
CHAPTER 9

LEVEL CROSSING
ESTIMATION

9.1 Introduction

This chapter describes a basic level crossing estimation method (LCE)
for steady-state probability distributions in queues, storage processes
and related stochastic models. LCE is also called: level crossing com-
putation, system point estimation (or computation). LCE is related
to non-parametric density estimation methods (e.g., [95]). In standard
density estimation the data is assumed to be a random sample from an
unknown pdf. The data is used to construct histograms, naive density
estimators, kernel-density estimators, etc., for the unknown pdf, utilizing
associated smoothing techniques.

In LCE we obtain the data from a simulated sample path of a sto-
chastic process. We compute estimators of the pdf of the state variable
from level-crossing time averages, or related averages. The estimators
used in LCE can be combined with smoothing techniques to improve the
estimates (e.g., [71], [72], [73]).

9.1.1 Main Steps of Level Crossing Estimation

The basic LCE procedure that we use here for steady-state distributions,
has three main steps:

1. Simulate a single sample path of the process over a long simulated
time period, say [0, t].
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2. From the simulated sample path, compute point estimators of the
pdf and cdf of the state variable, in terms of level-crossing time
averages calculated on a state-space partition. Compute point esti-
mators of moments and of expected values of measurable functions
of the state variable.

3. Obtain confidence limits for the estimates of the pdf, cdf, moments
and expected values of measurable functions.

Remark 9.1 Step 2 may also include a sensitivity analysis of the es-
timates. Thus, we may vary the simulated total time t, and/or the
state-space partition norm size (fixed bin size, defined below in Subsection
9.4.1), to ensure that estimates remain within preassigned tolerances.

In addition to the three main steps, we also characterize the steady-
state pdf and cdf according to continuity, boundedness, convexity, differ-
entiability, etc., by utilizing sample-path properties for the model. For
example, in Mλ/G/1 and in G/Mμ/1 queues, the steady-state pdf’s of
wait are bounded by λ and μ respectively (Propositions 3.5, 5.9 ).

I have carried out numerous LCE computational experiments using
the procedure described herein, as well as other LCE procedures (e.g.,
[13], [21], [22], [32]). These experiments have detected all pdf discontinu-
ities and intervals of convexity or concavity in benchmark models, where
the pdf properties are known. For example, an M/Discrete/1 queue may
serve as a benchmark. Proposition 3.9 specifies continuity/discontinuity
properties of the pdf of wait. We can also apply LCE to estimate the
pdf of wait in variants of M/Discrete/1 with state dependencies, etc., in
which analytical results are tedious to obtain, or are not available.

9.2 Theoretical Basis for LC Estimation

LCE is based on level crossing theorems. Consider M/G/1. Theorem 1.1
implies that virtual-wait sample-path level-crossing time averages con-
verge to the steady-state pdf of wait (a.s.) as time t → ∞ (Subsection
9.2.2 below). This implies that time averages computed from a simu-
lated sample path over a long simulated time t, should approximate the
pdf accurately for all state-space values up to the maximum state-space
level attained during [0, t], say χt. Thus, the state-space interval [0, χt]
will contain an increasing measure of the total probability as t increases
(Subsection 9.2.4). The measure will grow to 1 as t→∞.
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Remark 9.2 The LCE method described here is one of several LC esti-
mation methods. I have developed a version of LCE based on Theorems
3.2, 3.3 and related theorems, for estimating transient distributions
of state variables (e.g., Remark 3.6). (I have discussed this technique
at several conferences, e.g., P. H. Brill (1982), "System Point Monte
Carlo Simulation of Time Dependent Probability Distributions of Wait-
ing Times in Queues", TIMS/ORSA National Meeting, Chicago, April.)

9.2.1 Boundedness of Steady-state PDF

A bound on the steady-state pdf of the virtual wait in Mλ/G/1 queues
is given in Proposition 3.5, and on the steady-state arrival-point pdf of
wait in G/Mμ/1 queues in Proposition 5.9. In Mλ/G/1, f(x) < λ, x >
0. In G/Mμ/1, fι(x) < μ, x > 0. Recall that Dt(x), Ut(x) are the
numbers of SP down- and upcrossings of level x during (0, t] respectively.
Boundedness implies that for a typical sample path in Mλ/G/1,

f(x) = lim
t→∞

Dt(x)

t
< λ, x ≥ 0.

In G/Mμ/1,

fι(x) = lim
t→∞

Ut(x)
t

< μ, x > 0.

Similarly, we can develop bounds on f(x) for other models, e.g., for
M/M/c, G/M/c, etc. In Mλ/G/r(·) dams, boundedness follows from
integral equation (6.18) for the steady-state pdf of content f(x). If the
efflux rate satisfies r(x) > m > 0, x > 0, then f(x) < λ

m ,x > 0.

9.2.2 Role of Level Crossing Theorems in LCE

Consider Mλ/G/1. A sample path of the virtual wait is diagrammed in
figures 3.4 and 9.1. Let F (x), f(x) be the steady-state cdf and pdf of
wait respectively. Let P0 = F (0). Theorem 1.1 asserts

lim
t→∞

Dt(x)

t
= f(x), x ≥ 0, lim

t→∞
Dt(0)

t
= f(0) = λP0 (a.s.)

(recall that f(0) ≡ f(0+)). Hence, given ε > 0, for each x > 0 ∃ txε such
that

t > txε =⇒
¯̄̄̄
Dt(x)

t
− f(x)

¯̄̄̄
< εf(x) (a.s.), (9.1)
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since f(x) is bounded, i.e., 0 < f(x) < λ <∞, x ≥ 0 (Subsection 9.2.1).
Also ∃ t0ε such that

t > t0ε =⇒
¯̄̄̄
Dt(0)

λt
− P0

¯̄̄̄
< εP0. (9.2)

Choose an arbitrary "small" δ, 0 < δ << 1. Let Wq denote the steady-
state queue wait. Define zδ > 0 by P (Wq > zδ) = δ. Then δ is the
probability of the right tail of the distribution of Wq, i.e., on the interval
(zδ,∞). Thus

1− F (zδ) ≡
Z ∞

y=zδ

f(y)dy = δ. (9.3)

Suppose we could determine (finite) t∗δ = maxx{txε|x ∈ [0, zδ)}, where
txε, x > 0 is defined in (9.1) and t0ε is defined in (9.2). Then

t > t∗δ =⇒
¯̄̄
Dt(x)
t − f(x)

¯̄̄
< εf(x) for all x ∈ (0, zδ) (a.s.),¯̄̄

Dt(0)
λt − P0

¯̄̄
< εP0 (a.s.).

(9.4)

By the normalizing condition P0 +
R∞
x=0 f(x)dx = 1, we have

P0 +

Z zδ

x=0
f(x)dx = 1−

Z ∞

x=zδ

f(x)dx

= 1− δ > 0. (9.5)

Summing over all x ∈ [0,∞) in (9.4) and using (9.5), yields

t > t∗δ =⇒
¯̄̄
Dt(0)
λt − P0

¯̄̄
+
R zδ
x=0

¯̄̄
Dt(x)
t − f(x)

¯̄̄
dx < εP0 + ε

R zδ
x=0 f(x)dx

= ε(1− δ) < ε (a.s.).
(9.6)

Let
n bP0; bf(x)o denote the estimate of {P0; f(x)}. We assume that a

sample path over a fixed simulated time interval [0, t] is used to computen bP0; bf(x)o. (We omit subscript "t" in the symbols bP0 and bf(x), in order
to distinguish bP0, bf(x) from estimators " bP0t, bft(x)" for the transient pdf
of wait, which we use outside this monograph.)

Assume we use the "natural" estimator based on the sample path,
viz., bP0 = Dt(0)

λt ,
bf(x) = Dt(x)

t , t > t∗δ . Then (9.6) implies that the total

absolute error of
n bP0; bf(x)o in estimating {P0; f(x), x ∈ (0, zδ)} is less

than ε.
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Figure 9.1: Sample path of virtual wait {W (t)} in M/G/1. Shows peaks
{Wn + Sn}, troughs {Wn} and state-space partition 0 = x0 < x1 <
x2 · ·· < x15 in time interval (0, t). Also shows maximum sample-path
value attained in [0, t].

Assume bf(x) = 0, x > zδ. Then t > t∗δ implies that the total absolute
error in bf(x), x > zδ is equal to δ, i.e.,

t > t∗δ =⇒
Z ∞

x=zδ

¯̄̄ bf(x)− f(x)
¯̄̄
dx =

Z ∞

x=zδ

f(x)dx = δ, (a.s.). (9.7)

Suppose we could simulate a sample path over a sufficiently large time
interval (0, t), t > t∗δ . Statements (9.6) and (9.7) imply that the total
absolute error would be¯̄̄ bP0 − P0

¯̄̄
+
R∞
x=0

¯̄̄ bf(x)− f(x)
¯̄̄
dx

=
¯̄̄
Dt(0)
λt − P0

¯̄̄
+
R∞
x=0

¯̄̄
Dt(x)
t − f(x)

¯̄̄
dx < ε+ δ, (a.s.).

(9.8)

In principle we can choose ε and δ arbitrarily small. Then we can sim-
ulate a sample path over a long simulated time t > t∗δ and ensure that

the total absolute error of
n bP0; bf(x)o in estimating {P0; f(x), x > 0} is

arbitrarily small. This procedure would amount to computation of the
entire pdf {P0; f(x), x > 0} within a preassigned tolerance. The total
error on [0, zδ) is less than ε. The total error on (zδ,∞) is equal to δ.
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9.2.3 Natural Partition of State Space

We illustrate a natural partition of the state space by means of an ex-
ample.

Example 9.1 Consider a sample path of the virtual wait {W (t)}
in an M/G/1 queue (Fig. 9.1). The state space is S = [0,∞). For
fixed x ∈ S, {Dt(x)} is a counting process. For fixed t > 0, Dt(x)
is a step function on S. The jumps in the step function occur at the
peaks {Wn + Sn} and troughs {Wn}, where Wn, Sn, n = 1, 2, ... are the
customer waits and service times respectively. In Fig. 9.1 level W (0) is
a peak and level W (t) is a trough. We merge the peaks and troughs
to form a state-space partition

{xi} =W (0) ∪ {Wn} ∪ {Wn + Sn} ∪W (t),

arranged in ascending order of magnitude in S,

0 = x0 < x1 < · · · < xM(t) <∞.

The first partition point x0 corresponds to all troughs of W (0)∪ {Wn}∪
W (t) such that the ordinate is 0. The second partition point is

x1 = min
n

½
W (0) ∪ {Wn} ∪ {Wn + Sn} ∪W (t)

Â {troughs = 0} .

¾
That is, minn {·} excludes the troughs corresponding to x0 (= 0). The jth
partition point xj is obtained similarly, excluding those troughs and/or
peaks corresponding to {x0, x1, ..., xj−1}. The number of subintervals of
partition {xi} is M(t) ≤ 2Na(t), where Na(t) is the number of arrivals
during (0, t). In Fig. 9.1, Na(t) = 8, M(t) = 15.

Note that t is fixed. Let

Dt(x) = di, x ∈ [xi, xi+1), i = 0, 1, ...,M(t),

where di ≥ 0 is a constant. Then
Dt(x)

t
=

di
t
, x ∈ [xi, xi+1), i = 0, 1, ...,M(t)

is a step function of x ∈ S. Suppose we can determine t∗δ as in (9.4).
Then, from (9.8)

t > t∗δ =⇒
¯̄̄̄
d0
λt
− P0

¯̄̄̄
+

M(t)X
i=0

Z xi+1

x=xi

¯̄̄̄
di
t
− f(x)

¯̄̄̄
dx < ε+ δ, (a.s.). (9.9)
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In Fig. 9.1

d0 = 2, d1 = 1, d2 = 2, d3 = 3, ..., d14 = 1, d15 = 0.

The recursion (9.11) below may simplify computation of {di} using
a computer program.

di+1 =

½
di + 1 if xi+1 is a trough,
di − 1 if xi+1 is a peak, i = 0, ...,M(t)− 1, (9.10)

dM(t)+1 = 0. (9.11)

The sub-interval lengths of the partition {xi} are

{xi+1 − xi} , i = 0, ...,M(t).

These lengths vary in a natural way (variable bin sizes).

9.2.4 Ladder Points and LCE Estimates

For the virtual wait, let χt denote the maximum sample-path level in
S attained during [0, t]. For fixed t, χt = xM(t), the greatest finite
point of partition {xi}. As t increases {χt, t ≥ 0} is a non-decreasing
step function with non-homogeneous inter-jump times. A sample path
of {χt} is a non-decreasing right-continuous step function with upward
jumps at embedded arrival instants τ ln, n = 1, 2, ... . The associated
service-time jumps end strictly above χτ l(n−1) = χτ−ln

(Fig. 9.1). Thus
d
dtχt = 0, τ l(n−1) < t < τ ln, n = 0, 1, 2, ..., where τ l0 ≡ 0. The increase
in {χt} at arrival instant τ ln is equal χτ ln − χτ−ln

= excess service time
above level χτ−ln

. Random variables χτ ln , n = 1, 2, ... are ordinates of

the "strict ascending ladder points"
©¡
τ ln, χτ ln

¢ª
of the virtual wait

process {W (s), s ≥ 0}. The points
¡
τ ln, χτ ln

¢
∈ T × S, n = 1, 2, ...,

are analogous to strict ascending ladder points for a random walk [56].
The LCE estimate of the pdf of wait f(x), x ≥ χt is bf(x) = 0. The
number of strict ascending ladder points

¡
τ ln, χτ ln

¢
in time interval [0, t]

form a counting process as t increases. If the sample-path jump sizes
are distributed as Eμ, then the nth ascending ladder point is distributed
as an Erlang-(n, μ) random variable. (We mention these ladder points
because of their importance in the overall method. However, we shall
not discuss them further in this introductory chapter on LCE.)
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9.3 Computer Program for LCE

An LCE computer program can utilize different logical designs. Suppose
we wish to estimate the steady-state pdf of wait. Assume that for fixed
t > 0, we can simulate a sample path of the virtual wait over a simulated
time interval [0, t]. We count the number of SP downcrossings of each
state-space level x ∈ S during [0, t]. This is easier than it may seem at
first glance, due to the step-function structure of Dt(x), x > 0, for fixed
t > 0.

9.3.1 Designs for Computer Program

We discuss two feasible designs for an LCE computer program.

State-space Partition with Variable Subintervals

One design is based directly on the discussion in Section 9.2, using par-
tition {xi} having variable sub-interval lengths ∆i = xi+1−xi. The ∆i’s
occur naturally in the simulated sample path (Fig. 9.1).

The embedded processes {Wn} and {Wn + Sn} are Markov processes.
Thus, in a sample path the union {Wn} ∪ {Wn + Sn} of peaks and
troughs, is everywhere dense in S = [0,∞) as t → ∞ (a.s.). That
is, the entire state space will be covered eventually by the ordinates of
the peaks and troughs.

An advantage of this design is that it takes every sample-path peak
and trough during [0, t] into consideration. In theory, any computed
estimator will utilize all the information available in the sample path.

A possible disadvantage of this design is from a programming point
of view. The points in {xi} become more dense as the sample path is
generated over time. The ∆i’s in the region of higher probability, will
become extremely small as simulated time t increases. The partition
{xi} will contain on the order of 2Na(t) distinct points, where Na(t) is
the number of arrivals in time t (a peak and trough correspond to each
arrival). If t is large, Na(t) will be large. Many ∆i’s will become less
than a practical resolution size required for the estimation of the pdf of
wait.

State-space Partition with Fixed Subintervals

A second design is to start with x0 = 0 and a fixed partition norm size
∆. Thus xi = xi−1 + ∆, i = 1, ... . The program updates the count



392 CHAPTER 9. LEVEL CROSSING ESTIMATION

of SP downcrossings of each state-space level xi, i = 0, ...,M(t) as the
sample path evolves over time interval [0, t]. We compute the maximum
peak χs during [0, s] as we generate a sample path over time. The state-
space partition {xi} covers the state-space interval [0, χt]. Generally
the time intervals between successive ladder points of {W (s)} increase.
That is, τ l(n+1) − τ ln > τ ln − τ l(n−1), after some n ≥ some integer
∈ {1, 2, ...}. Estimates of {P0; f(x), x ≥ 0} that are computed using a
fixed-∆ partition, very closely approximate estimates using a partition
with variable ∆i’s, for most practical purposes. Moreover, the fixed-∆
design is easy to program.

9.4 LCE for M/G/1 Queue

This section describes LCE for the steady-state pdf of wait and related
quantities for M/G/1 queues. A numerical example using this method
is given in the next section. Let {W (t), t ≥ 0} denote the virtual wait.
Without loss of generality assume W (0) = 0. The state space is S =
[0,∞). Let the arrival rate be λ. Let Sn, n = 1, 2, ... denote the service
times, which may be state dependent. Assume the parameters are such
that the queue is stable, e.g., λE(S) < 1. AssumeW (t) →

dist
W as t→∞

(weak convergence). Denote the cdf and pdf of W by F (x), x ≥ 0, and
{P0; f(x), x > 0} respectively. Here P0 = F (0) > 0 and f(x) = d

dxF (x)
wherever the derivative exists. Denote the nth moment of W by mn =R∞
x=0 x

nf(x)dx, n = 1, 2, ... . Let ψ(W ) denote an arbitrary measurable
function of W .

We use a computer program based on the fixed-norm size design of
Subsection 9.3.1 to compute the estimators (fixed ∆). Definition 9.2
below incorporates minor modifications of the "basic" estimators, that
retain theoretical consistency. The modified estimators are satisfactory
for practical purposes.

9.4.1 Quantities Computed from a Sample Path

Fix finite time t > 0. Consider a simulated sample path of the vir-
tual wait {W (s), 0 ≤ s ≤ t}. The SP is the leading point of a sample
path when thought of as evolving over time (Section 2.3). In the fixed-
∆ design, partition {xi} has a constant norm ∆. Define the following
quantities.
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Dt(x) number of SP downcrossings of level x, x ≥ 0 during [0, t],
χt max{W (s)|0 ≤ s ≤ t},
∆ norm of preassigned uniform partition on S,
ν max{n|n∆ ≤ χt, n = 0, 1, 2, ...},
xj xj = j∆, j = 0, ..., ν + 1; xν+2 ≡ ∞,
{xj} preassigned uniform partition on [0, (ν + 1)∆] with norm ∆,
J j interval J j = [xj , xj+1), j = 0, 1, ..., ν,
dj Dt(xj), j = 0, ..., ν + 1,

At At =
1
t

³
d0
λ +∆

Pν
j=0 dj

´
= 1

t

³
Dt(0)
λ +∆

Pν
j=0Dt(xj)

´
.

Remark 9.3 Definition 9.1 retains the argument "t" for Dt(x), χt and
At. Both ν and dj also depend on t. We omit subscript t for ν to
simplify notation since ν often appears as a subscript or index. We omit
the subscript t for dj for computer-programming purposes. The quantities
∆, xj and J j are defined in the state space, and are generally independent
of t. (However, we may vary t and ∆ jointly for a sensitivity analysis
in order to increase accuracy.)

Remark 9.4 Note the inequality xν = ν∆ ≤ χt < (ν + 1)∆ = xν+1.
Also, for every x ≥ xν+1, Dt(x) = 0, i.e., dν+1 ≡ 0.

The term At is such that At > 0, t > τ1 (τ1 = first arrival instant).

Proposition 9.1

lim
t→∞
∆↓0

At = 1 (a.s.). (9.12)

Proof. We sketch a proof of (9.12) in three steps.
(1) P0 +

R∞
x=0 f(x)dx = 1 (normalizing condition).

(2)For the first term of At we have

lim
t→∞

d0
tλ
= lim

t→∞
Dt(0)

tλ
=

f(0)

λ
=

λP0
λ
= P0 (a.s.). (9.13)

(3) First assume the virtual wait W (t) ≤ K, t > 0 for some upper bound
K > 0. Evidence for the existence of such queueing models is demon-
strated in Section 3.14. Then χt ≤ K for all t > 0. Also ν ≤

£
K
∆

¤
where

[z] denotes the greatest integer ≤ z, z ∈ R. Thus ν is finite and positive

Definition 9.1
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for all values of t. For the second term of At we have

limt→∞
∆↓0

³
∆
Pν

j=0
Dt(xj)

t

´
= lim∆↓0

³
limt→∞

³Pν
j=0

Dt(xj)
t ∆

´´
= lim∆↓0

³Pν
j=0

³
limt→∞

Dt(xj)
t

´
∆
´

= lim∆↓0
³Pυ

j=0 f(xj)∆
´

=
RK
x=0 f(x)dx (a.s.),

(9.14)
since limt→∞

Dt(xj)
t = ff(xj , (a.s.) by Theorem 1.1. In the last equality

of (9.14), the expression
Pυ

j=0 f(xj)∆ is a Riemann sum. It converges

to the definite integral
RK
x=0 f(x)dx as ∆ ↓ 0, since K −∆ < xν ≤ K.

The result (9.14) holds for every K > 0. If K →∞, then

lim
t→∞
∆↓0

⎛⎝∆ νX
j=0

Dt(xj)

t

⎞⎠ =

Z ∞

x=0
f(x)dx (a.s.). (9.15)

Equation (9.12) then follows from (9.13), (9.14) and the normalizing
condition.

9.4.2 Point Estimators

For fixed t > 0 letbf(x), x > 0, bF (x), x ≥ 0, bP0,cmn, n = 1, 2, ..., bE (ψ(W )) ,

denote point estimators of the corresponding quantities under the cir-
cumflexes. These point estimators are specified in Definition 9.2 below.
Assume a "small" norm ∆ is given (∆ = "bin size").

Definition 9.2 For each fixed t > 0, the point estimators are (see
Definition 9.1):

1. bf(x) ≡ dj
tAt

=
Dt(xj)
tAt

, x ∈ J j , j = 0, ..., ν,

2. bP0 = d0
λtAt

= Dt(0)
λtAt

,

3. bF (x) = bP0 +∆Pj−1
i=0

bf(xi) + (x− xj) bf(xj), x ∈ J j , j = 0, ..., ν,

4. bmn = ∆
Pν

i=0 x
n
i
bf(xi),

5. bE(ψ(W )) = ψ(0) bP0 +∆Pν
i=0 ψ(xi)

bf(xi).
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Estimator of Laplace Stieltjes Transform

In Definition 9.2, set ψ(W ) = e−sW , s > 0. Then E(ψ(W )) is the
Laplace-Stieltjes transform (LST) of W , namely

E(e−sW ) =

Z ∞

x=0
e−sxdF (x)dx.

The estimator of E(e−sW ) is

bE(e−sW ) = bP0 +∆ νX
i=0

e−sxi bf(xi), s > 0.
We may compute bE(e−sW ) for s = 0, h, 2h, ..., where h is a small positive
constant. Thus we can plot bE(e−sW ) vs. s. Then we may substitutebE(e−sW ) for the LST in formulas where it appears.

The value of ∆ may be adjusted after a computer run, to increase
accuracy or investigate an estimator’s convergence rate with respect to
∆.

Remark 9.5 In Definition 9.2 the quantities under the symbol "b" omit
the argument t, to distinguish them from estimators of transient distribu-
tions. (The latter estimators are not included in this monograph, but are
discussed briefly in Remark 9.2 and remarks referred to therein.) The
quantities also omit the argument ∆ for notational simplicity.

Remark 9.6 For fixed t > 0, bf(x) is a step function of x ∈ ∪ν+1j=0J j

having constant values on the intervals {J j}. The term At is a nor-
malizing constant which guarantees that bF (x) = 1, x ≥ xν+1, for any
t > 0. Also, bf(x) = 0, x ∈ Jν+1.

Consistency of Estimators

An estimator bϕt of quantity φ is consistent if limt→∞ P (bϕt = φ) = 1.
An estimator bϕt of φ is strongly consistent if P (limt→∞ bϕt = φ) = 1;
equivalently limt→∞ bϕt = φ (a.s.).

The estimators

bf(x), x > 0, bF (x), x ≥ 0, bP0, bmn, n = 1, 2, ..., bE (ψ(W ))

in Definition 9.2 are strongly consistent. The gist of the proofs utilizes
level crossing theorems discussed in Subsection 9.2.2.
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Proposition 9.2

1. (a). For each xj , bf(xj) is strongly consistent.
(b). For each fixed x 6= xj lim∆↓0 bf(x) is strongly consistent.

2. (a). For each fixed t > 0, 0 ≤ bP0 ≤ 1.
(b). bP0 is strongly consistent.

3. (a). For each fixed t > 0, 0 ≤ bF (x) ≤ 1, x ≥ 0, and bF (∞) = 1.
(b). For each fixed x ≥ 0, lim∆↓0 bF (x) is strongly consistent.

4. lim∆↓0mn is strongly consistent, n = 1, 2, ....

5. lim∆↓0 bE(ψ(W )) is strongly consistent.
Proof. 1(a).

lim
t→∞

bf(xj) = lim
t→∞

dj
tAt

= lim
t→∞

Dt(xj)

tAt
=
a.s.

f(xj)

limt→∞At
= f(xj),

since limt→∞At = 1 by formula (9.12).
1(b). Fix t > 0. Fix x ∈ S. Let δ > 0 be given. We can make
the fixed norm size ∆ arbitrarily small. There exists ∆ > 0 and xj
in the fixed norm partition such that 0 < x − xj < ∆. Also we have
x − xj < ∆ =⇒ |f(x)− f(xj)| < δ, since f(·) is defined to be right
continuous. Note that bf(x) ≡ bf(xj). Now let t > txjε, such that t > txjε

=⇒
¯̄̄ bf(xj)− f(xj)

¯̄̄
< ε. (Such txjε exists by 1(a).) Hence for ∆

sufficiently small and t > txjε,¯̄̄
f(x)− bf(x)¯̄̄ =

¯̄̄
f(x)− bf(xj)¯̄̄ = ¯̄̄f(x)− f(xj) + f(xj)− bf(xj)¯̄̄

≤ |f(x)− f(xj)|+
¯̄̄
f(xj)− bf(xj)¯̄̄

< δ + ε.

As t → ∞,
¯̄̄
f(xj)− bf(xj)¯̄̄ ↓ 0. Thus ¯̄̄f(x)− bf(x)¯̄̄ < δ, implying that

limt→∞
³
lim∆↓0 bf(x)´ = f(x) (a.s.).

2 (a). For fixed t, Dt(0) ≥ 0. hence

0 ≤ Dt(0)

λtAt
= bP0 = Dt(0)

λt³
Dt(0)
λt +∆

Pν
j=0

Dt(xj)
t

´ ≤ 1.
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2 (b). For a stable queue, state {0} is positive recurrent. Hence

lim
t→∞

bP0 = lim
t→∞

Dt(0)

λtAt
=

f(0)

λ limt→∞At
=

λP0
λ · 1 = P0 (a.s.).

3(a). This follows because the denominators of bP0 and bf(xj), j = 1, ..., υ
contain the normalizing factor At = bP0 +∆Pν

j=0
bf(xj), which exceeds

or equals the value of the total numerator.
3(b). This follows because limt→∞ bP0 = P0. Also,

lim
t→∞

Ã
lim
∆↓0

Ã
∆

j−1X
i=0

bf(xi) + (x− xj) bf(xj)!!

= lim
∆↓0

Ã
lim
t→∞

Ã
∆

j−1X
i=0

bf(xi) + (x− xj) bf(xj)!!

= lim
∆↓0

Ã
∆

j−1X
i=0

f(xi) + (x− xj)f(xj)

!
,

since for fixed ∆, the values of the partition points {xj} are fixed (thus
interchange of limits permitted). Hence

lim
t→∞

µ
lim
∆↓0

bF (x)¶ = P0 +

Z x

y=0
f(x)dx = F (x) (a.s.).

4, 5. These follow using similar reasoning as in the proof of 3(b).

Remark 9.7 In the estimation procedure of this section, we must make
two important preset choices: (1) the value of simulated time t; (2) the
value of ∆. Since t is finite and ∆ > 0, the estimators in Proposition
9.2 are approximately consistent. We consider the partition norm ∆
to be sufficiently "small" if the following holds. We repeat the estimation
procedure with a smaller ∆, say ∆

10 or
∆
100 , etc.; this leaves the estimates

within a preassigned tolerance.
Similarly, we consider t to be sufficiently "large" if repeating the pro-

cedure with a larger t, say 10t or 100t, etc., leaves the estimates within
a preassigned tolerance (compare with Cauchy condition for convergence
of series). The joint choice of (t,∆) poses an interesting exercise. Ex-
perimentation may be informative. A discussion is given in [20]. Com-
putational experimentation has shown that the estimation procedure is
robust over a wide range of (t,∆) values. With the advent of fast com-
puter processors, fast random access memories, fast storage drives, etc.,
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a sensitivity analysis can be carried out very efficiently. Computer speeds
will increase in the future. Sensitivity analyses of the estimates with re-
spect to (t,∆) will become ever more efficient.

9.4.3 Statistical Properties and Confidence Limits

For an arbitrary sample path W (s), 0 ≤ s ≤ t, define the following
quantities.

dx time between successive SP downcrossings of level x,

V ar(dx) variance of dx,p
V ar(dx) standard deviation of dx,

bx time SP is in state-space interval [0, x] during dx
= sojourn time at or below level x,

A((W (·))n) area under the sample path of (W (s))n

during a busy cycle of W (s), 0 ≤ s ≤ t,

λP0 long-run rate at which arrivals initiate busy periods.

Asymptotic Normality of Estimators

The following proposition describes the asymptotic normality of the es-
timators. Let N(0, 1) denote a standard normal random variate with
mean 0 and variance 1. Let V ar(Z) denote the variance of a generic
random variable Z.

Proposition 9.3

1. For every xj , j = 0, ..., νbf(xj)− f(xj)

V ar(dxj ) ((tAt)
−1 (f(xj))3)

1
2

→ N(0, 1) as t→∞.

2. bP0 − P0

V ar(d0) ((tAt)
−1 λ (P0)

3)
1
2

→ N(0, 1) as t→∞.

3. If ∆ is small then for every x ≥ 0 approximately

bF (x)− F (x)

((tAt)−1V ar(bx − b0)f(x))
1
2

→ N(0, 1) as t→∞.
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4. If ∆ is small then approximately

bmn −mn

(t−1V ar(A((W (·))n))λP0)
1
2

→ N(0, 1) as t→∞.

Proof. The proofs of statements 1 - 4 follow from the asymptotic nor-
mality of renewal processes (see e.g., [91] or [49]). This proposition is
also discussed in Section 6 of [20], based on the same references.

Confidence Intervals for Estimators

Assume t is large and define zα
2
by P (N(0, 1) > zα

2
) = α

2 . The following
100(1− α)% confidence limits apply.

1. f(xj): bf(xj)± zα
2
· dV ar(dxj ) · ³(tAt)

−1 bf(xj)3´ 1
2
,

2. P0: bP0 ± zα
2
· dV ar(d0) ·µ(tAt)

−1λ
³ bP0´3¶1

2

,

3. F (x): bF (x)± zα
2
·
³
(tAt)

−1dV ar(bx − b0) bf(xj)´ 1
2 ,

4. mn: bmn ± zα
2
·
³
t−1dV ar(A((W (·))n))λ bP0´ 12 .

Proof. The profs are based on Proposition 9.3.

9.5 LCE Example: M/M/1 with Reneging

We consider an Mλ/Mμ/1 queue in which customers may renege from the
waiting line, or wait and balk at start of service (Section 3.11, Subsection
3.11.7 and equations (3.166), (3.167)). Alternatively customers may wait
and stay for complete service. We compare LCE estimates of the steady-
state pdf, cdf and mean wait of stayers with the analytical solutions for
the same quantities.

We assume customers that wait less than 1 time unit stay ("reach"
the server) and get complete service. Customers that are required to
wait ≥ 1 time unit to reach the server, renege from the waiting line or
wait the full time and then balk at service. In the notation of Section



400 CHAPTER 9. LEVEL CROSSING ESTIMATION

3.11 the staying function R(x), x ≥ 0 has the same form as in Fig. 3.21,
i.e.,

R(x) =

(
1, 0 ≤ x < 1,

0, x ≥ 1.
(9.16)

The arrival rate λ and service rates μ may be arbitrary positive num-
bers since the queue is stable for all values of λ, μ (Theorem 3.8). We
arbitrarily set λ = 1, μ = 5.

Analytical Solution

We obtain the analytical solution for the pdf of the wait of stayers
{P0; f(x), x > 0} from the model equations

f(x) =

⎧⎨⎩ λP0e
−μx + λ

R x
y=0 e

−μ(x−y)f(y)dy, 0 < x < 1,

λP0e
−μx + λ

R 1
y=0 e

−μ(x−y)f(y)dy, x ≥ 1.
(9.17)

The solution of (9.17) is

f(x) =

(
λP0e

−(μ−λ))x, 0 < x < 1,

λP0e
λe−μx, 1 ≤ x <∞.

(9.18)

We substitute (9.18) into the normalizing condition P0+
R∞
x=0 f(x)dx = 1,

yielding

P0 =
1

1 + λ
μ−λ(1− e−(μ−λ)) + λ

μe
−(μ−λ) . (9.19)

Substituting λ = 1, μ = 5 in (9.19) and (9.18) results in (Fig. 9.3)

P0 = 0.8006, (9.20)

f(x) =

(
0.8006 · e−4.0x, 0 < x < 1,

2.1763 · e−5.0x, 1 ≤ x <∞.
(9.21)

From (9.21) the derivative is

f 0(x) =

(
−3.2024 · e−4.0x, 0 < x < 1,

−10.8815 · e−5.0x, 1 ≤ x <∞.

The pdf f(x) is continuous at x = 1. The derivative f 0(x) is discontinu-
ous at x = 1. Thus f 0(1−) = −0.058654, f 0(1) = −0.073319. The pdf is
bounded above by the arrival rate λ, i.e.,

max
x≥0

f(x) = f(0) = 0.8006 < 1 = λ.
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LC Estimation using t = 3000,∆ = 0.1
Estimated values Analytical ValuesbP0 = 0.7995 P0 = .800587

x bf(x) bF (x) f(x) F (x)

0.1 .7995 .7995 .8006 .8006

0.2 .5265 .8652 .5366 .8666

0.3 .2447 .9395 .2411 .9403

0.4 .1602 .9591 .1616 .9603

0.5 .1142 .9734 1083 .9736

0.6 .0729 .9828 .0726 .9826

0.7 .0484 .9809 .0487 .9886

0.8 .0317 .9929 .0326 .9926

0.9 .0208 .9955 .0219 .9953

1.0 .0147 .9973 .0147 .9971

1.1 .0092 .9984 .0089 .9982

1.2 .0058 .9992 .0054 .9989

1.3 .0031 .9996 .0033 .9993

1.4 .0010 .9998 .0020 .9996

1.5 .0007 .9999 .0012 .9998

1.6 .0003 1.000 .0007 .9999

1.7 .0000 1.000 .0004 .9999

Table 9.1: Comparison of LC estimation with steady-state analytic val-
ues for M/M/1 with reneging or balking at service

LCE Estimates of PDF and CDF of Wait of Stayers

We present the LCE estimates of f(x), F (x) and P0 in Table 9.1, using
t = 3000, ∆ = 0.1.

LCE Estimates of Mean of Wait of Stayers and P0

From (9.21), E(Wq) ≡
R∞
x=0 xf(x)dx ≡ m1 = 0.049, where Wq de-

notes the required wait of stayers before service. Simulation of 10 inde-
pendent sample paths using t = 3000, ∆ = 0.1, resulted in the sample-
average point estimate bm1 = 0.0489. A 95% confidence interval for m1 is
obtained using t9,0.025 · sm1

where t9,0.025 is the right 2.5% tail of the
Student "t" distribution with 9 degrees of freedom (Student "t" because
10 is a small sample size) and sm1

is the sample standard deviation ofbm1. The value of t9,0.025 · sm1
turned out to be 0.0013. Thus a 95%

confidence interval is m1 = bm1 ± t9,0.025 · sm1
or m1 = 0.0489 ± 0.0013,

which covers the true mean wait.
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ˆ ( )f x

x

Figure 9.2: Point estimate bf(x) based on Table 9.1, for f(x) in Mλ/Mμ/1
queue with reneging or balking at service: λ = 1, μ = 5. Compare with
Fig. 9.3.

f(x )

x

Figure 9.3: Analytical solution for f(x) in Mλ/Mμ/1 queue with reneging
or balking at service: λ = 1, μ = 5. See formulas (9.16), (9.18), (9.21).
f(x) is continuous at x = 1. f 0(x) is discontinuous at x = 1.
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Similarly a 95% confidence interval for P0 is P0 = bP 0± t9,0.025·sP0 or
P0 = 0.7996± 0.0025, which covers the true value of P0.

Discussion of Numerical Example

The probability that an arbitrary arrival stays and receives full service
is

qS = P0 +

Z ∞

x=0
R(x)f(x)dx

= P0 +

Z 1

x=0
f(x)dx

= 0.8006 +

Z 1

x=0
0.8006e−4.0xdx

= 0.9971.

For the particular choice of (λ, μ) = (1, 5) andR(·) in the example, nearly
all customers say, i.e., wait and get full service. Only (1− qS) · 100% =
0.29% either renege or balk at start of service. The reason is that the
service rate is very fast relative to the arrival rate. The vast majority
of arrivals (99.71%) are required to wait less than one time unit, and
therefore stay for a full service.

The expected busy period is

E (B) = 1− P0
λP0

= 0.24906.

The expected idle period is E (I) = 1
λ = 1. The proportion of time

the server is idle is E(I)
E(I)+E(B) = 0.8006 = P0. Different values of (λ, μ)

would, of course, give quite different results.

9.6 Discussion

LCE is useful for confirming theoretical results derived by various meth-
ods of analysis. LCE can be used to investigate the pdf of a state variable
in a new model where the model equations are difficult to formulate, or‘
if formulated, are analytically intractable. It is an alternative approach
for estimating pdf’s, cdf’s, moments, and expected values of functions of
state variables (e.g., Laplace transforms) in stochastic models.

LCE for steady-state distributions has several advantages. It uses a
single simulated sample path of the model. It requires the analyst to be
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sufficiently familiar with the model dynamics to construct a sample path
using a computer program. It may help to uncover and explain subtleties
about the pdf and cdf of the state variable, which enhance intuition about
the model. It may help to discover unexpected properties about the pdf
of the state variable.

LCE can be incorporated into a hybrid technique combining partially-
known analytical solutions and statistical estimation. For example, in
a single-server queue, the theoretical values of P0 (probability of a zero
wait) and E(B) (expected busy period) may be known in terms of the
model parameters. On the other hand, equations for the pdf of wait
f(x), x > 0, may be analytically intractable. It may be possible to utilize
the theoretical values of P0 and E(B) in the LCE computer program, to
estimate f(x), x > 0.

LCE methods similar to that described here for M/G/1, have been
applied to M/G/r(·) dams including cases where G is deterministic or
discrete [22]; and to more complex models such as M/Ga,b/1 bulk-service
queues [32]. The LCE technique is applicable in a vast array of other
stochastic models as well.

We may classify the LCE method as an estimation method, or a
computational method. With sensible values of the simulated time t and
state-space partition norm size ∆, the technique gives almost-analytical
values for the distribution of the state variable and related values, in
many benchmark computational experiments already carried out.




