
CHAPTER 8

EMBEDDED LEVEL
CROSSING METHOD

8.1 Dams and Queues

Consider a system modelled by {W (t), t ≥ 0}, a continuous-parameter
process with state space S = [0,∞). (The state space can be extended
to S ⊆ Rn in more general models.) Let {τn} be an infinite set of
embedded time points such that

0 ≤ τ1 < τ2 < · · · < τn < τn+1 < · · · .

Let {Wn, n = 1, 2, ...} be the embedded discrete-parameter process, where
W (τ−n ) ≡ Wn and W (τn) ≡ Wn + Sn, n = 1, 2, ... . Assume W (t) is
monotone in the interval [τn, τn+1).‘Let

dW (t)

dt
= −r(W (t)), t ∈ [τn, τn+1), n = 1, 2, ... ,

where r(x) ≥ 0. Denote the cdf of Sn, n = 1, 2, ..., by B(x), x ≥ 0, with
B(0) = 0, and pdf b(x) = d

dxB(x), x > 0, wherever the derivative exists.

Denote the cdf of Wn by Fn(x) with pdf
dFn(x)
dx = fn(x), wherever it

exists.

Definition 8.1 An embedded downcrossing of state-space level x oc-
curs during the closed interval [τn, τn+1] if Wn > x ≥Wn+1.

An embedded upcrossing of level x occurs during [τn, τn+1] ifWn ≤
x < Wn+1.
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Figure 8.1: Embedded level crossings and non-crossings during time in-
terval [τn, τn+1].

Fix level x ∈ S. Definition 8.1 classifies the set of intervals
{[τn, τn+1], n = 1, 2, ...}

into three mutually exclusive and exhaustive subsets with respect to level
x (Fig. 8.1):

1. intervals that contain an embedded downcrossing,

2. intervals that contain an embedded upcrossing,

3. intervals that contain no embedded level crossing.

8.1.1 Rate Balance Across State-space Levels

Consider the time interval [0, τn], n ≥ 2 and a fixed level x ∈ S. Let
Dn(x), Un(x) denote respectively the number of embedded down- and
upcrossings of level x during [0, τn]. Assume that the set of sample
paths (sample functions) having an infinite number of embedded time
points, has measure 1. The principle of rate balance across level x is

limn→∞
Dn(x)
n = limn→∞

Un(x)
n (a.s.),

limn→∞
E(Dn(x))

n = limn→∞
E(Un(x))

n .
(8.1)
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8.1.2 Method of Analysis

If the process is stable, the steady-state distribution of W (t) as t →
∞ and of Wn as n → ∞, exist. Let f(x) = limn→∞ fn(x), F (x) =
limn→∞ Fn(x), x ∈ S. In the following sections, we shall derive an inte-
gral equation for f(x) and F (x) by using only:

1. the concept of embedded level crossings,

2. the principle of rate balance,

3. properties of the model,

4. knowledge of the efflux function r(x), x ≥ 0.

8.2 GI/G/r(·) Dam
Assume that inputs to the dam occur in a renewal process with inter-
input times having common cdf A(·). The model description is the same
as for the M/G/r(·) dam in Subsection 6.2.1 except for the general re-
newal input stream.

The embedded process {Wn} is a Markov chain, since
Wn+1 = max{Wn + Sn −∆n, 0}

where Sn is the input amount at instant τ−n and ∆n is the change in
content during the time interval [τn, τn+1).

Define G(x) as the anti-derivative of 1
r(x) for r(x) > 0. Then G(x) is

a continuous increasing function of x, since d
dxG(x) =

1
r(x) > 0. The time

for the content to decline from state-space level v to level u, v > u, isZ v

u

1

r(x)
dx = G(v)− G(u).

A necessary and sufficient condition for the content of the dam to
return to level 0 is: for every v > 0,

lim
u↓0

Z v

x=u

1

r(x)
dx = lim

u↓0
(G(v)− G(u))

= G(v)− lim
u↓0
G(u) <∞. (8.2)

For example, in a pharmacokinetic model (Section 10.8 below) with "first
order" kinetics, r(x) = kx, x > 0. In theory the drug concentration never
returns to level 0. In practice, the drug may be entirely removed from
the body after some finite time.
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8.2.1 Embedded Downcrossing Rate

Proposition 8.1 The probability of an embedded downcrossing of level
x occurring in [τn, τn+1] is

dn(x) =

Z ∞

y=0

Z γ(x,y)

α=x
B(γ(x, y)− α)dFn(α)dA(y)

=

Z ∞

α=x

Z ∞

y=η(α,x)
B(γ(x, y)− α)dA(y)dFn(α), n = 1, 2, ... , (8.3)

where γ(x, y) = G−1(G(x) + y), and η(α, x) = G(α)− G(x).

Proof. An embedded downcrossing occurs in [τn, τn+1] ⇐⇒ Wn > x
and the time for W (t) to descend from level Wn + Sn to level x is ≤
(τn+1 − τn) ⇐⇒Z Wn+Sn

z=x

1

r(z)
dz = G(Wn + Sn)− G(x) ≤ τn+1 − τn. (8.4)

Conditioning on τn − τn+1 = y, (8.4) is equivalent to

G(Wn + Sn)− G(x) ≤ y,

G(Wn + Sn) ≤ G(x) + y. (8.5)

Note that G(·) and its inverse G−1(·) are both continuous and in-
creasing functions. Taking the inverse G−1 on both sides of (8.5) gives

Sn ≤ G−1(G(x) + y)−Wn = γ(x, y)−Wn.

Conditioning on Wn = α, gives

P (embedded downcrossing in [τn,τn+1]|τn − τn+1 = y)

=

Z γ(x,y)

α=x
B(γ(x, y)− α)dFn(α).

We obtain the unconditional probability of an embedded downcrossing
of x during [τn, τn+1] by integrating with respect to the inter-input time
y having distribution A(y). This yields dn(x) given in (8.3).

Let

δn(x) =

⎧⎨⎩ 1 if there is an embedded downcrossing of x in [τn, τn+1],

0 if there is no embedded downcrossing of x in [τn, τn+1].
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Then E(δn(x)) = dn(x). The number of embedded downcrossings of
level x in [0, τn+1] is

Dn(x) =
nX
i=1

δi(x).

Thus

E(Dn(x)) =
nX
i=1

di(x).

The long-run expected embedded downcrossing rate of level x is

lim
n→∞

E(Dn(x))

n
= lim

n→∞
1

n

nX
i=1

di(x).

From (8.3), since limn→∞ Fn(x) ≡ F (x), then limn→∞ dn(x) = d(x)
where

d(x) =

Z ∞

α=x

Z ∞

y=η(α,x)
B(γ(x, y)− α)dA(y)dF (α).

Also,

lim
n→∞

1

n

nX
i=1

di(x) = lim
n→∞

dn(x) = d(x)

implies the expected embedded level downcrossing rate of level x is

lim
n→∞

E(Dn(x))

n
=

Z ∞

α=x

Z ∞

y=η(α,x)
B(γ(x, y)− α)dA(y)dF (α). (8.6)

8.2.2 Embedded Upcrossing Rate

Proposition 8.2 The probability of an embedded upcrossing of level x
occurring in [τn, τn+1] is

un(x) =

Z ∞

y=0

Z x

α=0
B(γ(x, y)− α)dFn(α)dA(y)

=

Z x

α=0

Z ∞

y=0
B(γ(x, y)− α)dA(y)dFn(α), n = 1, 2, ... . (8.7)

Proof. An embedded upcrossing of level x occurs in [τn, τn+1] ⇐⇒
Wn ≤ x, Wn + Sn > x, and the time for W (t) to descend from level
Wn + Sn to level x exceeds τn+1 − τn

⇐⇒
RWn+Sn
z=x

1
r(z)dz = G(Wn + Sn)− G(x) > τn+1 − τn

⇐⇒ Sn > G−1(G(x) + y)−Wn = γ(x, y)−Wn,
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where we have conditioned on τn − τn+1 = y. Therefore

P (embedded upcrossing in [τn,τn+1]|τn − τn+1 = y)

=

Z x

α=0
B(γ(x, y)− α)dFn(α),

where B(z) = 1 − B(z), z ≥ 0. The unconditional probability of an
embedded upcrossing of x in [τn,τn+1] is therefore given by (8.7).

As in the derivation of (8.4), it follows that the long-run expected
embedded upcrossing rate of level x is

lim
n→∞

E(Un(x))
n

=

Z x

α=0

Z ∞

y=0
B(γ(x, y)− α)dA(y)dF (α). (8.8)

8.2.3 Steady-state PDF of Content

We obtain an integral equation for the steady-state pdf of content. Ap-
plying rate balance (8.1) to formulas (8.6) and (8.8) gives an integral
equation for f(x) and F (x), namely,Z ∞

α=x

Z ∞

y=η(α,x)
B(γ(x, y)− α)dA(y)dF (α)

−
Z x

α=0

Z ∞

y=0
B(γ(x, y)− α)dA(y)dF (α) = 0, x ≥ 0. (8.9)

CDF Form of Integral Equation

In the second term of (8.9) write B(·) = 1 − B(·) and apply F (x) =R x
α=0 dF (α). This yields a cdf form with F (x) on the left side explicitly,

F (x) =
R x
α=0

R∞
y=0B(γ(x, y)− α)dA(y)dF (α)

+
R∞
α=x

R∞
y=η(α,x)B(γ(x, y)− α)dA(y)dF (α), x ≥ 0.

(8.10)

PDF Form of Integral Equation

Differentiation of (8.10) with respect to x > 0, gives a pdf form with
f(x) explicitly on the left side,

f(x) =
R x
α=0

R∞
y=0 ((x, y) · b(γ(x, y)− α)dA(y)dF (α)

+
R∞
α=x

R∞
y=η(α,x) ((x, y) · b(γ(x, y)− α)dA(y)dF (α), x > 0,

(8.11)
where ((x, y) = ∂

∂xγ(x, y) =
r(γ(x,y))
r(x) .
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Probability of Zero Content

Letting x ↓ 0 in (8.10) gives

F (0) =

R∞
α=0+

R∞
y=η(α,0)B(γ(0, y)− α)dA(y)dF (α)R∞

y=0B(γ(0, y))dA(y)
. (8.12)

The normalizing condition is

F (0) +

Z ∞

α=0
f(α)dα = 1 (8.13)

If condition (8.2) does not hold, then F (0) = 0 (recall that f(0) ≡ f(0+)).

Solution Method

The solution method in the following sections will be to obtain the func-
tional form of f(x) and F (x) using (8.10) or (8.11), and applying the
boundary conditions (8.12) and (8.13) to specify f(x), F (x), x ≥ 0.

8.2.4 M/G/r(·) Dam
In this model, A(y) = 1− e−λy, y ≥ 0. Note that

∂ (γ(x, y))

∂y
=

∂(G−1(G(x) + y))

∂y
= r(γ(x, y)) = r(G−1(G(x) + y)).

Integrating (8.11) by parts, using parts

λe−λy

r(y)
and r(γ(x, y)) · b(γ(x, y)− α)dy,

simplifying and substituting from (8.10) results in

r(x)f(x) = λ

Z x

α=0
B(x− α)dF (α), x > 0. (8.14)

Equation (8.14) is identical to the integral equation (6.18) for the steady-
state pdf of content in the M/G/r(·) dam (derived using "continuous"
LC)

Remark 8.1 In equation (8.14) f(x) = limn→∞ fn(x) since (8.14) has
been derived using embedded LC. In Chapter 6, equation (6.18), f(x) =
limt→∞ ft(x) is the time-average steady-state pdf of content. The fact
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GI/G/r(·) Dam Gi/G/1 Queue
Input instant τ−n Customer arrival instant τ−n
Input amount at τ−n Service time (jump size) Sn
Content at τ−n Customer wait Wn in queue at τ−n
Content at instant τn Virtual wait W (τn) =Wn + Sn
Content at time t ≥ 0 Virtual wait W (t) at time t ≥ 0
r(x) > 0, x > 0; r(0) = 0 r(x) = 1, x > 0; r(0) = 0
Distribution of content Distribution of waiting time

Table 8.1: GI/G/r(.) dam versus GI/G/1queue.

that limn→∞ fn(x) and limt→∞ ft(x) satisfy the same integral equation,
demonstrates that the content of an M/G/r(·) dam satisfies the PASTA
principle that Poisson arrivals "see" time averages [102]. Here we have
derived PASTA for the M/G/r(·) dam by using continuous and embedded
LC concepts only.

8.3 GI/G/1 Queue

The GI/G/1 queue is closely related to the Gi/G/r(·) dam (Table 8.1).

For the virtual wait of the GI/G/1 queue r(x) =
½
1, x > 0,
0, x = 0.

The anti-derivative of 1
r(x) , x > 0, is

G(x) =
Z

1

r(x)
dx =

Z
1 · dx = x.

Thus,

γ(x, y) = G−1(G(x) + y)) = G−1(x+ y)) = x+ y

η(α, x) = G(α)− G(x) = α− x,

((x, y) =
r(γ(x, y))

r(x)
=

r(x+ y)

1
=
1

1
= 1.

For the GI/G/1 queue, equations (8.10), (8.11) and (8.13) reduce respec-
tively to

F (x) =
R x
α=0

R∞
y=0B(x+ y − α)dA(y)dF (α)

+
R∞
α=x

R∞
y=α−xB(x+ y − α)dA(y)dF (α), x ≥ 0,

(8.15)

f(x) =
R x
α=0

R∞
y=0 b(x+ y − α)dA(y)dF (α)

+
R∞
α=x

R∞
y=α−x b(x+ y − α)dA(y)dF (α), x > 0,

(8.16)
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F (0) =

R∞
α=0+

R∞
y=αB(y − α)dA(y)dF (α)R∞
y=0B(y))dA(y)

. (8.17)

The normalizing condition is

F (0) +

Z ∞

α=0
f(α)dα = 1. (8.18)

Applications

Some single-server queueing models can be solved using embedded LC,
by applying equations (8.15) - (8.18). Other models are solved by de-
riving integral equations for the pdf of the state variables from first
principles using embedded LC. The next four subsections illustrate some
applications.

8.3.1 M/G/1 Queue

The M/G/1 queue is a special case of the M/G/r(·) dam, with r(x) =
1, x > 0 and A(y) = 1− e−λy, y ≥ 0. Substituting directly into equation
(8.14) or into (8.16) followed by some algebra yields

f(x) = λ

Z x

α=0
B(x− α)dF (α)

= λP0B(x) + λ

Z x

α=0
B(x− α)f(α)dα, x > 0, (8.19)

which is identical to equation (3.29). Remark 8.1 applies also to this
model.

8.3.2 GI/M/1 Queue

The GI/M/1 queue is a special case of the GI/G/1 queue with

B(x) = 1− e−μx, x ≥ 0, b(x) = μe−μx = μ− μB(x), x > 0.

Substituting b(x) = μ − μB(x) into (8.16), simplifying and combining
with (8.15) gives the integral equation

f(x) = μ

Z ∞

y=x
A(y − x)f(y)dy, x > 0, (8.20)

which is identical to equation (5.6).
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Equation (8.19) for M/G/1 Equation (8.20) for G/M/1
λ μ
x is upper bound of integral x is lower bound of integral
B(x− y) A(y − x)
P0 appears explicitly P0 does not appear explicitly

Table 8.2: Interchanged roles of terms in integral equations for M/G/1
and G/M/1.

Duality of M/G/1 and GI/M/1 Queues

Upon comparing integral equations (8.19) and (8.20) it is evident that
they are duals, in the sense that the roles of certain terms are inter-
changed (see Table 8.2). The significance of this "duality" is that we
analyze the M/G/1 queue via LC using the virtual wait process. On the
other hand, we are led to analyzing the G/M/1 queue via LC using the
extended "age" process (see Subsection 5.1.1 and [11]).

Remark 8.1 applies also to GI/M/1, provided we analyze the ex-
tended age process, for which departures from the system occur in a
Poisson process at rate μ conditional on the server being occupied. This
implies that in (8.20), f(x) on the left side (equal to time-average pdf of
virtual wait) is the same function as f(y) in the integrand on the right
side (pdf of system time at departure instants).

Solution for Steady-state PDF of Wait in GI/M/1

Assume the solution for the pdf of wait has the form f(x) = Ke−γx, x >
0. Substituting into (8.20) yields the equation for γZ ∞

z=0
A(z)e−γzdz =

1

μ
,

or
1

γ
− 1

γ
A∗(γ) =

1

μ
. (8.21)

In (8.21) A∗(·) is the Laplace-Stieltjes transform of A(·) defined by

A∗(s) =

Z ∞

y=0
e−sya(y)dy, s ≥ 0,

and a(y) = d
dyA(y), assuming the inter-arrival times are continuous r.v.’s.

We obtain an expression for P0 = F (0) upon substituting B(y) = 1 −
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e−μy, f(α) = Ke−γα in (8.17), namely

F (0) = [A∗(μ)]−1
¹
γ − μ+ μA∗(γ)− γA∗(μ)

γ(γ − μ)

º
·K. (8.22)

From (8.21)
μ− μA∗(γ) = γ,

which substituted into (8.22) leads directly to

F (0) =
K

μ− γ
. (8.23)

The normalizing condition (8.18) gives

K

μ− γ
+

K

γ
= 1.

Then (8.23) implies

F (0) =
γ

μ
. (8.24)

Formula (8.24) is important because F (0) = P0ι in (5.23) which was
derived using "continuous" or "time-average" LC. This provides further
evidence of the overall logical correctness of the LC methodology.

Check with M/M/1 Queue

It is instructive to check the result for the M/M/1 queue. Consider
M/M/1 with arrival rate λ and service rate μ. Then A∗(s) = λ

λ+s . From
(8.21) γ = μ − λ, which substituted into (8.22), gives F (0) = P0 =

K
λ .

Applying the normalizing condition F (0)+
R∞
y=0 f(y)dy = 1, gives

K

λ
+K

Z ∞

y=0
e−(μ−λ)ydy = 1,

K = λ(1− λ

μ
).

Thus

P0 =
K

λ
= 1− λ

μ
,X

f(x) = λP0e
−(μ−λ)x, x > 0,X

which checks with the M/M/1 solution given in (3.86) and (3.87).
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8.3.3 Ek/M/1 Queue

Assume the common pdf of the inter-arrival times a(·) =
dist

Erlang-(k, λ).

Thus for integer k = 1, 2, ... , a(y) = e−λy (λy)
k−1

(k−1)! λ, y > 0. Let A(·) denote

the cdf corresponding to a(·). Then the LST of A(·) is A∗(γ) =
³

λ
λ+γ

´k
,

which substituted into equation (8.21) gives an equation for γ,

1

γ
− 1

γ

µ
λ

λ+ γ

¶k

=
1

μ
, k = 1, 2, ... . (8.25)

We seek a unique positive solution of (8.25) for γ. Assume that λ, μ > 0
and λ < kμ (stability condition for G/M/1 is a < μ, where a = k

λ =
arrival rate ). Then equation (8.25) has exactly one real positive root
for γ (see [11]). If k is odd, all other roots are complex. If k is even,
one other root is negative real and all other roots are complex. Thus the
solution for γ is unique. Denote it by γ

k
.

To solve for K ≡ ηk we first substitute γk into (8.22) and use (8.25)
to obtain

F (0) =
ηk

μ− γk
.

(We use ηk instead ofKk in this subsection only, for notational contrast.)
Then apply the normalizing condition (8.18) to obtain

ηk =
γ
k
(μ− γ

k
)

μ
= γ

k

µ
1−

γ
k

μ

¶
.

The steady-state pdf of wait is then given by

P0 =
ηk

μ− γk
=

γ
k

μ
,

f(x) = ηke
−γ

k
x = γ

k
(1−

γ
k

μ
)e−γkx, x > 0.

Remark 8.2 The solution of equation (8.25) can be readily obtained
numerically for any specified values of λ, μ, k.

8.3.4 D/M/1 Queue

Assume the common inter-arrival time isD > 0. Then A∗(s) = e−sD, s >
0. Let the steady-state pdf of wait be f(x) = Ke−γx, x > 0. Substituting
A∗(γ) = e−γD into (8.21) gives the equation

μe−γD + γ − μ = 0
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for γ, whose solution we call γ
D
. From (8.22)

F (0) =
K

μ− γ
D

.

Let K ≡ KD . Substituting into (8.18) gives

KD

μ− γ
D

+
KD

γ
D

= 1,

KD = γ
D

µ
1−

γ
D

μ

¶
.

The steady-state pdf of wait is

P0 =
KD

μ− γ
D

,

f(x) = K
De
−γ

D
·x, x > 0.

8.4 M/G/1 with Reneging

We apply the embedded LC method to an M/G/1 queue in which cus-
tomers can either: (1) renege from the waiting line; (2) wait and balk at
service; (3) wait and stay for a full service. Assume the staying function
is R(y) = P (arrival stays for service|required wait = y). We verify that
the pdf f(·) on the left side of (3.162) and the pdf f(·) on the right
side of (3.162) are the same functions. In (3.162) the pdf on the left
side is limt→∞ ft(x) (time-average pdf). The pdf on the right side is
limn→∞ fn(x) (pdf at arrival instants, or arrival-point pdf). We now use
embedded LC to derive an integral equation for f(x) = limn→∞ fn(x)
and show that it is identical to equation (3.162).

8.4.1 Embedded Crossing Probabilities

The limiting probability of an SP embedded upcrossing of level x is

u =

Z x

y=0−

Z ∞

z=0
B(x− y + z)R(y)f(y)λe−λzdzdy, (8.26)

where the lower limit y = 0− means that the term B(x + z)P0 for the
atom {0} is included in the evaluation of u. The right side of (8.26)
holds since an embedded upcrossing of x occurs iff 0 ≤ Wn = y < x,
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the arrival at τn stays for service (probability R(y)), and given that the
time to the next arrival is z, the service time exceeds x− y + z.

The limiting probability of an SP embedded downcrossing of level x
consists of two terms,

d =

Z ∞

y=x

Z ∞

z=y−x
B(x− y + z)R(y)f(y)λe−λzdzdy

+

Z ∞

y=x

Z ∞

z=y−x
R(y)f(y)λe−λzdzdy. (8.27)

The first term on the right of (8.27) is similar to (8.26), except that an
SP jump starts at a level y > x and the service time must be less than
x − y + z for an embedded downcrossing to occur. The second term is
due to arrivals that do not stay for service (renege or balk at service);
arrivals renege or balk at service with probability R(y) = 1−R(y). We
can assume that an SP "jump" is of size 0 (probability R(y)) when a re-
neger or service-balker arrives. Equivalently there is no SP jump when a
reneger or service-balker arrives. In this case the SP makes an embedded
downcrossing of level x provided the next inter-arrival time z > y − x.
The second term in (8.27) simplifies to

R∞
y=xR(y)f(y)e

−λ(y−x)dy.

Since B(·) ≡ 1−B(·), equation (8.26) can be written as

u =

Z x

y=0−
R(y)f(y)dy −

Z x

y=0−

Z ∞

z=0
B(x− y + z)R(y)f(y)λe−λzdzdy

(8.28)

8.4.2 Steady-State PDF of Wait of Stayers

Applying embedded rate balance across level x, we set u = d. This yields
from equations (8.27) and (8.28), the integral equationZ x

y=0−
R(y)f(y)dy =

Z x

y=0−

Z ∞

z=0
B(x− y + z)R(y)f(y)λe−λzdzdy

+

Z ∞

y=x

Z ∞

z=y−x
B(x− y + z)R(y)f(y)λe−λzdzdy

+

Z ∞

y=x

Z ∞

z=y−x
R(y)f(y)λe−λzdzdy. (8.29)

We take d
dx on both sides of (8.29). This involves differentiation under

the integral sign. Some algebra including cancellation of terms and using
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R(y) +R(y) = 1 gives

f(x) =

Z x

y=0−

Z ∞

z=0
b(x− y + z)R(y)f(y)λe−λzdzdy

+

Z ∞

y=x

Z ∞

z=y−x
b(x− y + z)R(y)f(y)λe−λzdzdy

+ λ

Z ∞

y=x

Z ∞

z=y−x
R(y)f(y)λe−λzdzdy. (8.30)

Integrating each of the inner integralsZ ∞

z=0
b(x− y + z)λe−λzdz and

Z ∞

z=y−x
b(x− y + z)λe−λzdz

in (8.30) by parts, using parts λe−λz and b(x−y+z), leads to the integral
equation (assuming B(0) = 0)

f(x) = −λ
R x
y=0− R(y)f(y)B(x− y)dy

+λ
R x
y=0−

R∞
z=0B(x− y + z)R(y)f(y)λe−λzdzdy

+λ
R∞
y=x

R∞
z=y−xB(x− y + z)R(y)f(y)λe−λzdzdy

+λ
R∞
y=x

R∞
z=y−xR(y)f(y)λe

−λzdzdy.

(8.31)

From (8.29) the sum of the last three terms on the right of (8.31) is

λ

Z x

y=0−
R(y)f(y)dy.

Hence

f(x) = λ

Z x

y=0−
R(y)f(y)dy − λ

Z x

y=0−
R(y)f(y)B(x− y)dy,

f(x) = λ

Z x

y=0−
B(x− y)R(y)f(y)dy. (8.32)

Equation (8.32) is identical to (3.162). Hence, in (3.162), the time-
average pdf of stayers (left side) is equal to the arrival-point pdf of stayers
(in integral on right side). The derivation of (3.162) using "continuous-
time" LC is far simpler than that of (8.32). Nevertheless, the embedded
LC method is very useful in this case, and elsewhere. It helps to confirm
that "continuous" LC works in the reneging problem. The embedded LC
method can often be applied to determine whether the time-average and
arrival-point pdf’s are equal. The embedded LC method is inherently
very intuitive, and has additional applications as well.




