu-
tion of that individual to the total entropy. The delta-entropy of an individual is the
difference between the entropy of the complete population and the entropy of the
population without that individual.

In formulas

ΔHi =
N

∑
j=1

p j
1

ln(p j)
−

Ni

∑
j=1

pi
j

1
ln(pi

j)
(4.3)

In this equation Ni is the total number of symbols in the population after individ-
ual i is removed, and pi

j is the resulting probability for the j-th symbol.
The μGP computes the delta-entropy of every individual when it needs to per-

form selection inside a population. When comparing two individuals, if their fitness
is equal, the one with a higher delta-entropy is preferred.

4.3.3 Fitness holes

When comparing two individuals in a tournament selection the most universally
used criterion is their fitness. The use of the fitness as the exclusive means of se-
lection polarizes the evolution towards the highest-rank part of the population. In
most cases this is the desired situation, but there are instances where it could lead to
unsatisfactory results.

34 4 Advanced features

One such possibility is bloating, the unorderly growth of the individual genomes,
and consequently of their external representations. Bloating occurs when individuals
with a more complex structure than the others in the population are able to get
some, perhaps very small, competitive advantage upon the others. It may happen
that individuals grow far beyond what is considered a reasonable size to gain some
marginal fitness increase.

One simple but highly effective solution to this problem is a so-called fitness
hole. In its original formulation by Riccardo Poli, the fitness hole affects the se-
lection probability of the individuals. With probability p, the selection criterion for
tournaments is not the fitness, but the size of the individuals: the smallest individual
is chosen for reproduction, not the fittest one. The name fitness hole derives from
the fact that this is a hole in the probability distribution that rules selection.

In μGP the fitness hole is used to preserve diversity rather than keep individuals
small. The delta entropy (ΔH) can be used to introduce in the selection scheme an
entropy fitness hole. This means that, with a certain probability ph, the selecting
criterion of the tournament selection is not the fitness but the delta entropy of the
individuals.

It should be noted that the fitness holes are never used in the survival phase, but
only during selection.

4.3.4 Population topology and multiple populations

Limiting the possible interactions between the individuals has been acknowledged
to be effective to reduce the proliferation of clones inside a population. The topology
of a population defines how individual are allowed to interact. That is, to compete
for mating and survival. At the two extremes are: a completely unstructured environ-
ment, where every individual is able to interact with every other one; a completely
structured environment, where a given specimen can interplay only with a fixed set
of neighbors occupying specific places. Considering breeding alone, the former sit-
uation can be seen as an example of panmixia, and the population is consequently,
although rather infrequently, denoted as panmictic. The latter case is commonly
called a latex. While latex-based population have been demonstrated able to favor
the preservation of diversity during evolution, it must be noted that they are not
frequently exploited in real-world applications.

A different, and perhaps the most used, method to keep individuals different from
each other is to isolate them into different populations. Indeed, inside a panmictic
population individuals in the long run tend to become similar because they con-
tinuously exchange genetic material, and also because they compete against all the
others in the population.

Individuals can be pushed off the population even when they are relatively near
to a good local optimum, or to the global one, just because other individuals are
very close to another, perhaps lower, peak. The evolutionary process, however, is

4.4 Coping with the real problems 35

not finalistic: it just rewards better fitness, and does not automatically direct to the
global optimum.

The use of multiple populations is a means of isolating groups of individuals from
each other, allowing independent evolution inside every population. In the classical
schemes, the populations exchange a limited amount of genetic material through
the implementation of migrants. After a certain number of generations of indepen-
dent evolution, some individuals are picked from every population, and are given
the chance to enter other populations. In one such scheme, named island model be-
cause it is loosely inspired by the ancient Hawaiian society, the best individuals of
each population are gathered in a temporary set and compared to each other. The
overall winner enters the other populations. The time between these interactions is
sometimes called an epoch, or an era.

The island model, as other multi-population schemes, can be seen as a single
population structured in a special latex. However, from a mere practical perspective,
in μGP it is preferable to implement them as multiple populations1.

Different, more complex, forms of interplay have been studied and exploited.

4.4 Coping with the real problems

Real-world problems are almost invariably complex ones, and this complexity can
have different faces. One part of the story may be that the solution to the target
problem must comply with an existing work environment. The solutions have to be
expressed with a given format and formalism, their quality must be assessed using
standard tools and metrics, or the evolutionary process has to be otherwise integrated
with existing software.

Another aspect of complexity can be computational. Solution evaluation for some
problems is a lengthy process, requiring large computational resources. This means
long evaluation times, and even longer evolutionary processes.

A third challenge may be the evaluation result itself. The quality of a given solu-
tion may not be accurately captured using just one numeric parameter. Sometimes
conflicting goals should be balanced against each other, other times the main goal
may be easier to reach if other, approximate measurements, are performed and used
to direct the evolutionary process. Sometimes it is more effective to begin solving
the approximate problem and then use the solutions obtained as a start for the real
problem.

A perfect example for all three faces of complexity is the generation of test pro-
grams for microprocessors. The programs must conform not only to the assembly
language syntax, but also to the operating environment used on the processor. Fur-
thermore, the effectiveness of those programs, expressed in terms of fault coverage,
has to be computed using existing, often commercial, tools. The evolutionary loop

1 The basic distribution of μGP includes a panmictic population, supports the existence of multiple
populations, possibly with different constraints, and implements some mechanism for copying
individuals from one population to another one.

36 4 Advanced features

has to include part of the processor software development tools, as well as the fault
simulator.

Depending on the processor analyzed, the evaluation of a test program can take
as little as a few seconds or as much as several minutes.

Finally, a test program is not only characterized by its fault coverage, but also by
its code and data size and by the time the real processor would take to execute it.
The first goal is in contrast with the others. Another worthwhile consideration is that
often it is possible to obtain an approximate evaluation of a test program performing
a logic simulation at a higher level of abstraction, for example at RT-level, obtaining
the coverage metrics on the HDL code describing the processor. It is also possible,
although longer, to execute a logic simulation at gate-level, computing the toggle
activity inside the circuit. Both activities are one or two orders of magnitude faster
than a full fault simulation, so using them as a first step may be useful to avoid
wasting time on expensive simulations of nearly useless individuals.

The μGP provides support for the use of external tools in its architecture. Actu-
ally, this is one of the constraints that shaped it, as already discussed in chapter 3.
The use of approximate problems as the basis for a challenging one is not subject
to easy automation: no amount of tool support can currently substitute user intelli-
gence, and the two problems may look very different from each other.

The μGP provides a limited support for the parallel evaluation of different solu-
tions, and for the use of multiple metrics in a single evaluation.

4.4.1 Parallel fitness evaluation

The most direct way to speed up the evolutionary process when the execution time
is dominated by fitness evaluation is to evaluate more than one individual in parallel.
This strategy is possible when more than one machine or processor is available for
fitness evaluation. It must also be possible to run multiple copies of the evaluation
tool. In the case of commercial simulators the number of available licences may
limit the effectiveness of the approach.

The reason why this strategy works is that for every generation many evaluations
have to be performed. The important performance parameter, then, becomes the
throughput of the system, rather than the latency in the execution of a single task.

μGP does not directly provide any facility for parallel execution. It provides,
instead, a mechanism to generate an ordered set of solutions for evaluation. The
only constraint is that the fitness file must contain all the fitnesses in the same order
as the individuals provided. It is the responsibility of the external evaluator to set
up, if necessary, and use a parallel execution environment.

The order of the individuals generated is reflected in the command line with wich
the evalator is run, and is stored in the file individualsToEvaluate.txt inside
the run directory.

Full details on this topic can be found in chapter 7.

4.4 Coping with the real problems 37

4.4.2 Multiple fitness

Problems in which different, conflicting goals should be obtained are common in
practice. Most optimization tools, however, can only handle one parameter at a time.
In evolutionary computation this means that only a single numeric fitness can be
optimized.

The classical way to overcome this obstacle is to generate a composite, some-
times very complex, function of the different optimization parameters and merge
them in a single numeric index. This methodology has two drawbacks, however.
The first is that the problem must be well characterized, at least in terms of the rela-
tive importance of its goals, if the user is to be able to write a sensible composition
function. The second is that the details of this function (for instance, the exact value
of its parameters) depend on the optimizer as well as on the problem, and it takes
very much experience to set them in an effective way.

In μGP there is a simple way to express different metrics relative to a single solu-
tion. It is enough to put them together in a single set of numeric indices. In practice,
the computed fitness are written as floating point numbers inside a fitness file. To
make comparisons between individuals possible, all individuals in a population must
have the same number of fitness parameters.

Depending on the population type used, the meaning of the fitness parameters is
different. In the case of an enhanced population the first fitness is the most important,
and it should express the primary goal. If two individuals have their first fitness
equal, then the second is compared, and so on. The list of fitness parameters could
be considered a string of symbols, each symbol corresponding to a floating point
number. The fitnesses are then compared lexicographically.

If the multi-objective population is used, in contrast, there is no concept of a
primary fitness. All parameters are weighted equally, and the concepts of Pareto
dominance and leveling are used. If all the fitness parameters for an individual A
are less than or equal to those for an individual B, with at least one strict inequality,
then the individual B dominates individual A. If at least one parameter for individual
A is less than the corresponding parameter for individual B, and another parameter
is greater, then the two individuals are neither better nor worse than the other. The
ordering relationship in multi-objective populations is partial.

Depending on the problem, the use of one or the other population type may be
more suitable. Details on this topic are provided in chapter 3.

Chapter 5

Performing an evolutionary run

A journey of a thousand miles must begin with a single step.
Lao-Tzu

In this chapter, we describe how an evolutionary run must be configured in order to
cope with the main requirements the μGP needs.

In particular, in this chapter a complete evolutionary experiment is described
highlighting the work flow required to carry out an evolutionary trial. In order to
provide the user with enough information to launch his/her own experiments, in the
following the main structure as well as the basic options of the principal elements
involved in an evolutionary run are described.

As mentioned before, an evolutionary experiment requires that the user externally
provides the μGP with a series of information that strictly depends on the particu-
larities of the faced problem. In general terms, the users are expected to describe the
general behavior the evolutionary run must follow in their experiments, the main
characteristics of the population or populations evolved during each run, the inter-
face with the external evaluator and finally, the library of constraints describing the
individual syntax.

In order to facilitate the way the μGP interacts whit the outside world with-
out harming portability, the configuration files must be described using XML with
XSLT. Proceeding in this way, the user is allowed to inspect input files through the
use of graphical tools, available on many platforms. In addition, intermediate files
produced by the μGP in order to support its internal status during an evolutionary
run, such as populations, operator statistics, etc., are also created using the XML.
Nevertheless, XML cannot be used to generate normal output files, an individual for
example, since individual format must comply with specific requirements defined by
the external evaluator.

As graphically described in figure 5.1, μGP requires the compilation of three
different files in order to correctly perform an experiment:

• μGP settings: (ugp3.settings.xml)
Herein the general information about the behavior the μGP presents during the
evolution is placed, e.g., μ and λ values, steady state conditions, etc. Addition-
ally, one or more references to the population or populations to evolve during

39E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_5, © Springer Science+Business Media, LLC 2011

40 5 Performing an evolutionary run

Fig. 5.1 Tool Framework

the evolutionary run is contained in this file. Finally, the verbosity level of the
algorithm is also declared here.

• Population: (population.settings.xml)
For every population that is evolved during the current experiment there is a file
that contains information about the population. Every population file describes
genetic parameters, as well as genetic operators and their probabilities to be ap-
plied, and also basic information regarding the external evaluator for the specific
population. It is important to note that the most of the examples reported here use
only one population, however, μGP has been designed to handle more than one
population. In addition, the reference for the library of constraints is contained in
this configuration files too.

• Library of constraints: (constraints.xml)
As mentioned previously, the structure, content and syntax an individual must
obey is described in a particular file limiting the degrees of liberty of the evolu-
tionary tool at the moment of describe its individuals. It is important to note that
due to its important and complexity, a complete description of the constraints
library is left to chapter 9.

Once every single file has been correctly completed, it is enough to launch the
μGP executable file by typing in the command line the following without parame-
ters:

ugp3

The evolutionary tool automatically searches for the three configuration files in the
current directory, looking for the configuration parameters contained in every one

5.1 Robot Pathfinder 41

of them. Then, the experiment runs adopting the guidelines describe in the con-
figuration files until a stop condition is reached. Finally, using the μGP extractor
tool, described later, the user can easily obtain the resulting individuals from the
evolutionary run.

At this point, it is important to highlight that the user cannot only launch, but
configure the μGP using the command line (please, refer to chapter 6 for more
information about launching the μGP using the command line), however, as the
reader will note later, every evolutionary run is configured by setting a large number
of parameters and switches that make it difficult to launch the μGP defining every
single element through the command line. Additionally, not all available parameters
are configurable by using the command line. As a matter of fact, the μGP provides
the users with a more easily configuration mechanism based on the set of related
configuration files, as briefly described.

In the following sections, more detailed information is provided with respect to
the μGP configuration. In order to proceed in an user friendly way, an example is
used to guide the user into the μGP configuration particularities.

5.1 Robot Pathfinder

In this experiment every individual represents a pathfinder robot that aims at finding
the best trajectory between two points demarcated at the internal of a squared arena.
Some difficulties arise to the pathfinder robots since the arena space is delimited
with some obstacles, figure 5.2 graphically shows the challenge the robot faces in
this experiment.

The possible movements allowed to every individual are basically described in
the following:

• Forward movement: The robot performs a forward movement following the cur-
rent pathfinder trajectory. The step size is defined by a real number delimited by
the user.

• Rotation: The robot rotates in one of two possible directions clockwise or coun-
terclockwise a number of radiants determined by a real value ranging from -π to
π .

Every individual is then easily described as a piece of code listing a series of in-
structions encoding the couple of robot movements described above. Then, in order
to evaluate every individual, the robot is placed in the start point (Start point - figure
5.2) and then, the list of encoded instructions is sequentially executed in order to
determine the position finally reached by the robot under consideration.

In a first launch, the fitness value for every individual is determined by the Eu-
clidean Distance between the final point reached by the robot and the goal point
(FPED) (Goal point - figure 5.2). In order to comply with the μGP requirements for
the fitness values, the provided values must be positive and, it must be highlighted

42 5 Performing an evolutionary run

Fig. 5.2 Robot pathfinder arena

that the bigger the fitness the better. Thus, the provided fitness values to μGP are
calculated in this way: 150 - FPED.

Figure 5.3 depicts a view of the fitness landscape of the presented experiment.

Fig. 5.3 Fitness Landscape

In order to provide the μGP with a adequate fitness, the algorithm’s goal is to
minimize the Euclidean distance between the final point (Goal point - figure 5.2)
and the reached point by the robot. As depicted in the figure, the fitness landscape

5.2 μGP Settings 43

presents a couple of local minimum near the walls that obstruct the robot trajectory.
Remarkably, the algorithm must be able to overcome these local minimum in order
to reach the global minimum represented in the figure by the point labeled as goal
point.

5.2 μGP Settings

As briefly described before, the μGP settings are placed in the file ugp3.settings.
xml; the file is structured in three different contexts, as illustrated in the following:

• algorithm evolution in this context, the user defines three basic parameters:

– random seed: the user can provide every evolutionary launch with a specific
seed number, an integer, in order to initialize the pseudo-random functions
exploited during the experiment. In this way, the experiments performed by
the μGP can be easily repeated by launching a new experiment in the same
conditions containing the same seed. However, in the case the user decides to
do not provide the μGP with a random seed, the evolutionary core initializes
the pseudo-random functions resorting to the system clock.

– populations: the user defines the path and the file name containing the pop-
ulation options for the evolutionary run to be launched. It is interesting to
note that for one evolutionary experiment, more than one population can be
defined.

– statistics: the experiment statistics are also saved in a file defined here.

The following code lines show the initialization of the file ugp3.settings.xml
described here for the mentioned experiment. The presented lines include the initial-
ization ones for the settings file. It is interesting tho highlight the line <settings>
that initializes the option settings for the current experiment. Comments where omit-
ted in order to minimize the presented code lines here.

<?xml version="1.0" encoding="utf-8" ?>

<settings>

<context name="evolution">

<option name="randomSeed" value="1"

type="integer"/>

<option name="populations">

<population name="name_population1"

value="population.settings.xml"/>

</option>

<option name="statisticsPathName"

value="statistics.xml" type="string"/>

</context>

In the second context defined in the settings file, the next options are specified:

44 5 Performing an evolutionary run

• algorithm recovery: in this context, the user defines the file name used to save the
status of the algorithm during the current experiment, as well as some interesting
options used by the μGP for saving and recovering information.

– recoveryOutput: this option states the file name used to save the experiment
status after every generation.

– recoveryOverwriteOutput: setting this option to true, the evolutionary core
overwrites the previous status file, otherwise the status file is saved using a
different file.

– recoveryDiscardFitness: when recovering an experiment, this option avoids
the evolutionary core to asks the external evaluator to recalculate the fitness
values for the recovered population of individuals. On the other hand, if this
option is set to false the evolutionary core maintains the fitness values con-
tained in the recovery file that is uploaded at the beginning of the experiment.

In the following lines, the recovery context of the ugp3.settings.xml file are
detailed:

<context name="recovery">

<option name="recoveryOutput" value="status.xml"

type="string"/>

<option name="recoveryOverwriteOutput" value="true"

type="boolean"/>

<option name="recoveryDiscardFitness" value="true"

type="boolean"/>

</context>

The last section contained in the settings file is the logging context, in this part
of the configuration file, the user defines the level of information the μGP must
produce in output.

• algorithm logging: the options in this context allow the user to decide the infor-
mation level presented by the μGP in output during the current experiment; the
options configure the information level for the standard output as well as for a
different output such as an output file.

The next xml lines complete the ugp3.settings.xml file for the proposed robot
pathfinder experiment; firstly, the logging context is reported choosing two differ-
ent streams for the experiment output. The first one, the standard output is named
std::cout and in this case, the configuration options ask the μGP for a info

level of information in a plain format. The second output is directed to a file called
debug.log and the information level is deeper, again in a plain format. The final
line </settings> concludes the ugp3.settings.xml file by closing the initially
opened option settings.

<context name="logging">

<option name="std::cout" value="info; plain"/>

<option name="debug.log" value="debug; plain"/>

5.3 Population Settings 45

</context>

</settings>

5.3 Population Settings

Every evolutionary run can define one or more populations to be evolved during
the current experiment as outlined before, and for every population there exists a
specific file that defines the configuration parameters for its own evolution.

As detailed in the chapter 3, the population can assume one out of two different
types: enhanced and multi-objective. It is important to note that depending on the
population type, the evolution performs in different ways; clearly, influenced also by
the configuration of the rest parameters belonging to this file. Thus, the population
type parameter opens the population.settings.xml file.

Concerning the robot pathfinder problem faced in this section, the population
type selected for this experiment is enhanced, and in the following, the most of the
parameters handling the evolution of this kind of population are described:

• Population parameters

– μ this evolutionary parameter is, as usual, the size of the population. However,
since the population may vary its dimension during the evolution, μ actually
represents the maximum size of the population. For the current example, the
chosen value for μ is 10.

– λ in the case of the μGP, λ indicates the number of genetic operators applied
at every generation. For this population, this values is set to 15.

– ν is the initial size of the population for the current experiment. At the be-
ginning of the current experiment, ν random individuals are generated to start
the evolutionary run. In the case ν is lower than μ , the evolutionary core com-
pletes the expected population adding the individuals necessary to complete
μ . On the contrary, if ν is larger than μ , the best μ individuals are kept in the
initial population. Herein, ν = 20.

• Fitness function parameters

– Number of fitness parameters instructs the evolutionary tool about the number
of values expected from the external evaluator for every individual. In the
current experiment only one value is expected for every individual.

– Maximum fitness value represents in the case the users know its value, the
maximum value reachable by the fitness function on every one of its param-
eters. Once the evolutionary core cultivates an individual that reaches this
value, the current experiment is terminated. This parameter is optional and
should not be defined by the user. For the robot path finder experiment, the
maximum fitness value is not defined.

– Invalidate fitnesses after generation setting this parameter to true invalidates
all the individual fitness values at the end of every generation, requiring to

46 5 Performing an evolutionary run

recalculate every single fitness at the beginning of the next generation. In this
example, the invalidate fitness parameter is false.

• Elitism parameters

– Elite size represents the best ranked individuals that do not suffer the effects
of time passing. In the presented example, the three best ranked individuals
never get old as long as they belong to this elite group.

– Maximum age of the individuals belonging the current population, after that
the individuals die due to aging effects. In the current experiment, the maxi-
mum age reachable by the individuals is 10.

• Termination conditions some parameters can be defined handling the different
ending events for every evolutionary experiment. In particular, termination con-
ditions can be exploited to ensure that the evolutionary run ends complying with
very well established time conditions, for example.

– Maximum fitness value see above.
– Maximum generations defines the maximum number of generations the evo-

lutionary core must perform in the current experiment.
– Maximum steady state generations indicates the μGP to stop the current ex-

periment as soon as a determined number of generations have been performed
without obtaining any improvement in the best individual of the current popu-
lation. In this case, it is said that the experiment reached a steady state during
a certain number of generations.

– Maximum evaluations this parameter determines the maximum limit on the
number of evaluation requests that the μGP can ask to the external evaluator.
As mentioned before, at every generation the μGP guarantees the application
of a predefined number of genetic operators, which offspring can highly vary
depending on the chosen operator; thus, it is interesting to give the user the
opportunity to stop an evolutionary run once a well defined number of external
evaluations is reached.

• Diversity parameters these parameters activate the previously defined techniques
to avoid premature convergence in the current population.

– Clone scaling factor this parameter can range from 0 to 1, and if its value is
different than 0, every clone fitness is scaled with respect to the previous one
as described in chapter 3. In this example, this factor equals 0, meaning that
every clone generated during the current experiment is eliminated.

– Fitness hole activation activating this feature for preserving diversity affects
the selection mechanism during the tournament selection of individuals; thus,
with a defined probability p, delta-entropy instead of the fitness, is used as the
selection criterion during the individuals comparison at the end of the tour-
nament. In order to correctly activate the fitness hole feature, it is necessary
to determine the selection scheme, to adequately limit τ parameter that de-
fines the number of participants in the tournament selection, and to choose

5.3 Population Settings 47

the activation probability, called fitnessHole, of the selection mechanism. In
the presented experiment, the fitness hole is activated by selecting tournamen-
tWithFitnessHole, τ ranges from 1 to 3 and the activation probability of the
fitness holes equals 0.3.

• Self-adaptation inertia this parameter defines the amount of resistance to change
their current values of the auto-adapted parameters during the running experi-
ment. In this example inertia equals 0.9.

• Operator strength this parameter determines how big the effect of the genetic
operator is on its input individual. The strength parameter, σ , ranges from 0

to 1 determining the probability of repeating the genetic operator in the same
individual. In the current experiment, this parameter equals 0.9.

• Constraints indicates the file and the path name for the constraint library of the
current experiment.

The following lines initialize the population.settings.xml file, for the robot
pathfinder experiment. Some comments are presented to allow clarity:

<?xml version="1.0" encoding="utf-8" ?>

<!--population type-->

<parameters type="enhanced">

<!--population parameters-->

<mu value="10"/>

<lambda value="15"/>

<nu value="20"/>

<!--fitness function parameters-->

<fitnessParameters value="1"/>

<!--maximumFitness value="100"/>

<invalidateFitnessAfterGeneration value="false"/>

<!--elitism parameters-->

<eliteSize value="3"/>

<maximumAge value="10"/>

<!--termination conditions-->

<!--maximumFitness value="100"/-->

<maximumGenerations value="100"/>

<maximumSteadyStateGenerations value="20"/>

<maximumEvaluations value="1000"/>

<!--diversity parameters-->

<cloneScalingFactor value="0"/>

<selection type="tournamentWithFitnessHole" tau="2"

tauMin="1" tauMax="3" fitnessHole="0.3" />

<inertia value="0.9"/>

<sigma value="0.9"/>

<constraints value="constraints.xml"/>

In the second part of the population settings file the activation probabilities for
every genetic operator exploited in the current experiment are presented. In order

48 5 Performing an evolutionary run

to activate or deactivate every genetic operator, it is necessary to state its reference
name, its initial weight, as well as the maximum and minimum values describing
the excursion range for the operator.

The following lines of the population.settings.xml file describe the acti-
vated operators of the current experiment.

<operatorsStatistics>

<operator ref="onePointSafeCrossover">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="onePointSafeSimpleCrossover">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="twoPointSafeSimpleCrossover">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="singleParameterAlterationMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="insertionMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="removalMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="replacementMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="alterationMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="subGraphInsertionMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="subGraphRemovalMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="scanMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="subGraphReplacementMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="randomWalkMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

5.4 Library of Constraints 49

<operator ref="localScanMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

</operatorsStatistics>

The third and final part of the population.settings.xml file states the pa-
rameters related to the external evaluator as described in the following:

• Evaluator path name herein the name and path name of the external evaluator
are determined. In the present example, the evaluator program is called RPFeval-
uator.

• Evaluator input name this parameter states the format of the file name of the
individuals produced by the μGP. The produced file is a text file that is provided
by the μGP to the external evaluator following the indications stipulated by the
user. In this case, the individuals are named robot.input.

• Evaluator output name at the end of the evaluation process, the external evaluator
provides to the μGP the fitness value or values in a text file which name is defined
trough this parameter.

• Concurrent evaluations indicates the number of parallel evaluations to be per-
formed at every time. In the robot pathfinder example, 50 parallel evaluations are
allowed.

• Remove temporary files if this parameter is true, the temporary files produced
by the μGP are canceled at the end of every generation. Otherwise, these files
remain in the current directory.

The following lines conclude the population.settings.xml file showing the
configuration of the evaluator related parameters.

<evaluation>

<evaluatorPathName value="RPFevaluator" />

<evaluatorInputPathName value="robot.input" />

<evaluatorOutputPathName value="fitness.output" />

<concurrentEvaluations value="50" />

<removeTempFiles value="true" />

</evaluation>

</parameters>

5.4 Library of Constraints

Individuals are generated by the μGP following the directions described by the user
in the file containing the constraint library. The constraint library defines the indi-
vidual structure as well as the available content for describing every individual.

The constraint library is hierarchically described in three different levels corre-
sponding to sections that contain subsections, and every subsection is composed of

50 5 Performing an evolutionary run

macros. At every level at least one of the sub components must be present. Addi-
tionally and independently from the hierarchy structure, every constraint library can
define a series of data types customized for the specific experiment. For more details
about the constraint library, please consider the chapter 9.

In the following we describe the defined constraint library for the robot
path finder experiment. For this experiment, this configuration file is called
constraints.xml. The following lines represent the general structure of the con-
sidered constraint library:

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl"

href="constraintsScripted.xslt"?>

<constraints id="constraints-example"

xmlns="http://www.cad.polito.it/ugp3/schemas/constraints"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.cad.polito.it/ugp3/schemas/constraints

http://www.cad.polito.it/ugp3/schemas/constraints.xsd">

<prologue id="prologue-example">

<epilogue id="epilogue-example">

<commentFormat>#<value /></commentFormat>

<labelFormat><value />: </labelFormat>

<identifierFormat><value /></identifierFormat>

<uniqueTagFormat><value /></uniqueTagFormat>

<sections>

</constraints>

The initial part of the file contains some directions regarding the xml file and
provide the id of the current library of constraints, called constraint-example. Then,
it is possible to note the initialization lines for the rest of the main components com-
posing the file, i.e. prologue, epilogue, and sections. In the presented lines, a general
view is reported, thus, only the headers for every element of the file are shown, the
rest of the information is hidden. In the middle of the presented lines, some syntax
particularities are defined, for instance, it is possible to define the format required
to comment lines, or the desired format for labels, etc. In this example, the sym-
bol # defines the commented lines, while labels must be finished with the colon (:)
punctuation mark.

Once the constraint file is named and initialized, the general prologue is defined:

<prologue id="main-prologue">

<expression>

#this is the generale prologue for the

#robot path finder experiment

</expression>

</prologue>

5.4 Library of Constraints 51

In the presented lines, the prologue for the described experiment only defines
some comments. Clearly, more relevant information can be placed here; in fact, it
is usually required that individuals must be initialized with some special lines that
define initial conditions to comply with the experiment.

In the same way, the general epilogue is defined introducing only a final com-
mented line.

<epilogue id="main-epilogue">

<expression>

#The end

</expression>

</epilogue>

Sections in the constraints.xml configuration file start with the same name
tag. Every section is named with an identifier, and once again, it is possible to define
a specially devised prologue and epilogue. in the following lines, the main section
is called section-example, and in this case no prologue neither epilogue are defined.

<sections>

<section id="section-example"

prologueEpilogueCompulsory="true">

<prologue id="prologue-example">

<expression></expression>

</prologue>

<epilogue id="epilogue-example">

<expression></expression>

</epilogue>

At this point of the elaboration of the constraints.xml file, the set of subSec-
tions is defined. in the robot path finder experiment, only one subsection is defined.
As the reader can notice, this subsection is called main and it is mandatory that it
appears once. Again, prologue and epilogue are negligible for the correctness of the
experiment.

<subSections>

<subSection id="main" maxOccurs="1" minOccurs="1"

maxReferences="0">

<prologue id="stringPrologue"/>

<epilogue id="stringEpilogue"/>

<macros maxOccurs="50" minOccurs="2" averageOccurs="8"

sigma="5">

At this point of the constraints file the most internal parts of the hierarchical
scheme, the macros, are defined. The first line regarding macros supplies the guide-
lines for statistical distribution of the number of macros present in every individual.
In the constraint library, it is possible to define a range including lower and upper
bounds, as well as an average. The final parameter of this line, sigma, defines the
standard deviation for the distribution of macros in every individual.

52 5 Performing an evolutionary run

Now, it is time to formally define macros. In the introduction of the robot
pathfinder experiment, it was stated that the robot can perform two kind of move-
ments: rotate and movement. Thus, two macros are defined describing both available
actions.

<macro id="MV_rotate" weight="1">

<expression><param ref="ROTATION"/> <param ref="IMM"/>

</expression>

<parameters>

<item xsi:type="constant" name="ROTATION" >

<value>rotate</value>

</item>

<!--Rotation expressed in radiant -->

<item name="IMM" xsi:type="float"

minimum="-3.14159265358979323846"

maximum="3.14159265358979323846" />

</parameters>

</macro>

The first macro, called MV rotate, contains two parameters, the first one is called
ROTATION, and defines a constant name rotate, the second parameter, called IMM,
defines the rotation value expressed as a real number in radiant that ranges from -π
to π .

The second kind of movement, described in the following lines, regards real dis-
placement performed by the robot. It is named MV displacement and contains also
two parameters MOV and IMM. As in the previous example, the first one acquires
a constant name move, whereas the second one is a real value that ranges from 0 to
40.

<macro id="MV_displacement" weight="2">

<expression><param ref="MOV"/> <param ref="IMM"/>

</expression>

<parameters>

<item xsi:type="constant" name="MOV" >

<value>move</value>

</item>

<!--Move by a minimum of 0 to a maximum of 40 -->

<item name="IMM" xsi:type="float"

minimum="0.0" maximum="40" />

</parameters>

</macro>

</macros>

</subSection>

</subSections>

</section>

</sections>

</constraints>

It is interesting to note that the user can define for every macro a probabilistic
weight, that determines the number of occurrences of the considered macro in every

5.5 Launching the experiment 53

individual. In the presented case, real displacements described by the second macro
(MV displacement), must be present twice the rotation ones.

The final lines presented before, encode the final part of the constraints.xml
file.

5.5 Launching the experiment

Once the configuration files are done, the user can launch the first experiment by
typing in the command line:

ugp3

Before the evolution starts, the initialization banner of μGP is displayed showing
some standard information. In the lines presented in the next, the tool version is
presented, as well as some information about copyrights. Then, the evolutionary
run starts acquiring the necessary information from the configuration files prepared
before. First of all, the available genetic operators are registered, then the population
or populations are created by reading information by the population file.

ugp3 (MicroGP++) v3.1.2 "Bluebell"

Yet another multi-purpose extensible self-adaptive evolutionary algorithm

Copyright (c) 2002-2009 Giovanni Squillero <giovanni.squillero@polito.it>

This is free software, and you are welcome to redistribute it under certain

conditions (use option "--license" for details)

[07:54:31] Registering genetic operators

[07:54:31] Setting up the evolutionary algorithm ...

[07:54:31] Adding population 0 "name_population1" (population.settings.xml)

[07:54:31] Creating 20 individuals [####################################] 100%

[07:54:31] Evaluating individuals [#####################################] 100%

[07:54:31] Starting evolution.

[07:54:31] Population "name_population1" generation 1

[07:54:31] Generating offspring [#######################################] 100%

[07:54:31] Evaluating individuals [#####################################] 100%

[07:54:31] Generation 1 -- Changing activation % of genetic operators...

[07:54:31] WARNING:: Failure rate for operator scanMutation was 100%

[07:54:31] WARNING:: Failure rate for operator localScanMutation was 100%

[07:54:31] Generation: 1 -- Now changing the self-adapting parameters...

[07:54:32] Evaluating entropy [###] 100%

[07:54:32] Current global entropy: 7.22058

[07:54:32] Individual age (average): 1; size (average): 14.2; Fitness

(average): 0.173591

[07:54:32] Fitness (best): "F2" {0.194231}

[07:54:32] Fitness (worst): "AL" {0.154251}

[07:54:32] Sigma: 0.9; Tau: 1.95

[07:54:32] Population "name_population1" generation 2

[07:54:32] Generating offspring [#######################################] 100%

[07:54:32] Evaluating individuals [#############################] 80%

Once the very first random population is created, counting in this case ν (20)
individuals, the evolutionary tool asks the external evaluator to evaluate every one,

54 5 Performing an evolutionary run

and then, the evolution starts following the indications contained in the configuration
files. In the lines presented before, it is possible to notice some relevant information
regarding the status of the evolution, for example, the step or generation number
reached, the genetic operators failure rate, the individual identification and fitness
value obtained by the best and the worst individuals.

The following lines describe the individual called robotF2.input ranked as the
best individual at the end of the first generation.

#this is the generale prologue for the

#robot path finder experiment

rotate 2.54311086748917

rotate -1.73247932705242

move 16.7230879423961

move 2.16414657770699

#The end

On the other hand, the next lines show the worst individual obtained up to the
same generation. As it can be noted this individual is called robotAL.input.

#this is the generale prologue for the

#robot path finder experiment

move 33.4154139988904

move 35.580956241178

move 15.4130572700451

move 23.5098101825791

move 16.7230879423961

move 13.7893260744299

move 26.4508534954332

move 20.5247237689387

rotate -0.170329881677345

#The end

After a while, the evolution is premature terminated since the maximum number
of evaluations is reached. The best individual obtained up to this point is depicted
in figure 5.4. As the reader can notice, this individual is able to reach one of the
local maximum present in the search space; in fact, the considered individual stops
near the second obstacle, directly behind the goal point. However, results must be
improved.

In a second run, evolution parameters were tweaked, augmenting some of their
initial values, such as the size of the initial population, the maximum number of
evaluations as well as the number of generations available for this experiment. As a
result the new best individual reached a point in the neighborhood of the goal point.
Figure 5.5 shows the individual performance obtained in this run.

5.6 μGP Extractor 55

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

path
obstacle 1
obstacle 2

Fig. 5.4 Local optimum

-20

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

path
obstacle 1
obstacle 2

Fig. 5.5 Best individual

5.6 μGP Extractor

At the end of the evolution, the user can obtain the best individual evolved during
the experiment by using an extraction tool included in the μGP distribution. The
extractor tool, called ugp3-extractor, receives as input the name of the status file

56 5 Performing an evolutionary run

generated by μGP during the run of the considered experiment in order to save in
an output file the best individual obtained during the whole run.

After the second run of the considered experiment, the user can use the following
command to extract the best individual. The μGP extractor tool first acquires nec-
essary information from the status file, and then, the individual is written in a file
called individualXX, where XX is the ID given to the best individual.
ugp3-extractor status.xml

This action extracts two main components:

• Best Individual called individualXX

• Fitness Value The fitness obtained by the best individual. This file is named
ugp3-extractor.fitness

Chapter 6

Command line syntax

When all else fails, read the instructions.
Cann’s Axiom

The μGP is meant to be used either as a stand-alone application or as an embedded
tool, inside scripts or even called by other applications. It has to be portable across
different hardware and OS platforms. To obtain the maximum possible flexibility
and portablity the tool is run using a traditional command line.

The behavior of μGP is controlled by a large number of parameters and switches,
as seen in chapters 7, 8 and 9. Only a subset of all these switches are available on
the command line.

The user is expected to provide command-line options only to perform a few high
level tasks, mostly without tuning the evolution process itself.

The simplest of these is getting information about the program itself and its us-
age. Other command-line switches control the amount of information that the pro-
gram provides the user during execution, or allow generating log files for later anal-
ysis. Furthermore, the user may choose to control some details about how fitness
evaluation is performed, about how one or more previously existing populations are
recovered, and finally about how evolution is started and its statistics are reported.

The user should not try to fine-tune the evolution process from the command line,
but instead he should edit the population settings file, as detailed in chapter 8. That
file contains tens of parameters, and it would be very easy to overlook one or more
of them, noticing the mistake only when it is too late and having to repeat the run.

If any switch is provided on the command line, it overrides the corresponding
setting from the configuration file.

The first task to be described is one of the most common: starting an evolutionary
run.

6.1 Starting a run

The executable for μGP is named ugp3. In the following it will be assumed that
the environment is set up so that the ugp3 executable is on the search path of the
system.

57E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_6, © Springer Science+Business Media, LLC 2011

58 6 Command line syntax

The simplest way to run the tool is without any parameter:

ugp3

The tool will automatically search for a settings file, named ugp3.settings.xml
in the current directory, and look inside that file for all parameters.

If the settings file is named differently, this must be specified in the command
line using the --settingsFile switch as follows:

ugp3 --settingsFile settings file name

μGP will report an error if it cannot find the file or if the file syntax is not correct.
Full details on generating and modifying the settings file are contained in

chapter 7.

6.2 Controlling messages to the user

The μGP constantly reports the progress of an evolutionary run to the user through
informational messages on the standard output (DOS shell, Linux terminal, console
or equivalent). The user can control the amount of information provided using one
of several switches. These are:

• --debug

• --verbose

• --info

• --warning

• --error

• --silent

Information generated using every switch is a subset of that provided using the
previous one. So, for example, using the --info switch the user will also see warn-
ings and errors.

--debug causes the most information to be output. As the name suggests, it is
used mainly to isolate possible bugs and errors in the code, and is not recommended
for normal usage. Since informational messages are generated for almost every op-
eration performed internally, this switch causes the generation of very large logs,
and may have a significant an impact on performance. This switch works only if the
tool has been compiled using the DEBUG option.

--verbose causes informational messages to be generated for many details of
the evolutionary process. The tool will report details about the genetic operators
used to generate every new individual, about fitness evaluation, about parameter
self adaptation, and about saving of the dump files.

--info makes information to be generated for the same activities, but with less
detail. Every new individual generated will be reported about, its fitness value will

6.4 Controlling logging 59

be shown, and some information about the genetic operator used to obtain it will
appear. This is the default informational level.

--warning makes information to be generated only when unusual conditions
are detected, that may point to errors in the constraints or in the parameters.

--error causes only unrecoverable errors to be reported. An error report usually
immediately precedes program termination.

Finally, --silent suppresses every message from the tool. Usage of this switch
is only recommended when μGP is used inside a script or is called by another pro-
gram, in those cases where its output may interfere with correct operation, or when
the output from μGP would anyway be invisible.

6.3 Getting help and information

The μGP can provide information about itself or about its usage. The available
options are listed below:

• --version

• --license

• --help

• --moreHelp

The simplest option in this respect is --version, that just makes the program
display its complete version information (major version, minor version, revision).

--license, instead, causes the display of the license information for the pro-
gram. The μGP executable is currently distributed under the GNU General Public
License.

The --help switch, used alone, makes a summary of all command-line options
be displayed, without further explanation.

The --help option can be followed by the name of one other option, without the
leading --. In this case specific help is displayed for that option.

Finally, --moreHelp will provide the user with some explanation about the evo-
lutionary parameters, the statistics collected and the current developers of the tool.

All these options cause the program to terminate immediately after displaying
information. Only one of these options can be used at a time.

6.4 Controlling logging

The μGP can be configured to log information about the evolutionary process. This
information can be output directly to the console, or saved in one or more files,
according to the settings file.

60 6 Command line syntax

In addition to this, the user can specify additional log files from the command
line. The syntax to do it is the following:

ugp3 --log filename level format

In this context filename is any valid name for the desired log file. Level can be
any one of silent, error, warning, info, verbose, debug, exactly as described
above, but without the leading --. Finally, format can be brief, extended, plain
or xml.

The brief format is the default. Every message is preceded by a simple times-
tamp, by the indication of the message level if it is not info.

The extended format causes every message to be preceded by a full timestamp
(date and time, instead of only time), by the name of the function, the file and line
of the program that generates the message, and by the message level.

The plain format makes every message be output without any additional indi-
cation.

Finally, the xml format causes messages to be generated using the same infor-
mation as the extended format, but included in XML tags. In this way it will be
possible to browse the log file using widely available tools.

It is possible to specify more than one --log option on the same command line.
Every one should be followed by the file name, level and format.

6.5 Controlling recovery

μGP can recover a previously saved algorithm state. The user can specify the file
that contains the saved state with the --recoveryInput option:

--recoveryInput filename

μGP will then read the state of the algorithm from the specified file, and save
every new state to it. This option should only be used once. If that state should be
preserved, for instance because several different runs will be started from the same
state changing some settings, the state can be saved to a different file, using:

--recoveryOutput filename

Finally, the user may decide to discard the already computed fitness val-
ues, or to keep them saving some evaluations. This is done using the
--recoveryDiscardFitness switch:

--recoveryDiscardFitness {true|false}

6.6 Controlling evolution 61

When the option specified is true all fitness values are discarded and the indi-
viduals are evaluated again, when it is false the fitness values are kept. The default
behavior is to discard the fitness values.

6.6 Controlling evolution

It is possible to control some parameters and perform a few high-level operations
pertaining to evolution. When the μGP starts it reads a number of parameters from
its settings file. It also reads a recovery file, if it is specified either in the settings or
on the command line.

The settings file and the recovery file also contain a seed for the random number
generator. This seed can be changed using:

--randomSeed number

This can be useful to repeat an evolutionary process several times starting from
the same state, discovering whether it is sensitive to the actual random sequence
generated.

The user can specify a file name where the statistics for the run are saved with
the switch:

--statisticsPathName filename

The file for the statistics is not the same as the file where the algorithm state is
saved, nor the same as any log file. The statistics file only contains some summary
information for every evolutionary step, not the complete state or any informational
message.

The μGP can evolve several populations concurrently, even with different con-
straints. The --population switch is used to specify the contraints for every pop-
ulation. Its syntax is:

--population constraints name

It should be noted that this option is different from --recoveryInput, in that
the latter specifies a complete algorithm state, whereas the former only specifies
the constraints for a population. The --population option can be used more than
once. The μGP will instantiate a new empty population for every such option.

Lastly, two or more populations can be merged together before beginning an evo-
lutionary process. This could be useful as the final phase of an evolutionary process
performed in an island configuration. The syntax for this operation is:

--merge destination population number source population number

62 6 Command line syntax

Populations are numbered starting from zero up to one less than the total num-
ber of populations, in the same order as they have been initially created (using the
--population option). To merge two populations together they have to be speci-
fied using their associated number. For instance, to merge population number 3 and
number 0, leaving the resulting population in place 0, this sintax should be used:

--merge 0 3

This option may be used more than once. A single merge will occur for every
use of the switch. Currently no syntax is available to specify the action “merge
every population in a single one”.

6.7 Controlling evaluation

The user can specify some details of fitness evaluation when starting a run. First of
all, he may specify the name of the fitness evaluator:

--evaluatorPathName evaluator name

This name will override the name (if any) specified in the population parameters
file. Indeed, one of the possible reasons to restart an evolutionary process is to re-
place an approximate fitness evaluator with a more accurate one, once a satisfying
population has been obtained using the first one. It should be noted that this name
can be a relative or absolute (full) path name.

The names of the individual phenotypes can be changed using:

--evaluatorInputPathName individual name

The individual name is the base name of the generated individuals, as expected
by the evaluator. More information on this topic can be found in chapter 10.

Also the name of the corresponding fitness file can be specified on the command
line:

--evaluatorOutputPathName fitness name

This name should be the same as the name of the fitness file generated by the
evaluator. It should be noted that this name is not currently passed by the ugp3

executable to the evaluator, so it is the user’s responsibility to ensure that the two
names are coherent. More information on this topic can be found in chapter 10.

The μGP can generate phenotypes for several individuals at a time, in order to
have them evaluated concurrently. The maximum number of individuals generated
at any given time can be specified using the --concurrentEvaluations option:

6.7 Controlling evaluation 63

--concurrentEvaluations n

In this context n is an integer number, and is the number of individuals that the
evaluator is expected to handle concurrently. More information on this topic can be
found in chapter 10.

Finally, the user may decide to keep or remove the phenotypes of the generated
individuals. This can be done using:

--removeTempFiles {true|false}

The default is to remove the files, but they may be kept for further elaboration.
Using true the files will be removed, otherwise using false they will be kept. It
should be noted that keeping all the generated phenotypes may cause a large disk
occupation, and may even significantly slow down the system, due to the excessive
number of files in a single directory.

Chapter 7

Syntax of the settings file

Do not assume that order and stability are always good, in a
society or in a universe.

Philip K. Dick

Many of the options that the μGP recognizes on the command line are also available
in the settings file. This file contains general settings for the evolutionary tool. The
parameters specified in this file relate to the general architecture of the evolutionary
run, such as the number and type of populations to evolve, and more administrative
aspects, like the optins for evolution recovery or for logging.

In the following the syntax of the settings file is outlined.
The settings file always starts with the following line, that specifies the XML

document type.

<?xml version="1.0" encoding="utf-8" ?>

The settings file contains a single XML element named settings.

<settings>

...

</settings>

Every possible setting belongs to a context, indicated by a context element.

<context name="context name">
...

</context>

Contexts are distinguished by their name, indicated by the name attribute. Differ-
ent contexts contain settings related to different categories.

Every setting, with one exception, is contained in an option element.

<option name="option name" value="option value"
type="option type"/>

65E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_7, © Springer Science+Business Media, LLC 2011

66 7 Syntax of the settings file

The reader is warned that, even though in the text the option element is written
on multiple lines for reasons of space, it should be left on one line in the settings
file.

The option name indicates the setting being targeted. Every setting has a different
name. The general rule is that each name is equal to the corresponding command
line option.

The option type indicates the type of the option value. Currently only the types
string, integer and boolean are supported. Additionally, every option should
be set using the appropriate type. For example, a numeric option should be specified
using an integer format, and with the integer type.

string indicates that the option value is expressed as an alphanumeric string.
Limitations about the usable character set may exist depending on the operating
system and the compiler used. The user is advised to refer to the relevant manuals.
The most restrictive set of rules may apply.

integer indicates that the option value is expressed as an integer number. The
number should be written in base ten and should be included in the numeric range
spanned by the C type long int. For more information the user could refer to the
compiler manual.

boolean indicates that the option value is expressed with either the true or the
false constant.

7.1 Controlling evolution

Settings for controlling the evolution are contained in the evolution context.

<context name="evolution">

...

</context>

These settings affect all populations in the evolutionary run. Settings that only
affect a single population are specified in the population settings file, detailed in
chapter 8.

The first option sets the random seed, and is named randomSeed. The value of
the random seed should be expressed as an integer number. If the random seed is
not specified, a default value, that depends on the system time, is used.

<option name="randomSeed" value="seed value"
type="integer"/>

The statisticsPathName option determines the name of the file where the vo-
lution statistics will be saved. The name should be expressed as a string, following
any additional rule that the file system dictates. The file is generated in XML format,
so, where a file extension is used, “.xml” is advised. If no statistics file is specified,

7.1 Controlling evolution 67

a file named “statistics.xml” is written in the current directory.

<option name="statisticsPathName" value="statistics file name"
type="string"/>

The only one option that is expressed differently from the others is populations.
It is contained in an option element that contains one or more population ele-
ments.

<option name="populations">

<population name="population name"
value="population settings file name"/>

...

</option>

The populations option does not have a value or a type. Every population

element has a name, used to label the corresponding population, and a value, that
indicates the settings file for that population. The population name is not used in the
evolutionary core, and should only be seen as a convenient reminder.

If the populations option is not specified, the default is to define two popu-
lations, named “population1” and “population2”, and associate them with the files
“population.settings.xml” and “population2.settings.xml” in the current directory.

If the populations should be read and restored from a previously saved status file
the option should be used and left empty. More details about status recovery are
provided in section 7.3.

Finally, the merge option allows uniting two or more populations in a single one.

<option name="merge" value="merge sequence" type="string"/>

The merge sequence is expressed as a list of number pairs, separated by semi-
colons. Every pair is of the form destination population merged population. Its
meaning is that the merged population is entirely added to the destination popu-
lation, disappearing from the list of populations. Populations are numbered starting
from 0.

For example, the merge sequence

0 1; 2 3

specifies that the second population should be merged into the first, and after that
the fourth population should be merged into the third. It is worth noting that after
the first operation the population list changes, so the second merge does not take
place between the original third and fourth population, but between the populations
that the tools finds at the third and fourth place after deleting the second.

Only populations referring to the same constraints library should be merged. A
population cannot be merged with itself.

68 7 Syntax of the settings file

If the merge option is not specified, the default is not to merge any population.

7.2 Controlling logging

Logging is controlled by options specified in the logging context.

<context name="logging">

...

</context>

Every option in this context specifies a logging file, or, better, a logging stream.

<option name="logging stream" value="level; format"
type="string"/>

The logging stream can be a valid file name for the operating system, or one of
the C++ identifiers std::cout and std::cerr. In the first case the log is written to
the specified file, in the latter two it is piped on the system standard output (usually
the application console) or standard error.

The option value is composed by level and format, separated by a semicolon.
These two parts specify respectively the information level of the logging stream and
the format of every message output.

The information level can be one of error, warning, info, verbose, debug.
The use of error causes only error messages to be output. warning causes also in-
formation about unusual or possibly erroneous conditions to be output. info makes
additional information be output, such as the label, fitness of every individual, and
the genetic operator used to generate it. verbose makes also information be out-
put for many details of the evolutionary process. Finally, debug causes the greatest
amount of information to be output, detailing most of the internal elementary oper-
ations of the tool.

The debug information level only works if the tool has been compiled using the
DEBUG option.

The message format can be specified as brief, extended, plain or xml. With
brief every message is prepended with a simple timestamp, omitting the date, and
an indication of the message level if it is not info. With extended every message
is prepended with a full timestamp, inclusive of date and time, the name of the
function, file and line that generates the message, and an indication of the level.
With plain every message is output without additional information. With xml all
messages are putput as XML elements, containing the same information as the
extended message format.

Every logging stream can be specified with different information levels and mes-
sage formats, tuning the information recoverable from each one.

7.3 Controlling recovery 69

If no logging stream is specified the default is to output information at the info
level with a brief format on the system standard output, a second stream at the
verbose level with brief format on a file called “verbose.log” in the current di-
rectory, and a debug stream at the debug level with brief format on a file named
“debug.log” in the current directory.

7.3 Controlling recovery

Status recovery is controlled by options specified in the recovery context.

<context name="recovery">

...

</context>

Options in this context affect the way in which the state of the evolutionary run
is saved at the end of each generation, and the way it is recovered at the beginning
of a new run.

The location of the file containing the evolution status can be set using the
recoveryOutput option.

<option name="recoveryOutput" value="status file name"
type="string"/>

The status file name should be a valid file name for the operating system. On
systems that support them, the recommended file extension is “.xml”. If this option
is not specified by default the status is saved to a file named “status.xml” in the
current directory.

The recoveryOverwriteOutput option determines whether the status file is
overwritten or saved to a different file every time.

<option name="recoveryOverwriteOutput"

value="{true|false}" type="boolean"/>

If the option value is true the status is saved to the file as specified with the
recoveryOutput option. If the option value is false then a new file is written for
every generation.

In the latter case the file name is obtained from the one specified, appending an
indication of the evolutionary generation and of the time at which it is saved, as
follows:

status file name“.step(”generation“).time(”timestamp“)”extension

70 7 Syntax of the settings file

The generation value is an integer number starting from zero. The timestamp is
of the form YYYY-MM-DD,hh-mm-ss, where YYYY is the year in 4-digit format, MM
is the month, from 1 (corresponding to January) to 12 (corresponding to December),
DD is the day of the month, hh is the hour in 24-hour format, mm is the minute and
ss is the second.

The file extension, if specified, is detected and kept at the end of the
name. So, for example, if “status.xml” is the name specified, a possible file is
“status.step(15).time(2010-6-21,15-33-54).xml”.

The recoveryInput option specifies that the evolution status should be restored
from a previously saved file, rather than generated from scratch.

<option name="recoveryInput" value="status file name"
type="string"/>

The status file name should be the name of an already existing status file. If this
option is not specified no file is read, and the populations are generated from scratch
as specified inside the populations option.

The recoveryDiscardFitness option determines whether the fitness values
saved along with the individuals are used as they are or have to be recomputed.

<option name="recoveryDiscardFitness"

value="{true|false}" type="boolean"/>

If true is specified the fitnes values are discarded and recomputed as the first
step, otherwise they are kept. Fitness values should be discarded if the fitness eval-
uator is changed in any way. The user may want to keep fitness values when their
computation is complex. The default is to discard fitness values.

Finally, recoveryInputPopulations specifies that one or more population
files will be read and merged with the first one.

<option name="recoveryInputPopulations"

value="population file name" type="string"/>

The population file name should be the name of an existing file that contains the
status of a population. It is worth reminding that this is not the same as a population
settings file. The default is not to merge additional populations.

Chapter 8

Syntax of the population parameters file

Stealing a Rhinoceros should not be attempted lightly.
Kehlog Albran

The parameters for every population in an evolutionary run can be set indepen-
dently from the others. In this way different experiments can be performed, making
changes local to a single file, without affecting global parameters. The user may
even want to prepare several different files specifying the population parameters,
and then switch between them by changing the settings, as described in chapter 7.

In the following the syntax for the population settings file is outlined.
The population settings file always starts with the following line, that specifies

the XML document type.

<?xml version="1.0" encoding="utf-8" ?>

All parameters are contained in XML elements, and the values of these parame-
ters are specified in one or more element attributes. Most parameters do not have a
valid default value if not specified.

8.1 Strategy parameters

The whole file is then composed of a single parameters element, which encloses
every other element. It is expressed as follows.

<parameters type="population type">
...

</parameters>

Currently the only options available for population type are enhanced and
multiObjective. There is no default. It is not currently possible to instance a
simple population.

71E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_8, © Springer Science+Business Media, LLC 2011

72 8 Syntax of the population parameters file

If the user wants to replicate the behavior of a simple population he can set the
other parameters to “neutral” values. This aspect is brought up where necessary in
the following.

8.1.1 Base parameters

The most basic parameters specify the population size and offspring.
The population size is specified by the mu parameter, as follows.

<mu value="number"/>

The number is written as an integer number and specifies the maximum number
of individuals allowed to survive at the end of a generation. There is no valid default
for this parameter.

The size of the offspring is indirectly specified by the lambda parameter.

<lambda value="number"/>

The specification is only indirect because the lambda parameter actualy sets the
number of genetic operators applied to a population in a generation. Different opera-
tors generate different numbers of descendants, and any operator may fail altogether.
There is only a loose correlation between the number specified as the value of the
lambda parameter and the actual offspring size. This size will vary from one gen-
eration to the next. It is currently not possible to replicate the behavior of a regular
GP.

The maximumGenerations element specifies the maximum number of genera-
tions the evolution may last.

<maximumGenerations value="number"/>

After the specified number of generations the evolution is stopped. The user
should remember, however, that the evolutionary process may end because a steady
state has been reached, or because the maximum fitness value has been obtained.

Every population is linked to a specific set of constraints that dictate the syntactic
appearance of its component individuals.

<constraints value="file name"/>

The specified file should contain the constraints for the individuals. The syntax
of the constraints file is detailed in chapter 9.

It is important to note that every population is allowed to contain individuals
whose constraints are different from those in other populations.

8.1 Strategy parameters 73

8.1.1.1 Parameters for fitness evaluation

The user has to specify a number of parameters for fitness evaluation in the pop-
ulation settings. Since every population may be composed of structurally different
individuals, for every population a set of fitness evaluation parameters must be spec-
ified.

A couple of parameters are contained in the main parameters element. These
are high-level parameters that thoroughly influence evaluation.

The number of values that compose the fitness of each individual is contained in
the fitnessParameters element.

<fitnessParameters value="number"/>

The number should be equal to the number of components of the fitness, exclud-
ing the comment. More information about the fitness composition is contained in
chapter 10.

μGP has the option of discarding the fitness values of all individuals in the popu-
lation after every generation, in order to support dynamic fitness. This is done using
the invalidateFitnessAfterGeneration element.

<invalidateFitnessAfterGeneration value="{0|n}"/>

If the element value is 0 then fitness values are preserved, otherwise they are
discarded at every generation, and the population is completely re-evaluated. The
default is to keep the fitness values.

The other evaluation parameters are included in a evaluation element.

<evaluation>

...

</evaluation>

The syntax for specifying the name of the fitness evaluator is

<evaluatorPathName value="evaluator name"/>

The name specified must correspond to an executable program or script that com-
plies with the requirements set forth in chapter 10. It should be noted that this name
can be a relative or absolute (full) path name.

The name of the individual phenotypes is the input path name for the evaluator.

<evaluatorInputPathName value="individual name"/>

The individual name is the base name of the generated individuals, as expected
by the evaluator. More information on this topic can be found in chapter 10.

74 8 Syntax of the population parameters file

The name of the corresponding fitness file is specified as the path name of the
evaluator output.

<evaluatorOutputPathName value="fitness name"/>

This name should be the same as the name of the fitness file generated by the
evaluator. It should be noted that this name is not currently passed by the ugp3

executable to the evaluator, so it is the user’s responsibility to ensure that the two
names are coherent. More information on this topic can be found in chapter 10.

An alternative syntax is available to specify the three parameters above, using the
files element.

<files script="name" input="name" output="name"/>

The three names correspond to the values of the three elements described above,
and should comply with the same requirements. The script attribute should corre-
spond to the value of the evaluatorPathName element, the input attribute should
be equal to the value of the evaluatorInputPathName element and the output

attribute should be the same as the value of evaluatorOutputPathName element.
The two syntaxes are mutually exclusive, and these three files should be specified in
only one way.

The μGP can generate phenotypes for several individuals at a time, in order to
have them evaluated concurrently. The maximum number of individuals generated
at any given time can be specified using the concurrentEvaluations element.

<concurrentEvaluations value="number"/>

The number specified should be integer, and is the number of individuals that the
evaluator is expected to handle concurrently. More information on this topic can be
found in chapter 10.

The user may decide to keep or remove the phenotypes of the generated individ-
uals. This can be done with the removeTempFiles element.

<removeTempFiles value="{true|false}"/>

The default is to remove the files, but they may be kept for further elaboration.
Using true the files will be removed, otherwise using false they will be kept. It
should be noted that keeping all the generated phenotypes may cause a large disk
occupation, and may even significantly slow down the system, due to the excessive
number of files in a single directory.

The μGP is able to set user-defined environment variables before calling the ex-
ternal evaluator. All variables, together with the desired values, are contained in the
environment element.

8.1 Strategy parameters 75

<environment>

<variable name="variable name" value="variable value">
...

</environment>

The variable name should be a valid identifier for the operating system μGP is
running on. The variable value should be expressed in a format that the external
evaluator is able to use. In addition, it may be subject to syntactic limitation by the
system. The user is recommended to refer to the operating system documentation
for further information.

8.1.2 Parameters for self adaptation

A series of parameters are self adapted during evolution. The rate of self adaptation
is determined by the inertia element.

<inertia value="number"/>

The number should be real and lie in the interval [0. . . 1]. If the inertia value lies
outside of the specified interval the behavior of the tool is undefined. If the inertia is
not specified a default value of 0 is used.

The initial strength of the mutation operators is determined by the sigma ele-
ment.

<sigma value="probability"/>

The probability should be a real number in the interval [0. . . 1].

8.1.2.1 Tournament selection

The tournament selection is controlled using the selection element. It has four or
five attributes, depending on the type of tournement selection chosen.

<selection type="tournament type" tau="initial" tauMin="minimum"

tauMax="maximum" fitnessHole="probability"/>

The tournament type determines the way in which tournament selection is done.
The user can choose between a regular tournament selection or a tournament selec-
tion with fitness hole.

Regular tournament selection is selected with tournament as the selection type.
Regular tournament selection is based purely on fitness values.

76 8 Syntax of the population parameters file

With tournamentWithFitnessHole the user can choose tournament selection
with fitness hole. With a probability equal to the fitness hole the tool does not select
individuals for reproduction based on their fitness, but on a criterion that depends
on the population type. Currently the alternative criterion is the contribution of the
individual to the total entropy. More information on the topic is contained in chapter
4.

The initial size of the tournament size is specified with the tau attribute. The
value of this attribute should be a real number between the minimum and the maxi-
mum, including the extremes.

The minimum size of the tournament is set using the tauMin attribute. The min-
imum should be a real number greater than or equal to 1.

The maximum size is set with the tauMax attribute. The maximum should be a
real number greater than or equal to minimum. There is no conceptual upper limit for
the maximum. A very high value for tauMax implies a great probability of always
selecting the best individual for reproduction. The user is warned that a very large
maximum may reduce the performance of the tool.

If and only if the tournament type is tournamentWithFitnessHole, the fifth
attribute should be defined. The probability should be a real number in the interval
[0. . . 1]. When probability is 0 the tournament selection is performed without any
fitness hole, whereas when probability is 1 the selection is done entirely using the
alternate criterion, regardless of the fitness.

If the selection element is not specified the default behavior is to use a regular
tournament selection with minimum, maximum and initial size equal to 1. This is
equivalent to no tournament selection at all.

8.1.2.2 Evolutionary activation probabilities

Every genetic operator can be used with a certain probability. All parameters regard-
ing operator probabilities are contained in an operatorsStatistics element.

<operatorsStatistics>

...

</operatorsStatistics>

For each genetic operator, an operator element has to be specified. The proba-
bility of every operator can be adapted between a minimum and a maximum. How-
ever, exactly specifying the probabilities would be impractical and error-prone.

If the user wanted to activate a previously unused operator, or to exclude one,
he would have to recompute all probabilities. The sum of all minimum probabilities
should be less than 1, and the sum of all maximum probablities should be more.
This would make the meaning of those minimum and maximum probabilities less
than clear. Furthermore, the initial probabilities should sum up to 1, but this may not
happen because of rounding.

8.1 Strategy parameters 77

Because of these problems, the probabilities are not expressed directly. Instead,
every operator is associated with a set of weights. The tool reads the weights and
normalizes them, obtaining the probabilities. In this way operators can be activated
and deactivated without particular effort. This method also has the added advantage
of making very clear the ratio of operator probabilities.

Operator weights are set in a weight element inside the operator element.

<operator ref="operator name">
<weight current="initial" minimum="minimum"

maximum="maximum"/>

</operator>

The initial, minimum and maximum values should be real numbers greater than
or equal to 0. The minimum should be less than or equal to the maximum, and the
initial value should be between the two.

Due to the details of the self adaptation process, if the activation probability of an
operator drops to zero it will never be used again in the same run. If the user wants
to avoid this he could use a very small but non zero minimum weight.

The operator name can be one of the following:

alterationMutation

singleParameterAlterationMutation

insertionMutation

removalMutation

replacementMutation

scanMutation

localScanMutation

randomWalkMutation

onePointSafeCrossover

onePointSafeSimpleCrossover

twoPointSafeSimpleCrossover

subGraphInsertionMutation

subGraphRemovalMutation

subGraphReplacementMutation

Other operators may be added by the user. More information is provided in chap-
ter 11.

If an operator is not specified using the operator element, all its weights are set
to 0 by default.

78 8 Syntax of the population parameters file

8.1.3 Other parameters

In regular operation individuals are kept in the population as long as their fitness
is not too poor. To favor diversity, a maximum age may be set for the individuals.
After the specified number of generations they are discarded from the population.
This behavior is determined using the maximumAge element.

<maximumAge value="number"/>

The number corresponds to the maximum number of generations an individual
is kept in the population. It should be an integer greater than 0 or the special value
infinity. A value of 1 corresponds to a generational approach, in which the pop-
ulation is entirely replaced at every generation. A value equal to the value of the
maximumGenerations element corresponds to a steady state approach. The user
may want to use a greater value to be able to prolong an evolutionary run preserving
the steady state behavior.

Together with a maximum age for the individuals the user can specify that a cer-
tain number of individuals starting from the best one, do not increase their age with
each generation. This is done using the eliteSize element.

<eliteSize value="number"/>

The number should be an integer greater than or equal to 0, or the special value
infinity. If an individual is pushed out of the elite, because new better individuals
are generated, it begins aging. If the elite size is not specified the default is to keep
no elite.

To further preserve diversity, individuals that are identical to other existing in-
dividuals, or so called clones, can get their fitness scaled by a constant value with
respect to the last clone preceding them in the population. The scaling factor is spec-
ified using the cloneScalingFactor element.

<cloneScalingFactor value="number"/>

The number should be a real number in the range [0. . . 1]. If the scaling factor
is 0 clones are automatically discarded from the population. Using 1 corresponds
to no scaling, meaning that clones can fill the population. It is worth noting that
if the clone scaling is used fitness values should not be negative, or a scaled clone
may appear to be better than its original copy. In particular, if the population type
is enhanced, at least the first fitness value should be positive, and if the population
type is multi-objective all fitness values should be positive.

The user may not want to continue evolution after a suitable solution to his prob-
lem is found. Evolution can be interrupted at that point using the maximumFitness
element.

8.1 Strategy parameters 79

<maximumFitness value="number sequence"/>

The number sequence should be a sequence of real numbers separated by spaces.
The number of terms in the number sequence should be equal to the number of
fitness values as specified in the fitnessParameters element. For an enhanced
population evolution is stopped when the fitness values of the best individual are
all greater than or equal to the specified values. For a multi-objective population
evolution is stopped when the fitness values of at least one individual are all greater
than or equal to the specified values. The default is to disregard fitness values as a
termination criterion.

Finally, the user may want to stop evolution if it is not progressing, even if the
problem is not solved in a satisfactory way.

The maximumSteadyStateGenerations element specifies the maximum num-
ber of generations accepted during which no progress in the best fitness is found.
After that period the evolution is stopped.

<maximumSteadyStateGenerations value="number"/>

The number should be an integer greater than 0. The default is to carry on with
evolution regardless of the fitness increases.

Chapter 9

Syntax of the external constraints file

It is easier for a camel to pass through the eye of a needle if it is
lightly greased.

Kehlog Albran

The μGP generates individuals following the indications of the constraint library.
The constraints not only limit the possible structure and content of an individual,
but also participate in the mapping of its genotype to a phenotype.

Constraints are external since they strictly depend on the problem approached,
and therefore are one of the most variable parts of the entire approach.

9.1 Purposes of the constraints

As seen in chapter 3, using the tagged graph representation an individual could as-
sume any possible structure that can be described by a collection of multigraphs.
Additionally, every vertex and every edge of each multigraph can contain an arbi-
trary sequence of symbols.

All this potential variety is necessary to preserve the generality of the tool. Any
arbitrary limitation in the base representation could make it impossible to apply the
approach to some class of problems. For instance, hypothesizing that the tool is used
to generate code of some kind, imposing that the base structure is that of a proper
graph instead of a multigraph would disallow making two syntactically different
references to a single location from the same instruction.

Conversely, without additional information the tool would have no way to gen-
erate the phenotype of the individuals. It could only produce an arbitrarily chosen
encoding of the internal representation, that would not in general resemble the de-
sired form of a candidate solution.

The constraints cover these three roles at the same time. They describe the pos-
sible structure of an individual, provide the allowed content for the elements of the
graph, and dictate the syntax of a candidate solution.

All together, the constraints define what is a valid individual. Any individual
that is not valid, or invalid, will be discarded immediately, without evaluating it or
allowing it to reproduce.

81E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_9, © Springer Science+Business Media, LLC 2011

82 9 Syntax of the external constraints file

The constraints library is provided to the tool in an XML file. This encoding
allows a minimal form of validation using standard tools. It also allows browsing
the constraints with widely available instruments, to perform a visual inspection.

The constraints always begin with the following lines, that specify the XML doc-
ument type.

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl"

href="http://www.cad.polito.it/ugp3/transforms/

constraintsScripted.xslt"?>

The reader should note that, although here they are written on successive lines
for space reasons, elements between angle brackets (“<” and “>”), and especially
elements between double quotes (“"”) may have to be written on one line. These
lines, through the specification of a XSLT file, also instruct a browser about how to
render the various elements of the library.

9.2 Organization of constraints and hierarchy

The constraints are divided in sections, each of which is composed of subsections,
in turn made up of macros. Every level in the hierarchy is in relation with a cor-
responding level of the representation, and works as a template for the elements at
that level.

Even if the individuals are represented through graphs, the constraints do not ac-
tually form a general graph, but a tree. The root of this tree is the constraints library
itself. The first level is composed by the sections, the second level by subsections
and the third level contains the macros.

The constraints are specified by an XML element named constraints.

<constraints

xmlns="http://www.cad.polito.it/ugp3/schemas/

constraints"

id="constraints name"
xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"

xsi:schemaLocation="http://www.cad.polito.it/ugp3/

schemas/constraints

http://www.cad.polito.it/ugp3/

schemas/constraints.xsd">

...

9.2 Organization of constraints and hierarchy 83

</constraints>

The name of the constraints, specified by the id attribute, should be unique
within an evolutionary run. Since it is possible to use different populations and every
population could have its own constraints, the use of a name helps distinguishing the
different constraints.

Apart from the two header lines specified above, all other elements of the con-
straints library are specified as children of the constraints element.

The sections are contained in a specific sections element. There cannot be more
than one sections element, but there can be as many sections as needed inside it.

<sections>

<section section attributes >

...

</section>

<section section attributes >

...

</section>

...

<sections>

A section always comprises a prologue and an epilogue, together with a
subsections element, that contains the subsections.

<section section attributes >

<prologue prologue attributes >

<expression>

...

</expression>

</prologue>

<epilogue epilogue attributes >

<expression>

...

</expression>

</epilogue>

<subSections>

...

</subSections>

</section>

The organization of the subsections element is equal to that of the sections
element. Again, every subsection has to be contained inside a single subsections

84 9 Syntax of the external constraints file

element.

<subSections>

<subSection subsection attributes >

...

</subSection>

<subSection subsection attributes >

...

</subSection>

...

<subSections>

A subsection always belongs to a specific section, and cannot be shared between
different sections. If identical syntactic constraints have to be specified for a subsec-
tion in different sections, it must be replicated. In the authors’ experience, however,
this should be seen as a warning that the constraints could be expressed better in a
different way.

The organization of every subsection follows that of a section. Every subsection
comprises a prologue, an epilogue and a macros element, containing all macros that
can be used within the corresponding subgraphs.

<subSection subsection attributes >

<prologue prologue attributes >

<expression>

...

</expression>

</prologue>

<epilogue epilogue attributes >

<expression>

...

</expression>

</epilogue>

<macros macros attributes >

...

</macros>

</subSection>

The macros element is organized as the subSections element. The macros

element, diferently from the sections and subsections elements, has some at-
tributes to help define the structure of the individual.

<macros macros attributes >

<macro macro attributes >

9.2 Organization of constraints and hierarchy 85

...

</macro>

<macro macro attributes >

...

</macro>

...

<macros>

Macros belong to subsections, and again they cannot be shared. In this case, how-
ever, there is greater scope for replication. Indeed, identical syntactic elements may
be needed in subgraphs with markedly different roles. This, too, should nonetheless
be viewed as a second-choice solution.

Macros can in turn contain parameters. Differently from sections and subsec-
tions, macros are treated as atomic entities. This means that there is no choice
whether to instance or not a macro parameter. Once a macro is used to constrain
a vertex of the graph, all its parameters are assigned a value and attached as tags
to that vertex. This also explains why the parameters are not considered part of the
constraint hierarchy, but just elements of each macro.

<macro macro attributes >

<expression>

...

</expression>

<parameters>

...

</parameters>

</macro>

Aside from the structural hierarchy of the constraints, other elements belong to
the constraints. Independently from any section, the user can define some data types
for subsequent reference. These data types can be referred to in the declarations of
the macro parameters. The data types are defined inside a typeDefinitions ele-
ment, with the following syntax.

<typeDefinitions>

<item item attributes >

...

</item>

...

</typeDefinitions>

For each level of the hierarchy, four formats can also be defined. These are the
comment format, the identifier format, the unique tag format and the label format.
These must be defined for the constraints element, and may be redefined inside

86 9 Syntax of the external constraints file

every section, subsection and macro. No global default is supplied for their content,
but once defined it is inherited through all the hierarchy.

The comment format describes the syntactic constraints for comments in the in-
dividual. The evolutionary core can generate comment lines in the phenotype of an
individual. To ensure that these comments are syntactically correct the comment is
output according to the specified comment format. The corresponding element is as
follows.

<commentFormat> comment expression </commentFormat>

The comment expression is limited to the form

comment prefix <value/> comment suffix

where the comment prefix and suffix are specified by the actual language in which
the individual is written. For example, for assembly the comment prefix is often a
hash character (‘#’), and the suffix is a literal newline at the end of the comment
expression, before the closing tag. The user should beware that spaces and tabs are
significant in this expression.

This simple expression is used also for the other three format elements. It is not
currently possible to use arbitrary expressions for the format elements.

The other three elements are linked together, and describe the syntactical con-
straints for the references within an individual. The first element is the identifier
format. This describes a correct format for an identifier that can be referred to. It
will also be the form of the identifier used in the reference. The XML element is as
follows.

<identifierFormat> identifier expression </identifierFormat>

The actual identifiers generated by the evolutionary core comprise all letters and
numbers allowed in the BASE32 encoding. These are all uppercase letters and six
numbers in ISO 646 encoding, for a total of 32 symbols. All symbols can appear
in every position in an internal identifier, without syntactic restrictions. Most lan-
guages, however, dictate that valid identifiers can only begin with a subset of the
encoded characters, typically excluding numbers. In these cases it is enough to use
an expression formed by a prefix letter followed by the <value/> tag, without suf-
fixes.

The second element is the label format. This element specifies the accepted for-
mat of an identifier when it is used as a label, not as a reference. In other words, it
is the form of the identifier when it indicates the target of a reference, rather than
point in which the reference is made. The element is

<labelFormat> label expression </labelFormat>

9.3 Specifying the structure of the individual 87

It should be noted that in this case the <value> tag does not indicate, as in the
identifier expression, an internal name of the evolutionary core, but the result of its
transformation in a syntactically valid identifier. This means that the constant parts
of the identifier expression should not be repeated here. The purpose of the label
expression is that of specifying the additional constraints of a label with respect to
a normal identifier. Using again assembly as an example, the usual form of a label
is an identifier immediately followed by a colon. The label expression will then be
the <value/> tag immediately followed by the colon, with no prefix.

Lastly, the unique tag format should be defined. A unique tag is an identifier that
is guaranteed not to conflict with any other identifier present in an individual. The
element is as follows.

<uniqueTagFormat> unique tag expression </uniqueTagFormat>

A unique tag may be repeated as many times as needed within a macro, but it
cannot be referred to by any other macro. A possible use of unique tags is described
in the following.

9.3 Specifying the structure of the individual

The structure of an individual is specified by the structure of the sections and sub-
sections in the constraints.

The sections correspond to the graphs of the individuals. In the constraints, every
section describes a graph that will be present in the individual. In the majority of
cases a single graph, and thus a single section, is enough to describe the syntax of
an individual.

Every section element is completed by two attributes. The first is the section
name, identified by the id attribute name. The section name has to be a valid iden-
tifier for XML, and it should be unique within a constraints library. The second is
identified by prologueEpilogueCompulsory, and specifies whether the prologue
and epilogue of a section should always be present in the phenotype of the indi-
vidual, even if the section is otherwise empty. The allowed values for this attribute
are “true” and “false”. No default is provided, and the attribute should always be
present.

The syntax for the section element is then

<section id="section name"
prologueEpilogueCompulsory="{true|false}

Every section element, besides a prologue and an epilogue elements, should
contain a subSections element, comprising all subsections for that section.

88 9 Syntax of the external constraints file

Differently from sections, subsections are not directly mapped to subgraphs in an
individual. Instead, every subsection acts as a template for a potentially unlimited
number of subgraphs.

The subSections element has no additional attribute, amounting to a simple
container element. Its syntax is therefore just

<subSections>

Every subsection element, instead, has five attributes. The first is the subsec-
tion name, as usual identified by the id attribute.

The following two are the minOccurs and maxOccurs attributes, that tell how
many subgraphs corresponding to that subsection are allowed to exist in a valid
individual.

The possible values for both attributes are all integers, positive or equal to zero.
The value of maxOccurs must be greater or equal to the value of minOccurs. No de-
faults are provided for these attributes, and they are not optional. For the maxOccurs
attribute only, the special value “infinity” is allowed. This indicates that no upper
bound exists to the number of subgraphs for the considered subsection. This special
value is not allowed for minOccurs, since it would dictate that all individuals must
contain an infinite number of subgraphs for this section.

It is possible to specify a maximum number of instances for the subsection equal
to zero. This can be handy if the user wants to experiment allowing or disallowing
a given subsection, without making large modifications to the constraints.

The third attribute is maxReferences, that determines the maximum allowed
number of references to the prologue of every subgraph starting from outside the
subgraph itself. This attribute determines whether every subgraph corresponding to
the subsection can be referred to, and, if it can, whether it could be shared among
different references. The possible values for this attribute are integers greater than or
equal to zero. The “infinity” value is not allowed. This attribute also is compulsory.

The fourth attribute is expand. This attribute indicates explicitly whether sharing
of the subgraphs should be forbidden or not. If the attribute value is “true”, then the
graph should be expanded, meaning that no subgraph should be referred to more
than once. Currently this attribute just activates a check that the maximum number of
references is no more than one. The expand attribute is optional, and if not specified
assumes a default value of “false”.

The syntax for the subsection element is as follows.

<subsection id="subsection name"
minOccurs="minimum subgraph number"
maxOccurs="maximum subgraph number"
maxReferences="maximum inbound edges"
expand="{true|false}">

Every subsection contains its own prologue and epilogue elements, and a macros
element. The macros element is qualified by four attributes. They are the minOccurs,

9.3 Specifying the structure of the individual 89

maxOccurs, the averageOccurs and the sigma attributes. These all describe the
statistical distribution of vertices in every subgraph. All four attributes are compul-
sory.

Every subgraph in an individual is mapped to a subsection. It is composed of a
prologue, a number of vertices and an epilogue. The minOccurs and maxOccurs

attributes of the macros element specify the minimum and maximum number of ver-
tices, apart from the prologue and epilogue, that can exist in every subgraph mapped
to the curent subsection. As in the case of the subsection element, the maxOccurs

attribute must be greater than or equal to minOccurs. For both attributes any integer
value, greater than or equal to zero, is allowed. For the maxOccurs attribute only,
it is possible to specify the special “infinity” value, meaning that there is no upper
limit to the number of vertices in a subgraph.

The averageOccurs attribute is used when a random individual is built, to spec-
ify the average number of vertices that compose a subgraph corresponding to the
subsection. The number of vertices is determined randomly following a Gaussian
probability distribution. The sigma attribute, therefore, specifies the standard devi-
ation of that distribution. The probability distribution is truncated so that no more
than minOccurs and no more than maxOccurs vertices are generated for a given
subgraph. The value for the averageOccurs attribute can be any integer number
greater than or equal to zero. The sigma attribute, instead, can take on any non
negative real value.

The macros element does not need an id attribute, since it is the only one inside
a subsection element.

The syntax for the macros element is then

<macros minOccurs="minimum vertex number"
maxOccurs="maximum vertex number"
averageOccurs="average initial vertex number"
sigma="initial standard deviation">

Inside the macros element there is the specification of every macro in the sub-
section. They are described by the macro elements.

Every macro element has two attributes. The first is the usual id attribute, con-
taining the name of the macro. This name should be unique within the subsection.

The second attribute is the weight attribute. This attribute is used during the
generation of a random individual, to modify the probability that a macro is chosen
as the template for a vertex. This probability is equal to the value of the weight

attribute, divided by the sum of all weights of the subsection. The default value for
this attribute is 1.0. The possible value for the weight attribute is any floating point
number greater than or equal to zero. The “infinity” special value is not available.
The weight attribute is optional, and its default value is 1.0.

The syntax for the macro element is as follows.

<macro id="macro name"
weight="probabilistic weight">

90 9 Syntax of the external constraints file

9.4 Specifying the contents of the individual

The allowed content for an individual is specified inside the macros, the prologues
and the epilogues. These elements are distinct because they fulfill different roles,
but their syntax is almost identical.

A macro may optionally contain a comment format, an identifier format, a label
format and a unique tag format. Besides those, it contains an expression element
and a parameters element. Inside this several parameter definitions, each denoted
by an item element, can be contained. The syntax is as follows.

<macro macro attributes >

<expression> ... </expression>

<parameters>

<item parameter definition attributes >

...

</parameters>

</macro>

The expression determines the appearance of each graph vertex in the phenotype
of the individual. It is composed of a string within which some elements are replaced
by variable parameters. The presence of a parameter inside the expression string is
marked by the param element. Every other character in the string is copied verbatim
in the phenotype of the individual, except for some special characters. If the special
characters ‘&’, ‘<’, ‘>’, ‘′’, ‘”’ are required in the expression, they have to be
replaced with the XML sequences “&”, “<”, “>”, “'”, “"”
respectively. The expression of a macro can be omitted. If it is not present, it is
equivalent to an empty expression. A macro with an empty expression can be useful
in order to use the corresponding vertices as mere placeholders. Such vertices, in
fact, can be referred to, but do not take up space except for the labels.

Parameters in an expression are somewhat like variables in a program. They are
defined inside the parameters element, and instanced in the expression using the
param elements. Exactly as with variables, they should be defined only once, but
can be used many times in the expression. All the instances belonging to the same
vertex will have the same value, so that the user can enforce the correspondence
between different parts of the expression. Every instance of a parameter should refer
to a definition in the parameters element. A parameter may be defined and not
referred to in the expression. This is not an error, but for performance reasons it
is not recommended. If no parameters are used in the expression of the macro, the
parameters element is not needed.

Every parameter inside the expression is identified by its ref attribute. This tells
which parameter the current instance refers to. Its value should be equal to the name
attribute of one of the macro parameters.

The syntax of the param element is

9.4 Specifying the contents of the individual 91

<param ref="parameter name">

An expression, then, can be composed of any sequence of constant strings and
parameters, in any order.

The definition of a parameter is contained in an item element within the
parameters element. Every parameter has a name, that constitutes the value of
the name attribute. This name should be unique within the macro.

Parameters can be of several types, and the attributes of the element depend on
the specific type. The type of the parameter is specified by the type attribute.

Two general kinds of parameter types are available. The first kind is that of data
parameters, that is parameters that can assume values that are totally unrelated to the
structure of the individual. The second is that of structural parameters, that describe
relationships between different elements of an individual.

Data parameters are several. The first possible type is integer. It actually speci-
fies a range of possible integer values. The relative attributes are minimum, that spec-
ifies the minimum allowed value, maximum, setting the maximum possible value.
No defaults are provided for these attributes, and they are compulsory. The syntax
in this case is as follows.

<item name="parameter name"
type="integer"

minimum="range start"
maximum="range end"/>

Then there is the bitArray type. It specifies a value that is composed by a fixed
number of binary digits. Three attributes describe the parameter.

The first attribute is length, that tells how many bits compose the value. There
is no arbitrary restriction to the length of the array.

The second is the pattern attribute, that specifies which bits must be 0, which
must be 1 and which ones will be generated by the evolutionary core. The pattern
is syntactically a string composed of ‘0’, ‘1’ and ‘-’ characters, one per element
of the array. ‘0’ and ‘1’ characters indicate bits that must remain untouched at the
prescribed value, whereas ‘-’ characters indicate bits that can be modified during
evolution. For example, the “-01-” pattern indicates a four-bit array in which the
first and last bits can vary, the second will always be 0 and the third will always be 1.
The length of the pattern has to be coherent with the value of the length parameter.
If the pattern is not specified, it is assumed composed of all ‘-’ characters.

At least one of the length and pattern attributes should be specified, but it is
not necessary to provide both. If the length attribute is missing, its value is taken
equal to the length of the pattern string.

It is possible that the bit array is subject to further syntactic limitations, such as
being expressed in a particular base. This is obtained through the use of the base

attribute, that tells the numeric base in which the array must be written. The allowed
values for this attribute are “bin” for binary representation, “oct” for octal and “hex”
for hexadecimal. The decimal representation is not allowed, as it would not imply

92 9 Syntax of the external constraints file

a fixed number of digits. Every octal digit corresponds to three binary digits, and
an hexadecimal digit spans four bits. The length of the array, and of the pattern,
should then be a multiple of the length of a base digit, three for octal base and four
for hexadecimal. If not all bits are required the pattern should begin with a suitable
number of ‘0’ characters, to reach the correct length. The base attribute should be
provided, and no default value exists for it. The pattern must always be specified in
terms of bits, not of octal or hexadecimal digits.

The syntax for the bit array type is

<item name="parameter name"
type="bitArray"

length="array bit length"
pattern="bit pattern sequence"
base="bin|oct|hex"/>

Another type is float. It is conceptually, and syntactically, similar to the
integer type. It is completed by the minimum and maximum attributes, that in-
dicate the minimum and maximum value of the allowed range. All these values are
floating point numbers. Both attributes are compulsory, with no default. The syntax
is as follows.

<item name="parameter name"
type="float"

minimum="range start"
maximum="range end"/>

The constant type specifies that the value of the parameter has to be chosen
among a list of symbolic constants. It requires no further attributes, but lists the
allowed values as further value elements inside the item element. The value of
a symbolic constant is any string, subject to the same syntactic limitation as the
constant parts of the macro expression. There is no predefined limit to the number
of symbolic strings, but at least one should be provided.

The syntax for the constant type is

<item name="parameter name"
type="constant">

<value>string</value>
...

</item>

The environment type allows using environment variables inside the generated
individuals. This type has one further attribute, variable, that specifies the name of
the referred environment variable. The variable attribute is compulsory, without
any default value. A parameter of environment type is always substituted verbatim
by the value of the referred environment variable. The purpose of this parameter

9.4 Specifying the contents of the individual 93

type is being able to embed part of the information about the system configuration
inside the individual. This may be handy to avoid freezing that information in the
fitness evaluator, or to trace easily which configuration or which machine was able
to generate a specific individual.

The syntax for the environment type is as follows.

<item name="parameter name"
type="environment"

variable="variable name"/>

Several parameter types are used to express references between graph vertices.
References are distinguished between inner labels, referring to vertices in the same
subgraph, and outer labels, that point to the prologue of a different subgraph. They
are named labels following the convention of assembly languages.

The first label type is the innerGenericLabel, that may refer to any vertex in
the same subgraph as the one constrained by the current macro. Its description is
completed by the prologue attribute, that specifies whether the subgraph prologue
is a valid target for the reference, the epilogue attribute, providing the same spec-
ification for the subgraph epilogue, and the itself attribute, telling whether the
vertex can refer to itself. The allowed values for all these attributes are “true” or
“false”. All attributes are compulsory.

The corresponding syntax is as follows.

<item name="parameter name"
type="innerGenericLabel"

prologue="true|false"
epilogue="true|false"
itself="true|false"/>

The other three are restrictions of the first type. One is the innerBackwardLabel,
that describes an edge that can only end in a vertex that precedes the one from which
it starts. For the innerBackwardLabel type only the prologue attribute and the
itself attribute are meaningful. Its syntax is

<item name="parameter name"
type="innerBackwardLabel"

prologue="true|false"
itself="true|false"/>

The second type is innerForwardLabel, that describes an edge that can only go
from a vertex to a vertex following it in the subgraph. For the innerForwardLabel
type the only meaningful attributes are epilogue and itself. In terms of assem-
bly language, a innerForwardLabel is a reference that never forms a loop, since
it only corresponds to a forward branch. The syntax is as follows.

94 9 Syntax of the external constraints file

<item name="parameter name"
type="innerForwardLabel"

epilogue="true|false"
itself="true|false"/>

The third, most restricted type is the selfRef type. It describes an edge that al-
ways ends in the same vertex from where it starts. None of the other attributes are
meaningful for this reference type. In terms of assembly language it corresponds to
a code fragment that always refers to its beginning. Its syntax is

<item name="parameter name"
type="selfRef"/>

A peculiar form of reference is the uniqueTag parameter type. A unique tag
is an identifier guaranteed not to conflict with any other identifier name generated
by the evolutionary core. It is considered a reference parameter because its most
immediate usage is as a reference inside a single macro. Actually, a vertex in the
individual may represent a code fragment containing a small loop. Since labels are
always put at the beginning of the phenotype representation of a vertex, a single
macro could not describe both the initialization part and the body of a loop. This
limitation can be overcome by the use of a uniqueTag parameter, once as a label
and a second time as a code reference. Correct usage of the tag inside the macro has
to be taken care of by the user, since the core has no way to distinguish whether the
tag is used as a label or a reference.

A uniqueTag parameter has no further attributes. Its syntax is

<item name="parameter name" type="uniqueTag"/>

There is a single type of outer reference, the outerLabel parameter type. An
outer label refers to the prologue of a different subgraph. The user can specify sev-
eral allowed types of subgraph, by listing the subsections that describe them. In this
way the corresponding edge in the individual can, in principle, end in the prologue
vertex of any subgraph corresponding to one of the listed subsections. If, when the
macro is instanced, no subgraph is available, a new one is generated.

The outerLabel type has no further attributes. The allowed subgraphs are listed
inside the item element, each one in a ref element. This element, in turn, has two
attributes that completely specify a single subsection. These are the section at-
tribute and the subSection attribute. At least one ref element should be specified
within the item element. In the ref elements both attributes are compulsory, even
if there is a single section in the constraints or a single subsection in the specified
section. The syntax is as follows.

<item name="parameter name"
type="outerLabel">

<ref section="section name" subSection="subsection name"/>

9.4 Specifying the contents of the individual 95

...

</item>

As stated above, it is possible to use a parameter belonging to a type defined at
the top level of the constraints library. The type definitions are all contained in the
typeDefinitions element of the library. The syntax for every type definition is the
same as that for the definition of a parameter inside a macro. The only difference
is that the definition resides in the typeDefinitions element instead that in the
macro. The names of the types defined in this way should not conflict with each
other.

To use a defined type the parameter should be declared to be of type
definedType. The ref attribute of the parameter, then, contains the name of the
type defined globally.

The syntax is as follows: first the parameter type should be defined in the
typeDefinitions element.

<typeDefinitions>

<item name="type name"
...

</item>

...

</typeDefinitions>

Then the parameter should be defined by referring to the defined type.

<item name="parameter name"
type="definedType"

ref="type name"/>

It should be kept in mind that the param element in the expression still has to
refer to the parameter name, not to the type name.

The syntax for the prologue and epilogue elements is very similar to the syn-
tax for the macro element, of which they represent a specialization. The main differ-
ence in the syntax of the elements themselves is that the weight attribute is mean-
ingless for prologues and epilogues. Indeed, prologues and epilogues are guaranteed
to be instanced exactly once for every instance of their containing element.

The other difference is operational, and concerns the use of label parameters.
Indeed, using forward labels in an epilogue or backward labels in a prologue is
meaningless, and should be avoided, as it could lead to constraints that could never
be fulfilled.

Complete examples of constraints libraries can be found in chapter 12.

Chapter 10

Writing a compliant evaluator

Lutter n’est pas avancer.
Boris Vian

During the evaluation phase the μGP core generates the phenotypes of the individ-
uals to evaluate, launches the external evaluator and waits the results.

μGP can generate a set of individuals for evaluation. This is done as a minimal
support measure for parallel evaluation. In general the user can configure the tool
to evaluate one individual at a time, or more. The specific techniques to actually
implement a parallel evaluator are beyond the scope of the book.

In the first case the evaluator can safely assume that only one individual will be
available, whereas in the second case nothing should be presumed about the number
of indviduals present.

10.1 Information from μGP to the fitness evaluator

Individuals are generated in the form of text files, following the syntactic constraints
contained in the constraint library. When used in a Unix-like or Windows environ-
ment, these files are written in the current directory.

By default, the name of the fitness evaluator is ./evaluator, and the name
of the individuals is a variation of individual.input. Both parameters can be
configured, although this is generally more useful for the evaluator name.

The evolutionary core provides information to the evaluator in two explicit and
one implicit form. The first is the command line. The evaluator is called, us-
ing the defaults as an example, as ./evaluator individual〈name 1〉.input
. . .individual〈name n〉.input. The individuals are listed in the order in which
they are generated. The symbols 〈name 1〉 . . . 〈name n〉 are replaced by the names
of the individuals inside the core.

The second explicit form in which the evolutionary core provides information to
the evaluator is an additional file containing the names of the individuals to evaluate.
Unsurprisingly, this file is named individualsToEvaluate.txt. It contains as
many rows as the newly generated individuals, each one containing a name.

97E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_10, © Springer Science+Business Media, LLC 2011

98 10 Writing a compliant evaluator

The implicit information is the content of the directory itself. When the evaluator
is invoked, the individuals are already all present in the directory. This informa-
tion, however, is not always a reliable source to decide which individuals should be
evaluated. μGP, in fact, by default deletes the individual phenotypes once they are
evaluated, to save space. However, it can be configured so that it never deletes an in-
dividual. This option is useful mainly for debug purposes, or to make measurements
on the evolutionary process itself.

In addition, the tool can dump all individuals contained in a population prior to
evaluation, to cater for cases in which the fitness of an individual depends on the
other individuals belonging to the population.

It is important to note that the name of the file in which the fitness should be saved
is not provided to the evaluator. By default this name is individuals.output, and
it also can be configured. The evaluator must possess information on the expected
file name.

The default behavior is to evaluate one individual at a time. This allows keeping
the evauator simple.

If concurrent evaluation is used, no assumption can be made in advance about
the number of individuals generated for evaluation. The only guarantee is that, if
the tool has been configured to perform n evaluations in parallel, no more than n
individuals at a time will be passed to the evaulator.

First of all, the exact number of individuals generated in the reproduction phase
is not known from the start. Second, some individuals can be excluded from the
evaluation phase simply because they are clones of other individuals. These two
properties of the tool imply that the number of individuals to evaluate at every gen-
eration cannot be successfully predicted. At the end of the evaluation phase, then,
there will be a remainder of individuals to evaluate, but their number is not pre-
dictable.

10.2 Expected fitness format

As seen in previous chapters every individual has a fitness composed of a given
number of floating point values. Every fitness can be optionally followed by a com-
ment string, in order to provide more meaningful information to the user.

The expected format for the fitness is rather simple. The evaluator should gen-
erate a text file, containing a number of lines equal to the number of individuals to
evaluate during a single invocation, each line containing the fitness for an individual.

Every fitness should be composed by a list of positive floating point values, sep-
arated by spaces, optionally followed by a string without spaces, and terminated by
a newline.

If more than one individual has to be evaluated, the fitness values should be out-
put to the file in the same order in which the individuals are passed to the evaluator.
Failure to do so would most probably lead to wrong results in the evolution, due
to the assignment of the fitness for an individual to a different one. No explicit

10.2 Expected fitness format 99

mapping exists between the names of the individuals and the corresponding fitness
values, and no check is possible.

It is also important that fitness for all individuals contain the same number of
values, equal to the amount configured at the beginning of the evolutionary run.
Otherwise it would not be possible to meaningfully compare two individuals.

In all cases, it is possible to append to the fitness file a special line, that only
contains the string “#stop”. If this is done the evolutionary core stops evolution at
the end of the current generation. This can be useful in case the evaluator detects
that the maximum possible fitness has been reached, but this maximum could not be
predicted accurately in advance.

10.2.1 Good Examples

The following examples show some possibilities for the fitness file. Provided the
tool is configured accordingly, they are correct.

Example: one evaluation at a time, three fitness values per individual, no com-
ment string.

2.01 4 1.3e-05

Example: one evaluation at a time, two fitness values per individual, with com-
ment string and stop signal.

2.01 4 1.3e-05%

#stop

In this case the “1.3e-05” is treated as a string. The fact that it also represents a
number is totally incidental for the tool, since it expects only two numeric values.

Example: the tool is configured for ten evaluations at a time, but it only generated
a set of four individuals. The individuals should receive two fitness values each, and
the evaluator generates some coment strings.

42.3 96412 ALU:good/CTR:poor

55.2 97218

12.3 99415 ALU:poor/CTR:poor

86.2 96217 CTR:good

This example underlines that the comment string is optional for every fitness, not
on a global basis. When it exists, the comment string can be of any length.

100 10 Writing a compliant evaluator

10.2.2 Bad Examples

The following examples, instead, show incorrect fitness files and possible correc-
tions.

Bad example: the tool is configured for one evaluation at a time, and every indi-
vidual should get three fitness values.

2.01 4 very_good

In this case the tool will find only two numeric values, and the string “very good”
cannot be used quantitatively for comparison purposes.

If the phrase “very good”, among others, is actually meant to express the third
fitness value, it should instead be turned into a numeric mark. For example, a “very
bad” result could be expressed as 0, “bad” as 1, and so on, up to “very good”.

The corrected example could become

2.01 4 5

where the “very good” has been transformed in the 5 mark.
If, instead, the third numeric value is missing because, for this particular individ-

ual, it cannot be set meaningfully, the problem is more serious. In this case the user
should decide, on the basis of his own understanding of the problem, a conventional
value for the third fitness parameter.

Advisable choices change depending on whether such a peculiar individual is to
be considered better or worse than normal ones. In the former case, any value greater
or equal to the maximum posible value for the third fitness parameter is usable.

The example could then become

2.01 4 100.0 very_good

but the value for the third fitness parameter strictly depends on the problem.
In the latter case, instead, there is still a choice. A 0 value can be used to express

the fact that this individual is worse than any other individual with the other fitness
parameters equal. If, however, the user wants to enforce clone extermination, but at
the same time wants to make sure that peculiar individuals, although not considered
good, are preserved in preference to clones, the third fitness parameter should be set
to a value greater than zero but lower than any possible value for normal individuals.

A possibility might be

2.01 4 1e-15 very_good

with the same warning as above: the actual value needed may change.
If none of these possibilities is viable, because the range for the third fitness

parameter actually starts from zero, or if the missing parameter is not the last, the
user should seriously consider expressing his problem in a different way.

10.2 Expected fitness format 101

Bad example: the tool has generated four individuals for evaluation, and expects
three finess values per individual.

82.3 14.5 96412 ALU:good CTR:poor

55.2 58.4 97218

12.3 99415 ALU:poor/CTR:poor

86.2 -3.57 96217 CTR:good

This example contains almost all errors that can be made. The first line is wrong
because the comment string contains a space. It is not guaranteed that the tool will
work properly after finding such a string. It is, however, guaranteed that the string
will not be reported correctly to the user. The third line is wrong because it misses
a fitness value. The fourth line is wrong because it contains a negative fitness pa-
rameter. The problem with negative fitness parameters is that they would not allow
clone extermination to work properly. The only correct line in the file, despite its
incomplete appearance, is the second.

One correct alternative might be

82.3 14.5 96412 ALU:good/CTR:poor

55.2 58.4 97218

12.3 0.0 99415 ALU:poor/CTR:poor

86.2 0.001 96217 CTR:good

Again, the actual choice of the values to use as replacement or in addition de-
pends strictly on the problem, and requires the understanding of the user.

Chapter 11

Implementation details

Not 100% efficient, of course ... but nothing ever is.
Capt. Kirk in Star Trek

The μGP approach is centered around the evolutionary core. The tool is composed
by about 50,000 lines of C++ code, comprising 118 classes in 310 files. The project
is hosted by Sourceforge on http://ugp3.sourceforge.net/.

This chapter describes the most important details about the implementation of the
tool. The purpose is providing the user with the information necessary to understand,
modify the code, and possibly adapt it to his specific needs.

11.1 Design principles

As described in chapter 3 the entire approach is decomposed in three main blocks.
The first is the evolutionary core itself, the second is the constraints library and the
third is the fitness evaluator. The μGP tool internally follows this subdivision, and
is additionally decomposed.

During design we identified the sections of the tool that were more likely to
undergo modification. These sections have been conceptually separated from the
rest of the tool. The purpose of the approach is to develop a set of classes that will
presumably not require modifications, and use them as a foundation for the rest of
the tool.

We anticipated that different users of the tool would want to modify it based
on their specific needs. For this reason the code of μGP has been written keeping
a clear separation between its concepts and functions. Ideally, for every desired
modification, it should be clear what part of the code has to be changed.

We decided to structure the tool as a series of libraries, each of which provides
services at a single level. This choice has the main purpose of making the different
parts reusable in different projects without the need to operate on the code. At the
same time, the subdivision of the tool in different modules, with clearly defined
interfaces, allows modifying each part of the code almost independently from the
rest.

103E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_11, © Springer Science+Business Media, LLC 2011

104 11 Implementation details

11.2 Architectural choices

Apart from the main decomposition of the entire approach, the tool is subdivided
in different levels. The basic concept is to make each level provide a foundation for
the upper levels. At the same time, it is desirable that each level is only used by the
level directly above it, avoiding dependencies of the high-level code on the details of
the lowest-level libraries. This also includes the dependence on the interface of the
library. In this way, ideally, every module only depends on a limited set of interfaces,
and these too may be redefined without completely disrupting the architecture.

At the lowest level lies the code that handles the constraints for the evolutionary
core. This choice may look counter-intuitive, but the constraints are only stored as
a descriptive entity. This means that they can be used by other code, but do not
depend on the fact that they will be applied to graphs. Constraints are kept in their
tree form, and checks for compliance are performed elsewhere. The classes that
store and manipulate the constraints, as well as reading them from the XML library
file, form the Constraints library.

The Constraints library is unlikely to need modifications in order to extend its
functionality. If the user really needs to extend the syntactic possibilities of the li-
brary, he may probably obtain the same effect by manipulating the individual in the
fitness evaluator, before actual evaluation.

In a different set of classes the basic data structures for individual representa-
tion are managed, providing a foundation to store and manipulate graphs and the
information associated to tags. The classes at this level form the Graph library. It
provides a foundation for all other evolutionary modules.

It is worthwhile to note that this library is not, strictly speaking, an evolutionary
library. It is a library that allows building, copying and generically manipulating
graphs. It also allows attaching information to graph vertices, and subjecting the
graph to constraints.

Upon this layer, the concept of individual is built. This includes the addition of
the concept of fitness to the constrained tagged graph. Individuals can be compared
to decide which one is better, whereas two graphs could only be compared for equal-
ity.

Individuals are organized in populations, and manipulated through genetic op-
erators. They are selected for reproduction and evaluated. All these activities, and
several other support ones, are taken care of by the Evolutionary Core library.

Its classes perform the bulk of the work needed for actual evolution.
The highest level configuration of the evolutionary process is performed in the

front end module. This includes deciding how many populations are cultivated dur-
ing the run and the type of each population, parsing the command line arguments
and the configuration files, setting up the default parameters.

11.2 Architectural choices 105

11.2.1 The Graph library

The Graph library fulfills two distinct roles. The first is allowing basic manipulation
of the basic data structures that describe the evolved entities. The second is pro-
viding the tools needed to enforce compliance of the evolved individuals with the
constraints.

Vertices and edges

The most basic class in the library is the Edge class. It simply represents an edge
between two graph vertices. It can have tags, but these are not used to represent the
relation between the two vertices. Tags are only used during manipulation of the
constrained graph, when the edge is detached from its destination vertex and might
be reattached either to the same vertex or to a different one.

The Edge class provides basic methods to create an edge, set its destination, get
its source or destination. Additionally, it allows to read its description from an XML
document or write it to a file.

The Node class represents the vertices of the graph. As for the Edge class, it can
have tags, but they are not necessary to represent the graph. Every vertex has an
unique id string.

The Node class allows attaching edges starting from or ending in the specified
vertex, detaching and destroying edges starting from or ending in the vertex, check-
ing if the vertex is connected with a specified edge, getting the number of edges
starting from or ending in the vertex, selecting one of them by numeric index. Ad-
ditionally, it allows to read its description from an XML document, and to write an
XML description to a file.

The Tag class, although seemingly strictly connected to the Edge and Node

classes, actually belongs to a different library, the shared library. This choice un-
derlines the very generic nature of a tag, that may be attached to generic entities
inside a program.

The CNode class, finally, references the constraint library. Its purpose is the de-
scription of a “constrained vertex”, that is a vertex belonging to a constrained graph.
Whereas the Node class could be used to describe generic graphs, the CNode class
possesses information about the expected structure of a subgraph. Therefore, it uses
the special next and prev tag names to identify edges connected to the correspond-
ing vertices of the subgraph, and the place tag to track the position of each vertex
inside the subgraph sequence. It also provides methods to know whether a given
vertex represents a prologue or an epilogue of the containing subgraph, of a graph
or of the entire individual. In addition, it provides methods to detach it partially or
completely from the containing subgraph and to follow, forwards or backwards, the
linear structure of the subgraph. Since it references a constraint the CNode class also
provides methods to randomly populate one or more parameters, to validate the con-
tent of parameters against the constraint and to generate the external representation
of the vertex.

106 11 Implementation details

Subgraphs and graphs

Vertices are organized in subgraphs. Starting from the first vertex of a subgraph,
a path connecting it to the last subgraph vertex is guaranteed to exist in a valid
individual. This path can be thought of as a skeleton for the subgraph: its main pur-
pose is to knit together the subgraph vertices, imposing a well-defined order relation
among them. The linear structure of the subgraph originally copied the sequential
order of instructions in a program, and it has been preserved as it greatly simplifies
housekeeping operations.

Subgraphs are materialized by the CSubGraph class. There is no Subgraph

class, because its generic properties have been factored in two different classes. The
CSubGraph class refers to the constraints library. It has knowledge of the expected
structure for a subgraph, in particular about the minimum and maximum number of
vertices inside a given subgraph.

The CSubGraph class provides methods to get and set the prologue and epilogue,
to validate the subgraph, to check whether a vertex precedes or follows another
vertex, and to reconstitute a valid subgraph in case it is modified and some edges
remain floating.

Several actual operations on the subgraph are executed via the Slice class. It
can be seen as an array of vertices with some operations added. Every subgraph is
composed of a prologue and an epilogue vertices and a slice. Operations available
on a slice are appending a vertex, swapping a vertex pair, inserting another slice at
a defined position, removing a part of the slice from a given position, reversing the
order of a part of the slice. These operations have been chosen partly as a minimal
interface to perform every possible manipulation on a subgraph, partly as an imita-
tion of mutation mechanisms actually occurring in DNA. The Slice class does not
refer to the constraints library, so it cannot perform validation or manipulation of
the contents of the subgraph. It is, instead, the workhorse of structure manipulation
for a subgraph.

It is appropriate to mention here the NodeContainer class. It is the base class
for constrained subgraphs, graphs and graph containers. It is the class that repre-
sents an entity with a prologue and an epilogue vertices. This structure is used for
all parts of an individual. The NodeContainer class has no information about the
structure (or even the existence) of the other vertices that constitute the graph. In-
stead, it represents the structural relationships of the various parts of the individ-
ual through a parent-son relation. Every NodeContainer object can have another
NodeContainer as its parent.

Subgraphs are collated together in graphs. The generic Graph class keeps infor-
mation about the vertices in the graph, but not of the subgraphs. The reason for this
is that the subdivision of graphs into subgraphs is closely related to the constraints
for the individuals, whereas the Graph class is meant as a generic graph representa-
tion. The Graph class provides basic manipulation of the graph. It allows creating a
graph, empty or from a file description, adding a vertex, removing a vertex, adding
an edge between two vertices, counting the vertices or referring to one by index. It

11.2 Architectural choices 107

should be noted that the order of vertices inside the Graph class is not necessarily
related to the order in the subgraphs.

The class that explicitly refers to the subgraphs is the CGraph class. It provides
methods to add or remove a subgraph, to replace a subgraph with a different one, to
refer to a specific subgraph or vertex, to count subgraphs.

CGraph also refers to the constraints, allowing to validate the graph. This class
materializes the concept of constrained tagged graph as depicted in chapter 3. In a
graph subgraphs are kept in the same order in which they have been added to the
graph. This is the same order in which they are generated in the external represen-
tation.

Graphs are ultimately stored in graph containers to form the genotype of an in-
dividual. As stated in chapter 3 individuals are composed of sets of graphs. These
are managed through the CGraphContainer class. This class provides methods to
inquire for a specific constrained vertex or graph, to duplicate the container, to add
a constrained graph to the set. In addition, it allows operations useful to manipulate
an individual, as getting a randomly chosen subgraph, generating a random set of
graph that complies with the constraints, validating the graph set.

The Graph library is not expected to need extensive revision by the user, since it
provides very basic representation, manipulation and validation operations. It is use-
ful to understand its basic classes in order to delve into the details of the Evolution-
ary Core library, since this library relies on the details of individual representation
to perform its actions.

11.2.2 The Evolutionary Core library

The Evolutionary Core library is involved in all aspects of the evolutionary process.
At the most basic level, it provides a graph set with its meaning as an individual,
by associating it with a fitness and a population. It is in charge of handling fitness
evaluation, including the support for parallel evaluation. It provides the concept of
population, keeping track of the associated parameters and maintaining the statistics
of the evolution. Last but not least, it provides all of the genetic operators applied
during a run.

Individuals

One of the most basic classes in the Evolutionary Core library is the Individual

class. Its main purpose is to provide a graph set, which would otherwise be just a
data structure, its meaning as an individual. Every individual belongs to a popula-
tion, and cannot persist outside it. Also, each individual is associated with a fitness.
These two properties constitute the main difference between a graph container and
an individual.

108 11 Implementation details

The Individual class also supports additional features. Each individual has a
birth instant, measured in generations since the beginning of evolution, a projected
death instant, and an age, measured in generations.

An individual can also keep track of its parents and the genetic operator by which
it has been generated. This can useful to track the descent of a given individual
across generations, as well as to tune the activation probabilities for operators.

The base Individual class is actually not used on its own. Instead, it is the
superclass for EnhancedIndividual and MOIndividual.

The enhanced individual, materialized by the class EnhancedIndividual, adds
three main features to the base individual. The simplest is the explicit handling of
the concept of elite. Depending on the evolution parameters and the ranking (past
and present) of the individual inside its population, its age may not be equal to
the difference between the current generation and the birth instant. As long as the
individual belongs to the elite its age does not increase with generations.

The second feature is the use of a modified fitness, named EnhancedFitness.
The purpose for this modified fitness is making clone scaling easier. As described in
chapter 4, individuals exactly identical to others already existing in a population can
have their fitness values scaled down by a factor that depends on how many clones
are contained in the population. This is implemented by actually associating every
individual with two fitnesses. The first is the measured fitness, as is reported by the
external evaluator, whereas the second is the scaled fitness, computed internally.
Ranking of individuals inside a population is based on scaled, not measured, fitness.
The two fitnesses are coupled in the EnhancedFitness. This class also takes into
account the so called clone count, that is the number of clones of a given individ-
ual that exist in the population with an higher rank. If an individual has just been
inserted in the population, meaning that it has just been generated, its clone count
is the number of clones among the μ regular individuals of the population plus the
number of clones that have been generated during the current application of genetic
operators. In case of twin clones, therefore, those generated later are scaled more
than the earlier ones. In general, older clones are favored against younger ones. This
is made to avoid that individuals may achieve a sort of immortality by propagating
in the population as recurring clones.

Finally, the EnhancedIndividual keeps a record of its own contribution to pop-
ulation entropy, in the form of a delta entropy value. This is the difference between
the entropy of the complete population and the entropy of the same population, from
which the considered individual has been removed.

The enhanced individual is used instead of the simple individual since its fea-
tures, in most cases, significantly enhance the efficiency of the evolutionary process.

The MOIndividual materializes the concept of multi-objective individual. It is
an individual whose fitness is to be used for true multi-objective optimization. Dif-
ferently from simple and enhanced fitness, the components of a multi-objective fit-
ness have no priority over each other. Instead, they have all the same importance.
The most direct implication is that fitness values do not belong to an ordered set.
Two fitness may be equal, may dominate each other, meaning that all the com-
ponents of one fitness are greater or equal to the corresponding components of the

11.2 Architectural choices 109

other, or they may be simply not comparable. The class that materializes the concept
of multi-objective fitness, named MOFitness, extends EnhancedFitness. Clone
scaling is a capability of MOIndividual from the start, as the MOIndividual de-
rives from the EnhancedIndividual.

Populations

As already stated above, individuals in μGP cannot exist outside of a population,
materialized by the Population class. As with the simple individual the simple
population is used as a base class for the sake of performance.

In the μGP a population is not a passive container for individuals, as several
details of the evolutionary process are delegated to the Population class and its
subclasses. Every population is associated with the set of individuals contained in
it, and with the set of parameters for that population.

Population parameters include population size μ , the number λ of genetic op-
erators applied per generation, the initial size ν for population, the set of operator
activation probabilities, operator strength σ , the maximum number of generations
for the process, the self-adaptation inertia α , the cardinality of the set of fitness
values.

The Population class contains methods to update the self-adaptive parameters,
to increase the age of individuals, to compute some statistics about the evolution. It
also provides methods to perform a single evolution step, to add existing individuals
to the population or to merge an additional entire population to an existing one,
to associate a genetic operator to the population, to check for stop conditions. It
also acts as an interface by specifying several methods that derived classes must
implement.

As is the case with simple individuals, a simple population is not used directly,
but only as a base class for more advanced population types. To take full advantage
of enhanced individuals they are collected in a special population type, unsurpris-
ingly named EnhancedPopulation. This class keeps track of which individuals are
clones of others, of the overall population entropy, of the maximum attained fitness
and of the number of idle generations (generations during which no improvement in
the best fitness is observed).

The EnhancedPopulation class implements several methods defined as pure
virtual in Population. The most important of these are those to create a random
individual, to perform the survival phase, to self-adapt the parameters, to evaluate
all individuals, to compare two individuals for ranking purposes.

Evolution performed using the EnhancedPopulation class is effectively single-
objective, even if the fitness components are multiple. If different goals are ex-
pressed using fitness components the first one dominates all the others, and any
improvement in the first component, however small, is preferred to improvements in
subsequent components. In an enhanced population individuals are ranked linearly
in a total order relation. The whole population may be seen as a list of individuals,
starting from the fittest and sloping down to the worst surviving one.

110 11 Implementation details

When the user wants to optimize several metrics, possibly accepting a trade-
off between them, the fitness components should not dominate one another. Fur-
thermore, it is perfectly acceptable that individuals represent different alternatives,
among which no single best solution can be picked up. One usual approach, em-
ployed in μGP, is to divide the population in levels. The first, topmost level is com-
posed by all individuals that are not dominated by any other individual. The second
level is then composed by all individuals that are dominated only by individuals in
the first level, and so on for all lower levels.

The class responsible for managing the population as a set of individuals grouped
in levels is MOPopulation. This class does not extend EnhancedPopulation the
same way as MOIndividual extends EnhancedIndividual. Instead, it directly
extends Population. The class MOPopulation stores information about which in-
dividuals are clones of others, population entropy, the number of levels in the popu-
lation and about the number of idle generations.

MOPopulation implements the same virtual methods of the Population class
as EnhancedPopulation does.

In an ideal multi-objective setup, all individuals in the same level are ranked
equally. This happens during the reproduction phase, but for the purposes of the
survival phase it is not always possible to treat all the individuals equally, even if
they belong to the same level. There is a finite amount of space in the population,
and a level may have to be cut to preserve population size. This means that the
MOPopulation class must be able to force a ranking inside a level, to decide which
individuals will survive and which will not.

To this end a measure of perceived strength is performed on every individual.
This is based on the comparison of an individual fitness with the fitness of every
other individual. An ordering between any two individuals is forced by first com-
paring levels, then the perceived strengths, then the contribution of the individual to
population entropy, and finally the birth instant. The first of these comparisons that
does not yield an equality result determines the total outcome.

The population is not simply cut at the last level after imposing a total order-
ing, however. Instead, the survival phase is performed using a reverse tournament
selection, with the same τ parameter as for the tournament selection in the repro-
duction phase. In this case the tournament is reversed in the sense that τ individuals
are randomly chosen, and then the worst one is discarded. The reverse tournament
selection is only performed among individuals in the last level. As a result, after
the survival phase, the multi-objective population contains the best levels plus a
stochastic selection of the last one.

Genetic operators

Regardless the population type and number, and also regardless of the type of indi-
viduals, the low-level work of evolution is performed by genetic operators. The μGP
uses three main types of operators: mutation operators, recombination operators and
local search operators. The genetic operators used in the μGP do not depend on the

11.2 Architectural choices 111

type of individual on which they act. Indeed, all operators are defined to manipulate
objects of the Individual class, and are applicable to all subclasses.

Genetic operators need to be registered before they can be used. This is done
before the actual evolution takes place. The authors expect the addition of custom
operators to be the most common modification that users may perform on the code.
Since new classes and object are not automatically detected in a C++ runtime envi-
ronment the registration is needed to provide a uniform and flexible mechanism for
addition and deletion of operators.

All operators are derived from a common class, called GeneticOperator. This
class defines the common interface for all operators, including the method for gen-
erating offspring and a method that returns the number of parents that an operator
expect to be provided as input.

The GeneticOperator class, in addition, is in charge of managing thee regis-
tration process, and provides static methods to register an operator, to search for an
operator by index number or by name, and to unregister them all after evolution is
complete.

Many operators may need to manipulate individuals in the same way, for exam-
ple they may need to insert a vertex in the graph, or they may need removing one.
Some basic methods for manipulation are provided by the class OperatorToolbox.
A specific operator toolbox is defined for every individual that has to be modified,
binding it to its CGraphContainer composing class. An operator toolbox provides
random navigation in a graph container, random insertion and random deletion op-
erations.

There are a number of predefined genetic operators in μGP, listed below. Cur-
rently three recombination operators, eight mutation operators and three local search
operators are defined.

An important concept is that any operator may fail generating offspring. This
follows from the fact that new individuals must comply with the constraints. It may
not always be possible to apply an operator without breaking them, so every operator
has to contemplate the chance of failure. All operators, in one form or another, have
to check the validity of the generated offspring, and discard it if necessary.

Recombination operators imply the exchange of genetic material between indi-
viduals to generate offspring. This cannot be done in an arbitrary way, since the
offspring must be valid individuals. To ensure that generated individuals are correct
(or, at least, to avoid cases in which they would certainly be wrong) the exchange
is only performed between compatible subgraphs. Two subgraphs are compatible if
and only if they refer to the same subsection and the same section of the constraints.
For instance, the constraints may define a subsection containing some raw data, and
another subsection specifying operations to perform on those data. By limiting ge-
netic exchange to corresponding subsections a garbling of data and operations is
avoided.

OnePointSafeSimpleCrossoverOperator is the simplest recombination op-
erator. Given two parents, it selects a random subgraph from the first one, then
searches for a compatible subgraph in the second one. Once two suitable subgraphs
are found, a single cut point is chosen for each one, and two offspring are generated

112 11 Implementation details

in which the second part of the chosen subgraphs are exchanged. This is done re-
gardless whether any vertices in the swapped sections are connected to other sub-
graphs, so a final validation step is performed to ensure that correct individuals are
generated.

OnePointSafeCrossoverOperator is similar to the operator above, but it also
transfers any subgraph referred to by the vertices in the swapped sections. The ex-
tra effort is justified for individuals with a complex structure, whereas it is useless
when individuals have a linear structure with just one subsection in the constraints.
Transferring a subgraph means copying it from one individual to the other. If the
copied subgraph is no longer referred to in the source individual then it is deleted.

TwoPointSafeSimpleCrossoverOperator is the last recombination operator.
It selects a random subgraph from the first parent, chooses a compatible subgraph in
the second one, then locates two cut points within each subgraph. It generates two
offspring in which the parts between the two cut points are swapped, transferring
also any subgraph referred to by the vertices being moved.

Mutation operators can be classified in two orthogonal ways. The first is about
whether they certainly change the size of the individual or not, the second relates to
the object they act upon, be it a single vertex or an entire subgraph. Being orthogo-
nal, the two classifications define four groups of operators. Mutation operators exist
for all these groups.

All mutation operators use the concept of strength. After one application, the
operator is repeatedly applied again with a probability equal to the strength. The
greater the strength, the larger th eaverage number of times the operator is applied
for a single offspring.

InsertionMutationOperator changes the size of an individual adding a ran-
dom vertex to the graph. The reader should note that if the constraints dictate that
the added vertex refers to a different subgraph (it contains an OuterLabel parame-
ter), it is connected to an existing subgraph of the same type. If no suitable subgraph
exists in the individual, the insertion fails.

RemovalMutationOperator also changes the size of an individual removing a
random vertex from the graph. If the removed vertex was connected to a different
subgraph, that subgraph may become an unconnected component of the graph.

ReplacementMutationOperator does not change the size of the individual. It
substitutes a random verrtex of the graph with a random one, subject to the condition
that it refers to the constraints in the same subsection as the original vertex. The
parameters of the verteex are also chosen randomly.

AlterationMutationOperator is similar to the previous one, save that it does
not change the vertex type. It chooses a random vertex in the graph and sets all
parameters to random values.

SingleParameterAlterationMutationOperator is an even more restricted
mutation operator. It sets to a random value a single parameter in a randomly chosen
vertex.

SubGraphInsertionMutationOperator again changes the size of an individ-
ual adding a subgraph to the graph. All vertices in the new subgraph are chosen ran-
domly, and have random parameters. If a vertex in the new subgraph has to connect

11.2 Architectural choices 113

to another subgraph, a compatible subgraph is chosen, if it exists, otherwise the
operator fails.

SubGraphRemovalMutationOperator chooses a random subgraph from the
indivdual and removes it. All edges starting from inside that subgraph and ending
in a different subgraph are removed. If a vertex in another subgraph refers to the
subgraph being removed the edge is connected to a subgraph of the same type. If no
other compatible subgraph exists the operator fails.

SubGraphReplacementMutationOperator may change the size of an indi-
vidual. It randomly selects a subgraph and replaces it with a new one, composed of
randomly chosen vertices.

Local search operators perform an exploration of some neighborhoood of a given
individual. Currently the neighborhood is defined as the set of individuals that dif-
fer from the first one for the value of a single parameter. The parameter can be any
ranged parameter, and is the same for all the neighborhood. A ranged parameter is
a parameter that can have a value between a minimum and a maximum. Structural
parameters (labels), constant parameters or environment parameters are not consid-
ered for exploration. For instance, if an individual contains a parameter that can
have 10 different values, the associated neighborhood contains 9 individuals.

The term local search refers to the fact that the exploration is done only within
this neighborhood. Local search operators differ from mutation operators because
all offspring belong to the neighborhood defined above, whereas mutation operators
may modify different parts of the same individual.

ScanMutationOperator is conceptually the simplest search operator. Given an
individual, it chooses a single numerable parameter and produces a child individual
for every possible value of the parameter.

LocalScanMutationOperator explores the neighborhood at increasing dis-
tances from the source individual. It uses the concept of strength, and is reapplied
with probability equal to the strength. The first time it generates offspring at unit dis-
tance from the source individual, and every time it is reapplied it generates offspring
at increasing distances.

RandomWalkMutationOperator also uses strength, but operates differently.
Given a source individual, and a single ranged parameter in that individual, it gen-
erates offspring using a normal distribution for that parameter. The strength is used
both as the standard deviation and as the probability of reapplying the operator.

Evolutionary algorithm

In the same way as many individuals can be instantiated within a population, several
populations can be exist in a single evolutionary algorithm. The class that materi-
alizes the evolutionary scheme is EvolutionaryAlgorithm. This class provides
methods to add populations to the algorithm, to run it, to save the status to file and
to recover an existing evolutionary algorithm from file.

114 11 Implementation details

The class also contains a protected method to perform a single step of the algo-
rithm. This method does little more than calling the corresponding method on every
population that has not already ended its evolution.

11.2.3 Front end

The top level of the μGP code is the front end. Although logically and physically
distinct from the rest of the code, the front end is not a proper library. Rather, it sits
on top of all the other libraries to compose a usable program.

The most important class in the front end is Program. It loads the settings file,
sets up the loggers, initializes the evolutionary algorithm and finally starts it.

11.3 Code organization and class model

As stated above, the code is organized into libraries, except for the front end. Two of
these libraries have been described, but they do not end up the μGP executable. A
total of six libraries, plus the front end, compose the code. Every library is contained
in a directory of the same name in the distribution, much akin to a package in Java
programming.

Shared is a low-level library. It contains several classes and interfaces used in
different contexts. These classes are collected together since they provide services
that are largely independent of the application domain. For instance, they manage
things like command-line options, environment variables, tags, the definition of set-
tings options, unlimited counters, and so on. All these concepts are widely used
elsewhere in the code, but they might be implemented in the same way for very
different applications. A special mention is due to the exceptions, defined as sub-
classes of the Exception class and further collected in the Shared/Exceptions

directory.
Log is a second low-level library. It is in charge of generating all the output di-

rected to the user. This includes all messages on the console, and all information
or debug files requested by the user. However, it neither generates the XML repre-
sentation of the algorithm status, nor the statistics files. The genotype to phenotype
mapping is also outside the scope of the library.

XmlParser is a generic open-source library (TinyXML) for the construction
and parsing of a document tree from the XML source. Further discussion of this
library is outside the scope of the book. The library is available from http:

//sourceforge.net/projects/tinyxml/

Constraints is the library devoted to the handling of the syntactic constraints of
the indivduals. Its classes materialize the concepts of sections, subsections, macros
and parameters. It depends on the application domain, indeed it gives the μGP the
ability to transform genotype data into a file with a defined syntax.

11.3 Code organization and class model 115

Graph is the middle-level library. It manipulates graphs, subgraphs and vertices,
allowing the transformations needed for evolution. It does not strictly depend on the
application domain. In fact, it is possible to use the Graph library for deterministic
transformations. However, it is not a complete graph library, since several common
algorithms (say, the Minimum Spanning Tree) would be of little use in the tool.

EvolutionaryCore is a high-level library. It sits on top of the other libraries, ac-
tually performing the evolution. By definition, it depends strictly on the application
domain of the tool.

Graph and EvolutionaryCore are discussed in more detail in sections 11.2.1
and 11.2.2.

The front end is not actually a library, but it too is packaged in a directory inside
the distribution.

Libraries are compiled as regular object files and statically linked. This increases
the executable size but promotes portability across platforms.

A number of classes in the Shared, EvolutionaryCore, Graph and
Constraints libraries implement the XML interface defined by the abstract class
XMLIFace, contained in the Shared library. This interface specifies three methods.
The writeXml() method serializes the object in XML format to an output stream,
readXml() deserializes it from an XML element, and finally getXmlName() re-
turns the XML element name for the class. Most classes that implement this in-
terface do not actually implement those methods in the regular .cc file, but in a
separate .xml.cc file. This approach is meant to limit the scope of modifications to
the code in case the user wants to use a different XML parsing library.

Some simplified class diagrams are presented below to help clarify the code or-
ganization. No complete class diagram is reported, as it would be unintelligible.
Rather, the class diagrams below focus on particular parts of the tool, detailing parts
that the user may want to modify.

The class diagrams are simplified in several ways. They include only classes
strictly involved in the particular aspect analyzed, and also omit attributes and meth-
ods of the classes that are not necessary for understanding. To preserve legibility of
the diagrams the method and attribute signatures are omitted.

A significant amount of code, present in μGP, is not described to avoid con-
fusion and cluttering. Getter and setter methods are almost always omitted from
descriptions and class diagrams, as they are often quite trivial. Also, methods that
implement the XML interface of a class are frequently absent from the diagram,
as well as methods that override inherited ones. Finally, when a class overloads a
method or a constructor, it is only reported one time in the diagram, as it would
make little sense to have the very same line two or more times in a diagram.

Figure 11.1 depicts the organization of classes that handle the individuals. The
main purpose of the Individual class is to act as a unifying framework of every
concept related to a single individual. It logically includes the individual genotype,
the genotype-phenotype mapping and the resulting fitness.

The Individual class is seldom used as is, since only its subclasses are actu-
ally instanced. Every individual is uniquely tagged by the id attribute. The birth,
death and mAge attributes track the anagraphic data of the individual, taking into

116 11 Implementation details

Fitness
values
description
isValid
clear()
+ Fitness()
+ ~ Fitness()
+ getIsValid()
+ invalidate()
+ equals()
+ parse()
+ compareTo()
+ toString()
+ operator >=()
+ operator <=()

CGraphContainer
- graphs
- isMessageSet
- message
- CGraphContainer()
- attachOuterLabel()
+ ~ CGraphContainer()
+ attachFloatingEdges()
+ contains()
+ contains()
+ equals()
+ clone()
+ getRandomSubGraph()
+ addCGraph()
+ setAsParent()
+ clear()
+ buildRandom()
+ validate()
+ writeExternalRepresentation()
+ toString()
+ calculateHashCode()

Individual
- id
- birth
- death
- mAge
- graphContainer
- population
- fitness
- idCounter
lineage
Individual()
writeXmlLife()
+ instantiate()
+ ~ Individual()
+ age()
+ toCode()
+ isFenotypeEqual()
+ isGenotypeEqual()
+ clone()
+ isDead()
+ toString()
+ validate()
+ compareTo()
+ equals()

EnhancedFitness
- cloneCount
+ EnhancedFitness()

MOFitness

+ MOFitness()
+ ~ MOFitness()
+ equals()
+ compareTo()

MOIndividual
- level
- previousLevel
- strength
moScaledFitness
+ MOIndividual()
+ ~ MOIndividual()
+ getType()
+ clone()
+ age()
+ getScaledFitness()

EnhancedIndividual
- placeholder
scaledFitness
deltaEntropy
isHero
+ EnhancedIndividual()
+ ~ EnhancedIndividual()
+ getType()
+ clone()
+ age()
+ toString()
+ getScaledFitness()
+ getMessageInformation()

Fig. 11.1 Simplified class diagram: Individual

account its permanence in the elite in case that applies. The association attributes
graphContainer and fitness keep track of the components of the individual,
whereas the population attribute links it upwards to its enclosing poplation.

Important methods include age(), that increases the current age of the indi-
vidual and, if it is too old, decrees its death, toCode(), that writes the external

11.3 Code organization and class model 117

representation of an individual to a file, validate(), that checks that the individ-
ual complies with its constraints.

One key method is instantiate(), defined statically and overloaded one time.
This method is used, when deserializing an entire population, to construct an in-
dividual before its contents are actually known. In case the user wants to add
new types of individul, he has to add the relevant code to the instantiate(

const string&, const Population&) method.
The EnhancedIndividual class is associated to EnhancedFitness by the

scaledFitness attribute. In EnhancedIndividual the placeholder attribute
is used as a performance aid when searching for clones.

The age() method is redefined since it has to take into account the possibility
that the individual is part of the elite. The getMessageInformation() method is
instrumental in entropy and delta-entropy computation.

Similarly, the MOIndividual class is associated to MOFitness using the
moScaledFitness attribute. In MOIndividual the level attribute tracks the cur-
rent Pareto level of the individual. The previousLevel attribute allows discovering
whether an individual in the Pareto front has been dominated by another one in the
last generation. In this case the count of generations without fitness improvements
is reset to zero. The strength attribute measures the perceived strength of an in-
dividual with respect to all the other individuals in the population. This strength is
used, when needed, to discriminate individuals within a single Pareto level.

The actual content of the individual is stored in a CGraphContainer class. De-
rived classes for the individual use this content through the base Individual class.
We consider the constrained tagged graph to be general enough not to need mod-
ifications when used to represent different types of individuals. Inheritance for the
fitness, instead, exactly follows that of the individual. Classes for the individual are
derived in chain, and every type of individual has a corresponding class for the fit-
ness, with the same derivation sequence.

In the MOFitness class the compareTo() method overrides the corresponding
method from Fitness. This is necessary because the regular fitness or the enhanced
fitness allow total ordering, whereas the multi-objective fitness does not, so it must
contemplate the possibility that two fitness values are not comparable.

Figure 11.2 reports the simplified class diagram for the Graph library. The reader
can see that several relationships occur among all the classes included in the dia-
gram, and these do not always follow the inheritance chains.

The classes shown can be divided in three rough categories. The first is a set of
classes that represent generic concepts, like graphs, vertices and edges, that may
apply to any tool. These are the Edge, Node and Graph classes. The second is a
set of classes specific to μGP, that represent concepts related to the constrained
tagged graph. These are the CNode, CSubGraph, CGraph, ConstrainedElement
and NodeContainer classes. The third, only containing the Slice class, is the set
of classes that are used for optimization purposes. The slice is not a basic concept,
but rather a convenient way of treating a subgraph. It is a linear representation of a
subgraph, starting from the first vertex after the prologue and terminating at the last

118 11 Implementation details

Edge
- from
- to
+ offsetTagName
+ parameterTagName
+ targetTagName
- operator =()
- clear()
+ Edge()
+ ~ Edge()
+ toString()

Node
id
edges
backEdges
idCounter
Node()
buildFromXml()
removeEdge()
+ Node()
+ ~ Node()
+ addEdge()
+ addEdgeTo()
+ removeEdge()
+ removeBackEdge()
+ contains()
+ toString()

Graph
nodes
- Graph()
createNode()
buildFromXml()
+ ~ Graph()
+ addNode()
+ removeNode()
+ addEdge()
+ validate()

CGraph
- parentContainer
- subGraphs
- isMessageSet
- message
- CGraph()
- setAsParent()
- attachSubGraphNoSizeCheck()
- detachSubGraphNoSizeCheck()
- setParentContainer()
+ ~ CGraph()
+ insertSubGraph()
+ attachSubGraph()
+ detachSubGraph()
+ replaceSubGraph()
+ attachFloatingEdges()
+ contains()
+ clone()
+ equals()
+ calculateHashCode()
+ clear()
+ buildRandom()
+ validate()
+ writeExternalRepresentation()
+ toString()

CSubGraph
- idCounter
- id
- parentContainer
- nodes
- slice
- prologue
- epilogue
- message
- isMessageSet
- CSubGraph()
- addNode()
- getTargetFromFloatingEdge()
- restoreInnerLabel()
+ ~ CSubGraph()
+ attachFloatingEdges()
+ isBefore()
+ getRandomTargetForInnerLabel()
+ getOffset()
+ validateConstraints()
+ contains()
+ toString()
+ equals()
+ clone()
+ clear()
+ buildRandom()
+ validate()
+ writeExternalRepresentation()
+ calculateHashCode()

ConstrainedElement
- constrain
+ ConstrainedElement()
+ ConstrainedElement()
+ ~ ConstrainedElement()
+ clear()
+ buildRandom()
+ writeExternalRepresentation()

NodeContainer
prologue
epilogue
+ NodeContainer()
+ NodeContainer()
+ setAsParent()
+ ~ NodeContainer()

Slice
- idCounter
- id
- nodeSequence
+ START
+ END
- clear()
+ Slice()
+ ~ Slice()
+ spliceSlice()
+ swapNodes()
+ invertSubSequence()
+ cutSlice()
+ attachNextAndPrev()
+ append()
+ toString()

CNode
- uniqueTagGenerator
- parentContainer
- next
- prev
+ Escape
- CNode()
- setAsParent()
- detachInnerLabel()
- addFloatingEdge()
+ ~ CNode()
+ representsPrologue()
+ representsEpilogue()
+ detachOuterLabels()
+ detachInnerLabels()
+ detachNextAndPrev()
+ randomize()
+ randomizeParameter()
+ initialized()
+ countIncomingOuterLabels()
+ equals()
+ calculateHashCode()
+ clear()
+ buildRandom()
+ validate()
+ writeExternalRepresentation()
+ toString()
+ clone()

1

1

-prologue

Fig. 11.2 Simplified class diagram: Constrained Tagged Graph

11.3 Code organization and class model 119

vertex before the epilogue. The order of the vertices in the slice is the same in which
they can be visited following the next reference of each.

For performance reasons the CSubGraph class uses the Slice as a component,
and at the same time it keeps track of its CNode constituents through a map. The
slice is especially useful in applying the crossover operators.

CrossoverOperator

swapSlices()
collectLinkedSubGraphs()
collectLinkedSubGraphs()
selectRandomSubgraphPair()
swapSlices()
+ CrossoverOperator()
+ getParentsCardinality()

OnePointSafeSimpleCrossoverOperator

OperatorToolbox
- container
- OperatorToolbox()
- operator =()
+ OperatorToolbox()
+ ~ OperatorToolbox()
+ getRandomGraph()
+ getRandomSubGraph()
+ getRandomNode()
+ getRandomNode()
+ getRandomSubGraph()
+ insertRandomNode()
+ insertRandomNode()
+ insertRandomNode()
+ removeRandomNode()
+ removeRandomNode()
+ removeRandomNode()
+ insertRandomSubSection()
+ insertRandomSubSection()
+ removeRandomSubSection()
+ removeRandomSubSection()

RandomWalkMutationOperator

AlterationMutationOperator

+ AlterationMutationOperator()
+ generate()
+ getName()
+ getAcronym()

RemovalMutationOperator

ReplacementMutationOperator

ScanMutationOperator

SingleParameterAlterationMutationOperator

SubGraphInsertionMutationOperator

SubGraphRemovalMutationOperator

SubGraphReplacementMutationOperator

TwoPointSafeSimpleCrossoverOperator

OnePointSafeCrossoverOperator

LocalScanMutationOperator

InsertionMutationOperator

GeneticOperator
- geneticOperators
- NO_OPERATOR
GeneticOperator()
release()
+ getOperatorCount()
+ getOperator()
+ registration()
+ unregisterAll()
+ getName()
+ getAcronym()
+ generate()
+ getParentsCardinality()
+ ~GeneticOperator()
+ toString()

MutationOperator

+ MutationOperator()
+ getParentsCardinality()

Fig. 11.3 Simplified class diagram: Evolutionary Operators

Figure 11.3 depicts the relationship between the genetic operators. Methods have
been omitted in all but one operator class, since they have essentially identical names
and perform conceptually identical functions.

The GeneticOperator class represents the unifying concept of a genetic op-
erator. This class is also responible for the housekeeping operations involving
the genetic operators. These include registering the operators, unregistering them,
selecting an operator for application, releasing the memory taken up by invalid

120 11 Implementation details

individuals. It also declares the abstract method generate(), whih actually applies
the genetic operator to a set of input individuals.

Two abstract classes extend the GeneticOperator superclass. These are
MutationOperator and CrossoverOperator. The first is the base class for all
mutation operators, that is all operators that receive a single genotype as input and
generate one or more offspring from it. The second is the base for all operators that
recombine genetic material from two parents to generate offspring.

We advise the user wanting to introduce genetic operators that recombine
genetic material from three or more parents to derive a further class from
GeneticOperator, to factor all common methods of actual operators.

The classes derived from MutationOperator and CrossoverOperator are
the actual genetic operators used by μGP. All of them define a constructor and
three methods. These are the getName(), getAcronym() and generate() meth-
ods. The first two just return human-readable text to describe the operator, the last
performs the offspring generation.

The scheme for generate() is always the same: the parent individuals are
copied using the clone() method of Individual, then the copies obtained are
manipulated to obtain the new individuals. The rest of μGP expects that the parents
never change. If this happens, wrong results are almost guaranteed.

The last class visible in the diagram is OperatorToolbox. To avoid unnecessary
cluttering its relations with other classes are not displayed, but it is actually used by
all operators. As the name suggests, it is a collection of methods to manipulate the
genetic material. We think that this class is the right place to define new generic
manipulation methods that the user may want to introduce.

Figure 11.4 shows the overall archtecture of the evolutionary algorithm. The uni-
fying class here is EvolutionaryAlgorithm. For every evolutionary run only one
instance of this class exists. The evolutionary algrithm comprises one or more popu-
lations. The concept of population is materialized by the Population class. Actual
populations can only be of EnhancedPopulation or MOPopulation type.

Every population is associated with a corresponding set of parameters. This cor-
respondence is not only a one-to-one association, but it is also a type correspon-
dence. Every population of a given type has parameters of a corresponding type. An
enhanced population has parameters of EnhancedPopulationParameters type,
whereas parameters of type MOPopulationParameters correspond to a multi-
objective population. The type hierarchy is the same for populations and population
parameters. We advise users wanting to add new population types to follow the same
scheme, in order to maintain a tight control on the code. If a new population type is
desired, it should be complemented with a corresponding individual type (see figure
11.1), fitness type and parameters type.

Independently of its type, every population is associated, through the parame-
ters, to both a fitness evaluator and a statistics class. The FitnessEvaluator class
represents the external evaluator and takes care of the evaluation operations, includ-
ing setting the evaluation queue, running the external program, collecting the fitness
values, deleting the individuals already evaluated if so required, signaling a possible
stop request by the evaluator.

11.3 Code organization and class model 121

MOPopulationParameters

+ getType()
+ ~ MOPopulationParameters()

MOPopulation
- genotypeEqualityMap
- entropy
- maxLevel
- bestIndividual
- worstIndividual
- steadyGenerations
- firstRecovery
- strengthValid
- computeLevelAverageFitness()
- removeSingleIndividual()
- sortIndividuals()
newRandomIndividual()
slaughtering()
evaluate()
setBestAndWorstIndividual()
age()
updateOperatorsStatistics()
computeLevels()
compareAll()

EvolutionaryAlgorithm
- outputPathName
- overwriteOutput
- statisticsPathName
- algorithmStep
- migrator
- seconds
populations
EvolutionaryAlgorithm()
parsePopulations()
parseOperators()
saveDumpState()
step()
+ EvolutionaryAlgorithm()
+ ~ EvolutionaryAlgorithm()
+ fromFile()
+ save()
+ run()
+ addPopulation()
+ removePopulation()

Population
- algorithm
generation
individuals
parameters
- Population()
- parseIndividuals()
- dumpAllIndividuals()
- operator =()
updateSigma()
newRandomIndividual()
setBestAndWorstIndividual()
slaughtering()
age()
updateOperatorsStatistics()
useInertia()
updateEndogenParameters()
computeAverageFitness()
computeAverageSize()
computeAverageAge()
+ ~ Population()
+ instantiate()
+ fromFile()
+ reloadStatistics()
+ addIndividual()
+ addIndividuals()
+ step()
+ setupPopulation()
+ merge()
+ save()
+ addGeneticOperator()
+ evaluate()
+ getType()
+ compare()
+ writeStatistics()
+ stopConditionReached()

FitnessEvaluator
- pendingEvaluations
- maximumQueueSize
- scriptFile
- inputFile
- outputFile
- environmentVariables
- removeTemporaryFiles
- totalMilliSeconds
- totalEvaluations
- externalStopRequest
- parseEnvironmentVariables()
- retrieveEvaluations()
- clear()
runScript()
+ FitnessEvaluator()
+ flush()
+ evaluate()

PopulationParameters
- constraintsDefinitions
constraints
mu
lambda
nu
inertia
originalSigma
sigma
maximumAge
maximumGenerations
maximumGenerationsStop
fitnessParametersCardinality
activations
selector
dumpBeforeEvaluation
invalidateFitnessAfterGeneration
maximumEvaluations
maximumEvaluationsStop
evaluator
+ PopulationParameters()
+ removeGeneticOperator()
+ addGeneticOperator()
+ save()
+ fromFile()
+ instantiate()
+ clearConstraintsCache()

EnhancedPopulation
- genotypeEqualityMap
- entropy
- bestIndividual
- worstIndividual
- previousMaxFitness
- steadyGenerations
- removeSingleIndividual()
updateSigma()
newRandomIndividual()
slaughtering()
evaluate()
setBestAndWorstIndividual()
age()
updateOperatorsStatistics()
stopConditionReached()
searchMaximumFitnessIndividual()
+ EnhancedPopulation()
+ ~ EnhancedPopulation()
+ compare()
+ addIndividual()
+ writeStatistics()

EnhancedPopulationParameters
- cloneScalingFactor
- eliteCardinality
maximumFitnessStop
maximumFitness
SteadyStateGenerationsStop
maximumSteadyStateGenerations
+ EnhancedPopulationParameters()

Statistics
- data
- clear()
+ Statistics()
+ ~ Statistics()
+ addData()
+ removeData()
+ cleanPerformanceData()
+ cleanFailedCalls()
+ clearUnreferencedData()
+ normalize()
+ toString()

Fig. 11.4 Simplified class diagram: Evolutionary Algorithm

Since fitness evaluation is a generic activity, that does not depend on the structure
of a population or the representation of an individual, the FitnessEvaluator class
does not have any subclasses.

Figure 11.5 depicts the organization of the program front end. The Program

class is responsible for initialization activities, including reading the command line
arguments, setting up the logs, instancing the evolutionary algorithm. The Program
class contains a settings class, MicroGPSettings, that is responible for reading the
initial settings file and initializing the general parameters.

122 11 Implementation details

Program
- name
- version
- description
- authors
- defaultSettingsFile
- defaultLoggingFile
- settings
- Program()
- parseArguments()
- setupLogger()
- addLogHandler()
- displayArgumentsUsage()
- displayLicense()
- displayStartupMessage()
- displayMoreHelp()
- displayVersion()
- run()
- registerOperators()
- printOption()
+ start()

MicroGPSettings

+ MicroGPSettings()
+ initialize()
+ ~ MicroGPSettings()

Argument
+ SettingsFile
+ License
+ Help
+ MoreHelp
+ Version
+ Debug
+ Verbose
+ Info
+ Warning
+ Error
+ Silent
+ Log
+ TextOnly
+ Brief
+ Extended
+ RecoveryInputAlgorithm
+ RecoveryInputPopulation
+ RecoveryOutputAlgorithm
+ RecoveryOutputOverwrite
+ RecoveryDiscardFitness
+ RandomSeed
+ StatisticsPathName
+ Population
+ Merge
+ FitnessConcurrentEvaluations
+ FitnessParametersCount
+ FitnessEvaluator
+ FitnessEvaluatorInput
+ FitnessEvaluatorOutput
+ FitnessRemoveTempFiles
- Argument()

Log
- handlers
- temporaryStream
- level
- location
- progress
- commit()
- Log()
+ ~ Log()
+ load()
+ save()
+ clear()
+ addHandler()
+ removeHandler()
+ operator <<()

Settings
- contexts
+ XML_NAME
+ getContext()
+ getOption()
+ hasContext()
+ addContext()
+ addContext()
+ ~ Settings()
+ Settings()
+ load()
+ save()
+ clear()

EvolutionaryAlgorithm
- outputPathName
- overwriteOutput
- statisticsPathName
- algorithmStep
- migrator
- seconds
populations
EvolutionaryAlgorithm()
parsePopulations()
parseOperators()
saveDumpState()
step()
+ EvolutionaryAlgorithm()
+ ~ EvolutionaryAlgorithm()
+ fromFile()
+ save()
+ run()
+ addPopulation()
+ removePopulation()

Fig. 11.5 Simplified class diagram: Front End

MicroGPSettings is a subclass of Settings, whose responsibility is that of
providing a hierarchical structure to the settings, with contexts, options within the
contexts and argument values.

The Argument class contains all possible command line arguments as static
strings. It is not the responsibility of Argument to hold the value of a command
line argument, but only to provide the argument names, so its constructor is made
private.

μGP has a comprehensive log system, useful for both debugging and tracking of
the evolutionary process. The central clas of this system is Log.

The log architecture includes four general concepts. These are the message
record, handling of the communication channel, formatting of the message, and
level of the message.

The Record class holds a message record. Besides the message itself, a record
contains information aboout the message level, the instant in which it has been gen-
erated, the code location that produced it, and whether it contains progress informa-
tion. The latter indication is important because typically messages about operation
progress are meant to superimpose each other, and not to be saved individually.

11.3 Code organization and class model 123

PlainFormatter

+ format()
+ getType()

XmlFormatter

+ format()
+ getType()

Level
+ Silent
+ Error
+ Warning
+ Summary
+ Info
+ Verbose
+ Debug
+ Level()
+ parse()
+ operator <()
+ operator <=()
+ operator >()
+ operator >=()

Location
- file
- function
- line
+ Location()
+ operator =()

MailHandler
- recipient
- smtpServer
- sender
- maxRecordsPerMessage
- maxMinutes
- records
- sendRecords()
- writeXmlOptions()
+ MailHandler()
+ publish()
+ getType()
+ ~ MailHandler()

Record
- message
- level
- location
- time
- progress
- Record()
- operator =()
+ hasProgress()

Log
- handlers
- temporaryStream
- level
- location
- progress
- commit()
- Log()
+ ~ Log()
+ load()
+ save()
+ clear()
+ addHandler()
+ removeHandler()
+ operator <<()

Formatter

+ instantiate()
+ format()
+ getType()
+ ~ Formatter()
+ getXmlName()

BriefFormatter

+ format()
+ getType()

ConsoleHandler
- console
- fileDesc
- enableSmartWrap
- enableProgressBars
- currentColumns
- wrap()
- manageProgressBar()
- isTTY()
- saveCursorPosition()
- restoreCursorPosition()
- blankLine()
writeXmlOptions()
+ ConsoleHandler()
+ publish()
+ getTerminalWidth()
+ getType()

Progress
- progress
+ END
+ Progress()
+ operator double()

ExtendedFormatter

+ format()
+ getType()

FileHandler
- stream
- fileName
- maxRecordsPerFile
- records
writeXmlOptions()
+ FileHandler()
+ publish()
+ getType()
+ ~ FileHandler()

Handler
- level
- formatter
writeXmlOptions()
+ Handler()
+ ~ Handler()
+ setFormatter()
+ isLoggable()
+ getFormatter()
+ instantiate()
+ publish()
+ getType()

Fig. 11.6 Simplified class diagram: Logging system

124 11 Implementation details

Progress information, like a progress bar or a completion percentage, may be im-
portant at the time when it is generated, but is almost meaningless later.

The handling concept is materialized by the Handler class. It is the base class for
a number of specialized handlers whose responsibility is to correctly forward mes-
sages to different channels. In version 3.2 the Handler class has three subclasses,
ConsoleHandler, FileHandler and MailHandler. These forward messages re-
spectively to a command line terminal, to a file or to a SMTP server.

Related to, but independent from the concept of channel handling, is the concept
of message formatting. In this context the term formatting is used to indicate the
type and amount of information that is conveyed with each message. For instance,
it indicates whether a timestamp is included in each message, or whether mes-
sages are generated in XML format. The Formatter class represents the generic
concept of message formatting. It is the base class for the BriefFormatter,
PlainFormatter, ExtendedFormatter and XmlFormatter classes. Each of these
classes defines its own format() method, that transforms each record message in a
message string ready to be sent to an output channel.

Every message has an associated verbosity level. Messages with an high ver-
bosity level are transmitted to the user only if a log exists with a verbosity level
equal or higher. If the verbosity of a log is lower, the message is not transmitted
through that log. Very important messages, therefore, have a very low level.

In addition, for debugging purposes, the log system includes the Location class,
whose purpose is to hold the exact location in the code where a message is gen-
erated. In this way it is easier to pinpoint the code that produces an unexpected
message, and find possible bugs.

Chapter 12

Examples and applications

Human beings, who are almost unique in having the ability to
learn from the experience of others, are also remarkable for
their apparent disinclination to do so.

Douglas Adams

This chapter contains a number of examples to illustrate the use of μGP. In the
following each example is described completely, so that each experiment can be
easily repeated. Every section contains detailed information about the preparation of
the settings file, of the population settings file and of the constraints file. In addition,
it contains the code of the fitness evaluator. The results of the evolutionary runs are
provided for each experience.

The examples are not chosen for their usefulness, but rather to bring out some
difficulties that may arise in the use of any evolutionary tool, and to show how these
can be solved using μGP. For instance, in some cases the user may need to design
the constraints file and the fitness evaluator together to correctly describe individuals
whose syntactic structure does not match trivially the structure of the constraints file.
In other cases describing the individuals is not a problem, but their semantic may
be, such as when it contemplates the possibility of endless loops. Sometimes the
simplest possible fitness function may be too difficult to optimize, or it may lead to
bloating. In such cases the user may have to modify the fitness function, or to add
further fitness values.

At the same time, the results allow the reader to appreciate the way in which the
different parameters influence the evolutionary process. The performance of the tool
may be sensitive to different parameters when confronted with different problems.
In this perspective, the following examples are meant to provide an insight on the
evolutionary process.

12.1 Classical one-max

This problem is somewhat like a “hello world” of optimizing methods in general,
and of evolutionary algorithms in particular. The problem is simple. Let’s call s a
generic string of bit. Given the set SN of all the possible strings of bits of length N,
the goal is finding a string sm ∈ SN so that the number of bits set to ’1’ in the string
is maximum.

125E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7_12, © Springer Science+Business Media, LLC 2011

126 12 Examples and applications

The problem has an immediate solution, represented by a string made of N ’1’
bits. Obviously, this problem does not require an optimizer, but can be used as a test
to check that an optimizer actually works.

12.1.1 Fitness evaluator

Despite the simplicity of the problem there is stil ample choice for the implemen-
tation of the fitness evaluator. The simplest choice is a program that takes a string
of ’0’ and ’1’ as input and produces as output the number of ’1’ characters in the
string.

One source of problems with this approach is the ability of μGP to produce
variable-size individuals. The result of the evolution would then be different from
expectations, since the evoutionay core would be able to increase the fitness of in-
dividuals just by adding random bits to their genome. On average, one half of those
bits would be ’1’, so the fitness could increase without bounds. There would be no
selective pressure on the individuals for shedding the ’0’ bits.

There is a simple route for solving this problem. Just assign zero fitness to all
individuals that have a number of bits different from N. This approach works, and
eventually leads to the expected result.

The same result could be obtained by choosing which genetic operators are used
during evolution. If all operators that could change the size of the individual are
suppressed by setting their weight to 0, and the initial size of the individuals is set
to N, then all individuals generated would be the right size, and then would be no
need to check it.

What’s wrong with this approach? Nothing, but the user should be careful, be-
cause it relies on a priori knowledge of the problem domain. In particular, it is
known that a sequence of alteration mutations, local mutations and scan mutations
can lead to the desired result, no matter what the starting point is. If such knowledge
is available it is perfectly acceptable to use it. When this approach can be used, it
may lead to substantial savings in optimization time, since it greatly restricts the
search space.

For other problems, allowing the individuals to grow or shrink outside the prob-
lem domain may make alternative evolutionary routes available and allow the opti-
mizer to reach an optimal solution.

The example provided with the tool uses the approach described above. Individ-
uals are bound to be exactly N bits long, and every mutation that changes the size
results in a failure. No individual longer or shorter than N is ever evaluated, so the
evaluation script does not check the size.

Below is the evaluation script.

#!/usr/bin/perl -w-

Starting from v3.1.2_1142 fitness scripts can use

12.1 Classical one-max 127

(again) environment variables:

#

$UGP3_FITNESS_FILE : the file created by the

evaluator

$UGP3_OFFSPRING : the individuals to be

evaluated

(space separated list)

$UGP3_GENERATION : generation number

$UGP3_VERSION : current ugp3 version.

eg. 3.1.2_1142

$UGP3_TAGLINE : full ugp3 tagline.

eg. ugp3 (MicroGP++)

v3.1.2_1142 "Bluebell"

open OUT, ">$ENV{UGP3_FITNESS_FILE}"

or die "Can’t create $ENV{UGP3_FITNESS_FILE}: $!";

foreach $file (@ARGV) {

open F, $file or die "Can’t open $file: $!";

read a single line from file F

$_ = <F>;

count the ’1’ characters

$n = tr/1/1/;

the comment string is the current time

$time = localtime;

$time =~ tr/ /_/;

print OUT "$n $file\@$time\n";

}

close OUT;

The fitness script is written in PERL scripting language. A modified version, with
additional comments, is reported here. First it opens the fitness file for writing, or
aborts if it is unable to do that. In case the fitness script aborts without generating
any file, the whole evolutionary process will be aborted.

Then the script parses its command line arguments. Every argument is the name
of an individual to evaluate. Again, if opening the corresponding file is not possible,
the evaluation is aborted.

Every file is expected to contain a single line, which is read and scanned to count
the ’1’ in it. No attempt is made to count the total number of characters in the line.

The comment string is set to the name of the individual followed by the time of
evaluation, with the spaces replaced by underscores.

This script is able to evaluate many individuals, as specified by the concurrent
evaluations parameter in the population settings file, but evaluation is actually se-
quential. To achieve actual concurrent evaluation the script should be modified so

128 12 Examples and applications

that it sets up all the needed processes or threads. Even if evaluation is not parallel
it may still pay off to evaluate many individuals together, since it will save several
calls to the perl interpreter, with the corresponding initialization sequences.

12.1.2 Constraints

The constraints for one-max are conceptually simple. Every individual must be com-
posed by a linear sequence of N character, either ’0’ or ’1’. Global and section pro-
logues and epilogues are not needed.

Constraints are reported in a modified form to fit the page, splitting long lines in
shorter ones. Splitting the lines, especially quoted strings, would raise an error in an
actual run.

<?xml version="1.0" encoding="utf-8"?>

<?xml-stylesheet type="text/xsl"

href="http://www.cad.polito.it/ugp3/transforms/

constraintsScripted.xslt"?>

<constraints

xmlns="http://www.cad.polito.it/ugp3/schemas/

constraints"

id="One-Max"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.cad.polito.it/ugp3/

schemas/constraints

http://www.cad.polito.it/ugp3/

schemas/constraints.xsd">

<typeDefinitions>

<item xsi:type="constant" name="bit_type">

<value>0</value>

<value>1</value>

</item>

</typeDefinitions>

<commentFormat><value/></commentFormat>

<identifierFormat>n<value /></identifierFormat>

<labelFormat><value/>: </labelFormat>

<uniqueTagFormat><value /></uniqueTagFormat>

<prologue id="globalPrologue"/>

<epilogue id="globalEpilogue"/>

<sections>

<section id="bitString"

prologueEpilogueCompulsory="false">

<prologue id="sectionPrologue"/>

<epilogue id="sectionEpilogue">

12.1 Classical one-max 129

<expression></expression>

</epilogue>

<subSections>

<subSection id="main" maxOccurs="1"

minOccurs="1" maxReferences="0">

<prologue id="stringPrologue"/>

<epilogue id="stringEpilogue"/>

<macros maxOccurs="50" minOccurs="50"

averageOccurs="50" sigma="10">

<macro id="bitString">

<expression><param ref="bit"/>

</expression>

<parameters>

<item xsi:type="definedType"

ref="bit_type" name="bit" />

</parameters>

</macro>

</macros>

</subSection>

</subSections>

</section>

</sections>

</constraints>

The constraints contain an empty global prologue and epilogue, and a single sec-
tion. In the section appear an empty prologue, an epilogue with an empty expression
and a single subsection. It is interesting to note that the empty prologue and the epi-
logue with an empty expression produce the same effect, that is no string is produced
at the beginning or at the end of an individual.

The subsection, named “main”, can occur exactly one time and cannot be ref-
erenced. In this specific case specifying the allowed number of references has no
meaning, since there is no macro in the constraints with a reference.

Again, the subsection has empty prologue and epilogue. After that, the con-
straints specify that the subsection can contain from a minimum of 50 to a max-
imum of 50 macros, with the same average. This just means that the number of
macros is fixed, and individuals with a different number of vertices in the corre-
sponding subgraph are not valid and will not be evaluated. The non zero sigma

parameter is actually meaningless, all individuals are generated with the specified
number of vertices.

There is only one type of macro in the constraints, in which the expression is
an unadorned parameter of type bit_type, defined at the start of the constraints as
either ’0’ or ’1’.

130 12 Examples and applications

12.1.3 Population settings

The population parameters for this example are reported below. All options, includ-
ing optional ones, are used. As for the constraints, some elements are reported split
on two or more lines to fit the page.

<?xml version="1.0" encoding="utf-8" ?>

<parameters type="enhanced">

<cloneScalingFactor value="0"/>

<eliteSize value="0"/>

<maximumFitness value="50"/>

<maximumSteadyStateGenerations value="20"/>

<mu value="10"/>

<nu value="10"/>

<lambda value="10"/>

<inertia value="0.9"/>

<fitnessParameters value="1"/>

<maximumAge value="10"/>

<sigma value="0.9"/>

<invalidateFitnessAfterGeneration value="0"/>

<constraints value="onemax.constraints.xml"/>

<maximumGenerations value="100"/>

<maximumEvaluations value="1000"/>

<selection type="tournamentWithFitnessHole" tau="1"

tauMin="1" tauMax="1" fitnessHole="0" />

<evaluation>

<concurrentEvaluations value="4" />

<removeTempFiles value="true" />

<evaluatorPathName

value="./onemax.fitness-script.pl" />

<evaluatorInputPathName value="individual.in" />

<evaluatorOutputPathName value="fitness.out" />

</evaluation>

<operatorsStatistics>

<operator ref="onePointSafeCrossover">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="onePointSafeSimpleCrossover">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="twoPointSafeSimpleCrossover">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="singleParameterAlterationMutation">

<weight current="1" minimum="0" maximum="1"/>

12.1 Classical one-max 131

</operator>

<operator ref="insertionMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="removalMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="replacementMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="alterationMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="subGraphInsertionMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="subGraphRemovalMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="scanMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="subGraphReplacementMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="randomWalkMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

<operator ref="localScanMutation">

<weight current="1" minimum="0" maximum="1"/>

</operator>

</operatorsStatistics>

</parameters>

An enhanced population is used, with 10 individuals. At each generation, 10
genetic operators are applied. The entropy fitness hole is not used and the parameters
of tournamentSelection are set to choose an individual only, thus performing a
simple random selection on the individuals each time a genetic operator is applied.

All operator weigths are equal, exactly as they are generated using the
ugp3-population tool.

The evolution is stopped as soon as it reaches the maximum possible fitness
value, or if 20 generations are elapsed without any progress in the best fitness value.
This event is extremely improbable, unless the population parameters are changed
to extreme values.

132 12 Examples and applications

12.1.4 μGP settings

Below are reported the general tool settings for one-max. As usual, some options
are split on different lines to fit the page. We recommend that in actual use they are
kept on single lines.

These are actually fairly standard settings. Apart from the reference to the pop-
ulation parameters file, nearly identical settings may be used for a wide range of
problems.

<?xml version="1.0" encoding="utf-8" ?>

<settings>

<context name="evolution">

<option name ="populations">

<population name="OneMax-Population"

value="onemax.population.settings.xml" />

</option>

<option name="statisticsPathName"

value="statistics.xml" />

</context>

<context name="recovery">

<option name="recoveryInput" value="" />

<option name="recoveryInputPopulations" value="" />

<option name="recoveryOutput" value="status.xml" />

<option name="recoveryOverwriteOutput"

value="true" />

<option name="recoveryDiscardFitness"

value="true" />

</context>

<context name="logging">

<option name="std::cout" value="info; brief" />

</context>

</settings>

These settings specify a single population, described by the parameters in section
12.1.3. No recovery input is specified, and the recovery output file is overwritten
at every generation. The settings also specify to discard the fitness values of the
recovered status, but since there is no recovered status, this option has no effect.

No seed for the random number generator is specified. Should the user desire to
repeat a series of identical runs, the randomSeed element in the evolution context
should be set to a specific value.

The logging is kept brief. Only the standard output is generated, and no file is
written. Given the purpose of the example, logging should only be activated if the
user suspects the presence of a software bug.

12.1 Classical one-max 133

12.1.5 Running

Once the files described above are ready and placed in the same folder, the evolution
can start by simply invoking the μGP executable, ugp3, without any command-line
parameter. Evolution should end after a few seconds, finding the optimal solution.

The user can verify that the optimal solution has been reached by using the μGP
extractor software. Provided that the μGP settings file is exactly as reported above,
typing ugp3-extractor status.xml on the console will generate a text file con-
taining the best individual, compute its fitness and display a brief report of the op-
erations executed. We recommend the user to take note of these names, as they may
be easily overlooked in a directory with many files inside. If a first run does not
return the optimal solution, a new run most likely will. If the tool is regularly unable
to find the best solution, chances are that the settings files are not conform to the
samples reported above: and the user should thus check their correctness.

A first rule of thumb is that the maximum number of generations should be in
linear relation with the size of the population. A safe bet is to allow at least 2n
generations in a run with n individuals.

The user could also check that the genetic operators are not deactivated: any
operator that does not appear in the population settings file or has a weight of zero,
is not used. If several operators are missing from the settings or have a weight of
zero, it might be impossible to perform the optimization at all.

On the other hand, choosing which operators are used may help speed up the
evolution. Some operators do not change the size of the individual, some may or
may not change it, some will certainly grow or shrink the individual. Removing the
latter from the list of available operators should speed up evolution, simply because
more valid individuals will be produced per generation.

A quick demonstration the user may perform consists of running the evolution-
ary process both with the settings described above and with modified population
settings. The modified settings will prescribe a weight of zero for the insertion mu-
tation, removal mutation, all subgraph mutation operators. These are all operators
that are guaranteed to fail, since the individuals have a fixed size and only a sin-
gle subgraph, as by constraint settings. The operators are deactivated by setting the
current weight to 0. Operators with a current weight of zero will not be used, their
success rate will not be positive, thus their weight will not change.

We tried the experiment repeating the run 1000 times for each setting, without
controlling the seed of the random number generator. This means that the results are
not exactly repeatable. Your mileage will vary.

With the first setup we obtained the optimal solution 999 times out of 1000, on
average in about 26.9 generations. The second setup found the optimal solution in
each run, with an average of generations 25 generations elapsed. If you choose to use
self adaptation of μGP parameters, eventually genetic operators that fail too much
will see their activation probability decrease to minimum levels. This procedure
speeds up the evolution, de facto removing useless operators.

134 12 Examples and applications

12.2 Values of parameters and their influence on the evolution:

Arithmetic expressions

Arithmetic functions are often used as test benches to evaluate the convergence and
performance of evolutionary algorithms. Some of them are well known in literature,
for example all tests developed by Kenneth De Jong, but in principle every func-
tion with specific features (e.g. a great number of local optima and a single global
optimum) can be used for this purpose.

In all the cases presented in this section, choosing the fitness function and the
representation of the individuals is trivial: the fitness is obtained directly from the
arithmetic function and each individual is an array of real numbers in a given inter-
val.

More interesting are the variation of the performance of μGP obtained by tweak-
ing the population parameters. It will be shown how each parameter influences a
run and thus it should be set to an appropriate value in every experiment in order to
maximize the performance of the evolutionary algorithm.

12.2.1 De Jong 3

The third function developed by De Jong is defined as follows:

fDJ3(x) = 5 ·n +
n

∑
i=1
�x�, xi ∈ [−5.12, 5.12] (12.1)

The function is monomodal and not continouos, and it has an infinite number of
local minima f (x∗) = 0 for x∗i ∈ [−5.12,−5], with i = 1, 2, ..., n.

For the following experiments n = 5, so each individual is composed by 5 real
numbers, x1, ...,5 ∈ [−5.12, 5.12]. Some parameters, summarized in Table 12.1 and
Table 12.2 are not changed through all the experiments.

Parameter Value

μ 1000
ν 500
λ 250
σ 0.970, 0.980
MaximumAge 20
maximumSteadyStateGenerations 5000
maximumGenerations 10000
Seed 5987579

Table 12.1 Parameters of all the following experiments.

12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 135

Fig. 12.1 De Jong’s third function

Operator Curr. Probability Min. Probability Max. Probability

replacementMutation 0.5 0 1
singleParameterAlterationMutation 0.5 0 1

Table 12.2 Genetic operators used in the experience

12.2.1.1 The τ parameter

The τ parameter describes the number of individuals that will be randomly selected
to take part in the tournament selection to choose the parents for an activated ge-
netic operator. Incresing τ makes the choice more deterministic, steadily rewarding
individuals with better fitness values, while decreasing τ makes the choice of the
parents more and more random.

Thus, τ should be chosen wisely, depending on the function you are trying to
optimize. As a rule of thumb, high values of τ are beneficial up to a certain point,
where the trend becomes the opposite. In Table 12.3 to Table 12.8 we see how τ
tweaking works for this particular arithmetic function, with different values of the
EliteSize and Inertia parameters. For each combination of values, the number
of steps μGP required to find the global optimum is listed.

In the third De Jong function, an increase in τ leads to a small improvement, up to
τ = 128, then the system has a small setback and there are no further improvements.
Fig. 12.2 summarizes the results.

136 12 Examples and applications

τ = 8 16 32 64 128 256

Inertia Steps

0.93 322
0.94 296
0.95 267
0.96 251
0.97 286

Average 284.4

steps

180
170
206
204
180

188

steps

92
94

169
175
220

150

Steps

72
90
95
96

111

92.8

Steps

64
61
82
96
104

81.4

Steps

69
65
109
85
103

86.2

Table 12.3 Results for EliteSize = 8

τ = 8 16 32 64 128 256

Inertia Steps

0.93 224
0.94 149
0.95 305
0.96 298
0.97 256

Average 246.4

Steps

157
92
177
210
239

175

Steps

114
76
146
163
177

135.2

Steps

105
90
95
118
195

120.6

Steps

64
61
82
96

104

81.4

Steps

69
65

116
85

103

87.6

Table 12.4 Results for EliteSize = 16

τ = 8 16 32 64 128 256

Inertia Steps

0.93 276
0.94 281
0.95 272
0.96 360
0.97 290

Average 295.8

Steps

154
145
163
184
263

181.8

Steps

114
76
169
172
187

143.6

Steps

72
90
112
111
156

108.2

Steps

64
61
82
96

104

81.4

Steps

69
65

116
85

103

87.6

Table 12.5 Results for EliteSize = 32

12.2.1.2 The ν parameter

The ν parameter describes the initial size of the first population, containing only
randomly-generated individuals. In some experiments, exspecially those where the
evaluation of a single individual takes some time, it can be useful to draw upon an
initially larger quantity of genetic material. Aside from these specific cases, how-

12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 137

τ = 8 16 32 64 128 256

Inertia Steps

0.93 268
0.94 269
0.95 186
0.96 289
0.97 227

Average 247.8

Steps

160
150
188
175
255

185.6

Steps

110
76
134
145
182

129.4

Steps

72
90
112
111
174

111.8

Steps

64
61
82
96

104

81.4

Steps

69
65

116
85

103

87.6

Table 12.6 Results for EliteSize = 64

τ = 8 16 32 64 128 256

Inertia Steps

0.93 229
0.94 251
0.95 282
0.96 303
0.97 354

Average 283.8

Steps

171
150
186
201
226

186.8

Steps

110
76
134
145
174

127.8

Steps

72
90
112
111
174

111.8

Steps

64
61
82
96

104

81.4

Steps

69
65

116
85

103

87.6

Table 12.7 Results for EliteSize = 128

τ = 8 16 32 64 128 256

Inertia Steps

0.93 229
0.94 255
0.95 236
0.96 284
0.97 228

Media 246.4

Steps

160
150
176
224
163

174.6

Steps

110
76
134
145
174

127.8

Steps

72
90
112
111
174

111.8

Steps

64
61
82
96
104

81.4

Steps

69
65
116
85
103

87.6

Table 12.8 Results for EliteSize = 256

ever, it is expected that any initial advantage ν can provide to the fitness values in
the population will be lost as the generations go on.

For the third function of De Jong, the latter proves true: as shown in Fig. 12.3,
any initial increase in the average fitness value is rapidly lost, and the graph assumes
a similar shape no matter the value of ν in the experiment.

138 12 Examples and applications

0 50 100 150 200 250 300
50

100

150

200

250

300

τ

pa
ss

i
Elites = 8
Elites = 16
Elites = 32
Elites = 64
Elites = 128
Elites = 256

Fig. 12.2 Number of steps needed to find the optimal solution for different values of τ .

12.2.1.3 The FitnessHole parameter

FitnessHole is a parameter that can be extremely useful in experiments where in-
dividuals have distinct blocks (e.g. individuals that describe several assembly func-
tions), since certain values help to reward individuals with a pattern which is un-
common in the population at a given generation. That increments entropy in the
system and preserves some potentially useful genetic material that could otherwise
be wasted.

In functions where an individual is basically an array of numbers, however, the
same values for this parameter can be a disadvantage: lacking distinct blocks, the
only result of tweaking FitnessHole will be a random selection of individuals
during a tournament.

As shown in Fig. 12.4, this is the case with the third De Jong function.
FitnessHole should be altered from its default value of 0 only when the struc-
ture of a single individual is really complex.

12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 139

0 20 40 60 80 100 120 140 160
5

10

15

20

25

30

passi

F
itn

es
s

m
ed

ia
ν = 100

ν = 600

ν = 1200

ν = 1800

Fig. 12.3 Influence of ν on the average fitness for each generation.

12.2.2 De Jong 4 - Modified

The fourth function chosen by De Jong to be included in his test suite provides a
good example for parameter tweaking. In the original function, the random variable
η has a gaussian distribution N(0, 1); in this experiment, however, the function has
been slightly modified. η , in fact, is considered having a uniform distribution ∈
[0,1), because in its original version, the fourth De Jong function does not have
a global minimum. To increase the difficulty of the problem, η is included in the
sum. Thus, μGP is requested to minimize 30 random variables while simultaneously
searching for the minumum of a function with 30 variables.

fDJ4(x) =
30

∑
i=1

(i · x4
i +η), xi ∈ [−1.28, 1.28] (12.2)

The global minimum is:

fDJ4(x∗) = 0 f or x∗ = (0, 0, ..., 0). (12.3)

While locating the zone near the minimum is trival, finding the exact global op-
timum is difficult. In that zone the random component η is in the same order of
magnitude of ∑30

i=1 i · x4
i , so fitness values oscillate in the range (0, 1). Selection and

140 12 Examples and applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

150

200

250

300

350

400

450

500

FitnessHole

P
as

si

Fig. 12.4 Influence of FitnessHole on the number of steps needed to converge.

reproduction of individuals are thus strongly influenced by the constantly changing
environment. An appropriate choice of μ and λ parameters can help the convergence
even in this hard situation.

12.2.2.1 The μ and λ parameters

Finding the ideal value of μ and λ is a problem-specific issue. In the results of a
series of experiments reported in Fig. 12.6, we can notice how the number of gener-
ation steps decreases rapidly for increasing values of λ . The number of evaluations,
however, drops to a minimum and then slowly climbs up: the correct value for λ
should always be chosen in conjuction with the value for μ .

12.2.3 Carrom

The complex Carrom function shows how some genetic operators provided with
μGP can significatively improve the behavior of the evolutionary algorithm. The
function is also known as Carrom table and is defined by the subsequent equation:

12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 141

Fig. 12.5 Fourth De Jong function.

f (x) =− 1
30

⎧⎨
⎩cos(x1)cos(x2)exp

⎡
⎣
∣∣∣∣∣∣
1−

(
x2

1 + x2
2
) 1

2

π

∣∣∣∣∣∣

⎤
⎦
⎫⎬
⎭

2

(12.4)

The function is multimodal and it has four points of global minimum in the do-
main xi ∈ [−10, 10] with i = 1, 2 of value f (x∗)
 −24.1568155. The cartesian
coordinates that identify the four points are x∗ = (x1, x2)
 (±9.6463,±9.6463).

12.2.3.1 Preliminary run

In a preliminary series of runs, μGP is tested against the Carrom function with two
different set of parameters, differing mainly for the population size. The objective is
to provide the reader with statistics on the convergence when only two basic genetic
operators are used. Parameters used can be found in Table 12.9 and Table 12.10.
Table 12.11 reports the results of this first series of experiments.

The great number of evolutionary steps needed to find the solution are a clear
indication of the complexity of the problem. Among the two sets of runs, experiment
2 presents slightly better results, probably because of the more favorable ratio τ

μ .

142 12 Examples and applications

10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

λ

P
as

si

(a) Steps.

10 20 30 40 50 60 70 80 90 100

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x 10
4

λ

V
al

ut
az

io
ni

(b) Evaluations.

Fig. 12.6 Variation of parameter λ .

Experiment 1 Experiment 2

Parameter Value

μ 100
ν 50
λ 33
σ 0.929
maximumSteadyStateGenerations 5000
MaximumAge 20
EliteSize 2
τ = τmin = τmax 64
ε 0.000001
Seed 5987579

Value

300
100
33

0.929
5000

20
2

64
0.000001
5987579

Table 12.9 Preliminary experiment. Population parameters.

12.2.3.2 Improvements with genetic operators

The behavior of μGP is then observed during the course of four different series
of runs, each one with a different set of genetic operators. The initial activation
probability of each operator is equal.

12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 143

Fig. 12.7 Carrom function

Operator Curr. Min. Max.

replacementMutation 0.5 0 1
singleParameterAlterationMutation 0.5 0 1

Table 12.10 Preliminary experiment. Genetic operators.

Experiment 1 Experiment 2

Inertia Steps Evaluations Best Individual

0.900 8783 145988 -24.156808
0.910 9922 166216 -24.156815
0.920 9972 155432 -24.156813
0.930 8915 145645 -24.156814
0.940 10990 176858 -24.156814

Average 9716.4 158027.8 -24.156813

Steps Evaluations Best

7339 135021 -24.156758
10420 174602 -24.156805
7338 130522 -24.156811
6839 124357 -24.156808

10398 171328 -24.156795

8466.8 147166 -24.156795

Table 12.11 Preliminary experiment. Results.

The first experiment introduces two crossover genetic operators, onePointSafeS-
impleCrossover and twoPointSafeSimpleCrossover. The complete list of genetic op-
erators used is in Table 12.12. The results in Table 12.13 show a clear improvement:
the duration of a single run decreases by about 30%, while the number of individuals
evaluated drops to a 50%.

144 12 Examples and applications

Operator Curr. Min. Max.

replacementMutation 0.25 0 1
singleParameterAlterationMutation 0.25 0 1
onePointSafeSimpleCrossover 0.25 0 1
twoPointSafeSimpleCrossover 0.25 0 1

Table 12.12 Improvements with genetic operators, experiment 1. Genetic operators.

Inertia Steps Evaluations Best

0.900 5014 55948 -24.156815
0.910 6778 110320 -24.156793
0.920 5955 67093 -24.156815
0.930 6239 105589 -24.156768
0.940 8474 127544 -24.156799

Average 6492 93298.8 -24.156798

Table 12.13 Improvements with genetic operators, experiment 1. Results.

12.2.3.3 The alterationMutation genetic operator

Not all genetic operators, however, are beneficial to the convergence a specific prob-
lem: the user should always take care when choosing the operators to include. Some
of them may actually worsen the performance of μGP, because they are not able to
work on the structure of the individual. For example, alterationMutation changes a
number of different nodes in the individual with random values: but it fails if the
node has no parameters. In the structure of our individual, both the prologue and
the epilogue are empty macros with no parameters, so the operators fails often. The
great number of failures of alterationMutation has direct repercussion on the steps
needed to reach an optimal solution. Operators used in this test are presented in
Table 12.14, while the results are in Table 12.15.

Operatore Curr. Min. Max.

replacementMutation 0.2 0 1
singleParameterAlterationMutation 0.2 0 1
alterationMutation 0.2 0 1
onePointSafeSimpleCrossover 0.2 0 1
twoPointSafeSimpleCrossover 0.2 0 1

Table 12.14 alterationMutation, experiment 2. Genetic operators.

12.2 Values of parameters and their influence on the evolution: Arithmetic expressions 145

Inertia Steps Evaluations Best

0.900 10182 148224 -24.156811
0.910 10203 145705 -24.156807
0.920 5780 98916 -24.156739
0.930 10492 148785 -24.156815
0.940 7708 118161 -24.156814

Average 8873 131958.2 -24.1567972

Table 12.15 alterationMutation, experiment 2. Results.

12.2.3.4 The randomWalk genetic operator

randomWalk is one of the genetic operators unique to μGP: basically, it is used to
introduce more determinsm into individual creation, thus helping the algorithm to
reach an optimal solution in all problems where at least a part of the fitness land-
scape can be explored effectively by a hill-climber algorithm. randomWalk proves
its efficacy in this problem, cutting the time needed to reach the optimal solution
by an order of magnitude, as shown in Table 12.17. In Table 12.16 all the operators
used in this test.

Operatore Curr. Min. Max.

replacementMutation 0.166 0 1
singleParameterAlterationMutation 0.166 0 1
alterationMutation 0.166 0 1
onePointSafeSimpleCrossover 0.166 0 1
twoPointSafeSimpleCrossover 0.166 0 1
randomWalkMutation 0.166 0 1

Table 12.16 randomWalk, experiment 3. Genetic operators.

Inertia Steps Evaluations Best

0.900 127 4185 -24.156816
0.910 135 4206 -24.156815
0.920 147 4474 -24.156815
0.930 161 4939 -24.156815
0.940 134 4216 -24.156815

Average 140.8 4404 -24.1568152

Table 12.17 randomWalk, experiment 3. Results.

scanMutation is the equivalent of randomWalk for integer parameters. It has the
same behavior, but it should be used in problems where the macros composing an
individual present a great number of integer parameters.

146 12 Examples and applications

12.3 Complex individuals’ structures and evaluation:

Bit-counting in Assembly

While arithmetic functions are useful to quickly identify the long-term and short-
term effects of population parameters on the evolution, the examples reported in
12.2 share a common, trivial structure of the individuals. To explore some of the
expressive potential of μGP constraints file, nothing is better than code generation,
a task which the first version of the evolutionary algorithm was developed to tackle.

The aim of this experiment is to make μGP evolve an assembly function able
to correctly count the number of bits set to 1 in the integer passed as an argument
to the function. Not only the representation of individuals is not as intuitive as it
would be in an arithmetic function, but the evaluator is not provided and needs to be
conceived with care to effectively solve the problem.

12.3.1 Assembly individuals representation

The first thing that comes to mind when thinking about assembly are the single in-
structions. μGP provides a powerful mean to define a type of parameter that assumes
a finite number of fixed values, TypeDefinitions.

<typeDefinitions>

<item xsi:type="constant" name="register">

<value>%eax</value>

<value>%ebx</value>

<value>%ecx</value>

<value>%edx</value>

</item>

<item xsi:type="constant" name="instruction">

<value>addl</value>

<value>subl</value>

<value>movl</value>

<value>andl</value>

<value>orl</value>

<value>xorl</value>

<value>test</value>

<value>cmp</value>

</item>

<item xsi:type="constant" name="branch">

<value>ja</value>

<value>jz</value>

<value>jnz</value>

<value>je</value>

<value>jne</value>

12.3 Complex individuals’ structures and evaluation: Bit-counting in Assembly 147

<value>jc</value>

<value>jnc</value>

<value>jo</value>

<value>jno</value>

</item>

</typeDefinitions>

It can be easily noticed in code above that not all the instructions have been
included in the same item. This is a choice, to easily define different macros with
different kinds or number of arguments (e.g., all instructions in item instruction
have two parameters, while all instructions in branch only take one parameter). It is
also useful to create an item for register names, since they will be extensively used
in the macros.

The prologue of our individual will be a series of fixed assembly commands
common to all functions: values stored in some registers are saved, then the integer
passed to the function is put into register %eax. The same holds true for the epilogue:
a series of fixed commands that return the result to the calling function and restore
the initial values in the registers.

<prologue id="sectionPrologue">

<expression>

.globl foo

.type foo, @function

foo:

pushl %ebp

movl %esp, %ebp

subl $4, %esp

movl 8(%ebp), %eax

movb %al, -4(%ebp)

pushl %ebx

pushl %ecx

pushl %edx

</expression>

</prologue>

<epilogue id="sectionEpilogue">

<expression>

popl %edx

popl %ecx

popl %ebx

leave

ret

.size foo, .-foo

</expression>

</epilogue>

The macros, on the other hand, need to express all possible assembly instructions.
The macros chosen are reported in the code below. instrDirectDirect represents

148 12 Examples and applications

all the instructions with two register as parameters, while instrConstDirect

expresses those instructions which have a register and an integer as parameters.
branchCond describes all instruction that jump to a label. Notice that the argument
here is a label that refers to a specific line in the individual, and will be automatically
created by μGP when individuals are instantiated.

<macros maxOccurs="infinity" minOccurs="1"

averageOccurs="70" sigma="60">

<macro id="instrDirectDirect">

<expression> <param ref="ins"/>

<param ref="sreg"/>,

<param ref="dreg"/>

</expression>

<parameters>

<item xsi:type="definedType" ref="instruction"

name="ins" />

<item xsi:type="definedType" ref="register"

name="sreg" />

<item xsi:type="definedType" ref="register"

name="dreg" />

</parameters>

</macro>

<macro id="instrConstDirect">

<expression> <param ref="ins"/>

$<param ref="scon"/>,

<param ref="dreg"/>

</expression>

<parameters>

<item xsi:type="definedType" ref="instruction"

name="ins" />

<item xsi:type="integer" base="dec" minimum="0"

maximum="255" name="scon" />

<item xsi:type="definedType" ref="register"

name="dreg" />

</parameters>

</macro>

<macro id="branchCond">

<expression> <param ref="ins"/>

<param ref="target"/>

</expression>

<parameters>

<item xsi:type="definedType" ref="branch"

name="ins" />

<item xsi:type="innerGenericLabel" name="target"

itself="true" prologue="true"

12.3 Complex individuals’ structures and evaluation: Bit-counting in Assembly 149

epilogue="true"/>

</parameters>

</macro>

</macros>

12.3.2 Evaluator

The evaluator for this particular experiment needs to be designed with the final
objective in mind. It is important to provide μGP with a fitness landscape as smooth
as possible. The evaluator is composed by two parts:

• A main function written in C;
• A script that compiles an assembly file with the main and runs it.

FITNESS_FILE=fitness.output

rm -f foo fitness.error.log \$FITNESS_FILE

gcc -o foo main.o \$1 -lm 2\>fitness.error.log

./foo 2\>fitness.error.log \>\$FITNESS_FILE

if [-s fitness.error.log]; then

echo \"0\" \> \$FITNESS_FILE

date \>\> error.log

more fitness.error.log \>\> error.log

fi

Each individual is passed to the evaluator as an argument: the evaluator compiles
it with the main in C and runs the resulting executable. As it is clear by the code
reported above, the program calls the assembly function generated by μGP with
a range of different integers, rewarding the individual if it computes correctly the
number of bit set to 1 in the binary representation of the integer used as an argument.

It is important to notice that the fitness function has been conceived to be smooth:
an individual is rewarded even if it comes near to the number of bits set to 1 for a
particular integer. The presence of a slope towards the optimum helps the evolution-
ary algorithm to reach the best solution.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <stdlib.h>

#include <setjmp.h>

#include <signal.h>

#include <sys/time.h>

char foo(char a);

150 12 Examples and applications

static void timeout(int);

int bits[] = {

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,

4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8

};

static jmp_buf wakeup_place;

static struct itimerval new;

int main(int argc, char *argv[])

{

int t;

int diff;

float fitness;

if (!setjmp(wakeup_place)) {

signal(SIGVTALRM, timeout);

new.it_interval.tv_sec = 0; /* next value, seconds */

new.it_interval.tv_usec = 0; /* next value, milliseconds */

new.it_value.tv_sec = 0; /* current value, seconds */

new.it_value.tv_usec = 500; /* current value, milliseconds */

setitimer(ITIMER_VIRTUAL, &new, NULL);

fitness = 0.0;

t = 0;

} else {

t = 256;

}

while (t < 256) {

diff = bits[t] - foo((char)t);

if(diff > 0)

12.3 Complex individuals’ structures and evaluation: Bit-counting in Assembly 151

diff = -diff;

if (!diff) {

fitness += 100.0;

} else {

fitness += exp(diff);

}

++t;

}

printf("%f\n", fitness);

return 0;

}

static void timeout(int foo)

{

longjmp(wakeup_place, 1);

}

The C code for the main function that calls the assembly individuals implements
also a timeout, since an individual could potentially fall into an infinite loop, given
the branchCond macro and the fact that the initial population and subsequent muta-
tions are randomly determined. If an individual triggers the timeout, it will have the
fitness computed up to that moment. The presence of infinite loops should be always
taken into account when considering code generation by evolutionary means.

12.3.3 Running

This experiment is quite complex. Depending on the hardware at your disposal, it
could take hours to converge: μ and λ of the population should be dimensioned ac-
cordingly. In our experience, on a home desktop computer, it takes about 50 minutes
to reach an optimal solution on 3 bits, with μ = 70 and λ = 35. Finding an assem-
bly program able to correctly evaluate all integers represented by more bits would
require a bigger population and it would surely take more time.

Appendix A

Argument and option synopsis

Here is a comprehensive list of all possible options and parameters that may be used
in the command line or in the settings files. It is provided as a quick reference for
the user.

Only predefined keywords are reported in the table. This means that in some
cases all possible values for an option or parameter are present in the table, but not
all possible values for all possible options. In particular, logic value literals, numeric
values, default file names do not appear as table items.

The following table has two columns. The first lists the option name, without the
syntactic marks that surround it when it is used (the -- prefix on the command line,
or the <option name=" and "/> tag delimiters in the settings file). The second
describes where and how the option may or should be used.

The usage context indicates when the option or parameter may be used. In this
field CL is used to indicate the command line, SF the settings file and PPF the
population parameter file.

For every item that can be used in a setting file the parent is reported. A composite
syntax is used to indicate the parent when it would be ambiguous to indicate just the
nearest parent element. So the notation element 1.element 2 means that the correct
parent is an instance of element 2 that appears as descendent of element 1. The
notation (value).element indicates that the item can appear as a descendent of an
instance of element enclosed in another element one of whose attribute values is
value. This notation is unambiguous in this case because all values used in such
a context only appear as attribute values of one single element. The parent is not
reported if the item can only be used on the command line.

A further field reports the default value for the item. In this context none indicates
that no default value exists and the user should provide one. The expression not
applicable means either that the item already is a literal value, or that the item is an
element with several descendents that must be present in the settings, so the concept
of a default value does not make sense. If the item is a composite element that may
optionally be present the default values of all its descendents are indicated in the
respective fields, so the expression see element attributes is used.

153E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7, © Springer Science+Business Media, LLC 2011

154 A Argument and option synopsis

The last field reports a brief description of the option purpose. This description is
not meant for understanding its usage, only to provide a quick mnemonic reference
to other parts of the book.

Table A.1: Options

Option Description
alterationMutation Usage context: PPF

Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the alteration mutation
operator.

boolean Usage context: SF
Setting type: attribute value
Parent: option.type
Default: not applicable
Specifies that the value attribute
of the enclosing element is a
boolean.

brief Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that the logging mes-
sages should be generated in brief
format, with timing information.

cloneScalingFactor Usage context: PPF
Setting type: element
Parent: parameters
Default: 0
Multiplying factor for the fitness
values of identical individuals.

concurrentEvaluations Usage context: CL, PPF
Setting type: element
Parent: evaluation
Default: 1
Maximum number of phenotype
files generated for concurrent
evaluation.

constraints Usage context: PPF
Setting type: element
Parent: parameters

A Argument and option synopsis 155

Table A.1: Options

Option Description
Default: none
The name of the external con-
straints file for the population.

context Usage context: SF
Setting type: element
Parent: settings
Default: not applicable
A logically related subset of the
general parameters.

current Usage context: PPF
Setting type: element attribute
Parent: weight
Default: 0
Initial activation probability for a
genetic operator.

debug Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that full debug messages
should be sent to the standard
output or to the relative logging
stream.

eliteSize Usage context: PPF
Setting type: element
Parent: parameters
Default: 0
Number of elite individuals that
never age.

enhanced Usage context: PPF
Setting type: attribute value
Parent: parameters.type
Default: not applicable
Specifies an enhanced population
type for evolution.

environment Usage context: PPF
Setting type: element
Parent: parameters
Default: not applicable

156 A Argument and option synopsis

Table A.1: Options

Option Description
The set of all environment vari-
ables used by the external evalu-
ator.

error Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that only error messages
should be sent to the standard
output or to the relative logging
stream.

evaluation Usage context: PPF
Setting type: element
Parent: parameters
Default: none
The set of all parameters for eval-
uation.

evaluatorInputPathName Usage context: CL, PPF
Setting type: element
Parent: evaluation
Default: individual.input
The base name of the individ-
ual phenotype, as is generated for
evaluation.

evaluatorOutputPathName Usage context: CL, PPF
Setting type: element
Parent: evaluation
Default: individuals.output
The name of the fitness file gener-
ated by the external evaluator.

evaluatorPathName Usage context: CL, PPF
Setting type: element
Parent: evaluation
Default: ./evaluator
The name of the executable file
that performs fitness evaluation.

evolution Usage context: SF
Setting type: attribute value
Parent: context.name
Default: not applicable

A Argument and option synopsis 157

Table A.1: Options

Option Description
Settings for evolution related pa-
rameters.

extended Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that the logging mes-
sages should be generated in ex-
tended format, with all additional
information.

files Usage context: PPF
Setting type: element
Parent: evaluation
Default: none
Element specifying an alternative
syntax for fitness evaluation pa-
rameters.

fitnessHole Usage context: PPF
Setting type: element attribute
Parent: selection
Default: none
Probability of usage of a criterion
alternative to fitness in tournament
selection.

fitnessParameters Usage context: PPF
Setting type: element
Parent: parameters
Default: none
The number of numeric fitness
values produced during evalua-
tion.

help Usage context: CL
Default: not applicable
Causes μGP to display a summary
of its command-line options or of
a specific option and exit.

inertia Usage context: PPF
Setting type: element
Parent: parameters
Default: 0

158 A Argument and option synopsis

Table A.1: Options

Option Description
Weight of the previous values of
endogenous parameters in the pro-
cess of self-adaptation.

info Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that all normal messages
should be sent to the standard
output or to the relative logging
stream.

input Usage context: PPF
Setting type: element
Parent: files
Default: none
The base name of the individ-
ual phenotype, as is generated for
evaluation.

insertionMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single vertex inser-
tion mutation operator.

integer Usage context: SF
Setting type: attribute value
Parent: option.type
Default: not applicable
Specifies that the value attribute of
the enclosing element is an inte-
ger.

lambda Usage context: PPF
Setting type: element
Parent: parameters
Default: none
The number of genetic operators
applied during the reproduction
phase.

license Usage context: CL
Default: not applicable

A Argument and option synopsis 159

Table A.1: Options

Option Description
Causes μGP to display its license
information and exit.

localScanMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single parameter lo-
cal scan mutation operator.

log Usage context: CL
Default: not applicable
Allows specifying an additional
logging stream.

logging Usage context: SF
Setting type: attribute value
Parent: context.name
Default: see section 7.2
Settings for the logging parame-
ters.

maximum Usage context: PPF
Setting type: element attribute
Parent: weight
Default: 0
Maximum activation probability
for a genetic operator.

maximumAge Usage context: PPF
Setting type: element
Parent: parameters
Default: none
Maximum age of an individual,
after which it is forcibly killed.

maximumFitness Usage context: PPF
Setting type: element
Parent: parameters
Default: not applicable
Fitness value whose appearance
makes evolution stop.

maximumGenerations Usage context: PPF
Setting type: element
Parent: parameters
Default: none

160 A Argument and option synopsis

Table A.1: Options

Option Description
Maximum number of generations
after which evolution is stopped.

maximumSteadyStateGenerations Usage context: PPF
Setting type: element
Parent: parameters
Default: none
Maximum number of generations
without improvements in the best
fitness after which evolution is
stopped.

merge Usage context: CL, SF
Setting type: attribute value
Parent:
(evolution).option.name

Default: none
Sequence of merge operations to
perform on the populations before
the evolution begins.

minimum Usage context: PPF
Setting type: element attribute
Parent: weight
Default: 0
Minimum activation probability
for a genetic operator.

moreHelp Usage context: CL
Default: not applicable
Causes μGP to display help infor-
mation about its internals and exit.

mu Usage context: PPF
Setting type: element
Parent: parameters
Default: none
The size of the population after the
survival phase.

multiObjective Usage context: PPF
Setting type: attribute value
Parent: parameters.type
Default: not applicable
Specifies a multi-objective popu-
lation type for evolution.

name Usage context: SF, PPF

A Argument and option synopsis 161

Table A.1: Options

Option Description
Setting type: element attribute
Parent: multiple
Default: not applicable
The name attribute of a configura-
tion element.

nu Usage context: PPF
Setting type: element
Parent: parameters
Default: none
The size of the population before
the first reproduction phase.

onePointSafeCrossover Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single point safe
crossover operator.

onePointSafeSimpleCrossover Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single point safe sim-
ple crossover operator.

operator Usage context: PPF
Setting type: element
Parent: operatorsStatistics
Default: not applicable
The set of parameters for a single
genetic operator.

operatorsStatistics Usage context: PPF
Setting type: element
Parent: parameters
Default: none
The set of parameters for all ge-
netic operators.

option Usage context: SF
Setting type: element
Parent: context
Default: not applicable

162 A Argument and option synopsis

Table A.1: Options

Option Description
Settings for a single general pa-
rameter.

output Usage context: PPF
Setting type: element
Parent: files
Default: none
The name of the fitness file gener-
ated by the external evaluator.

parameters Usage context: PPF
Setting type: element
Parent: none
Default: not applicable
The description of a population
and all of its parameters.

plain Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that the logging mes-
sages should be generated in plain
format, without additional infor-
mation.

population Usage context: CL, SF
Setting type: element
Parent: (populations)
Default: none
Description of a single population.

populations Usage context: SF
Setting type: attribute value
Parent:
(evolution).option.name

Default: see section 7.1
The list of populations and associ-
ated parameters files.

randomSeed Usage context: CL, SF
Setting type: attribute value
Parent:
(evolution).option.name

Default: see section 7.1

A Argument and option synopsis 163

Table A.1: Options

Option Description
The initial value for the random
number generator.

randomWalkMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single parameter ran-
dom walk mutation operator.

recovery Usage context: SF
Setting type: attribute value
Parent: context.name
Default: not applicable
Settings for the status recovery pa-
rameters.

recoveryDiscardFitness Usage context: CL, SF
Setting type: attribute value
Parent:
(recovery).option.name

Default: true
Determines whether fitness values
are recomputed when restoring a
previous run.

recoveryInput Usage context: CL, SF
Setting type: attribute value
Parent:
(recovery).option.name

Default: none
The name of the file from which
μGP restores the current state of
the run.

recoveryInputPopulations Usage context: SF
Setting type: attribute value
Parent:
(recovery).option.name

Default: none
The name of an additional popula-
tion file to merge to the first popu-
lation.

recoveryOutput Usage context: CL, SF
Setting type: attribute value

164 A Argument and option synopsis

Table A.1: Options

Option Description
Parent:
(recovery).option.name

Default: status.xml
The name of the file where μGP
saves the current state of the run.

recoveryOverwriteOutput Usage context: SF
Setting type: attribute value
Parent:
(recovery).option.name

Default: true
Determines whether the status file
is overwritten at every generation.

ref Usage context: PPF
Setting type: element attribute
Parent: operator
Default: none
The name of a genetic operator.

removalMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single vertex re-
moval mutation operator.

removeTempFiles Usage context: CL, PPF
Setting type: element
Parent: evaluation
Default: true
Determines whether phenotype
files are removed after evaluation.

replacementMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single vertex re-
placement mutation operator.

scanMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none

A Argument and option synopsis 165

Table A.1: Options

Option Description
Specifies the single parameter
scan mutation operator.

script Usage context: PPF
Setting type: element
Parent: files
Default: none
The name of the executable file
that performs fitness evaluation.

selection Usage context: PPF
Setting type: element
Parent: parameters
Default: see element attributes
The set of parameters for tourna-
ment selection.

settings Usage context: SF
Setting type: element
Parent: none
Default: not applicable
The set of all general parameters.

settingsFile Usage context: CL
Default: ugp3.settings.xml
The name of the settings file.

sigma Usage context: PPF
Setting type: element
Parent: parameters
Default: none
Probability of repeated applica-
tion of a mutation operator.

silent Usage context: CL
Default: not applicable
Specifies that no messages should
be sent to the standard output.

singleParameterAlterationMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single parameter al-
teration mutation operator.

statisticsPathName Usage context: CL, SF
Setting type: attribute value

166 A Argument and option synopsis

Table A.1: Options

Option Description
Parent:
(evolution).option.name

Default: statistics.xml
The name of the file containing the
evolutionary statistics for the run.

string Usage context: SF
Setting type: attribute value
Parent: option.type
Default: not applicable
Specifies that the value attribute of
the enclosing element is a string.

subGraphInsertionMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single subgraph in-
sertion mutation operator.

subGraphRemovalMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single subgraph re-
moval mutation operator.

subGraphReplacementMutation Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the single subgraph re-
placement mutation operator.

tau Usage context: PPF
Setting type: element attribute
Parent: selection
Default: 1
Initial size of tournament selec-
tion.

tauMax Usage context: PPF
Setting type: element attribute
Parent: selection
Default: 1

A Argument and option synopsis 167

Table A.1: Options

Option Description
Maximum size of tournament se-
lection.

tauMin Usage context: PPF
Setting type: element attribute
Parent: selection
Default: 1
Minimum size of tournament se-
lection.

tournament Usage context: PPF
Setting type: attribute value
Parent: selection.type
Default: none
Specifies regular tournament se-
lection.

tournamentWithFitnessHole Usage context: PPF
Setting type: attribute value
Parent: selection.type
Default: none
Specifies tournament selection
with a fitness hole.

twoPointSafeSimpleCrossover Usage context: PPF
Setting type: element attribute
Parent: operator.ref
Default: none
Specifies the two point safe simple
crossover operator.

type Usage context: SF, PPF
Setting type: element attribute
Parent: multiple
Default: not applicable
The type attribute of a configura-
tion element.

value Usage context: SF, PPF
Setting type: element attribute
Parent: multiple
Default: not applicable
The value attribute of a configura-
tion element.

variable Usage context: PPF
Setting type: element
Parent: environment

168 A Argument and option synopsis

Table A.1: Options

Option Description
Default: none
Name and value of a single envi-
ronment variable.

verbose Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that verbose messages
should be sent to the standard
output or to the relative logging
stream.

version Usage context: CL
Default: not applicable
Causes μGP to display its version
information and exit.

warning Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that only error and warn-
ing messages should be sent to the
standard output or to the relative
logging stream.

weight Usage context: PPF
Setting type: element
Parent: operator
Default: see element attributes
The activation probablities for a
single genetic operator.

xml Usage context: CL, SF
Setting type: attribute value
Parent:
(logging).option.value

Default: not applicable
Specifies that the logging mes-
sages should be generated in XML
format, with full information.

Appendix B

External constraints synopsis

In the following is a complete list of all possible options and parameters that may be
used in the external constraints files. It is provided as a quick reference for the user.

The format of the table and the reported fields are as in appendix A, with two
important differences. The first one is that all items in this table refer to the external
constraints, therefore the usage context does not appear in the table. The second
is that, since μGP has no knowledge of the problem domain, no default value is
defined for most items. The default is only reported when it exists.

Table B.1: Constraints

Constraint Description
averageOccurs Setting type: element attribute

Parent: macros
The average number of vertices
corresponding to macros of the
subsection in an individual.

base Setting type: element attribute
Parent: item(bitArray)
Specifies that the parameter
should be expressed in a particu-
lar base.

bin Setting type: attribute value
Parent: item(bitArray).base
Specifies binary representation for
a bit array parameter.

bitArray Setting type: attribute value
Parent: item.xsi:type
Specifies a parameter composed
by an array of bits.

commentFormat Setting type: element
Parent: constraints

169E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7, © Springer Science+Business Media, LLC 2011

170 B External constraints synopsis

Table B.1: Constraints

Constraint Description
The expression for the format of
comments in the phenotype.

constant Setting type: attribute value
Parent: item.xsi:type
Specifies a parameter whose value
is one of a set of constants.

constraints Setting type: element
Parent: none
Descriptions of all the constraints.

definedType Setting type: attribute value
Parent: item.xsi:type
Specifies a parameter of a type
previously defined by the user.

environment Setting type: attribute value
Parent: item.xsi:type
Specifies a parameter whose value
is that of an environment variable.

epilogue Setting type: element
Parent: multiple
Epilogue for a phenotype, section
or subsection.

epilogue Setting type: element attribute
Parent: multiple
Specifies whether the parameter
can refer to the subgraph epilogue.

expand Setting type: element attribute
Parent: subSection
Specifies whether a subgraph can
be shared by different references.
Default: false

expression Setting type: element
Parent: multiple
The phenotype expression for a
macro, a prologue or an epilogue.

float Setting type: attribute value
Parent: item.xsi:type
Specifies a floating point parame-
ter.

hex Setting type: attribute value
Parent: item(bitArray).base

B External constraints synopsis 171

Table B.1: Constraints

Constraint Description
Specifies hexadecimal representa-
tion for a bit array parameter.

id Setting type: element attribute
Parent: multiple
The identifier of an element in the
constraints.

identifierFormat Setting type: element
Parent: constraints
The expression for the format of
identifiers in the phenotype.

infinity Setting type: attribute value
Parent: multiple
Specifies that the entity corre-
sponding to the containing el-
ement may occur an unlimited
number of times in the individual.

innerBackwardLabel Setting type: attribute value
Parent: item.xsi:type
Specifies a structural parameter
that references a vertex in the
same subgraph, non strictly pre-
ceding the vertex to which it be-
longs.

innerForwardLabel Setting type: attribute value
Parent: item.xsi:type
Specifies a structural parame-
ter that references a vertex in
the same subgraph, non strictly
folowing the vertex to which it be-
longs.

innerGenericLabel Setting type: attribute value
Parent: item.xsi:type
Specifies a structural parameter
that references a vertex in the
same subgraph.

integer Setting type: attribute value
Parent: item.xsi:type
Specifies an integer parameter.

item Setting type: element
Parent: multiple

172 B External constraints synopsis

Table B.1: Constraints

Constraint Description
A single item in a type or parame-
ter definition.

itself Setting type: element attribute
Parent: multiple
Specifies whether the parameter
can refer to same vertex to which
it belongs.

labelFormat Setting type: element
Parent: constraints
The expression for the format of
labels in the phenotype.

length Setting type: element attribute
Parent: item(bitArray)
The number of bits in the parame-
ter.

macro Setting type: element
Parent: macros
A single macro in a subsection.

macros Setting type: element
Parent: subSection
The set of all macros in a subsec-
tion.

maximum Setting type: element attribute
Parent: multiple
The maximum value of the param-
eter.

maxOccurs Setting type: element attribute
Parent: multiple
The minimum number of sub-
graphs or vertices corresponing to
the parent element that can exist in
an individual.

maxReferences Setting type: element attribute
Parent: subSection
The maximum number of refer-
ences to the prologue of the sub-
section in an individual.

minimum Setting type: element attribute
Parent: multiple
The minimum value of the param-
eter.

B External constraints synopsis 173

Table B.1: Constraints

Constraint Description
minOccurs Setting type: element attribute

Parent: multiple
The minimum number of sub-
graphs or vertices corresponding
to the parent element that can exist
in an individual.

name Setting type: element attribute
Parent: item
The name of a parameter defini-
tion or of a type definition.

oct Setting type: attribute value
Parent: item(bitArray).base
Specifies octal representation for a
bit array parameter.

outerLabel Setting type: attribute value
Parent: item.xsi:type
Specifies a structural parameter
that references the prologue of a
different subgraph.

param Setting type: element
Parent: macro
A parameter in the expression of a
macro, prologue or epilogue.

parameters Setting type: element
Parent: multiple
The set of parameters that appear
in a prologue, epilogue or macro
expression.

pattern Setting type: element attribute
Parent: item(bitArray)
Specifies value constraints in the
parameter.

prologue Setting type: element
Parent: multiple
Prologue for a phenotype, section
or subsection.

prologue Setting type: element attribute
Parent: multiple
Specifies whether the parameter
can refer to the subgraph pro-
logue.

174 B External constraints synopsis

Table B.1: Constraints

Constraint Description
prologueEpilogueCompulsory Setting type: element attribute

Parent: section
Specifies whether the prologue
and epilogue of a section should
always exist in the phenotype.

ref Setting type: element
Parent: item(outerLabel)
The reference of a structural pa-
rameter to a subgraph type.

ref Setting type: element attribute
Parent: multiple
A reference of a parameter to a pa-
rameter definition, or of a parame-
ter definition to a type definition.

section Setting type: element
Parent: sections
A single section in the constraints.

section Setting type: element attribute
Parent: item(outerLabel).ref
The section in the constraints con-
taining the subsection to which the
target subgraph corresponds.

sections Setting type: element
Parent: constraints
The set of all sections in the con-
straints.

selfRef Setting type: attribute value
Parent: item.xsi:type
Specifies a structural parameter
that references the vertex to which
it belongs.

sigma Setting type: element attribute
Parent: macros
The standard deviation in the
number of vertices corresponding
to macros of the subsection in the
individuals composing the initial
population.

subSection Setting type: element
Parent: subSections
A single subsection in a section.

B External constraints synopsis 175

Table B.1: Constraints

Constraint Description
subSection Setting type: element attribute

Parent: item(outerLabel).ref
The subsection in the constraints
to which the target subgraph cor-
responds.

subSections Setting type: element
Parent: section
The set of all subsections in a sec-
tion.

typeDefinitions Setting type: element
Parent: constraints
The set of type definitions for use
in the phenotype expressions.

uniqueTag Setting type: attribute value
Parent: item.xsi:type
Specifies a parameter that expands
to a unique symbol.

uniqueTagFormat Setting type: element
Parent: constraints
The expression for the format of
unique tags in the phenotype.

value Setting type: element
Parent: multiple
Declarator of a literal value or
placeholder for an actual value.

variable Setting type: element attribute
Parent: item(environment)
The name of the environment vari-
able whose value is assigned to the
parameter.

weight Setting type: element attribute
Parent: macro
A non-normalized indication of
the probability of occurrence of
vertices corresponding to the en-
closing macro in a random indi-
vidual.
Default: 1.0

xsi:schemaLocation Setting type: element attribute
Parent: constraints

176 B External constraints synopsis

Table B.1: Constraints

Constraint Description
URL of the schema for the con-
straints document type.

xsi:type Setting type: element attribute
Parent: item
The name of a parameter type.

xmlns Setting type: element attribute
Parent: constraints
The XML namespace of the con-
straints document type.

xmlns:xsi Setting type: element attribute
Parent: constraints
XML schema instance for the con-
straints document type.

References

1. G. E. P. Box. Evolutionary operation: A method for increasing industrial prouctivity. Applied
Statistics, VI, no. 2:81–101, 1957.

2. H. J. Bremermann. Optimization through Evolution and Recombination. Spartan Books, 1962.
3. W. D. Cannon. The Wisdom of the body. W.W.Norton, 1932.
4. C. Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation of

Favoured Races in the Struggle for Life. Murray, London, 1859.
5. R. Dawkins. The Selfish Gene. Oxford University Press, 1982.
6. David B. Fogel. Evolutionary computation: toward a new philosophy of machine intelligence.

IEEE Press, Piscataway, NJ, USA, 1995.
7. L. J. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.
8. L. J. Fogel. Toward inductive inference automata. In Proceeding of the International Federa-

tion for Information Processing Congress, pages 395–400, 1962.
9. A. S. Frazer. Simulation of genetic systems by automatic digital computers (part 1). Australian

Journal of Biological Science, 10:484–491, 1957.
10. A. S. Frazer. Simulation of genetic systems by automatic digital computers (part 1). Australian

Journal of Biological Science, 10:492–499, 1957.
11. R. M. Friedberg. A learning machine: Part i. IBM Journal, 2(1):2–13, 1958.
12. S. J. Gould. The Dinosaur in the Haystack. Harmony Books, 1995.
13. H.-P.Schwefel. Cybernetic Evolution as Strategy for Experimental Research in Fluid Mechan-

ics (Diploma Thesis in German). Hermann Fttinger-Institute for Fluid Mechanics, Technical
University of Berlin, 1965.

14. J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. The University of Michigan Press,
1975.

15. E. W. Mayr. Toward a new Philosophy of Biological Thought: Diversity, Evolution and Inher-
itance. Belknap, Harvard, 1982.

16. R. M. Friedberg; B. Dunham; J. H. North. A learning machine: Part ii. IBM Journal, 3(7):282–
287, 1959.

17. I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution (PhD thesis). (Reprinted by) Fromman-Holzboog, 1971.

18. Lee Smolin. The Life of the Cosmos. Weidenfeld and Nicolson, London, 1997.
19. F. Corno; M. Sonza Reorda; G. Squillero. Exploiting the selfish gene algorithm for evolving

cellular automata. Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, 6:577–581 vol.6, 2000.

20. A. M. Turing. Computing machinery and intelligence. Mind, 9:433–360, 1950.
21. C. Darwin; A. R. Wallace. On the tendency of species to form varieties; and on the perpetua-

tion of varieties and species by natural means of selection. Journal of the Proceedings of the
Linnean Society of London, Zoology 3:46–50, 1858.

177E. Sanchez et al., Evolutionary Optimization: the μGP toolkit,
DOI 10.1007/978-0-387-09426-7, © Springer Science+Business Media, LLC 2011

178 References

22. Franz Weiling. Historical study: Johann gregor mendel 18221884. American Journal of Med-
ical Genetics, 40(26):1–25, 1991.

23. August Weismann. Evolution Theory. Arnold, London, 1904.
24. Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins of the classical.

Reviews of Modern Physics, 75, 2003.

	Preface
	Contents
	Chapter 1 Evolutionary computation
	1.1 Natural and artificial evolution
	1.2 The classical paradigms
	1.3 Genetic programming

	Chapter 2 Why yet another one evolutionary optimizer?
	2.1 Background
	2.2 Where to draw the lines
	2.3 Individuals
	2.4 Problem specification
	2.5 Coding Techniques

	Chapter 3The μGP architecture
	3.1 Conceptual design
	3.2 The evolutionary core
	3.2.1 Evolutionary Operators
	3.2.2 Population

	3.3 The Evolutionary Cycle
	3.3.1 Genetic operator selection
	3.3.2 Parents selection
	3.3.3 Offspring Generation
	3.3.4 Individual Evaluation and Slaughtering
	3.3.5 Termination and Aging

	Chapter 4 Advanced features
	4.1 Self adaptation for exploration or exploitation
	4.1.1 Self-adaptation inertia
	4.1.2 Operator strength
	4.1.3 Tournament size

	4.2 Escaping local optimums
	4.2.1 Operator activation probability
	4.2.2 Tuning the elitism

	4.3 Preserving diversity
	4.3.1 Clone detection, scaling and extermination
	4.3.2 Entropy and delta-entropy computation
	4.3.3 Fitness holes
	4.3.4 Population topology and multiple populations

	4.4 Coping with the real problems
	4.4.1 Parallel fitness evaluation
	4.4.2 Multiple fitness

	Chapter 5 Performing an evolutionary run
	5.1 Robot Pathfinder
	5.2 GPSettings
	5.3 Population Settings
	5.4 Library of Constraints
	5.5 Launching the experiment
	5.6 GP Extractor

	Chapter 6 Command line syntax
	6.1 Starting a run
	6.2 Controlling messages to the user
	6.3 Getting help and information
	6.4 Controlling logging
	6.5 Controlling recovery
	6.6 Controlling evolution
	6.7 Controlling evaluation

	Chapter 7 Syntax of the settings file
	7.1 Controlling evolution
	7.2 Controlling logging
	7.3 Controlling recovery

	Chapter 8 Syntax of the population parameters file
	8.1 Strategy parameters
	8.1.1 Base parameters
	8.1.2 Parameters for self adaptation
	8.1.3 Other parameters

	Chapter 9 Syntax of the external constraints file
	Unknown
	9.1 Purposes of the constraints
	9.2 Organization of constraints and hierarchy
	9.3 Specifying the structure of the individual
	9.4 Specifying the contents of the individual

	Chapter 10

	Chapter 10 Writing a compliant evaluator
	10.1 Information from to the fitness evaluator
	10.2 Expected fitness format
	10.2.1 Good Examples
	10.2.2 Bad Examples

	Chapter 11 Implementation details
	11.1 Design principles
	11.2 Architectural choices
	11.2.1 The Graph library
	11.2.2 The Evolutionary Core library
	11.2.3 Front end

	11.3 Code organization and class model

	Chapter 12 Examples and applications
	12.1 Classical one-max
	12.1.1 Fitness evaluator
	12.1.2 Constraints
	12.1.3 Population settings
	12.1.4 GP settings
	12.1.5 Running

	12.2 Values of parameters and their influence on the evolution: Arithmetic expressions
	12.2.1 De Jong 3
	12.2.2 De Jong 4 Modified
	12.2.3 Carrom

	12.3 Complex individuals’ structures and evaluation: Bit-counting in Assembly
	12.3.1 Assembly individuals representation
	12.3.2 Evaluator
	12.3.3 Running

	Appendix A

	Appendix A Argument and option synopsis
	Appendix B External constraints synopsis
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

