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A life spent making mistakes is not only more
honorable, but more useful than a life spent
doing nothing.

George Bernard Shaw



Preface

Any sufficiently advanced technology is indistinguishable from
magic.
Sir Arthur Charles Clarke

UGP is a computational approach for autonomously pursuing a goal defined by
the user. To this end, candidate solutions for the given task are repeatedly modi-
fied, evaluated and enhanced. The alteration process mimics some principles of the
Neo-Darwinian paradigm, such as variation, inheritance, and selection. tGP has
been developed in Politecnico di Torino since 2000. Its original application was the
generation of assembly-language programs for different types of microprocessors,
hence the Greek letter micro in the name. Its name is sometimes spelled MicroGP
or uGP due to typographic limitations. yGP is free software: it can be redistributed
and modified under the terms of the GNU General Public License!.

UGP is ordinarily utilized to find the optimal solution of hard problems, and it
has been demonstrated able to outperform both human experts and conventional
heuristics in such a task. In order to exploit the approach, the user describes the
appearance of the solutions to his problem and provides a program able to evaluate
them. The tool implementing the approach fosters a set of random solutions, and
iteratively refines them in discrete steps. Its heuristic local-search algorithm uses
the result of the evaluations, together with other internal information, to focus on
the regions of the search space that look more promising, and eventually to produce
an optimal solution.

UGP is an evolutionary algorithm. Different candidate solutions are considered
in each step of the search process, and new ones are generated through mecha-
nisms that ape both sexual and asexual reproduction. New solutions inherit distinc-
tive traits from existing ones, and may coalesce the good characteristics of different
parents. Better solutions have a greater chance to reproduce, and to succeed in the
simulated struggle for existence.

Candidate solutions are internally encoded as graphs, or, more precisely, as di-
rected multigraphs”. During the search process, multigraphs are constrained by a
user-defined set of rules to conform to sensible structures. They are transformed

! For more information, and how to apply and follow the GNU GPL, see http: //www.gnu.org/
licenses/

2 A directed multigraph is a graph where a direction is assigned to each edge, and the same pair of
vertices may be joined by more than one edge

vii
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to text files according to user-defined rules, and fed to a user-defined evaluation
program. Thus, no knowledge about the problem being solved is included in uGP
itself.

For an industry practitioner, HGP is a versatile optimizer able to tackle almost
any problem with a limited setup effort. All the configuration is contained in XML?
files, that can be created with simple text editors or powerful ad-hoc tools. yGP rou-
tinely handles problems that require solutions in the form of full-fledged assembly
programs, including functions, interrupt handlers and data. But a much wider range
of different problems can be tackled, including optimization of mathematical func-
tions represented as trees, integer and combinatorial optimization, and real value
optimization. While (GP is theoretically able to work with a problem that requires
a simple unstructured solution, it may not be the best option in such cases, except,
perhaps, for the easiness of set up. On the contrary, it should be exploited on tasks
that involve the concurrent optimization of different data types, and when solutions
exhibit quite complex structures.

This book shows how to effectively use tGP to solve an industrial problem. For
this purpose, the text assumes that the user is competent in the application domain,
but requires only a basic understanding of information technology. Moreover, only
limited knowledge of the evolutionary computation field is required. The practi-
tioner is guided through a list of easy steps to complete the setup. Moreover, an
extensive discussion on the meaning and effect of the various parameters that can
be tuned to increase the overall performance is provided.

For an evolutionary computation scholar, tGP may be regarded as a platform
where new operators and strategies can be easily tested. Additionally, it presents
some features that may be considered of interest: the possibility to shape the behav-
ior smoothly from steady-state to generational, including several degrees of elitism;
self adaptation of operator strength, operator activation probability, tournament size,
population size and number of applied operators; diversity protection, trough popu-
lation entropy and delta-entropy of individuals; fitness holes; clone detection, with
optional scaling or extermination; support for different population topologies, from
panmictic to lattice; multiple populations, including support for migrations; sup-
port for dynamic fitness functions; support for parallel fitness evaluation; multiple
fitness, either priority-based or multi-objective.

Considering this latter goal, the book details the conceptual architecture and the
implementation of the tool. While the text aims at self-containment, a basic knowl-
edge of the evolutionary computation theory may be useful. Indeed, to fully under-
stand the implementation details, a good knowledge of the C++ language is also
required.

The book is organized in several broad sections. Chapters 1 and 2 introduce the
reader to the field of evolutionary computation and provide a rationale for the whole
book. Chapters 3 and 4 outline the main features of 4GP from a theoretical point of

3 XML stands for extensible markup language. It was developed by the World Wide Web Consor-
tium (W3C) in the late 1990s, and defines a set of rules for encoding generic documents electroni-
cally.
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view. Chapter 5 introduces the complete work flow for using 4GP, and may provide
a quick start for the impatient reader. Chapters 6, 7, 8, 9 and 10 cover the gory de-
tails of configuring the tool, running it and tweaking its many parameters. Chapter
11 illustrates the details of the GP architecture and its implementation. Chapter 12
provides several examples of use of the tool, showing both the effect of tuning the
evolution parameters, and several possible ways to approach problems to which the
tool does not seem directly applicable. Finally, a couple of appendixes list all the
possible options, parameters and special values that the tool recognizes inside its
configuration files, together with a brief explanation of their use.

We would like to acknowledge some colleagues and friends who helped us in this
project over the past ten years: Alessandro Aimo, Antonio Casaschi, Paolo Bernardi,
Fulvio Corno, Gianluca Cumani, Davide Decicco, Sonia Drappero, Paolo Ferretti,
Michelangelo Grosso, German Labarga, William Lindsay, Marco Loggia, Giuseppe
Macchia, Onofrio Mancuso, Luca Motta, Zul Nazdri, Danilo Ravotto, Tommaso
Rosato, Alessandro Salomone, Fabio Salto, Matteo Sonza Reorda, Luca Sterpone,
Antonio Tomasiello, Giuseppe Trovato, Pier Paolo Ucchino, Massimo Violante, Gi-
anluca Zaniolo.

We must dedicate a special thank to Alberto Tonda, who spent his Ph.D. enhanc-
ing and tweaking ptGP. This book would not have been possible without his work
and passion.

Torino, Ernesto Sanchez
Winter 2010 Massimiliano Schillaci
Giovanni Squillero
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Chapter 1
Evolutionary computation

It always is advisable to perceive clearly our ignorance.
Charles Robert Darwin

Evolution is the theory postulating that all the various types of living organisms
have their origin in other preexisting types, and that the differences are due to modi-
fications inherited through successive generations. Evolutionary computation is the
offshoot of computer science focusing on algorithms inspired by the theory of evo-
lution. The definition is deliberately vague since the boundaries of the field are not,
and cannot be, defined clearly. Evolutionary computation is a branch of compu-
tational intelligence, and it is included into the broad framework of bio-inspired
heuristics. We shall distinguish explicitly between natural evolution and artificial
evolution to avoid confusion whenever necessary.

This chapter sketches the basics of evolutionary computation and introduces its
terminology. A comprehensive compendium of the field is out of the scope of this
book, and most concepts are defined only to the extent they are required in what
follows. Interested readers will find several fascinating books on the topic, such as
[6]. Moreover, a survey of evolutionary theories is beyond our knowledge. We can
only suggest [5] and [12] as starting points into the vast and fascinating world of
biology.

1.1 Natural and artificial evolution

Natural evolution is a cornerstone of modern biology, and scientists show a remark-
able consensus on the topic. The original theories of evolution and natural selection
proposed almost concurrently and independently by Charles Robert Darwin [4] and
Alfred Russel Wallace [21] in 19th century, combined with selectionism by Charles
Weismann [23] and genetics by Gregor Mendel [22], are accepted ubiquitously in
the scientific community, as well as widespread among the general public. This
coherent corpus, often named Neo-Darwinism, acts as a grand unifying theory for
biology: it is able to explain the wonders of life, and, most noticeably, it does it start-
ing from a limited number of relatively simple and intuitively plausible concepts. It
describes the whole process of evolution through notions such as reproduction, vari-

E. Sanchez et al., Evolutionary Optimization: the uGP toolkit, 1
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2 1 Evolutionary computation

ation, competition, and selection. Reproduction is the process of generating an off-
spring from parents where the progeny inherit traits of their predecessors. Variation
is the unexpected alteration of a trait. Competition and selection are the inevitable
results of the strive for survival caused by an environment with limited resources.

Evolution can be easily described as a sequence of steps, some mostly deter-
ministic and some mostly random [15]. Such an idea of random forces shaped by
deterministic pressures is inspiring and, not surprisingly, has been exploited to de-
scribe phenomena quite unrelated to biology. Notable examples include alternatives
conceived during learning [3], ideas striving to survive in our culture [5], or even
possible universes [24] [18].

Evolution may be seen as an improving process that perfect raw features. In-
deed, this is a mistake that eminent biologists like Richard Dawkins and Stephen Jay
Gould warn us not to do. Nevertheless, if evolution is seen as a force pushing toward
a goal, another terrible misunderstanding, it must be granted that it worked quite
well: in some billion years, it turned unorganized cells into wings, eyes, and other
amazingly complex structures without requiring any a priori design. The whole neo-
Darwinist paradigm may thus be regarded as a powerful optimization tool able to
produce great results starting from scratch, not requiring a plan, and exploiting a
mix of random and deterministic operators.

Dismissing biologists’ complaints, evolutionary computation practitioners
loosely mimic the natural process to solve their problems. Since they do not know
how their goal could be reached, at least not in details, they exploit some neo-
Darwinian principles to cultivate sets of solutions in artificial environments, iter-
atively modifying them in discrete steps. The problem indirectly defines the envi-
ronment where solutions strive for survival. The process has a defined goal. The
simulated evolution is simplistic, when not even implausible. Notwithstanding, suc-
cesses are routinely reported in the scientific literature. Solutions in a given step
inherit qualifying traits from solutions in the previous ones, and optimal results
emerge from the artificial primeval soup.

In evolutionary computation, a single candidate solution is termed individual,
the set of all candidate solutions that exists at a particular time is called population,
and each step of the evolution process a generation. The ability of an individual to
solve the given problem is measured by the fitness function, which ranks how likely
one solution is to propagate its characteristics to the next generations. Most of the
jargon of evolutionary computation mimics the precise terminology of biology. The
word genome denotes the whole genetic material of the organism, although its actual
implementation differs from one approach to another. The gene is the functional
unit of inheritance, or, operatively, the smallest fragment of the genome that may
be modified during the evolution process. Genes are positioned in the genome at
specific positions called loci, the plural of locus. The alternative genes that may
occur at a given locus are called alleles.

The natural processes that lead to mutations, reproduction, competition and se-
lection are emulated by operators. Operators act on genes, single individuals, groups
or entire populations, usually producing a modified version of the entity they ma-
nipulate.
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Biologists need to distinguish between the genotype and the phenotype: the for-
mer is all the genetic constitution of an organism; the latter is the set of observable
properties that are produced by the interaction between the genotype and the envi-
ronment. In many implementations, evolutionary computation practitioners do not
require such a precise distinction. The numerical value representing the fitness of an
individual is sometimes assimilated to its phenotype.

To generate the offspring for the next generation, most evolutionary algorithms
implement sexual and asexual reproduction. The former is usually named recom-
bination; it necessitates two or more participants, and implies the possibility for
the offspring to inherit different characteristics from different parents. When re-
combination is achieved through a simple exchange of genetic material between
the parents, it often takes the name of crossover. The latter is named replication,
to indicate that a copy of an individual is created, or, more commonly, mutation,
to stress that the copy is not exact. Almost no evolutionary algorithm takes gender
into account; hence, individuals do not have distinct reproductive roles. In some
implementations, mutation takes place only after the sexual recombination. Notice-
ably, some evolutionary algorithms do not store a collection of distinct individuals,
and therefore reproduction is performed modifying the statistical parameters that
describe the current population. All operators exploited during reproduction can be
cumulatively called evolutionary operators, or genetic operators stressing that they
act at the genotypical level.

Mutation and recombination introduce variability in the population. Parent selec-
tion is also usually a stochastic process, albeit biased by the fitness. The population
broadens and contracts thythmically at each generation. First, it widens when the
offspring are generated. Then, it shrinks when individuals are discarded. The de-
terministic step usually involves deciding which individuals are chosen for survival
from one generation to the next. This step may be called survivor selection, or just
selection.

Evolutionary algorithms may be defined local search algorithms since they sam-
ple a region of the search space dependent upon their actual state, and the offspring
loosely define the concept of neighborhood. Since they are based on the trial and
error paradigm, they are heuristic algorithms. They are not usually able to mathe-
matically guarantee an optimal solution in a finite time, whereas interesting mathe-
matical properties have been proven over the years.

If the current boundary of evolutionary computation may seem not clear, its in-
ception is even more vague. The field does not have a single recognizable origin.
Some scholars identify its starting point in 1950, when Alan Turing pointed out the
similarities between learning and natural evolutions [20]. Others pinpoint the inspir-
ing ideas that appeared in the end of the decade [11] [16] [1], despite the fact that
the lack of computational power significantly impaired their diffusion in the broader
scientific community. More commonly, the birth of evolutionary computation is set
in the 1960s with the appearance of three independent research lines, namely: ge-
netic algorithms, evolutionary programming, and evolution strategies. Despite some
minor disagreements, the pivotal importance of these researches is unquestionable.
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1.2 The classical paradigms

Genetic algorithm is probably the most popular term in evolutionary computation.
It is abbreviated as GA, and it is so popular that in the non-specialized literature
it is sometimes used to denote any kind of evolutionary algorithm. The fortune of
the paradigm is linked to the name of John Holland and his 1975 book [14], but the
methodology was used and described much earlier by several researchers, including
many of Holland’s own students [9] [10] [2]. Genetic algorithms have been proposed
as a step in classifier systems, a technique also proposed by Holland. They have
been originally exploited more to study the evolution mechanisms itself, rather than
solving actual problems. Very simple test benches, as trying to set a number of bits
to a specific value, were used to analyze different strategies and schemes.

In a genetic algorithm, the individual, i.e., the evolving entity, is a sequence of
bits, and this is probably the only aspect common to all the early implementations.
The number of offspring is usually larger than the size of the original population.
Various crossover operators have been proposed by different researchers. The par-
ents are chosen using a probability distribution based on their fitness. How much a
highly fit individual is favored determines the selective pressure of the algorithm.
After evaluating all new individuals, the population is reduced back to its original
size. Several different schemes have been proposed to determine which individuals
survive and which are discarded, but interestingly most schemes are deterministic.
When all parents are discarded, regardless their fitness, the approach is called gen-
erational. Conversely, if parents and offspring compete for survival regardless their
age, the approach is steady-state. Any mechanism that preserves the best individuals
through generations is called elitist.

Evolutionary programming, abbreviated as EP, was proposed by Lawrence J. Fo-
gel in a series of works in the beginning of 1960s [7] [8]. Fogel highlighted that
an intelligent behavior requires the ability to forecast changes in the environment,
and therefore focused his work on the evolution of predictive capabilities. He chose
finite state machines as evolving entities, and the predictive capability measured the
ability of an individual to anticipate the next symbol in the input sequence provided
to it. Later, the technique was successfully applied to diverse combinatorial prob-
lems.

Fogel’s original algorithm considered a set of P automata. Each individual in
such population was tested against the current sequence of input symbols, i.e., its
environment. Different payoff functions could be used to translate the predictive
capability into a single numeric value called fitness, including a penalty for the
complexity of the machine. Individuals were ranked according to their fitness. Then,
P new automata were added to the population. Each new automaton was created by
modifying one existing automaton. The type and extent of the mutation was random
and followed certain probability distributions. Finally, half of the population was
retained and half discarded, thus the size of the population remained constant. These
steps were iterated until a specific number of generations has passed, at which point
the best finite state machine was used to predict the actual next symbol. That symbol
was added to the environment and process repeated.
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In his basic algorithm, each automaton generated exactly one descendant through
a mutation operator, but there was no firm constraint that only one offspring had to
be created from each parent. After all the offspring are added to the population, half
of the individuals are discarded. Survivals were chosen at random, with a probability
influenced by their fitness. Thus, how much a highly fit individual is likely to survive
in the next generation represent the selective pressure is evolutionary programming.

The third approach is evolution strategies, ES for short, and was proposed by
Ingo Rechenberg and Hans-Paul Schwefel in early 1960s [13] [17]. It has been orig-
inally developed as an optimization tool to solve a practical optimization problem.
In evolution strategies, the individual is a set of parameters, usually encoded as
numbers, either discrete or continuous. Mutation simply consists in the simulta-
neous modification of all parameters, with small alterations being more probable
than larger ones. On the other hand, recombination can implement diverse strate-
gies, like copying different parameters from different parents, or averaging them.
Remarkably, the very first experiments with evolution strategies used a population
of one individual, and dice tossed by hands.

Scholars developed a unique formalism to describe the characteristics of their
evolution strategies. The size of the population is commonly denoted with the Greek
letter mu (W), and the size of the offspring with the Greek letter lambda (A). When
the offspring is added to the current population before choosing which individu-
als survive in the next generation, the algorithm is denoted as a (i + A)-ES. In
this case, a particularly fit solution may survive through different generations as
in steady-state genetic algorithms or evolutionary programming. Conversely, when
the offspring replace the current population before choosing which individuals sur-
vive in the next generation, the algorithm is denoted as a (i, A)-ES. This approach
resembles a generational genetic algorithm or evolutionary programming, and the
optimum solution may be discarded during the run. For short, the two approaches
are called plus and comma selection, respectively. And in the 2000s, these two terms
can be found in the descriptions of completely of different evolutionary algorithms.
When comma selection is used, g < A must hold. No matter the selection scheme,
the size of the offspring is much larger than the size of the population in almost all
implementations of evolution strategies.

When recombination is implemented, the number of parents required by the
crossover operator is denoted with the Greek letter rho (p) and the algorithm written
as (u/p 1 A)-ES. Indeed, the number of parents is smaller than the number of indi-
viduals in the population, i.e., p < p. (i T 1)-ES are sometimes called steady-state
evolution strategies.

Evolution strategies may be nested. That is, instead of generating the offspring
using conventional operators, a new evolution strategy may be started. The result of
the sub-strategy is used as the offspring of the parent strategy. This scheme can be
found referred as nested evolution strategies, or hierarchical evolution strategies, or
meta evolution strategies. The inner strategy acts as a tool for local optimizations
and commonly has different parameters from the outer one. An algorithm that runs
for y generations a sub-strategy is denoted with (u/p T (u/p T A)Y)-ES. Where y
is also called isolation time. Usually, there is only one level of recursion, although a
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deeper nesting is theoretically possible. Such a recursion is rarely used in evolution-
ary programming or genetic algorithms, although it has been successfully exploited
in peculiar approaches, such as [19].

Since evolution strategies are based on mutations, the search for the optimal
amplitude of the perturbations kept researchers busy throughout the years. In real-
valued search spaces, the mutation is usually implemented as a random perturbation
that follows a normal probability distribution centered on the zero. Small mutations
are more probable than larger ones, as desired, and the variance may be used as a
knob to tweak the average magnitude. The variance used to mutate parameters, and
the parameters themselves may also be evolved concurrently. Furthermore, because
even the same problem may call for different amplitudes in different loci, a dedi-
cated variance can be associated to each parameter. This variance vector is mod-
ified using a fixed scheme, while the object parameter vector, i.e., the values that
should be optimized, are modified using the variance vector. Both vectors are then
evolved concurrently as parts of a single individual. Extending the idea, the optimal
magnitudes of mutation may be correlated. To take into account this phenomenon,
modern evolution strategies implement a covariance matrix.

All evolutionary algorithms show the capacity to adapt to different problems, thus
they can sensibly be labeled as adaptive. An evolutionary algorithm that also adapts
the mechanism of its adaptation, i.e., its internal parameters, is called self adap-
tive. Parameters that are self adapted are sometimes named endogenous, borrowing
the term describing the hormones synthesized within an organism. Self adaptation
mechanisms have been routinely exploited both in the evolution strategies and evo-
lutionary programming paradigms, and sometimes used in genetic algorithms.

Since the 2000s, evolution strategies have been used mainly as a numerical op-
timization tool for continuous problems. Several implementations, written either in
general-purpose programming languages or commercial mathematical toolboxes,
like MatLab, are freely available. And they are sometimes exploited by practition-
ers overlooking their bio-inspired origin. Evolutionary programming is also mostly
used for numerical optimization problems. The practical implementations of the
two approaches have mostly converged, although the scientific communities remain
deeply distinct.

Over the years, researchers have also broadened the scope of genetic algorithms.
They have been used for solving problems whose results are highly structured, like
the traveling salesman problem where the solution is a permutation of the nodes in
a graph. However, the term genetic algorithm remained strongly linked to the idea
of fixed-length bit strings.

If not directly applicable within a different one, the ideas developed by re-
searchers for one paradigm are at least inspiring for the whole community. The
various approaches may be too different to directly interbreed, but many key ideas
are now shared. Moreover, over the year a great number of minor and hybrid algo-
rithms, not simply classifiable, have been described.
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1.3 Genetic programming

The fourth and last evolutionary algorithm sketched in this is introduction is genetic
programming, abbreviated as GP. Whereas (GP shares with it more in its name
than in its essence, the approach presented in this book owes a deep debit to its
underlying ideas.

Genetic programming was popularized by John Koza, who described it after hav-
ing applied for a patent in 1989. The ambitious goal of the methodology is to create
computer programs in a fully automated way, exploiting neo-Darwinism as an opti-
mization tool. The original version was developed in Lisp, an interpreted computer
language that dates back to the end of the 1950s. The Lisp language has the ability to
handle fragments of code as data, allowing a program to build up its subroutines be-
fore evaluating them. Everything in Lisp is a prefix expression, except variables and
constants. Genetic programming individuals were lisp programs, thus, they were
prefix expressions too. Since the Lisp language is as flexible as inefficient, in the
following years, researchers moved to alternative implementations, mostly using
compiled language. Indeed, the need for computational power and the endeavor for
efficiency have been constant pushes in the genetic programming research since its
origin. While in Lisp the difference between an expression and a program was sub-
tle, it became sharper in later implementations. Many algorithms proposed in the
literature clearly tackle the former, and are hardly applicable to the latter.

Regardless of the language used, in genetic programming individuals are almost
always represented internally as trees. In the simplest form, leaves, or terminals, are
numbers. Internal nodes encode operations. More complex variations may take into
account variables, complex functions, and programming structures. The offspring
may be generated applying either recombination or, in recent implementations, mu-
tation. The former is the exchange of sub-trees between the two parents. The latter
is the random modification of the tree. Original genetic programming used huge
populations, and emphasized recombination, with no, or very little, mutations. In
fact, the substitution of a sub-tree is highly disruptive operation and may introduce
a significant amount of novelty. Moreover, a large population ensures that all pos-
sible symbols are already available in the gene pool. Several mutations have been
proposed, like promoting a sub-tree to a new individual, or collapsing a sub-tree to
a single terminal node.

The genetic-programming paradigm attracted many researchers. Results were
used as test benches for new practical techniques, as well as theoretical studies.
It challenged and stimulated new lines of research. The various topics tackled in-
cluded: representation of individuals; behavior of selection in huge populations;
techniques to avoid the growth of trees; type of initializations. Some of this research
has been inspiring for the development L GP.



Chapter 2
Why yet another one evolutionary optimizer?

He who lives without folly isn’t so wise as he thinks.
Francois de La Rochefoucauld

The idea of Evolutionary computation implies the existence of suitable tools to per-
form computations. Such tools have to be designed pondering the environment in
which they will operate and the problems to which they will be applied, together
with the chosen evolutionary technique. Every design process implies choices, some
of which may not be immediately clear to the end user, but can have far-reaching
consequences.

The chapter tries to motivate the creation of uGP, yet another one evolutionary
optimizer. Its goal is to provide the reader with a rationale for the perceived needs
and the consequent taken decisions. The text shows, in an uttermost narrative style,
some of the possible alternatives faced during the early design phase.

2.1 Background

The term “evolutionary optimizer” does not indicate a well-defined program struc-
ture or user interface, exactly as “word processor” is suitable for a wide range of
functional approaches and interfaces. It may be maintained that the purpose of an
evolutionary tool is to automate the artificial evolution of a set of solutions to a
given problem. This definition brings to light several related, although almost in-
dependent, concepts: the definition of the problem itself; the structure of possible
solutions to that problem; the evaluation of the goodness of candidate solutions; the
operations that allow to manipulate candidate solutions.

In many cases these parts are known from the outset: the problem is well defined;
the structure of its possible solutions is known; the evaluation of such solutions
straightforward; the most sensible transformations on these solutions simply follows
from their structure. For example, one may want to solve the traveling salesman’s
problem (TSP). In this case the problem requires to minimize the total length of a

E. Sanchez et al., Evolutionary Optimization: the uGP toolkit, 9
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path that passes through a number of fixed points and returns to the start!. Since it is
known from the start that all must be visited once and only once, a possible solution
is a permutation of the points. The goodness of a route is the inverse of its length.
And it is intuitive that to transform one permutation into another one some form of
reordering, such as a swap, has to be performed?.

The straightforward approach would be to embed all this information in the tool,
resulting in a problem-specific application that performs all the computation and
eventually provides the user with one or more optimal results. It could be possible
to choose in advance the evolutionary approach, tuning the genetic operators for
performance. It could also be possible to write some information about the problem
directly in the code.

However, it is often perceived as more efficient to reuse the same approach for
different, although related, problems. One more mundane example of this is the
generation of assembly programs for two different microprocessors. In this case the
goal of the programs may be the same, say verifying the design, but their form is
necessarily different. Conversely, another example is the generation of programs for
a single microprocessor, but with different goals. In this case the form is kept, but
the fitness function changes.

We are incline to believe that a truly versatile evolutionary tool is not available at
the time we are writing. And such a tool would be useful both for the practitioners
and for the researchers. tGP is meant to be able to solve quite different problems,
this means that it has to be able to represent quite diverse objects and to assess them
using a fitness function which is not known in advance. Thus, both the form and
meaning of the individuals cannot be fixed in the code, but a flexible internal repre-
sentation must be used. This is not just convenient to avoid redundant design efforts,
but allows using several different evolutionary approaches for the same problem, or,
conversely, to perform evolution on different kinds of individuals, possibly at the
same time. The fitness function is unknown to the tool developer not only regarding
its possible values, but also regarding its general form.

2.2 Where to draw the lines

From the above discussion it is clear that not all the work can be performed by
the evolutionary tool itself: ©GP cannot compute the fitness function for a given
individual without external help. This stress out the difference between genotype
and phenotype. The tool is able to manipulates solutions at the level of phenotype,
while fitness can be defined only at the level of genotype. Indeed, GP could not
even map the phenotype to a sensible genotype, creating a meaningful description
of that individual, without additional information. One of the first issues to take care

! In graph theory, TSP corresponds to the NP-hard problem of finding the Hamiltonian cycle with
the minimal weight.

2 Remarkably, several approaches in the evolutionary computation literature do neglect this con-
sideration.
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of, then, is a classical interface definition problem: it must be decided what part of
the work is done at the phenotypic level by the evolutionary engine and what has to
be done otherwise, such as by post-processing some results.

An evolutionary process is a closed loop: a population is transformed in a dif-
ferent one by recombining and modifying its component individuals, every new
individual is assigned a fitness value and the new population undergoes a survival
phase. After that the cycle begins anew. There is a feedback from the individuals
to the evolutionary core, in the form of a fitness value. The standard practice in
electronic design, when implementing a circuit with feedback, is to isolate an inner
amplifying block and select the overall system function changing the feedback func-
tion. In an analogous way, the evolution of the individuals may be isolated from their
fitness computation. This may be done in different ways, changing the definition of
what the evolutionary core provides as output and what it accepts as feedback.

This analogy between an electronic circuit and an evolutionary tool is loose, but
intuitively it makes sense. In an electronic circuit the purpose of the amplifier is
to provide energy to the signals, while the feedback block tells “how wrong” the
output is. In an evolutionary process the reproduction phase produces new features
(the “energy” of the process), and the fitness function tells how good every solution
is. The analogy should not be taken further, as the two domains are too different, but
it gives a good starting point to decompose the entire approach.

Another part of the loop that could be separated from the rest is the transforma-
tion of the individuals to an external form. The tool does not know, and indeed it
should not know, whether it is generating assembly programs, Hamiltonian paths in
a graph or coefficients of a polynomial. It stores an internal representation of the
evolved individuals, that does not contain information neither about their semantics,
nor regarding their final appearance.

The main decomposition of the uGP approach is related to the phases of the
evolutionary process involved. Every individual is first generated, either during an
initial phase or from other individuals, then transformed into the object it represents,
and eventually assigned a fitness value. These three phases must be kept as distinct
as possible in order to achieve versatility.

2.3 Individuals

There are two main requirements for the internal format of individuals in a ver-
satile evolutionary tool: the representation must allow mapping arbitrary concepts;
the representation must allow arbitrary manipulation. The first requirement is strin-
gent, but the latter can be slightly soften. The bottom line is that the representation
must guarantee a great expressive power, while permitting a reasonable amount of
manipulation without excessive computational effort. Indeed, the design of the indi-
viduals is strongly related to the design of the genetic operators manipulating them.
Amongst the cornerstones of natural evolution are the idea of small variations ac-
cumulated over generations, and the concept that the offspring inherits from parents
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qualifying traits. The artificial evolution process must conform as much as possible:
the tool must be able to mutate individuals slightly, and breed new specimen without
loosing foo much information.

The two main aspects in defining individuals are: what types of data are stored
and how they are structured. Types of data and structure are almost orthogonal as-
pects. Thus, the two choices may be approached quite independently. Regarding the
type of data, there are several alternatives not to limit the application scope. At the
two extremes of the spectrum one may find: adopt an extremely generic represen-
tation that can be tight to any specific problem at a later time; embed all kind of
possible representation in the tool and let the final user pick up one for his problem.

The solution adopted in GP is to embed a limited number of standard data
types, and let the final user exploit the ones needed. Among the standard types are:
integer numbers and real numbers, both with definable ranges. A generic enumer-
able data type with a user-defined set of possible vales, like {0,1}3, {true, false}
or {red,blue,green}.

Choosing the most generic data and the simplest possible structure, the represen-
tation would be is a fixed-length vector. Moving toward the other extreme, there is
no clear end to the complexity that can be reached. Indeed, a fixed-length bit vector
also allows implementing a wide range of genetic operators with negligible effort.
However, while it is theoretically possible to represent any object as a bit vector, this
is not unusually a good idea. When solving the TSP, one may encode the vertexes as
binary numbers and simply juxtapose them to represent a path. Thus, a fixed-length
bit vector would be suitable to encode all possible solutions. It is manifest, however,
that such a choice would cause most bit vectors not to encode any solution at all,
broadening the search space over useless regions.

The problem exists because the concepts that the individuals represent can have
some structure, and loosing this information always leads to an unreasonable widen-
ing of the search space. Dependencies between one part of the individual and an-
other are precious hints in building a viable solution. For example, if an individual
expresses a function, there can be dependencies between an operator and other ones,
whose result is used as an operand. While the simple vector structure is able to con-
tain a representation of the function, it would not be easy to manipulate it without
disrupting the underlying structure, especially if recombination is used.

Moreover, the fixed length of the individuals put an arbitrary limit on the com-
plexity of the possible solutions to the problem. In the cases where this complexity
cannot be predicted in advance, it forces the user to either oversize the individuals,
or to make (un)educated guesses on the expected optimum solution. Both solutions
are plainly unacceptable. Variable-length bit vector would solve the latter problem,
introducing only a slight increment in the complexity of the operators.

A far more better possibility in this respect is a tree representation, like the stan-
dard genetic programming. It would allow to perform some recombination without
disrupting the structure of the individuals, for example by exchanging entire sub-
trees between two genotypes. When the data inside the tree structure are of different

3 Why ”0” and 1" are considered two constants and not two integer numbers will become clearer
in the following.



2.4 Problem specification 13

types, a blind exchange becomes almost unusable. But it is always possible to add
information to leaves and nodes to prevent disruptive operations. The only true lim-
itation with a tree structure is that it inherently disallows cyclic dependencies. For
example, it would be both tricky and unnatural to represent the recursive defini-
tion of the factorial function using a tree, or a backward jump inside an assembly
function.

To overcome this limitation, the structure adopted in yGP is based on graphs.
More precisely, as it will be apparent in chapter 3, an individual is encoded as a set
of directed multigraphs. That is, graphs where a direction is assigned to each edge,
and the same pair of vertexes may be joined by more than one edge. Since graphs
are not required to be connected®, the use of a set of graphs instead of a single one is
not imposed by necessity, it may nevertheless ease the task for the end users. In tGP
individuals, some data are inside nodes. Additionally, together with the data types
mentioned above, the edges themselves are used to store information. The offspring
is thus bred by swapping subgraphs between parents, modifying the graphs structure
and altering the data stored inside nodes.

2.4 Problem specification

Tackling a specific problem implies defining an appropriate fitness function. That
is, how candidate solutions are appraised with respect to the pursued goal. It is not
limiting to maintain that the result of an evaluation can be expressed as a positive
real value, and that higher scores are better than lower ones. In uGP the fitness is
actually a vector of real positive values, but this can be seen as a mere simplification
when exploiting the tool.

The fitness function cannot be included in the evolutionary core, and there are
several alternative to let the user provide it. The fitness function may be added to the
evolutionary tool source code and eventually compiled and linked with it. Or it may
be provided as an external library dynamically loadable. uGP adopts a quite radical
approach: the fitness function is calculated by an external program that is simply
invoked by the tool.

The nature of the problem also calls for a certain appearance of the solutions.
Internally, individuals are encoded as multigraph, but they presumably need to be
transformed in some way before being evaluated. Since the fitness evaluator is an
external tool, it would be theoretically possible to select a canonical form for repre-
senting a multigraph and leave to the fitness evaluator the burden to transform it to a
more convenient format. However, to ease the employ of the tool, £GP provides the
external evaluator a file describing the individual in a suitable format. Fort example,
an assembly program ready to be assembled and linked, or a sequence of cities.

Encoding an individual as a multigraph allows a great generality. However, too
much versatility may be deleterious. It must be remembered that an evolutionary

# There is a path linking any two vertices in the graph.
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optimizer needs to know at least some information about the structure of the in-
dividuals to evolve. Questions such as “how many cities does the considered TSP
instance include?” or “should there be functions in the assembly program, and what
is their form?” directly affect the possible operations on the individuals. The answers
to questions like these define what is a legal individual. That information has to be
provided to the tool before evolution can be started. It composes a set of constraints
that describe the allowed structure of an individual, thus limiting the potentially in-
finite productions of the tool and avoiding useless computation. For instance, such
constraints should not only specify that an assembly function always begin with a
certain prologue and end with an epilogue that contain a limited number of param-
eters, but also what assembly instructions compose them, as well as the body of the
function.

To maximize the applicability of the tool, the problem must be specified in a
standardized format, readable both by humans and by mechanical tool. Hence, uGP
adopts XML for all its input files.

2.5 Coding Techniques

The idea of maximizing the applicability also impact the adopted coding techniques.
UGP was originally conceived as a tool to generate assembly test programs for test
and validation. It was, nevertheless, a versatile tool, in the sense that it could handle
the assembly language of different microprocessors.

The first fully operational version was developed in 2002 and it was composed
of a few hundred lines of C code and a collection of scripts. The second version
was developed in 2003 and maintained since 2006; it consisted of about 15,000
lines in C. This version added several new features and significantly broadened the
applicability of the tool. It was able to load a list of parametric code fragments,
called macros, and optimize their order inside a test program. With time, it has been
coerced into solving problems it was not meant for. While useful for improving its
performance, this extended usage made the basic limitations of the tool clear, and
ultimately led to the need to re-implement yGP from scratch.

This decision follows a complete change of paradigm: the focus passes from the
problem to the tool, and the main design goal shift from the solution of a specific
class of problems to the development of a tool that can include as many as possible.
The development of the third version started in 2006 with the intent to provide a
clean implementation able to replicate the behavior of the previous version. Addi-
tional goals were: maintainability, extendability, and portability. At the end of 2010,
the third version of GP counted up to more than 50,000 lines of C++.

From the programmer perspective, the optimization tool is merely a frontend
that parses options and configuration files, and eventually calls functions from a set
of libraries. Thus, the command-line frontend provided in the distribution can be
regarded as a simple example of the use of the underlying libraries.
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Libraries themselves are internally organized in layers. The foundation is com-
posed of the routines for handling graphs, taking into account all the user-defined
constraints. Piled up on this layer, the user will find the functions for handling in-
dividuals, then populations. The whole structure of layers is implemented in C++
trough an extensive use of overloading and inheritance mechanisms.

All genetic operators have been packed inside a different library that make use
of the functions to work on individuals. Routines for handling populations and the
alternative core evolutionary process are also available. Thus, a programmer may
choose at exactly which level insert his code.

Finally, two auxiliary libraries complete the set. A powerful mechanism for log-
ging the current status of the process, able to handle different files and different
levels of verbosity; and a parser for XML files that have been simply included in the
project, but it has been developed externally”.

A number of ancillary programs are also included in the basic distributions.
These programs do not run or control the evolution process itself, but perform useful
actions, easing the work for the final user. Such utilities also exploit the uGP core
libraries.

5 TinyXML was initially written by Lee Thomason, and it is now maintained by the original au-
thor with help from Yves Berquin, Andrew Ellerton, and the tinyXml community. The library is
available under the zlib license on SourceForge from http://sourceforge.net/projects/
tinyxml/.



Chapter 3
The uGP architecture

I’m afraid that if you look at a thing long enough, it loses all of
its meaning.
Andy Warhol

UGP conceptual design is based on three macro blocks: the evolutionary core, the
external evaluator, and the constraints library. The evolutionary core cultivates one
or more populations of individuals. The external evaluator assigns a fitness value to
individuals. The constraints library defines the appearance of individuals.

XML

Individual
Constraints

Fitness

\— | External
Evaluator

Fig. 3.1 uGP conceptual design

As introduced in chapter 2, in uGP the evolutionary core is completely indepen-
dent from the application. It may be regarded as a general-purpose optimizer that can
be exploited out-of-the-box. Conversely, the external evaluator defines the environ-
ment in which specimens strive for survival. Thus, it describes the target problem,
evaluating how well a given solution satisfies the specific requirements. That is, bor-
rowing the term from biology, how much is an individual fit. The constraints library
can be regarded as the bridge between the former and the latter block. It does not
define the meaning of the individuals, but rather their mere appearance. Its purpose
is to enable the evolutionary core to create a specimen that can be sensibly evaluated
by the external evaluator at a later time.

E. Sanchez et al., Evolutionary Optimization: the uGP toolkit, 17
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The chapter describes the conceptual design of £GP and sketches the main pro-
cesses that take places during the optimization process. Evolutionary computation
scholars would find themselves familiar with most of the latter topic, nevertheless
some traits are quite distinctive and may be found worth reading. Implementation
details are discussed in chapter 11.

3.1 Conceptual design

The evolutionary core creates new individuals by modifying and mixing existing
ones by means of genetic operators. It transform the individual phenotype to its
genotype, that is, it creates a text file representing the individual structure. Then, it
sends it to the external evaluator and collects the results. Eventually, it uses these in-
formation, among some structural considerations, to decide whether the individual
should be kept alive and how likely it is to reproduce. The purpose of the evolution-
ary core is to evolve one or more populations. At the end of the process, it is still
necessary to extract the best solution with a tool named ugp3-extractor.

The external evaluator is a user-defined program or script. It takes as input a text
file describing the individual, and produce a text file containing the result of its eval-
uation. All the interactions between the external evaluator and the evolutionary core
are performed through text files. The choice to rely on the filesystem introduces
some overhead!, but minimize the effort to exploit £GP in a new environment. Fur-
thermore, the computational effort to compute the fitness is supposed preponderant
in the application of the tool.

Constraints are a set of XML files. They directly correspond to the user’s percep-
tion of how a legal solution to the target problem is structured. Thus, structural and
morphological information have been merged. Chapter 9 describes their syntax.

3.2 The evolutionary core

The evolutionary core is structured as a stack of layers, each one built on top of
the previous one. Every layer provides the service for the upper ones and relies on
the lower part of the architecture. The actual evolutionary algorithm, hence, is a
relatively simple block that uses extensively the underlying infrastructure. In this
way, it is relatively easy to change the various parts of the code and add operators
or experiment different high-level schemes.

Additionally, the core regularly dumps the complete status of the evolution pro-
cess, including all the endogenous parameters, the populations and the operator
statistics. This is done mainly to allow resuming an evolutionary process after it

1Tt is though possible to reduce the overhead by evaluating a set of individual. See chapter 4 for
details.
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Fig. 3.2 Evolutionary core layers

has reached termination without having to repeat it. It also provides a limited crash
recovery capability.

3.2.1 Evolutionary Operators

All procedures that create one or more new individuals are termed genetic operators.
Special care has been taken to make addition of further genetic operators as easy as
possible. And to allow different versions of the tool operating correctly on the very
same populations, even if their cores possess different operator sets. This may be
useful whenever the user adds an operator to his own copy of (GP but has to use
results produced with a different version.

The current evolutionary core provides different genetic operators that can be
roughly grouped into three categories: mutation operators, recombination opera-
tors, and search operators. Mutation operators, consistently with the terminology
adopted by the evolutionary-algorithm community, are those operators that start
from one single parent and create one single descendant by copying and then modi-
fying it. Recombination operators start from two parents and generate the offspring
recombining them. Search operators explore the individual neighborhood by sys-
tematically modifying only one individual parameter in a predefined range of values.

Genetic operators act at the genotypical level. That is, they cannot rely on any
information about the problem currently faced. Thus, they cannot use information
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about the eventual phenotypical representation and validity of the individual. Thus,
it is possible that the offspring generated by a genetic operator does not meet the
required specification for the actual environment. Such an illegal individual is syn-
tactically and not semantically incorrect. The difference may looks subtle, but, sim-
ply speaking, an individual of the second type may be evaluated, while an individ-
ual syntactically incorrect may not. Genetic operators may not be bound to always
produce syntactically correct individual simply because the such constraints are de-
fined after the creation of the operators. Thus, tGP include a filter able to block
syntactically incorrect offspring from being added to the population. It is also worth
stressing that no mechanism permits to modify an existing specimen once it has been
inserted into a population.

3.2.2 Population

Specimens are grouped into one or more populations, inside which they compete for
survival and mating. In 4GP, a population stores a set of individuals together with all
the data required to operate on them. That is, how they are organized topologically
and all the statistics that are relevant for the evolutionary process. Coherently to the
object-oriented paradigm, populations take an active role providing functions for
higher layers in the evolutionary core, and are not mere container.

The population makes available mechanisms of selection for both the contained
specimens and the genetic operators. The former selection process takes into ac-
count the fitness of the individuals, the topological structure of the population, and
their phenotypes.

The fitness represent a measure of how good an individual is in the task of solving
the given problem. A higher fitness correspond to a better solution. In some prob-
lems, however, a variety of conflicting goals are pursued concurrently. Thus, it is
not always possible to decide if a given individual is fitter than another one. For in-
stance, a travel itinerary quite long but very cheap, is not definitely better nor worse
than an expensive direct flight. How to handle multi-objective problems will be dis-
cussed in chapter 12. Nevertheless, despite the practical difficulties in handling such
cases, the idea of favoring the fitter individuals is inherent of the Darwinian theory.

The population internal topology is discussed in section 4.3.4. Roughly speaking,
it may be beneficial to limit the interactions between specimen in the population,
so not all individuals compete withe very other one. Finally, the phenotype of the
individuals can be also taken into account by the selection mechanism. This point
may sound quite weird, since it apparently negates a basic principle of the Darwinian
theory. Such a complaint is probably correct, nevertheless it have been demonstrated
highly beneficial to consider the phenotypical expression during selection.

Intuitively, it is based on the idea of favoring those individuals that contains un-
common structures into their genotype. Indeed, such a mechanism is an evident
inconsistency with a pure Darwinian approach.
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The second mechanism of selection provided by the population is for genetic
operators. Genetic operators are not part of the population themselves, but their
selection mechanism is. In the beginning of a run, genetic operators are declared
and made available in specific populations. Each operator has associated a certain
probability of being used, named activation probability. The population amongst
individuals stores all the statistics of the evolution process, and such data include
the history of application successes and failures for all the genetic operators. Using
these statistics, the population is able to modify the activation probability associated
to operators. When asked, the population is able to point out which operator should
be used.

Different populations may be of different size, and may have different activation
probabilities. Indeed, different populations may also use different sets of genetic
operators.

There are two population types already available in the distribution of the tool:
enhanced and multi-objective. The enhanced population supports several features,
including clone detection and optional extermination with fitness scaling. The multi-
objective one, in addition, incorporates the concepts of Pareto dominance and lev-
elization. A third type, denoted as simple, also exists, but it is only intended as a
superclass for the others.

3.3 The Evolutionary Cycle

The evolutionary process is performed in discrete steps called generations. In each
generation the population is first expanded and then collapsed, mimicking the pro-
cesses of breeding and struggling for survival. This chapter describes the mecha-
nisms used to select parents, produce offspring and eventually eliminate individuals.
The first task is called selection, and the last one slaughtering. The chapter focuses
on the underlying ideas and design choices, whereas the implementation details are
detailed in chapter 11.

In every generation a population is transformed into a new one. Both the starting
and the resulting populations are completely characterized, meaning that all indi-
viduals have been evaluated and ranked; all the statistics of the process gathered,;
and all endogenous parameters updated. This synchronous, fully defined, state of
the population is the defining property of a generation.

3.3.1 Genetic operator selection

The first step of the evolutionary cycle is the selection of a genetic operator. GP
randomly picks one from a pool. Each operator has a defined activation probabil-
ity that influences how frequently it is chosen. These probabilities are endogenous
parameters: (LGP tunes them during the evolution process monitoring how different
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operators behave. The general idea is to increase the activation probability of those
operators that are more useful in the current stage of the process. It is important to
note that an optimization process goes through different stages. It is widely believed
that in the beginning the best strategy is to sample distant points in the search space,
while at the end, it is more profitable to tweak the solutions with small variations.
The former behavior is sometimes referred as exploration and the latter exploitation.
Besides, neglecting terminology, it must be acknowledged that the optimal strategy
is not only problem dependent, but also varies while tackling a single problem. In-
deed, this is one of the reason why sharply self-adapting the amount of change intro-
duced in each generation brings such a dramatic enhancement in evolution strate-
gies. Remarkably, 4GP adapts both which operators are used and the amount of
change brought by those operators. More details on this topic are provided in chap-
ter 4.

There is another motivation to use endogenous activation probabilities, perhaps
even more important. LGP is able to exploit a large number of different operators.
Moreover, it is designed to ease the creation and insertion of new operators. Some
of the genetic operators in the pool may not be compatible or even applicable in a
given context, and i GP is able not to waste time keep trying them.

The first rule adopted is to reduce the activation probability of an operator if it
always fails, that is, it is not able to produce any offspring in the given context.
It must be acknowledged that the self adaptation of activation probabilities is still
a controversial issue, but empirical studies demonstrate that the tool stops trying to
use completely useless operators in a few generations. The goodness of the offspring
may be defined comparing the fitness achieved by the newly generated individuals
with the fitness of the parents. Intuitively plausible rules are used to increase the
probability of an operator if it is able to generate good offspring, or even find the
best solution so far; and to decrease the probability of the operators producing poor
individuals.

Changes in activation probabilities are smooth. Such smoothness is controllable,
but its default value usually fits all scenarios. Moreover, the user may define thresh-
olds for the activation probabilities of different operators, bounding the minimum
and maximum values both when designing a new operator and in the problem-
specific parameters.

3.3.2 Parents selection

After selecting an operator, (LGP prepares a list of individuals to activate it. In order
to compile such list, it checks the number of parents required by the operator and
picks them up in the population one by one.

Individuals in a population are ranked based on their fitness value, the greater the
fitness the higher the rank. The ordering can be either total or partial, depending on
the nature of the problem tackled. It is tofal when the algorithm is used to maximize
a single objective function; or different objectives, but in a fixed priority; or when
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a plurality of goals may be expressed as a single one using an aggregating func-
tion such as a weighted sum. On the other way, the order is partial in the so-called
multi-objective problems, where a plurality of mutually incompatible goals are pur-
sued simultaneously. In this case, different solutions may not be comparable. For
instance, a fast but expensive car is not definitely better nor definitely worse than a
cheaper but less performing one.

The function used for selecting parents is based on tournament selection, that is,
a certain number of individuals are randomly picked up, compared, and the highest
in rank is returned. Gender is not considered, and individuals do not have distinct
reproductive roles. Thus, if an operator requires Np parents, GP simply runs Np
tournaments. The tournaments are completely independent, and it is possible, al-
though improbable, that the resulting list is composed by identical individuals.

The number of individuals chosen to compete in the tournament is called size of
the tournament, and denoted with the Greek letter tau (7). The size of the tournament
is the parameters that most closely defines the selective pressure of the environment.
When 7 = 1, every individual in the current population has exactly the same prob-
ability to transmit its genetic materials into future generations. When 7 — o, only
the fittest individual is able to reproduce. With 7 = 2, tournament selection is statis-
tically equivalent to a classical roulette wheel on linearized fitness.

A peculiarity in 4GP is that the size of the tournament is expressed as a real num-
ber. The integer part represents the number of individual that will certainly compete
in the tournament, while the fractional part is the probability that an additional indi-
vidual joins the struggle. For example, with T = 1.75 the size of the tournament will
be 2 three times out of four, and 1 the remaining one fourth of the times. Expressing
tau as a real number allows to change seamlessly the selective pressure, and thus to
self adapt its value during the evolution.

Since the selection of the parents is a task performed at the level of population,
different populations may use different selective pressure or even different selection
schemes during their concurrent evolution.

3.3.3 Offspring Generation

After the selection of an operator and its list of individual, the operator is applied.
In tGP genetic operators are not bounded neither on the number of parents, nor on
the size of the offspring. As seen in section 3.2.1, a search operator starts from a
single individual and generates hundreds of slightly mutated replica. Furthermore,
a genetic operator can fail and produces no offspring at all. Most commonly, this
happens because it cannot be applied on the chosen set of parents. For example, the
operator for randomly changing a parameter inside a macro may be invoked on an
individual composed of constant macros only. When a new operator is designed, it
is necessary to define and handle all possible failures.

When an operator succeeds generating new individuals, uGP validates them
against the current set of constraints and eventually add the acceptable ones to a
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temporary set. This final check is necessary because the newly generated individu-
als may not fully comply with the current requirements, for instance, after removing
some nodes, the resulting individual may be smaller than the minimum allowed in
the current context. It must be noted that constraints are chosen by the final user
who is likely not to have played any part in the design of the operators.

The process is repeated for all the lambda genetic operators. Then, all new indi-
viduals stored in the temporary set are eventually added to the population.

3.3.4 Individual Evaluation and Slaughtering

For the population is completely characterized, uGP starts filling in all missing
information. In a stationary environment, like the vast majority of applications, if
a new individual is identical® to an existing one, its fitness may be simply copied
from its older clone. In a non stationary environment, almost all individuals need to
be evaluated because the environment may have changed and the current fitness is
not representative anymore. Indeed, in both cases only one representative for each
class of exactly identical individuals, or clones, need to be explicitly appraised.

The list containing all individuals requiring evaluation is compiled, and then the
external evaluator is eventually invoked. Due to the internal architecture, it is not
possible to foresee any order in the process and thus all the evaluations must be
assumed completely independent.

In the last phase of the generation, exceeding individuals are removed from the
population. This removal may be due to natural aging, or the effect of more violent
competition. First, uGP select individuals that have died of old age, if any. Then,
it proceeds to remove less fit individuals until the population size goes back to .
Unlikely reproductive selection, survival selection is a deterministic process.

3.3.5 Termination and Aging

The whole process ends when one of three possible termination conditions, all set
by the user, is met. The first is that the maximum number of generations has been
performed. The second is that a predefined fitness value has been reached. The third
is that a given number of fitness evaluations has been performed without any im-
provement in the best fitness. Additionally, the process may be interrupted by the
user.

To enforce aging of the individuals while ensuring that the best ones are not lost
the user can define the size of an elite group of individuals. The elite is composed
of the top-rank individuals. These never get old, as long as they belong to the elite.
Save for their prolonged youth, the elite individuals are treated exactly as every

2 LGP exploits internal hash function to very efficiently detect whenever two individuals are iden-
tical.
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other individual in the population. The use of the elite group allows further tuning
of the evolutionary strategy.

This basic scheme can be changed in several ways to suit different needs. Indi-
viduals can be assigned a maximum age, expressed in generations, after which they
die and are removed from the population, regardless of their rank. This maximum
age is the same for all individuals belonging to a population. This allows striking
a balance between the plus and comma strategy. To obtain a plus strategy the user
lets the individuals live forever, so that they are removed only on the basis of their
fitness. To get a comma strategy it is enough to assign a maximum age equal to one
generation. Every number between one and the maximum number of generations
leads to an intermediate behavior.



Chapter 4
Advanced features

The golden rule is that there are no golden rules.
George Bernard Shaw

Finding a good solution to a problem using evolution can be a lengthy process.
Practical, real-world problems often have huge search spaces, so many candidate
solutions exist. The fitness function, especially in the case of multi-objective opti-
mization, may be deceptive, meaning that a large number of possibilities have to be
explored in order to obtain with confidence a high quality solution. The evaluation
process can require a high computational effort, and thus a long time to complete,
exacerbating the effects of having to assess many different solutions.

Reducing the number of evaluations needed to reach a “good enough” solution
is therefore critical to make an evolutionary methodology effective from a practical
point of view. In the tGP several features are directed towards this goal.

In this chapter these features are described in detail. The discussion should pro-
vide the reader with an indication of what they do, what they don’t, and when to use
them. Some are always active, either because they are universally useful or because
it would be impractical for an user to activate or tune them. Some, however, may
not always be useful, or need tuning to provide the greatest benefits, so they have to
be activated and possibly configured by the user.

4.1 Self adaptation for exploration or exploitation

Evolutionary processes are sometimes described as having an initial exploration
phase, in which the search space is sampled finding the most promising regions,
and a subsequent exploitation phase, in which the solutions cluster together within
those promising regions. The amount of modification that a given solution should
undergo in the two phases is different: in the exploration phase it is useful to pick
samples from the larget possible part of the search space, to avoid leaving “blank”,
unexplored regions. When a promising region has been found and the solutions
begin clustering together, on the contrary, it is better to perform small modifications
on the individuals, to fine tune the obtained solutions. The same concept is employed
in simulated annealing, where a temperature parameter decreases over time. The

E. Sanchez et al., Evolutionary Optimization: the uGP toolkit, 27
DOI 10.1007/978-0-387-09426-7 4, © Springer Science+Business Media, LLC 2011



28 4 Advanced features

scheme for simulated annealing, however, is fixed. In contrast, the £GP employs a
self adaptation scheme for several of its parameters. In most cases the user is able to
determine the allowed range for each parameter. For some parameters, only an initial
value can be set. Where a range can be set, it is possible to turn off self adaptation
altogether by setting the minimum and maximum of the range to the same value.

The common criterion for deciding the necessary corrections to parameters is the
rate of success obtained in the last generation. If a large enough fraction of the off-
spring is better than its parents, then implicitly the hypothesis is put forward that the
current state of the evolution is initial, since it is very easy to improve the solutions
found so far. If, instead, very few or no offspring fares better than its parents, then
the work hypothesis becomes that the evolution is reaching an optimum.

4.1.1 Self-adaptation inertia

All parameters subject to self adaptation are not modified setting them instanta-
neously to any desired value in their range. To avoid large and unpredictable changes
in the parameters the concept of inertia is used. When a paramer has to be increased
it is pushed towards the upper end of its range, whereas if it has to be decreased it is
pushed towards its lower bound.

Given a parameter p and inertia o, the new value for the parameter is computed
as p, = ap+ (1 — a)py, where p, is the new value of the parameter, p is its current
value and py is its “desired” value, that is the value towards which it is pushed.

In general, the higher the value of ¢ the slower the self-adaptation process, but
very low values make self adaptation too susceptible to the random statistical fluc-
tuations of the success rate across generations.

4.1.2 Operator strength

Mutation operators and some search operators, namely the local scan mutation and
the random walk mutation, support the concept of strength. The strength describes
how big the impact of an operator is on its input individual. The rationale behind its
use is that in the initial phases of the evolution the individuals should be changed by
a large amount, to effectively explore the search space. In later phases the changes
should be smaller, since presumably the solutions are converging towards an opti-
mum. The strength parameter, o, is a number between 0 and 1. For mutation oper-
ators, it is the probability of repeating the mutation after it has been performed. At
the end of the mutation a random number is extracted, to decide whether the opera-
tor should be applied again. If not, the obtained individual will be evaluated. If the
mutation is repeated then another probabilistic check is performed, and so on. The
first time the operator is applied without checking. The expected number of repeated

operator applications is then ﬁ
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The value of o is increased when the tool detects a high success rate, and de-
creased when success is low.

4.1.3 Tournament size

Individuals are selected for reproduction using a tournament selection scheme. If
an operator needs n parents then an equal number of tournaments is performed. For
each tournament 7 individuals are selected, and the best of them, the one with the
highest fitness, is allowed to reproduce.

However, there is a catch: 7 is a floating point number, so it has an integer part
and a decimal part. The interpretation is probabilistic. If 7 is equal to 7; + T, where
7, = | 7] and Ty = T— T;, then 7; individually are selected for the tournament, and an
additional one is picked with probability 7y.

In this way it is possible to tune the selective pressure in a much finer way than
only using integer values for 7.

The selective pressure is increased when a high success rate is detected, and de-
creased otherwise. A high selective pressure favors especially the highest-ranking
individuals. In the extreme situation where 7 is infinite, only the best individual
would ever be selected, effectively turning the evolutionar process into a sophisti-
cated hill-climbing procedure. The opposite situation, where T = 1, gives all mem-
bers of the population the same chance of reproduction, resulting in a much broader
exploration of the search space. No value of 7 can cause the tool to replicate a
Monte-Carlo search, since the population is always limited. T should never be less
than 1.

4.2 Escaping local optimums

Many real problems are characterized by fitness functions that possess more than
one local optimum, perhaps many ones. It is therefore possible that the individuals
soon begin clustering around one of those optimums, without any guarantee that it
is the global one.

Actually, apart from the case of toy problems or well-characterized benchmarks,
this is the usual situation. When the success rate approaches zero, it can be safely
assumed that a local maximum in fitness has been reached, but it should be taken
for granted that another, better, optimum exists.

The following features are especially useful to allow exploration of a larger part
of the search space when an optimum has been reached, although they also affect
other behaviors of the tool.
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4.2.1 Operator activation probability

Individuals reproduce through the application of genetic operators upon them. The
operators to apply to the population are chosen probabilistically, and after the oper-
ators are chosen the tournament selection takes place.

The activation probability for every operator is not fixed, but is self-adapted on
the basis of the success record for the single operators. When an operator is success-
ful, producing offspring better than its input individuals, its probability is marked
for an increase. When it is unsuccessful, giving rise to individuals with worse fitness
than their parents, its probability is pushed downwards.

Probabilities are modified at the end of a generation. The success statistics for
every operator are collected, and probabilities are pushed upwards or downwards
based on that record. After this stage they are normalized to ensure they add up to 1.
Since the amount of self adaptation is not fixed the normalization may cause some
probabilities to change in the opposite direction of the push.

The user can specify a range and an initial value for the operator activation prob-
abilities. However, to relieve the user from the burden of recomputing all probabil-
ities every time he wants to change the settings, the initial values are automatically
normalized. If the tool is unable to keep all probabilities within the specified range
it issues a warning and carries on the computation.

With this self adaptation, as soon as the operators that allowed reaching a partic-
ular plateau in the fitness values are no longer effective, other operators are used,
driving the evolution in different directions.

4.2.2 Tuning the elitism

When employing a comma (u,A) strategy, that completely replaces a populaton
with the next, it can be convenient to preserve a few best individuals across gener-
ations. This can be done using two different schemes, one that copies the replaced
individuals in a special repository, separate from the main population, the other that
keeps everything in one population, just avoiding replacement of the best individ-
uals. This second scheme is named elitism. The difference between the two is that
with elitism the genes of the best individuals are always available for reproduction,
whereas in the other case special mechanisms must be put in place to inject them
back into the population.

In contrast the plus (1 + A) strategy, originally employed in the uGP, is a totally
elitist scheme. No individual is ever lost to generations passing, but only because of
insufficient fitness.

A plus strategy tends to cluster solutions nearer together than a comma strat-
egy. The first may be more useful for problems with a very narrow maximum, or
where solutions have a very complex structure. The second may be more useful for
problems with many local optimums, or deceptive fitness functions.
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The GP allows the user to choose an intermediate behavior between a pure plus
strategy and a comma strategy. This is achieved through the use of two parameters:
the maximum age of the individuals and the size of the elite. It has to be noted that
these two parameters are not adapted during evolution.

When the user specifies a maximum age for the individuals they “die of old age”
after that number of generations, and are consequently removed from the population.

The user can also specify a nonzero size for the elite: this is the group of the first
n individuals in the population, ranked by fitness. The individuals inside the elite do
not grow old. Once they are pushed off the elite by better individuals, however, they
begin aging.

The effects of these two parameters compose together to provide a range of pos-
sible behaviors of the tool. Basically the user has to decide how much effort the
tool should devote to search space exploration (low maximum age, small elite) or to
optimization of existing solutions (high maximum age, large elite).

4.3 Preserving diversity

One vexing problem with simple evolutionary schemes is that solutions may clus-
ter too tightly inside a very small region of the search space. Often the population
becomes filled with clones, that is individuals exactly identical to each other. Even
when individuals are all different, they may be too similar to each other.

Indeed, this behavior is strikingly different from the natural world. Here, the
phenomenon called by Darwin the principle of divergence can be easily motivated
taking into consideration the great complexity of the natural environment. Different
specimens are likely to find advantageous to specialize their abilities and exploit a
particular niche. The natural process tends to emphasize differences, leading on the
long run to the formation of different species.

On the contrary, in the oversimplified artificial environment implicitly defined
by the fitness function, no push toward diversity exists. Consequently, individuals
tends to become almost identical, significantly impairing the whole evolution pro-
cess. This has been acknowledged as a big problem in the evolutionary computation
world.

When solving an optimization problem, the presence of many similar individuals
provides a positive feedback effect for the exploitation of a particular optimum, thus
speeding up the convergence. However, the same positive feedback may effectively
get the algorithm stuck into a local optimum, forbidding the effective exploration of
different regions of the search space.

To avoid premature convergence the tGP employs several techniques that en-
hance or preserve as much as possible the genetic diversity between the individuals.



32 4 Advanced features

4.3.1 Clone detection, scaling and extermination

Clones are individuals genotipically identical to a prototypical one. The only thing
that distinguishes clones from each other is the moment they entered the population,
reflected in their age. In the uGP the prototype individual is called master clone,
and is just the first that has appeared during evolution. Of course the clones of a
given individual also have equal fitness, since the mapping process to solutions is
deterministic.

During the evolution a population may fill up with clones of one or a few indi-
viduals, usually ranking high in the population. This is not the effect of some bug
with the genetic operators, but just the consequence of their reversibility. Clones,
in fact, often arise as the effect of undoing some mutation on a descendant of the
master clone. Otherwise, they may also appear as the offspring of a recombination
operator applied upon two instances of the first individual.

In any case, their presence triggers a positive feedback mechanism: more clones
in the population means more descendants of those cloones, and greater chances of
recreating the original individual by the random application of a genetic operator. If
the master clone is a high-rank individual, the others are also retained.

The first step to limit the presence of clones in the population is detecting them.
This has also the useful, but secondary, side effect of allowing to avoid the useless
evaluation of individuals whose fitness is already known. In uGP the detection is
helped by the computation of a global hash value for every individual.

The user can set a scaling factor S for the fitness of every clone after the master
clone. The scaling factor should lie in the range [0...1]. The effective fitness of
every individual, used for ranking, selection and survival, is then the scaled fitness
fs. Bvery clone is scaled with respect to the previous one, resulting in ever smaller
fitess values as more clones are added to the population. The general formula for
scaled fitness is

=57 4.1)

where i is the positional number of the clone, starting at O for the master clone.
So, the scaled fitness will be f; = f for the master clone, f; = Sf for the first clone,
fs = S%f for the second clone, and so on.

Using the scaling factor the user can decide to keep all the clones, setting S =1,
scale them to limit their number in the population, by setting S to a value less than
1, or make their fitness zero, setting S = 0 and effectively exterminating them.

4.3.2 Entropy and delta-entropy computation

Even if two individuals are not exactly equal, they may still be very similar to each
other. This, too, may hamper diversity. Intuitively, an individual which is very dif-
ferent from all the others in its population brings a large contribution to diversity,
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while another individual, very similar to many others, does not make the population
more varied than if it was not there.

In uGP the diversity of a population is measured computing its entropy. Every
vertex of every individual, including its parameters, is transformed into a symbol.
Two symbols are equal if and only if their corresponding vertices are equal, refer-
ring to the same macro, and with the same parameters. The complete population
is then transformed into a message, and the entropy of that message is computed.
The higher the entropy, and the greater the number of distinct symbols inside the
message, the higher the diversity.

In formulas, the entropy of the population is computed as
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In this formula H indicates the total entropy value for the population. In the sum
p; is the probability of occurrence of the j-th symbol in the entire population, and
N is the number of distinct symbols in the population. It is important to note that N
is not the sum of the number of vertices of all individuals in the population, because
if a vertex repeats it is only considered once. The fact that a vertex repeats several
times only affects its occurrence probability.

To measure the contribution of every individual to population diversity the en-
tropy is used again. Not the entropy of the individual, though, but the contribu-
tion of that individual to the total entropy. The delta-entropy of an individual is the
difference between the entropy of the complete population and the entropy of the
population without that individual.

In formulas

AH; = 4.3
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In this equation N’ is the total number of symbols in the population after individ-
ual i is removed, and p is the resulting probability for the j-th symbol.
The uGP computes the delta-entropy of every individual when it needs to per-
form selection inside a population. When comparing two individuals, if their fitness

is equal, the one with a higher delta-entropy is preferred.

4.3.3 Fitness holes

When comparing two individuals in a tournament selection the most universally
used criterion is their fitness. The use of the fitness as the exclusive means of se-
lection polarizes the evolution towards the highest-rank part of the population. In
most cases this is the desired situation, but there are instances where it could lead to
unsatisfactory results.
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One such possibility is bloating, the unorderly growth of the individual genomes,
and consequently of their external representations. Bloating occurs when individuals
with a more complex structure than the others in the population are able to get
some, perhaps very small, competitive advantage upon the others. It may happen
that individuals grow far beyond what is considered a reasonable size to gain some
marginal fitness increase.

One simple but highly effective solution to this problem is a so-called fitness
hole. In its original formulation by Riccardo Poli, the fitness hole affects the se-
lection probability of the individuals. With probability p, the selection criterion for
tournaments is not the fitness, but the size of the individuals: the smallest individual
is chosen for reproduction, not the fittest one. The name fitness hole derives from
the fact that this is a hole in the probability distribution that rules selection.

In uGP the fitness hole is used to preserve diversity rather than keep individuals
small. The delta entropy (AH) can be used to introduce in the selection scheme an
entropy fitness hole. This means that, with a certain probability pj, the selecting
criterion of the tournament selection is not the fitness but the delta entropy of the
individuals.

It should be noted that the fitness holes are never used in the survival phase, but
only during selection.

4.3.4 Population topology and multiple populations

Limiting the possible interactions between the individuals has been acknowledged
to be effective to reduce the proliferation of clones inside a population. The fopology
of a population defines how individual are allowed to interact. That is, to compete
for mating and survival. At the two extremes are: a completely unstructured environ-
ment, where every individual is able to interact with every other one; a completely
structured environment, where a given specimen can interplay only with a fixed set
of neighbors occupying specific places. Considering breeding alone, the former sit-
uation can be seen as an example of panmixia, and the population is consequently,
although rather infrequently, denoted as panmictic. The latter case is commonly
called a latex. While latex-based population have been demonstrated able to favor
the preservation of diversity during evolution, it must be noted that they are not
frequently exploited in real-world applications.

A different, and perhaps the most used, method to keep individuals different from
each other is to isolate them into different populations. Indeed, inside a panmictic
population individuals in the long run tend to become similar because they con-
tinuously exchange genetic material, and also because they compete against all the
others in the population.

Individuals can be pushed off the population even when they are relatively near
to a good local optimum, or to the global one, just because other individuals are
very close to another, perhaps lower, peak. The evolutionary process, however, is
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not finalistic: it just rewards better fitness, and does not automatically direct to the
global optimum.

The use of multiple populations is a means of isolating groups of individuals from
each other, allowing independent evolution inside every population. In the classical
schemes, the populations exchange a limited amount of genetic material through
the implementation of migrants. After a certain number of generations of indepen-
dent evolution, some individuals are picked from every population, and are given
the chance to enter other populations. In one such scheme, named island model be-
cause it is loosely inspired by the ancient Hawaiian society, the best individuals of
each population are gathered in a temporary set and compared to each other. The
overall winner enters the other populations. The time between these interactions is
sometimes called an epoch, or an era.

The island model, as other multi-population schemes, can be seen as a single
population structured in a special latex. However, from a mere practical perspective,
in GP it is preferable to implement them as multiple populations'.

Different, more complex, forms of interplay have been studied and exploited.

4.4 Coping with the real problems

Real-world problems are almost invariably complex ones, and this complexity can
have different faces. One part of the story may be that the solution to the target
problem must comply with an existing work environment. The solutions have to be
expressed with a given format and formalism, their quality must be assessed using
standard tools and metrics, or the evolutionary process has to be otherwise integrated
with existing software.

Another aspect of complexity can be computational. Solution evaluation for some
problems is a lengthy process, requiring large computational resources. This means
long evaluation times, and even longer evolutionary processes.

A third challenge may be the evaluation result itself. The quality of a given solu-
tion may not be accurately captured using just one numeric parameter. Sometimes
conflicting goals should be balanced against each other, other times the main goal
may be easier to reach if other, approximate measurements, are performed and used
to direct the evolutionary process. Sometimes it is more effective to begin solving
the approximate problem and then use the solutions obtained as a start for the real
problem.

A perfect example for all three faces of complexity is the generation of test pro-
grams for microprocessors. The programs must conform not only to the assembly
language syntax, but also to the operating environment used on the processor. Fur-
thermore, the effectiveness of those programs, expressed in terms of fault coverage,
has to be computed using existing, often commercial, tools. The evolutionary loop

! The basic distribution of 4GP includes a panmictic population, supports the existence of multiple
populations, possibly with different constraints, and implements some mechanism for copying
individuals from one population to another one.
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has to include part of the processor software development tools, as well as the fault
simulator.

Depending on the processor analyzed, the evaluation of a test program can take
as little as a few seconds or as much as several minutes.

Finally, a test program is not only characterized by its fault coverage, but also by
its code and data size and by the time the real processor would take to execute it.
The first goal is in contrast with the others. Another worthwhile consideration is that
often it is possible to obtain an approximate evaluation of a test program performing
a logic simulation at a higher level of abstraction, for example at RT-level, obtaining
the coverage metrics on the HDL code describing the processor. It is also possible,
although longer, to execute a logic simulation at gate-level, computing the toggle
activity inside the circuit. Both activities are one or two orders of magnitude faster
than a full fault simulation, so using them as a first step may be useful to avoid
wasting time on expensive simulations of nearly useless individuals.

The puGP provides support for the use of external tools in its architecture. Actu-
ally, this is one of the constraints that shaped it, as already discussed in chapter 3.
The use of approximate problems as the basis for a challenging one is not subject
to easy automation: no amount of tool support can currently substitute user intelli-
gence, and the two problems may look very different from each other.

The pGP provides a limited support for the parallel evaluation of different solu-
tions, and for the use of multiple metrics in a single evaluation.

4.4.1 Parallel fitness evaluation

The most direct way to speed up the evolutionary process when the execution time
is dominated by fitness evaluation is to evaluate more than one individual in parallel.
This strategy is possible when more than one machine or processor is available for
fitness evaluation. It must also be possible to run multiple copies of the evaluation
tool. In the case of commercial simulators the number of available licences may
limit the effectiveness of the approach.

The reason why this strategy works is that for every generation many evaluations
have to be performed. The important performance parameter, then, becomes the
throughput of the system, rather than the latency in the execution of a single task.

UGP does not directly provide any facility for parallel execution. It provides,
instead, a mechanism to generate an ordered set of solutions for evaluation. The
only constraint is that the fitness file must contain all the fitnesses in the same order
as the individuals provided. It is the responsibility of the external evaluator to set
up, if necessary, and use a parallel execution environment.

The order of the individuals generated is reflected in the command line with wich
the evalator is run, and is stored in the file individualsToEvaluate.txt inside
the run directory.

Full details on this topic can be found in chapter 7.
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4.4.2 Multiple fitness

Problems in which different, conflicting goals should be obtained are common in
practice. Most optimization tools, however, can only handle one parameter at a time.
In evolutionary computation this means that only a single numeric fitness can be
optimized.

The classical way to overcome this obstacle is to generate a composite, some-
times very complex, function of the different optimization parameters and merge
them in a single numeric index. This methodology has two drawbacks, however.
The first is that the problem must be well characterized, at least in terms of the rela-
tive importance of its goals, if the user is to be able to write a sensible composition
function. The second is that the details of this function (for instance, the exact value
of its parameters) depend on the optimizer as well as on the problem, and it takes
very much experience to set them in an effective way.

In uGP there is a simple way to express different metrics relative to a single solu-
tion. It is enough to put them together in a single set of numeric indices. In practice,
the computed fitness are written as floating point numbers inside a fitness file. To
make comparisons between individuals possible, all individuals in a population must
have the same number of fitness parameters.

Depending on the population type used, the meaning of the fitness parameters is
different. In the case of an enhanced population the first fitness is the most important,
and it should express the primary goal. If two individuals have their first fitness
equal, then the second is compared, and so on. The list of fitness parameters could
be considered a string of symbols, each symbol corresponding to a floating point
number. The fitnesses are then compared lexicographically.

If the multi-objective population is used, in contrast, there is no concept of a
primary fitness. All parameters are weighted equally, and the concepts of Pareto
dominance and leveling are used. If all the fitness parameters for an individual A
are less than or equal to those for an individual B, with at least one strict inequality,
then the individual B dominates individual A. If at least one parameter for individual
A is less than the corresponding parameter for individual B, and another parameter
is greater, then the two individuals are neither better nor worse than the other. The
ordering relationship in multi-objective populations is partial.

Depending on the problem, the use of one or the other population type may be
more suitable. Details on this topic are provided in chapter 3.



Chapter 5
Performing an evolutionary run

A journey of a thousand miles must begin with a single step.
Lao-Tzu

In this chapter, we describe how an evolutionary run must be configured in order to
cope with the main requirements the tGP needs.

In particular, in this chapter a complete evolutionary experiment is described
highlighting the work flow required to carry out an evolutionary trial. In order to
provide the user with enough information to launch his/her own experiments, in the
following the main structure as well as the basic options of the principal elements
involved in an evolutionary run are described.

As mentioned before, an evolutionary experiment requires that the user externally
provides the uGP with a series of information that strictly depends on the particu-
larities of the faced problem. In general terms, the users are expected to describe the
general behavior the evolutionary run must follow in their experiments, the main
characteristics of the population or populations evolved during each run, the inter-
face with the external evaluator and finally, the library of constraints describing the
individual syntax.

In order to facilitate the way the yGP interacts whit the outside world with-
out harming portability, the configuration files must be described using XML with
XSLT. Proceeding in this way, the user is allowed to inspect input files through the
use of graphical tools, available on many platforms. In addition, intermediate files
produced by the tGP in order to support its internal status during an evolutionary
run, such as populations, operator statistics, etc., are also created using the XML.
Nevertheless, XML cannot be used to generate normal output files, an individual for
example, since individual format must comply with specific requirements defined by
the external evaluator.

As graphically described in figure 5.1, uGP requires the compilation of three
different files in order to correctly perform an experiment:

o LGP settings: (ugp3.settings.xml)
Herein the general information about the behavior the £GP presents during the
evolution is placed, e.g., i and A values, steady state conditions, etc. Addition-
ally, one or more references to the population or populations to evolve during
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Fig. 5.1 Tool Framework

the evolutionary run is contained in this file. Finally, the verbosity level of the
algorithm is also declared here.

Population: (population.settings.xml)

For every population that is evolved during the current experiment there is a file
that contains information about the population. Every population file describes
genetic parameters, as well as genetic operators and their probabilities to be ap-
plied, and also basic information regarding the external evaluator for the specific
population. It is important to note that the most of the examples reported here use
only one population, however, GP has been designed to handle more than one
population. In addition, the reference for the library of constraints is contained in
this configuration files too.

Library of constraints: (constraints.xml)

As mentioned previously, the structure, content and syntax an individual must
obey is described in a particular file limiting the degrees of liberty of the evolu-
tionary tool at the moment of describe its individuals. It is important to note that
due to its important and complexity, a complete description of the constraints
library is left to chapter 9.

Once every single file has been correctly completed, it is enough to launch the

UGP executable file by typing in the command line the following without parame-
ters:

ugp3

The evolutionary tool automatically searches for the three configuration files in the
current directory, looking for the configuration parameters contained in every one
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of them. Then, the experiment runs adopting the guidelines describe in the con-
figuration files until a stop condition is reached. Finally, using the uGP extractor
tool, described later, the user can easily obtain the resulting individuals from the
evolutionary run.

At this point, it is important to highlight that the user cannot only launch, but
configure the uGP using the command line (please, refer to chapter 6 for more
information about launching the yGP using the command line), however, as the
reader will note later, every evolutionary run is configured by setting a large number
of parameters and switches that make it difficult to launch the GP defining every
single element through the command line. Additionally, not all available parameters
are configurable by using the command line. As a matter of fact, the £GP provides
the users with a more easily configuration mechanism based on the set of related
configuration files, as briefly described.

In the following sections, more detailed information is provided with respect to
the ©GP configuration. In order to proceed in an user friendly way, an example is
used to guide the user into the tGP configuration particularities.

5.1 Robot Pathfinder

In this experiment every individual represents a pathfinder robot that aims at finding
the best trajectory between two points demarcated at the internal of a squared arena.
Some difficulties arise to the pathfinder robots since the arena space is delimited
with some obstacles, figure 5.2 graphically shows the challenge the robot faces in
this experiment.

The possible movements allowed to every individual are basically described in
the following:

e Forward movement: The robot performs a forward movement following the cur-
rent pathfinder trajectory. The step size is defined by a real number delimited by
the user.

e Rotation: The robot rotates in one of two possible directions clockwise or coun-
terclockwise a number of radiants determined by a real value ranging from -7 to
.

Every individual is then easily described as a piece of code listing a series of in-
structions encoding the couple of robot movements described above. Then, in order
to evaluate every individual, the robot is placed in the start point (Start point - figure
5.2) and then, the list of encoded instructions is sequentially executed in order to
determine the position finally reached by the robot under consideration.

In a first launch, the fitness value for every individual is determined by the Eu-
clidean Distance between the final point reached by the robot and the goal point
(FPED) (Goal point - figure 5.2). In order to comply with the tGP requirements for
the fitness values, the provided values must be positive and, it must be highlighted
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Fig. 5.2 Robot pathfinder arena

that the bigger the fitness the better. Thus, the provided fitness values to uGP are
calculated in this way: 150 - FPED.
Figure 5.3 depicts a view of the fitness landscape of the presented experiment.

Fig. 5.3 Fitness Landscape

In order to provide the uGP with a adequate fitness, the algorithm’s goal is to
minimize the Euclidean distance between the final point (Goal point - figure 5.2)
and the reached point by the robot. As depicted in the figure, the fitness landscape
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presents a couple of local minimum near the walls that obstruct the robot trajectory.
Remarkably, the algorithm must be able to overcome these local minimum in order
to reach the global minimum represented in the figure by the point labeled as goal
point.

5.2 uGP Settings

As briefly described before, the 1t GP settings are placed in the file ugp3.settings.
xm1; the file is structured in three different contexts, as illustrated in the following:

e algorithm evolution in this context, the user defines three basic parameters:

— random seed: the user can provide every evolutionary launch with a specific
seed number, an integer, in order to initialize the pseudo-random functions
exploited during the experiment. In this way, the experiments performed by
the uGP can be easily repeated by launching a new experiment in the same
conditions containing the same seed. However, in the case the user decides to
do not provide the uGP with a random seed, the evolutionary core initializes
the pseudo-random functions resorting to the system clock.

— populations: the user defines the path and the file name containing the pop-
ulation options for the evolutionary run to be launched. It is interesting to
note that for one evolutionary experiment, more than one population can be
defined.

— statistics: the experiment statistics are also saved in a file defined here.

The following code lines show the initialization of the file ugp3.settings.xml
described here for the mentioned experiment. The presented lines include the initial-
ization ones for the settings file. It is interesting tho highlight the line <settings>
that initializes the option settings for the current experiment. Comments where omit-
ted in order to minimize the presented code lines here.

<?xml version="1.0" encoding="utf-8" 7>
<settings>
<context name="evolution">
<option name="randomSeed" value="1"
type="integer"/>
<option name="populations">
<population name="name_populationl"
value="population.settings.xml"/>
</option>
<option name="statisticsPathName"
value="statistics.xml" type="string"/>
</context>

In the second context defined in the settings file, the next options are specified:
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e algorithm recovery: in this context, the user defines the file name used to save the
status of the algorithm during the current experiment, as well as some interesting
options used by the yGP for saving and recovering information.

— recoveryOutput: this option states the file name used to save the experiment
status after every generation.

— recoveryOverwriteOutput: setting this option to true, the evolutionary core
overwrites the previous status file, otherwise the status file is saved using a
different file.

— recoveryDiscardFitness: when recovering an experiment, this option avoids
the evolutionary core to asks the external evaluator to recalculate the fitness
values for the recovered population of individuals. On the other hand, if this
option is set to false the evolutionary core maintains the fitness values con-
tained in the recovery file that is uploaded at the beginning of the experiment.

In the following lines, the recovery context of the ugp3.settings.xml file are
detailed:

<context name="recovery">

<option name="recoveryOutput" value="status.xml"
type="string"/>

<option name="recoveryOverwriteQutput" value="true"
type="boolean"/>

<option name="recoveryDiscardFitness" value="true"
type="boolean"/>

</context>

The last section contained in the settings file is the Llogging context, in this part
of the configuration file, the user defines the level of information the uGP must
produce in output.

e algorithm logging: the options in this context allow the user to decide the infor-
mation level presented by the tGP in output during the current experiment; the
options configure the information level for the standard output as well as for a
different output such as an output file.

The next xml lines complete the ugp3. settings . xml file for the proposed robot
pathfinder experiment; firstly, the logging context is reported choosing two differ-
ent streams for the experiment output. The first one, the standard output is named
std::cout and in this case, the configuration options ask the uGP for a info
level of information in a plain format. The second output is directed to a file called
debug.log and the information level is deeper, again in a plain format. The final
line </settings> concludes the ugp3.settings.xml file by closing the initially
opened option settings.

<context name="logging">
<option name="std::cout" value="info; plain"/>
<option name="debug.log" value="debug; plain'"/>
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</context>
</settings>

5.3 Population Settings

Every evolutionary run can define one or more populations to be evolved during
the current experiment as outlined before, and for every population there exists a
specific file that defines the configuration parameters for its own evolution.

As detailed in the chapter 3, the population can assume one out of two different
types: enhanced and multi-objective. It is important to note that depending on the
population type, the evolution performs in different ways; clearly, influenced also by
the configuration of the rest parameters belonging to this file. Thus, the population
type parameter opens the population.settings.xml file.

Concerning the robot pathfinder problem faced in this section, the population
type selected for this experiment is enhanced, and in the following, the most of the
parameters handling the evolution of this kind of population are described:

e Population parameters

— U this evolutionary parameter is, as usual, the size of the population. However,
since the population may vary its dimension during the evolution, y actually
represents the maximum size of the population. For the current example, the
chosen value for u is 10.

— A in the case of the uGP, A indicates the number of genetic operators applied
at every generation. For this population, this values is set to 15.

— Vv is the initial size of the population for the current experiment. At the be-
ginning of the current experiment, v random individuals are generated to start
the evolutionary run. In the case v is lower than y, the evolutionary core com-
pletes the expected population adding the individuals necessary to complete
u. On the contrary, if v is larger than u, the best pindividuals are kept in the
initial population. Herein, v = 20.

o Fitness function parameters

— Number of fitness parameters instructs the evolutionary tool about the number
of values expected from the external evaluator for every individual. In the
current experiment only one value is expected for every individual.

— Maximum fitness value represents in the case the users know its value, the
maximum value reachable by the fitness function on every one of its param-
eters. Once the evolutionary core cultivates an individual that reaches this
value, the current experiment is terminated. This parameter is optional and
should not be defined by the user. For the robot path finder experiment, the
maximum fitness value is not defined.

— Invalidate fitnesses after generation setting this parameter to true invalidates
all the individual fitness values at the end of every generation, requiring to
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recalculate every single fitness at the beginning of the next generation. In this
example, the invalidate fitness parameter is false.

e Elitism parameters

— Elite size represents the best ranked individuals that do not suffer the effects
of time passing. In the presented example, the three best ranked individuals
never get old as long as they belong to this elite group.

— Maximum age of the individuals belonging the current population, after that
the individuals die due to aging effects. In the current experiment, the maxi-
mum age reachable by the individuals is 10.

e Termination conditions some parameters can be defined handling the different
ending events for every evolutionary experiment. In particular, termination con-
ditions can be exploited to ensure that the evolutionary run ends complying with
very well established time conditions, for example.

— Maximum fitness value see above.

— Maximum generations defines the maximum number of generations the evo-
lutionary core must perform in the current experiment.

— Maximum steady state generations indicates the (LGP to stop the current ex-
periment as soon as a determined number of generations have been performed
without obtaining any improvement in the best individual of the current popu-
lation. In this case, it is said that the experiment reached a steady state during
a certain number of generations.

— Maximum evaluations this parameter determines the maximum limit on the
number of evaluation requests that the ytGP can ask to the external evaluator.
As mentioned before, at every generation the ytGP guarantees the application
of a predefined number of genetic operators, which offspring can highly vary
depending on the chosen operator; thus, it is interesting to give the user the
opportunity to stop an evolutionary run once a well defined number of external
evaluations is reached.

e Diversity parameters these parameters activate the previously defined techniques
to avoid premature convergence in the current population.

— Clone scaling factor this parameter can range from O to 1, and if its value is
different than 0, every clone fitness is scaled with respect to the previous one
as described in chapter 3. In this example, this factor equals 0, meaning that
every clone generated during the current experiment is eliminated.

— Fitness hole activation activating this feature for preserving diversity affects
the selection mechanism during the tournament selection of individuals; thus,
with a defined probability p, delta-entropy instead of the fitness, is used as the
selection criterion during the individuals comparison at the end of the tour-
nament. In order to correctly activate the fitness hole feature, it is necessary
to determine the selection scheme, to adequately limit 7 parameter that de-
fines the number of participants in the tournament selection, and to choose
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the activation probability, called fitnessHole, of the selection mechanism. In
the presented experiment, the fitness hole is activated by selecting tournamen-
tWithFitnessHole, T ranges from 1 to 3 and the activation probability of the
fitness holes equals 0. 3.

o Self-adaptation inertia this parameter defines the amount of resistance to change
their current values of the auto-adapted parameters during the running experi-
ment. In this example inertia equals 0. 9.

e Operator strength this parameter determines how big the effect of the genetic
operator is on its input individual. The strength parameter, ¢, ranges from 0
to 1 determining the probability of repeating the genetic operator in the same
individual. In the current experiment, this parameter equals 0. 9.

e Constraints indicates the file and the path name for the constraint library of the
current experiment.

The following lines initialize the population.settings.xml file, for the robot
pathfinder experiment. Some comments are presented to allow clarity:

<?7xml version="1.0" encoding="utf-8" 7>

<l--population type-->

<parameters type="enhanced">

<!--population parameters-->

<mu value="10"/>

<lambda value="15"/>

<nu value="20"/>

<lI--fitness function parameters—->

<fitnessParameters value="1"/>

<!--maximumFitness value="100"/>

<invalidateFitnessAfterGeneration value="false"/>

<l--elitism parameters-->

<eliteSize value="3"/>

<maximumAge value="10"/>

<!--termination conditions-->

<!--maximumFitness value="100"/-->

<maximumGenerations value="100"/>

<maximumSteadyStateGenerations value="20"/>

<maximumEvaluations value="1000"/>

<!--diversity parameters—-->

<cloneScalingFactor value="0"/>

<selection type="tournamentWithFitnessHole" tau="2"
tauMin="1" tauMax="3" fitnessHole="0.3" />

<inertia value="0.9"/>

<sigma value="0.9"/>

<constraints value="constraints.xml"/>

In the second part of the population settings file the activation probabilities for
every genetic operator exploited in the current experiment are presented. In order
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to activate or deactivate every genetic operator, it is necessary to state its reference
name, its initial weight, as well as the maximum and minimum values describing
the excursion range for the operator.

The following lines of the population.settings.xml file describe the acti-
vated operators of the current experiment.

<operatorsStatistics>
<operator ref="onePointSafeCrossover">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="onePointSafeSimpleCrossover">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="twoPointSafeSimpleCrossover">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="singleParameterAlterationMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="insertionMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="removalMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="replacementMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="alterationMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="subGraphInsertionMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="subGraphRemovalMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="scanMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="subGraphReplacementMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
<operator ref="randomWalkMutation">
<weight current="1" minimum="0" maximum="1"/>
</operator>
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<operator ref="localScanMutation">

<weight current="1" minimum="0" maximum="1"/>
</operator>
</operatorsStatistics>

The third and final part of the population.settings.xml file states the pa-
rameters related to the external evaluator as described in the following:

e Evaluator path name herein the name and path name of the external evaluator
are determined. In the present example, the evaluator program is called RPFeval-
uator.

e FEvaluator input name this parameter states the format of the file name of the
individuals produced by the ©GP. The produced file is a text file that is provided
by the tGP to the external evaluator following the indications stipulated by the
user. In this case, the individuals are named robot.input.

e Evaluator output name at the end of the evaluation process, the external evaluator
provides to the yGP the fitness value or values in a text file which name is defined
trough this parameter.

e Concurrent evaluations indicates the number of parallel evaluations to be per-
formed at every time. In the robot pathfinder example, 50 parallel evaluations are
allowed.

e Remove temporary files if this parameter is true, the temporary files produced
by the uGP are canceled at the end of every generation. Otherwise, these files
remain in the current directory.

The following lines conclude the population.settings.xml file showing the
configuration of the evaluator related parameters.

<evaluation>
<evaluatorPathName value="RPFevaluator" />
<evaluatorInputPathName value="robot.input" />
<evaluatorOutputPathName value="fitness.output" />
<concurrentEvaluations value="50" />
<removeTempFiles value="true" />

</evaluation>

</parameters>

5.4 Library of Constraints

Individuals are generated by the (GP following the directions described by the user
in the file containing the constraint library. The constraint library defines the indi-
vidual structure as well as the available content for describing every individual.
The constraint library is hierarchically described in three different levels corre-
sponding to sections that contain subsections, and every subsection is composed of
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macros. At every level at least one of the sub components must be present. Addi-
tionally and independently from the hierarchy structure, every constraint library can
define a series of data types customized for the specific experiment. For more details
about the constraint library, please consider the chapter 9.

In the following we describe the defined constraint library for the robot
path finder experiment. For this experiment, this configuration file is called
constraints.xml. The following lines represent the general structure of the con-
sidered constraint library:

<?xml version="1.0" encoding="utf-8"7>
<?xml-stylesheet type="text/xsl"
href="constraintsScripted.xslt"?>
<constraints id="constraints-example"
xmlns="http://www.cad.polito.it/ugp3/schemas/constraints"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.cad.polito.it/ugp3/schemas/constraints
http://www.cad.polito.it/ugp3/schemas/constraints.xsd">
<prologue id="prologue-example">
<epilogue id="epilogue-example'">
<commentFormat>#<value /></commentFormat>
<labelFormat><value />: </labelFormat>
<identifierFormat><value /></identifierFormat>
<uniqueTagFormat><value /></uniqueTagFormat>
<sections>
</constraints>

The initial part of the file contains some directions regarding the xml file and
provide the id of the current library of constraints, called constraint-example. Then,
it is possible to note the initialization lines for the rest of the main components com-
posing the file, i.e. prologue, epilogue, and sections. In the presented lines, a general
view is reported, thus, only the headers for every element of the file are shown, the
rest of the information is hidden. In the middle of the presented lines, some syntax
particularities are defined, for instance, it is possible to define the format required
to comment lines, or the desired format for labels, etc. In this example, the sym-
bol # defines the commented lines, while labels must be finished with the colon (.)
punctuation mark.

Once the constraint file is named and initialized, the general prologue is defined:

<prologue id="main-prologue">
<expression>
#this is the generale prologue for the
#robot path finder experiment
</expression>

</prologue>
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In the presented lines, the prologue for the described experiment only defines
some comments. Clearly, more relevant information can be placed here; in fact, it
is usually required that individuals must be initialized with some special lines that
define initial conditions to comply with the experiment.

In the same way, the general epilogue is defined introducing only a final com-
mented line.

<epilogue id="main-epilogue">
<expression>
#The end
</expression>

</epilogue>

Sections in the constraints.xml configuration file start with the same name
tag. Every section is named with an identifier, and once again, it is possible to define
a specially devised prologue and epilogue. in the following lines, the main section
is called section-example, and in this case no prologue neither epilogue are defined.

<sections>
<section id="section-example"
prologueEpilogueCompulsory="true">
<prologue id="prologue-example'">
<expression></expression>
</prologue>
<epilogue id="epilogue-example">
<expression></expression>
</epilogue>

At this point of the elaboration of the constraints.xml file, the set of subSec-
tions is defined. in the robot path finder experiment, only one subsection is defined.
As the reader can notice, this subsection is called main and it is mandatory that it
appears once. Again, prologue and epilogue are negligible for the correctness of the
experiment.

<subSections>
<subSection id="main" max0Occurs="1" minOccurs="1"
maxReferences="0">
<prologue id="stringPrologue"/>
<epilogue id="stringEpilogue"/>
<macros maxOccurs="50" minOccurs="2" averageOccurs="8"
sigma="5">

At this point of the constraints file the most internal parts of the hierarchical
scheme, the macros, are defined. The first line regarding macros supplies the guide-
lines for statistical distribution of the number of macros present in every individual.
In the constraint library, it is possible to define a range including lower and upper
bounds, as well as an average. The final parameter of this line, sigma, defines the
standard deviation for the distribution of macros in every individual.
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Now, it is time to formally define macros. In the introduction of the robot
pathfinder experiment, it was stated that the robot can perform two kind of move-
ments: rotate and movement. Thus, two macros are defined describing both available
actions.

<macro id="MV_rotate" weight="1">
<expression><param ref="ROTATION"/> <param ref="IMM"/>
</expression>
<parameters>
<item xsi:type="constant" name="ROTATION" >
<value>rotate</value>
</item>
<!--Rotation expressed in radiant -->
<item name="IMM" xsi:type="float"
minimum="-3.14159265358979323846"
maximum="3.14159265358979323846" />
</parameters>
</macro>

The first macro, called MV _rotate, contains two parameters, the first one is called
ROTATION, and defines a constant name rotate, the second parameter, called IMM,
defines the rotation value expressed as a real number in radiant that ranges from -7
to .

The second kind of movement, described in the following lines, regards real dis-
placement performed by the robot. It is named MV _displacement and contains also
two parameters MOV and IMM. As in the previous example, the first one acquires

a constant name move, whereas the second one is a real value that ranges from 0 to
40.

<macro id="MV_displacement" weight="2">
<expression><param ref="MOV"/> <param ref="IMM"/>
</expression>
<parameters>
<item xsi:type="constant" name="MOV" >
<value>move</value>
</item>
<!--Move by a minimum of 0 to a maximum of 40 -->
<item name="IMM" xsi:type="float"
minimum="0.0" maximum="40" />
</parameters>
</macro>
</macros>
</subSection>
</subSections>
</section>
</sections>
</constraints>

It is interesting to note that the user can define for every macro a probabilistic
weight, that determines the number of occurrences of the considered macro in every
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individual. In the presented case, real displacements described by the second macro
(MV _displacement), must be present twice the rotation ones.

The final lines presented before, encode the final part of the constraints.xml
file.

5.5 Launching the experiment

Once the configuration files are done, the user can launch the first experiment by
typing in the command line:

ugp3

Before the evolution starts, the initialization banner of uGP is displayed showing
some standard information. In the lines presented in the next, the tool version is
presented, as well as some information about copyrights. Then, the evolutionary
run starts acquiring the necessary information from the configuration files prepared
before. First of all, the available genetic operators are registered, then the population
or populations are created by reading information by the population file.

ugp3 (MicroGP++) v3.1.2 "Bluebell"

Yet another multi-purpose extensible self-adaptive evolutionary algorithm
Copyright (c) 2002-2009 Giovanni Squillero <giovanni.squillero@polito.it>
This is free software, and you are welcome to redistribute it under certain
conditions (use option "--license" for details)
[07:54:31] Registering genetic operators

[07:54:31] Setting up the evolutionary algorithm ...

[07:54:31] Adding population O "name_populationl" (population.settings.xml)
[07:54:31] Creating 20 individuals [ 1 100%
[07:54:31] Evaluating individuals [ ] 1007%
[07:54:31] Starting evolution.

[07:54:31] Population "name_populationi" generation 1

[07:54:31] Generating offspring [ ] 100%
[07:54:31] Evaluating individuals [ 1 100%
[07:54:31] Generation 1 -- Changing activation ), of genetic operators...

[07:54:31] WARNING:: Failure rate for operator scanMutation was 1007
[07:54:31] WARNING:: Failure rate for operator localScanMutation was 100%
[07:54:31] Generation: 1 -- Now changing the self-adapting parameters...
[07:54:32] Evaluating entropy [ ] 100%
[07:54:32] Current global entropy: 7.22058

[07:54:32] Individual age (average): 1; size (average): 14.2; Fitness
(average): 0.173591

[07:54:32] Fitness (best): "F2" {0.194231}

[07:54:32] Fitness (worst): "AL" {0.154251}

[07:54:32] Sigma: 0.9; Tau: 1.95

[07:54:32] Population "name_populationl" generation 2

[07:54:32] Generating offspring [ ] 100%
[07:54:32] Evaluating individuals [ 1 80%

Once the very first random population is created, counting in this case v (20)
individuals, the evolutionary tool asks the external evaluator to evaluate every one,
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and then, the evolution starts following the indications contained in the configuration
files. In the lines presented before, it is possible to notice some relevant information
regarding the status of the evolution, for example, the step or generation number
reached, the genetic operators failure rate, the individual identification and fitness
value obtained by the best and the worst individuals.

The following lines describe the individual called robotF2. input ranked as the
best individual at the end of the first generation.

#this is the generale prologue for the
#robot path finder experiment

rotate 2.54311086748917

rotate -1.73247932705242

move 16.7230879423961

move 2.16414657770699

#The end

On the other hand, the next lines show the worst individual obtained up to the
same generation. As it can be noted this individual is called robotAL. input.

#this is the generale prologue for the
#robot path finder experiment
move 33.4154139988904

move 35.580956241178

move 15.4130572700451

move 23.5098101825791

move 16.7230879423961

move 13.7893260744299

move 26.4508534954332

move 20.5247237689387

rotate -0.170329881677345
#The end

After a while, the evolution is premature terminated since the maximum number
of evaluations is reached. The best individual obtained up to this point is depicted
in figure 5.4. As the reader can notice, this individual is able to reach one of the
local maximum present in the search space; in fact, the considered individual stops
near the second obstacle, directly behind the goal point. However, results must be
improved.

In a second run, evolution parameters were tweaked, augmenting some of their
initial values, such as the size of the initial population, the maximum number of
evaluations as well as the number of generations available for this experiment. As a
result the new best individual reached a point in the neighborhood of the goal point.
Figure 5.5 shows the individual performance obtained in this run.



5.6 uGP Extractor 55

100 T T

path| [——
/ obstacle 1/ |
// N obstacle 2| |——
/
80 - / i
/
/
/
/
60 - / g
/
/
/
/
40 - / b
/
20 1
/
ok i
20 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
Fig. 5.4 Local optimum
100 T
ath ———
obstacle 1 ——
“, obstacle2 ——
|
80 | | ]
|
|
60 - 1
[
40 - | b
20 - ‘ b
oK i
20 L L L L
0 50 100 150 200 250

Fig. 5.5 Best individual

5.6 uGP Extractor

At the end of the evolution, the user can obtain the best individual evolved during
the experiment by using an extraction tool included in the uGP distribution. The
extractor tool, called ugp3-extractor, receives as input the name of the status file



56 5 Performing an evolutionary run

generated by (GP during the run of the considered experiment in order to save in
an output file the best individual obtained during the whole run.

After the second run of the considered experiment, the user can use the following
command to extract the best individual. The ptGP extractor tool first acquires nec-
essary information from the status file, and then, the individual is written in a file
called individualXX, where XX is the ID given to the best individual.
ugp3-extractor status.xml

This action extracts two main components:

e Best Individual called individualXX
e Fitness Value The fitness obtained by the best individual. This file is named
ugp3-extractor.fitness



Chapter 6
Command line syntax

When all else fails, read the instructions.
Cann’s Axiom

The uGP is meant to be used either as a stand-alone application or as an embedded
tool, inside scripts or even called by other applications. It has to be portable across
different hardware and OS platforms. To obtain the maximum possible flexibility
and portablity the tool is run using a traditional command line.

The behavior of tGP is controlled by a large number of parameters and switches,
as seen in chapters 7, 8 and 9. Only a subset of all these switches are available on
the command line.

The user is expected to provide command-line options only to perform a few high
level tasks, mostly without tuning the evolution process itself.

The simplest of these is getting information about the program itself and its us-
age. Other command-line switches control the amount of information that the pro-
gram provides the user during execution, or allow generating log files for later anal-
ysis. Furthermore, the user may choose to control some details about how fitness
evaluation is performed, about how one or more previously existing populations are
recovered, and finally about how evolution is started and its statistics are reported.

The user should not try to fine-tune the evolution process from the command line,
but instead he should edit the population settings file, as detailed in chapter 8. That
file contains tens of parameters, and it would be very easy to overlook one or more
of them, noticing the mistake only when it is too late and having to repeat the run.

If any switch is provided on the command line, it overrides the corresponding
setting from the configuration file.

The first task to be described is one of the most common: starting an evolutionary
run.

6.1 Starting a run

The executable for uGP is named ugp3. In the following it will be assumed that
the environment is set up so that the ugp3 executable is on the search path of the
system.

E. Sanchez et al., Evolutionary Optimization: the uGP toolkit, 57
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The simplest way to run the tool is without any parameter:

ugp3

The tool will automatically search for a settings file, named ugp3.settings.xml
in the current directory, and look inside that file for all parameters.

If the settings file is named differently, this must be specified in the command
line using the -—settingsFile switch as follows:

ugp3 --settingsFile settings_file_name

WGP will report an error if it cannot find the file or if the file syntax is not correct.
Full details on generating and modifying the settings file are contained in
chapter 7.

6.2 Controlling messages to the user

The uGP constantly reports the progress of an evolutionary run to the user through
informational messages on the standard output (DOS shell, Linux terminal, console
or equivalent). The user can control the amount of information provided using one
of several switches. These are:

--debug
—--verbose
--info
--warning
-—error
--silent

Information generated using every switch is a subset of that provided using the
previous one. So, for example, using the ——info switch the user will also see warn-
ings and errors.

--debug causes the most information to be output. As the name suggests, it is
used mainly to isolate possible bugs and errors in the code, and is not recommended
for normal usage. Since informational messages are generated for almost every op-
eration performed internally, this switch causes the generation of very large logs,
and may have a significant an impact on performance. This switch works only if the
tool has been compiled using the DEBUG option.

--verbose causes informational messages to be generated for many details of
the evolutionary process. The tool will report details about the genetic operators
used to generate every new individual, about fitness evaluation, about parameter
self adaptation, and about saving of the dump files.

--info makes information to be generated for the same activities, but with less
detail. Every new individual generated will be reported about, its fitness value will
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be shown, and some information about the genetic operator used to obtain it will
appear. This is the default informational level.

--warning makes information to be generated only when unusual conditions
are detected, that may point to errors in the constraints or in the parameters.

—--error causes only unrecoverable errors to be reported. An error report usually
immediately precedes program termination.

Finally, --silent suppresses every message from the tool. Usage of this switch
is only recommended when pGP is used inside a script or is called by another pro-
gram, in those cases where its output may interfere with correct operation, or when
the output from g GP would anyway be invisible.

6.3 Getting help and information

The uGP can provide information about itself or about its usage. The available
options are listed below:

--version
—--license
--help
--moreHelp

The simplest option in this respect is ——version, that just makes the program
display its complete version information (major version, minor version, revision).

--license, instead, causes the display of the license information for the pro-
gram. The uGP executable is currently distributed under the GNU General Public
License.

The --help switch, used alone, makes a summary of all command-line options
be displayed, without further explanation.

The --help option can be followed by the name of one other option, without the
leading --. In this case specific help is displayed for that option.

Finally, -—moreHelp will provide the user with some explanation about the evo-
lutionary parameters, the statistics collected and the current developers of the tool.

All these options cause the program to terminate immediately after displaying
information. Only one of these options can be used at a time.

6.4 Controlling logging

The tGP can be configured to log information about the evolutionary process. This
information can be output directly to the console, or saved in one or more files,
according to the settings file.
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In addition to this, the user can specify additional log files from the command
line. The syntax to do it is the following:

ugp3 --log filename level format

In this context filename is any valid name for the desired log file. Level can be
any one of silent, error, warning, info, verbose, debug, exactly as described
above, but without the leading --. Finally, format can be brief, extended, plain
or xml.

The brief format is the default. Every message is preceded by a simple times-
tamp, by the indication of the message level if it is not info.

The extended format causes every message to be preceded by a full timestamp
(date and time, instead of only time), by the name of the function, the file and line
of the program that generates the message, and by the message level.

The plain format makes every message be output without any additional indi-
cation.

Finally, the xml format causes messages to be generated using the same infor-
mation as the extended format, but included in XML tags. In this way it will be
possible to browse the log file using widely available tools.

It is possible to specify more than one —-1og option on the same command line.
Every one should be followed by the file name, level and format.

6.5 Controlling recovery

UGP can recover a previously saved algorithm state. The user can specify the file
that contains the saved state with the ——recoveryInput option:

--recoverylInput filename

UGP will then read the state of the algorithm from the specified file, and save
every new state to it. This option should only be used once. If that state should be
preserved, for instance because several different runs will be started from the same
state changing some settings, the state can be saved to a different file, using:

—--recoveryOutput filename

Finally, the user may decide to discard the already computed fitness val-
ues, or to keep them saving some evaluations. This is done using the

—--recoveryDiscardFitness switch:

--recoveryDiscardFitness {true|false}
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When the option specified is true all fitness values are discarded and the indi-
viduals are evaluated again, when it is false the fitness values are kept. The default
behavior is to discard the fitness values.

6.6 Controlling evolution

It is possible to control some parameters and perform a few high-level operations
pertaining to evolution. When the pGP starts it reads a number of parameters from
its settings file. It also reads a recovery file, if it is specified either in the settings or
on the command line.

The settings file and the recovery file also contain a seed for the random number
generator. This seed can be changed using:

--randomSeed number

This can be useful to repeat an evolutionary process several times starting from
the same state, discovering whether it is sensitive to the actual random sequence
generated.

The user can specify a file name where the statistics for the run are saved with
the switch:

--statisticsPathName filename

The file for the statistics is not the same as the file where the algorithm state is
saved, nor the same as any log file. The statistics file only contains some summary
information for every evolutionary step, not the complete state or any informational
message.

The uGP can evolve several populations concurrently, even with different con-
straints. The ——population switch is used to specify the contraints for every pop-
ulation. Its syntax is:

—--population constraints_name

It should be noted that this option is different from --recoveryInput, in that
the latter specifies a complete algorithm state, whereas the former only specifies
the constraints for a population. The --population option can be used more than
once. The uGP will instantiate a new empty population for every such option.

Lastly, two or more populations can be merged together before beginning an evo-
lutionary process. This could be useful as the final phase of an evolutionary process
performed in an island configuration. The syntax for this operation is:

--merge destination_population_number source_population_number
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Populations are numbered starting from zero up to one less than the total num-
ber of populations, in the same order as they have been initially created (using the
—--population option). To merge two populations together they have to be speci-
fied using their associated number. For instance, to merge population number 3 and
number 0, leaving the resulting population in place 0, this sintax should be used:

--merge 0 3

This option may be used more than once. A single merge will occur for every
use of the switch. Currently no syntax is available to specify the action “merge
every population in a single one”.

6.7 Controlling evaluation

The user can specify some details of fitness evaluation when starting a run. First of
all, he may specify the name of the fitness evaluator:

--evaluatorPathName evaluator_name

This name will override the name (if any) specified in the population parameters
file. Indeed, one of the possible reasons to restart an evolutionary process is to re-
place an approximate fitness evaluator with a more accurate one, once a satisfying
population has been obtained using the first one. It should be noted that this name
can be a relative or absolute (full) path name.

The names of the individual phenotypes can be changed using:

--evaluatorInputPathName individual name

The individual name is the base name of the generated individuals, as expected
by the evaluator. More information on this topic can be found in chapter 10.

Also the name of the corresponding fitness file can be specified on the command
line:

--evaluatorOutputPathName fitness_name

This name should be the same as the name of the fitness file generated by the
evaluator. It should be noted that this name is not currently passed by the ugp3
executable to the evaluator, so it is the user’s responsibility to ensure that the two
names are coherent. More information on this topic can be found in chapter 10.

The uGP can generate phenotypes for several individuals at a time, in order to
have them evaluated concurrently. The maximum number of individuals generated
at any given time can be specified using the -~-concurrentEvaluations option:
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—--concurrentEvaluations n

In this context n is an integer number, and is the number of individuals that the
evaluator is expected to handle concurrently. More information on this topic can be
found in chapter 10.

Finally, the user may decide to keep or remove the phenotypes of the generated
individuals. This can be done using:

--removeTempFiles {true|false}

The default is to remove the files, but they may be kept for further elaboration.
Using true the files will be removed, otherwise using false they will be kept. It
should be noted that keeping all the generated phenotypes may cause a large disk
occupation, and may even significantly slow down the system, due to the excessive
number of files in a single directory.



Chapter 7
Syntax of the settings file

Do not assume that order and stability are always good, in a
society or in a universe.
Philip K. Dick

Many of the options that the GP recognizes on the command line are also available
in the settings file. This file contains general settings for the evolutionary tool. The
parameters specified in this file relate to the general architecture of the evolutionary
run, such as the number and type of populations to evolve, and more administrative
aspects, like the optins for evolution recovery or for logging.

In the following the syntax of the settings file is outlined.

The settings file always starts with the following line, that specifies the XML
document type.

<?xml version="1.0" encoding="utf-8" 7>

The settings file contains a single XML element named settings.
<settings>
</éé£tings>

Every possible setting belongs to a context, indicated by a context element.
<context name="context name">
</é;ﬁtext>

Contexts are distinguished by their name, indicated by the name attribute. Differ-
ent contexts contain settings related to different categories.

Every setting, with one exception, is contained in an opti