
CHAPTER 5

G/M/c QUEUES

This chapter applies a level-crossing approach (SPLC, abbreviated LC)
to derive the steady-state pdf of the virtual wait and the actual wait
(arrival-point wait) in single-server G/M/1, and in multiple-server G/M/c
queues. Section 5.1 treats G/M/1 and Section 5.2 treats G/M/c (c =
2, 3, ...). It is assumed that arrivals occur according to a renewal process
and service times are exponentially distributed.

We will not derive transient distributions in this chapter. However,
for G/M/c (c = 1, 2, ...), we could use LC to derive the transient dis-
tribution of extended age, which is related to the virtual wait (Subsec-
tion 5.1.1). We would then apply techniques similar to those utilized
in sections 3.2, 4.3, Subsection 6.2.5, Section 10.9 and other sections of
Chapter 10. Those analyses provide background for deriving transient
distributions using LC in G/M/c queues, as well as in a great variety of
stochastic models. (The extended age is utilized in [15].)

5.1 Single-server G/M/1 Queue

We analyze the single-server G/M/1 queue in steady state. Arrivals
occur according to a renewal process. For the common inter-arrival time
denote the cdf, complementary cdf, and pdf respectively by A(x), x > 0,
A(x) = 1 − A(x), x ≥ 0 and a(x) = d

dxA(x) wherever the derivative
exists. Assume the service time of each customer has an exponential
distribution with mean 1

μ (denoted by Eμ). Using LC we derive the
steady-state pdf and cdf of the virtual wait, the steady-state pdf and cdf
of the actual (arrival-point) wait just before arrival instants, expressions
for the expected busy and idle periods, and related results.
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Figure 5.1: Sample path of extended age process {V (t)} for G/M/1
queue. Inter-arrival times have cdf A(·) (cdf of downward jump sizes).
Service times are =

dist
Eμ. Slope is

dV (t)
dt = +1.

5.1.1 Virtual Wait and Extended Age Processes

Let {W (t), t ≥ 0} denote the virtual wait process having state space
S = [0,∞) (e.g., similar to Fig. 3.4).

We consider the "extended age" process {V (t), t ≥ 0} having state
space S = (−∞,∞), defined as follows. For t > 0,

V (t) =

(
age of customer in service at t if V (t) ≥ 0,
− time from t until next arrival instant if V (t) < 0.

(5.1)

In (5.1) "age" means "time spent in the system" measured from the ar-
rival instant. A sample path of {V (t)} is depicted in Fig. 5.1. Extended-
age sample-path jumps are downward in direction. All jumps start at
positive levels. (All virtual-wait jumps are upward.)

5.1.2 Duality Between Extended Age and Virtual Wait

Consider a sample path of {V (t), t ≥ 0}. Assume V (t) ≥ 0. There
is a one-to-one correspondence between the peaks (relative maxima) of
{V (t)} and peaks of {W (t)}, as well as between troughs (relative minima
or infima) of {V (t)} and troughs of {W (t)}. Corresponding peaks and
troughs have equal ordinates and occur in the same time order in both
processes (Fig. 5.2).
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Figure 5.2: Sample path of extended age process "%" compared with
sample path of virtual wait process "&" for G/M/1 queue. Illustarates
duality properties. Corresponding peaks and corresponding troughs have
equal ordinates and the same time order. Busy periods, idle periods, and
busy cycles ar equal.

The extended age process has slope +1 between SP downward jumps.
The virtual wait has slope −1 between SP upward jumps within a busy
period; the slope is 0 within an idle period. Busy periods are identical
in both processes. These properties guarantee that the proportion of
time that the SP spends in any state-space interval, is the same in both
processes (see Proposition 5.1 below).

The sojourn time of {V (t)} below level 0 is identical to an idle period
in the {W (t)} process (see Remark 5.2). Busy cycles are identical in both
processes (Fig. 5.2).

The stability condition is
1

E(inter-arrival time) · μ < 1 (e.g., [63], p.

251). Intuitively, the expected number of arrivals in a service time is
< 1. (See Proposition 5.4 below.)

Denote the steady-state cdf of the extended age by

F (x) = lim
t→∞

P (V (t) ≤ x),−∞ < x <∞,

having pdf
f(x) = dF (x)

dx , x ≥ 0;

h(x) = dF (x)
dx , x < 0,

(5.2)
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wherever the derivatives exist. The probability of an empty system is

P0 = F (0) =

Z 0

y=−∞
h(y)dy. (5.3)

Then
F (x) = P0 +

R x
y=0 f(y)dy, x ≥ 0,

F (x) =
R x
y=−∞ h(y)dy, x ≤ 0,

F (0) = P0,

F (∞) = P0 +
R∞
y=0 f(y)dy = 1.

Proposition 5.1 The steady-state cdf of the extended age process
{V (t)} and of the virtual wait {W (t)} as t→∞, are identical. That is,

F (x) = lim
t→∞

P (V (t) ≤ x) = lim
t→∞

P (W (t) ≤ x), x ≥ 0.

Proof. There is a one-to-one correspondence between sample paths of
{V (t)} and {W (t)} because of the duality properties discussed above
(see Fig. 5.2). The proportion of time spent in every state-space interval
is the same in corresponding sample paths for every ω ∈ Ω, where Ω
is the sample space of the "underlying experiment" and ω is a possible
outcome.

For {V (t)} a sojourn time below level 0 is the same as an idle period in
{W (t)}. Thus F (0) = P0 = limt→∞ P0(t) is the same for both processes
(P0(t) is the probability of a zero wait at time t).

We employ {V (t)} when analyzing G/Mμ/1 using LC, because SP
downward jumps occur at end-of-service instants at Poisson rate μ.

Remark 5.1 We emphasize that the transient probability distributions
of V (t) and W (t) are not equal. Proposition 5.1 holds for steady-state
distributions only.

Remark 5.2 We may also define an "extended virtual wait" process
{W (t)} with state space (−∞,+∞). If W (t) > 0, then W (t) is the usual
virtual wait. If W (t) < 0, −W (t) is the time since the last departure of
the immediately previous busy period. For the extended virtual wait,
the slope is −1 between (upward) jumps. Sojourn times below level 0 are
equal to idle periods. If arrivals are Poisson, an integral equation for the
pdf of {W (t)} when W (t) < 0 can be obtained by applying LC. All results
for the usual virtual wait can be derived using the extended virtual wait.
If arrivals are Poisson at rate λ the expected sojourn time below level 0
is 1

λ = E(idle period).
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5.1.3 Equation for Steady-State PDF of Age

By Proposition 5.1 the steady-state pdf of the age process f(x), x > 0,
is the same as the steady-state pdf of the virtual wait process. Thus, for
G/M/1 we will obtain the steady-state pdf of {W (t)} by deriving the
steady-state pdf of {V (t)}.

Consider a sample path of {V (t)} (Fig. 5.1). Fix level x > 0 in the
state space. The SP upcrossing rate of x is

lim
t→∞

Ut(x)
t

=
(a.s.)

lim
t→∞

E(Ut(x))
t

= f(x), (5.4)

(proved similarly as for the downcrossing rate in M/G/1, e.g., Theorem
1.1).

The SP downcrossing rate of x is

lim
t→∞

Dt(x)

t
=
(a.s.)

lim
t→∞

E(Dt(x))

t
= μ

Z ∞

y=x
A(y − x)f(y)dy, (5.5)

(proved as for the upcrossing rate in M/G/1).
We give an LC interpretation of right-most term of (5.5). The SP

rate of downward jumps staring from level y > 0 is the rate at which
service times end when customers have been in the system for a time y,
namely μf(y)dy. If y > x,

P (downward jump size > y − x)

= P (inter-arrival time > y − x) = A(y − x).

Summing over all y > x gives the right-most term of (5.5).
The principle of rate balance across level x,

lim
t→∞

E(Ut(x))
t

= lim
t→∞

E(Dt(x))

t
.

gives an integral equation for f(x),

f(x) = μ

Z ∞

y=x
A(y − x)f(y)dy. (5.6)

5.1.4 Alternative Form of Equation for PDF of Age

An alternative form of integral equation (5.6) is

f(x) = μ(1− F (x))− μ

Z ∞

y=x
A(y − x)f(y)dy, x > 0. (5.7)
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The LC interpretation of (5.7) is as follows. The left side is the SP
upcrossing rate of level x. On the rite side, the first term is the rate of
service completions which generate SP downward jumps that start above
level x. The second term is the rate of service completions that generate
SP downward jumps that start above level x and end above level x. Thus
the right side is the SP downcrossing rate of level x.

Note the similarity of the alternative LC equation (5.7) for G/M/1,
and the alternative forms (3.35) for the M/G/1 queue, and (6.19) for the
M/G/r(·) dam in Chapter 6.

5.1.5 PDF and CDF of Virtual Wait Geometrically

We demonstrate geometrically using LC, that the steady-state pdf of
{V (t)} (therefore of {W (t)}), as t → ∞, has an exponential form over
the state-space interval (0,∞), and an atom at 0.

Let B denote a busy period. Consider a sample path of {V (t)}. Due
to the memoryless property of the service times, an SP sojourn time
above an arbitrary level x ≥ 0 is distributed the same as B independent
of x (Figs. 5.1 and 5.2).

Thus the proportion of time spent above x ≥ 0 is

lim
t→∞

E(Ut(x)) ·E(B)
t

= lim
t→∞

E(Ut(x))
t

·E(B)

= f(x) ·E(B) = 1− F (x), (5.8)

by (5.4), and the definition of 1− F (x).
Equation (5.8) is equivalent to a differential equation

d
dx(1− F (x))

1− F (x)
= − 1

E(B) ,

d

dx
ln(1− F (x)) = − 1

E(B) ,

with solution

F (x) = 1− (1− P0)e
− 1
E(B)x, x ≥ 0,

f(x) =
1− P0
E(B) e

− 1
E(B)x, x > 0,

(5.9)

where F (0) ≡ P0.
From (5.9) f(x) has the exponential form

f(x) = Ke−γx, x ≥ 0 (5.10)
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where

K =
1− P0
E(B) , γ =

1

E(B) . (5.11)

Remark 5.3 As a mild confirmation of the above results suppose the
G/Mμ/1 queue were an Mλ/Mμ/1 queue. Then, in (5.10) we would
have E(B) = 1

μ−λ . Thus γ = μ− λ and

K = (1− P0)γ = (1− P0)(μ− λ)

=

µ
1−

µ
1− λ

μ

¶¶
(μ− λ)

= λ

µ
1− λ

μ

¶
= λP0,

giving f(x) = λP0e
−(μ−λ)x, x > 0 X. This checks with the steady-state

pdf of wait in M/M/1 (e.g., (3.86)).

Substituting from (5.10) into (5.6) and cancellingK gives an equation
for γ,

e−γx = μ

Z ∞

y=x
A(x− y)e−γydy.

Substituting z = x− y results inZ ∞

z=0
A(z)e−γzdz =

1

μ
. (5.12)

Equation (5.12) for γ is a fundamental G/M/1 equation. The left side
of (5.12) is the Laplace transform of A(z) evaluated with parameter γ.

Let A∗(γ) denote the Laplace Stieltjes transform of A(·). Integrating
(5.12) by parts gives

A∗(γ) = 1− γ

μ
. (5.13)

Thus γ is the solution of (5.12), or equivalently of (5.13). Some forms
of A(·) allow for an analytical solution for γ. Generally, however, γ is
computed by numerical methods (e.g., by Newton’s method or using
computational software such as Maple).

Value of P0

Consider a sample path of {V (t)} on the state-space interval (−∞, 0),
and fix level x ∈ (−∞, 0). The SP upcrossing rate of level x is equal
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to h(x) (proved as for the downcrossing rate in M/G/1). The SP down-
crossing rate of level x is

μ

Z ∞

y=0
A(y − x)f(y)dy = μ

Z ∞

y=0
A(y − x)Ke−γydy,

since all downward jumps originate at end-of-service instants when the
SP is in state-space set (0,∞). Rate balance across level x gives

h(x) = μ

Z ∞

y=0
A(y − x)Ke−γydy, x < 0. (5.14)

Invoking (5.14) and (5.3) leads to

P0 =

Z 0

x=−∞
h(x)dx = K

Z 0

x=−∞
μ

Z ∞

y=0
A(y − x)e−γydydx.

Making the transformation u = −x, gives

P0 = K

Z ∞

u=0
μ

Z ∞

y=0
A(y + u)e−γydydu.

Thus

P0 =
K

Cγ
, or K = P0Cγ (5.15)

where

Cγ =

µZ ∞

u=0
μ

Z ∞

y=0
A(y + u)e−γydydu

¶−1
. (5.16)

Note that Cγ > 0.
We evaluate P0 from the normalizing condition and (5.15). Thus

P0 +K

Z ∞

y=0
e−γxdx = 1,

P0 + CγP0

Z ∞

y=0
e−γxdx = 1.

These equations yield

P0 = 1− K

γ
. (5.17)

=
γ

γ + Cγ
. (5.18)
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From (5.15)

K =
γ · Cγ

γ + Cγ
, (5.19)

and K < γ.
Due to exponentially distributed service times, instants of SP egress

from level 0 above, are regenerative points of {V (t)} initiating busy cycles
(see 2.4.9 for definitions of SP egresses). Thus, steady-state properties
over busy cycles recapitulate limiting properties over the time axis as
t→∞.

Let C represent a busy cycle and I an idle period. Then

C = B + I

and

P0 =
E(I)
E(C) =

E(I)
E(B) +E(I) .

From (5.18)

E(I)
E(B) +E(I) =

γ

γ + Cγ
=

1
Cγ

1
γ +

1
Cγ

.

From (5.11) E(B) = 1
γ . Thus from (5.16)

E(I) = 1

Cγ
=

Z ∞

u=0
μ

Z ∞

y=0
A(y + u)e−γydydu. (5.20)

5.1.6 PDF of Actual Wait

For G/M/1, generally the steady-state pdf of the actual wait (arrival-
point wait) is not equal to the pdf of the virtual wait. In particular, these
pdf’s are equal when the arrival stream is Poisson. We can utilize results
in subsections 5.1.1 - 5.1.5 to determine the pdf of the actual wait.

Form of PDF of Actual Wait

We use LC concepts to derive the form of the pdf of actual wait. The
subscript "ι" (Greek iota) is used to signify actual wait. Let the steady-
state cdf of actual wait be Fι(x) = P (actual wait ≤ x), x ≥ 0; and let
the pdf be d

dxFι(x) = fι(x), x > 0. Recall that γ is the solution of (5.12).

Proposition 5.2 The form of the steady-state pdf of actual wait is

fι(x) = Kιe
−γx, x > 0, (5.21)

where Kι is a positive number.
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Proof. The proportion of actual waits that are > x is

1− Fι(x) =
μ(1− F (x))− f(x)

μ (1− F (0))
, (5.22)

where F (x), f (x) denote the cdf and pdf respectively of the virtual wait.
We now explain (5.22). Consider the numerator. The term μ(1 −

F (x)) is the departure rate of customers that have been in the system
> x time units. Each such departure generates an SP downward jump of
a sample path of the {V (t)} process. The term f(x) is the rate at which
SP jumps start above x and end below (or at) x (f(x) is the downcrossing
rate, as well as the upcrossing rate, of level x). That is, f(x) is the rate
at which next actual waits are ≤ x. Thus the numerator is the rate at
which next actual waits are > x. The denominator μ (1− F (0)) of (5.22)
is the total departure rate, which is the total rate of downward jumps.

From (5.9) 1 − F (x) = c1e
−γx, where c1 is a positive constant, and

from (5.10) f(x) = Ke−γx. We substitute these exponential terms on
the right side of (5.22).

Then, taking d
dx on both sides of (5.22) gives (5.21) for some positive

constant Kι.
Proposition 5.2 implies that the form of the pdf of actual wait fι(x),

is the same as the form of the pdf of the virtual wait f(x). Generally,
the values of Kι and K differ, except when the arrival stream is Poisson.
The exponent γ is common to both fι(x) and f(x).

Specification of PDF and CDF of Actual Wait

Denote the probability that an arrival waits zero by P0ι.

Proposition 5.3 For the G/M/1 queue with service rate μ, the proba-
bility that an arrival waits zero time for service is

P0ι =
γ

μ
=

Kι

μ− γ
(5.23)

where

Kι = γ

µ
1− γ

μ

¶
. (5.24)

The steady-state pdf and cdf of the arrival-point wait are respectively

fι(x) = Kιe
−γx = γ(1− γ

μ
)e−γx, x > 0, (5.25)

Fι(x) = 1− (1− γ

μ
)e−γx, x ≥ 0. (5.26)
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Proof. Probability P0ι is the proportion of arrivals that wait zero before
they start service. Thus

P0ι =
f(0)

f(0) + μ
R∞
y=0A(y)f(y)dy

, (5.27)

where f(x) is the pdf of the virtual wait given in (5.10). We now explain
(5.27). The term f(0) is the rate of arrivals to the system that wait 0
(upcrossing rate of level 0). The term μ

R∞
y=0A(y)f(y)dy is the rate of

arrivals to the system that wait a positive time, i.e., the rate at which SP
downward jumps start and end above 0 (see Fig. 5.1). For such downward
jumps, the end state-space level is the actual wait of the next arrival.
Also, the rate at which next arrivals wait > 0 is the same as the overall
rate at which arrivals wait > 0.

Substituting from (5.10) into (5.27) gives

P0ι =
K

K + (μKγ −K)
=

γ

μ
.

We ascertain Kι from the normalizing condition for the arrival-point
pdf,

P0ι +

Z ∞

y=0
fι(y)dy = 1,

γ

μ
+

Kι

γ
= 1.

Thus we obtain (5.23), (5.24), (5.25) and (5.26) (from Fι(x) = P0ι +R x
y=0 fι(y)dy).

Remark 5.4 Formula (5.23) for P0ι matches the result derived later in
formula (8.23) via the embedded LC method. The embedded LC result
is indeed the value of P0ι, since it is the steady-state pdf of the actual
wait Wn as n→∞. This match validates the standard "continuous" LC
approach utilized in this section. In many models, it is easier to apply
standard LC than embedded LC. We note, however, that embedded LC
is useful in itself, for checking results obtained by other means, analyzing
new models, and combining with continuous LC to obtain new results.

Remark 5.5 P0ι and fι(x) in (5.23) and (5.25) correspond to results
obtained by a different technique in [63], pages 250-254. In the present
section, the constant γ ≡ μ (1− r0) where r0 is the solution of z =
A∗(μ (1− z)), z ∈ (0, 1), in [63].
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5.1.7 Stability Condition for G/M/1

We develop the stability condition directly from equation (5.12). Sta-
bility occurs iff the solution of (5.12) for γ is positive and finite. That
is, iff the "steady-state" pdf’s f(x) = Ke−γx (virtual wait) and fι(x) =
Kιe

−γx (arrival-point wait) exist. These pdf’s exist provided γ is posi-
tive and finite, in which case K and Kι are also positive and finite by
(5.19) and (5.24) respectively.

Denote the expected inter-arrival time by 1
a and the expected service

time by 1
μ .

Proposition 5.4 The G/M/1 queue is stable if and only if a < μ.

Proof. The queue is stable iff the expected busy period 1
γ is positive

and finite iff γ is positive and finite. Consider equation (5.12). Suppose
that a positive finite number γ exists such that

1

μ
=

Z ∞

y=0
A(y)e−γydy.

Since 0 < e−γy < 1 for all y > 0,

1

μ
<

Z ∞

y=0
A(y)dy =

1

a

=⇒ a < μ.

Hence a < μ is a necessary condition for stability.
Conversely, suppose a < μ. Then 1

μ < 1
a and

1

μ
<
1

a
=

Z ∞

y=0
A(y)dy.

Construct a function of γ, φ(γ) =
R∞
y=0A(y)e

−γydy, 0 < γ < ∞.
Then φ(γ) > 0, limγ↓0 φ(γ) =

1
a , limγ→∞ φ(γ) = 0, φ0(γ) = −γφ(γ) < 0,

φ00(γ) = γ2φ(γ) > 0. Thus φ(γ) is continuous, convex and monotone
decreasing on (0,∞). Consequently φ(γ) assumes each value in its range¡
0, 1a

¢
. For each value of μ with the property 1

μ ∈ (0,
1
a), there is a

unique value γ ∈ (0,∞) such that φ(γ) = 1
μ . Hence for each such

1
μ

there exists exactly one positive finite root γ of equation (5.12). That
is 1

μ =
R∞
y=0A(y)e

−γydy has a unique positive finite solution for γ such

that 1μ < 1
a . Hence a < μ is a sufficient condition for stability.

In conclusion a < μ is a necessary and sufficient condition for sta-
bility.
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5.1.8 Steady-state Distribution of System Time

Let Wq, S, σ denote respectively the steady-state actual wait before
service, the service time, and the system time of a customer. Then
σ =Wq+S. Note that the cdf ofWq is P (Wq ≤ x) = Fι(x), x ≥ 0 having
pdf fι(x), x > 0. Also P (Wq = 0) = Fι(0) = P0ι. Let Fσ(x), x ≥ 0
denote the steady-state cdf of σ, and let fσ(x) = d

dxFσ(x), x > 0 be the
pdf of σ, wherever the derivative exists. For the standard G/M/1 queue,
S and Wq are independent.

Using the expressions in Proposition 5.3, the cdf of σ is the convolu-
tion

Fσ(x) = P0ιP (S ≤ x) +

Z x

y=0
P (S ≤ x− y)fι(y)dy

=
γ

μ
(1− e−μx)

+

Z x

y=0

³
1− e−μ(x−y)

´
γ

µ
1− γ

μ

¶
e−γydy. (5.28)

The last integral in (5.28) is equal to

1

μ
(μe(μ+γ)x − γe(μ+γ)x + γeγx − μeμx)e−(μ+γ)x. (5.29)

Summing (5.29) with γ
μ(1− e−μx) simplifies to

Fσ(x) = 1− e−γx, x ≥ 0. (5.30)

The pdf of σ is d
dxFσ(x), namely

fσ(x) = γe−γx, x > 0. (5.31)

Remark 5.6 The expressions for Fσ(x) and fσ(x) in (5.30) and (5.31)
for G/M/1 are analogous to those for the standard Mλ/Mμ/1 queue given
in (3.90), with γ = μ− λ. Note that the coefficient of the exponent x in
Fσ(·) is −1

E(B) in both G/M/1 and M/M/1 (B = busy period).

5.1.9 Arrival-point PMF of Number in System

This subsection derives the steady-state arrival-point pmf (probability
mass function) of the number of units in the system. Let Nι denote the
number in the system just before an arrival instant in steady state. Then

P (Nι = 0) = P0ι =
γ

μ
.
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Let P (Nι = n) = Pnι, n = 1, 2, ... . Let dn be the steady-state probability
of n in the system just after a departure instant. Let A(n)(y) be the cdf
of the n-fold convolution of the inter-arrival time evaluated at y.

Proposition 5.5 For n = 1, 2, ... ,

Pnι = dn =

Z ∞

y=0

³
A(n)(y)−A(n+1)(y)

´
fσ(y)dy

= γ

Z ∞

y=0

³
A(n)(y)−A(n+1)(y)

´
e−γydy. (5.32)

Proof. Let NA(t) be the number of arrivals in (0, t) and let Sn be the
time of the nth arrival. A basic renewal equivalence relation is

NA(t) ≥ n ⇐⇒ Sn ≤ t.

Thus

P (NA(t) = n) = P (NA(t) ≥ n)− P (NA(t) ≥ n+ 1)

= P (Sn ≤ t)− P (Sn+1 ≤ t)

= A(n)(t)−A(n+1)(t), t > 0

(see e.g., [74] or [91]). Also dn = P (n arrivals during a system time σ).
That is

dn =

Z ∞

y=0
P (NA(y) = n|σ = y)fσ(y)dy

=

Z ∞

y=0
P (NA(y) = n)fσ(y)dy

=

Z ∞

y=0

³
A(n)(y)−A(n+1)(y)

´
fσ(y)dy.

Since dn = Pnι (for any single-server queue), we obtain (5.32).

Compact Expression for PMF

Proposition 5.5 leads to a compact expression for Pnι, n = 1,2,.... Inte-
gration by parts givesZ ∞

y=0
A(n)(y)e−γydy =

1

γ

Z ∞

y=0
a(n)(y)e−γydy

=
An∗(γ)

γ
,
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where a(n)(y) is the pdf of the n-fold convolution of inter-arrival times.
Thus (5.32) becomes

Pnι = An∗(γ)−A(n+1)∗(γ), n = 1, 2, ... . (5.33)

From Laplace-transform theory and (5.13)

An∗(γ) = (A∗(γ))n =

µ
1− γ

μ

¶n

.

Substituting into (5.33) yields

Pnι =

µ
1− γ

μ

¶n

−
µ
1− γ

μ

¶n+1

=
γ

μ

µ
1− γ

μ

¶n

= P0ι (1− P0ι)
n , n = 0, 1, 2, .... (5.34)

Formula (5.34) is analogous to the result for M/M/1 given in (3.91).
As a caveat to Proposition 5.5, the probabilities of n in the system

at an arbitrary time point are not equal to Pnι, n = 0, 1, 2, ...(in general).
Equality does hold if arrivals are Poisson.

5.1.10 G/M/1 with Poisson Arrivals

To enhance intuition, we specialize the foregoing G/Mμ/1 results to
M/M/1. When arrivals are Poisson at rate λ, the model reduces to
an Mλ/Mμ/1 queue.

Virtual Wait Assume A(x) = e−λx, x ≥ 0. Then γ = μ − λ is the
solution of equation (5.12),

R∞
z=0A(z)e

−γzdz = 1
μ . Thus, Cγ = λ, where

Cγ is defined in (5.16).
Hence

P0 =
γ

γ +Cγ
=

μ− λ

μ− λ+ λ
= 1− λ

μ
.X

K =
γ · Cγ

γ +Cγ
= λ(1− λ

μ
) = λP0,X

f(x) = Ke−γx = λP0e
−(μ−λ)x, x > 0,X

E(B) =
1

γ
=

1

μ− λ
,X

E(I) =
1

C
=
1

λ
.X



270 CHAPTER 5. G/M/C QUEUES

These results check with the steady-state virtual wait for M/M/1.
Moreover, the part of the pdf of extended age for x < 0 is

h(x) = μ

Z ∞

y=0
e−λ(y−x)Ke−(μ−λ)ydy = Keλx, x < 0,

whence P0 =
R 0
x=−∞ h(x)dx = 1− λ

μ .

Actual Wait For the actual wait in G/M/1, γ = μ−λ, P0ι = γ
μ = 1−

λ
μ

and Kι = γ
³
1− γ

μ

´
= λ(μ−λμ ) = λP0ι; giving fι(x) = λP0ιe

−(μ−λ)x, x >

0. These results agrees with P0 and f(x), x > 0 in M/M/1 (see (3.86)).
For M/M/1, the Poisson arrival stream implies

P0ι = P0 = 1−
λ

μ
, fι(x) = f(x), x > 0,

and Pnι = Pn =

µ
λ

μ

¶n

P0,

agreeing with PASTA [102].

5.1.11 Sojourn Time Above or Below a Level

We next determine the expected values of sojourn times above or below
a state-space level.

Inter-upcrossing Time of a Level

Consider a sample path of the extended age process {V (t)} (Fig. 5.1). Let
ux denote the inter-upcrossing time (between two successive upcrossings)
of level x.

Levels ≥ 0 For x ≥ 0, upcrossings of x are regenerative points due to
exponentially distributed service times. Hence

E(ux) =
1

limt→∞ Ut(x)
=

1

f(x)
.

Therefore

E(ux) =
1

f(x)
=

eγx

K
,x ≥ 0, (5.35)

where γ, K are given in (5.12), (5.19) respectively. (To compute K, we
may use Cγ given in (5.16).)



5.1. SINGLE-SERVER G/M/1 QUEUE 271

Levels < 0 For x < 0, −x is the time until the next arrival instant, at
which a sample path of {V (t)} hits level 0 from below. Upcrossings of x
are regenerative points since the time to hit level 0 is −x, followed by a
service time =

dist
Eμ. From (5.14) we get

E(ux) =
1

h(x)
=

1

μK
R∞
y=0A(y − x)e−γydy

, x < 0. (5.36)

Sojourn Time Above a Level

Let ax denote the sojourn time of {V (t)} above level x.

Levels ≥ 0 For x ≥ 0, E(ax) = E(B) independent of x. By (5.11)

E(ax) =
1

γ
, x ≥ 0. (5.37)

Levels < 0 For x < 0

E(ax) = E(ux)−E(bx) =
1

h(x) −E(bx)

= 1
μK ∞

y=0A(y−x)e−γydy

−
R∞
z=0

R∞
y=0

A(y−x+z)
A(y−x) Ke−γydydz, x < 0,

(5.38)

where bx is the sojourn time below x. The last term in (5.38),

E(bx) =

Z ∞

z=0

Z ∞

y=0

A(y − x+ z)

A(y − x)
Ke−γydydz

is derived in Proposition 5.6 below.

Sojourn Time Below a Level

As noted previously, bx is the sojourn time below level x.

Levels ≥ 0 We have

E(bx) = E(ux)−E(ax) =
eγx

K
− 1

γ
, x ≥ 0.
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Levels < 0 For x < 0 we have the following proposition.

Proposition 5.6 The expected sojourn time of {V (t)} below level x is

E(bx) =

Z ∞

z=0

Z ∞

y=0

A(y − x+ z)

A(y − x)
Ke−γydydz, x < 0. (5.39)

Proof. Consider an SP downward jump that ends below x < 0 (all
jumps start above level 0). Denote the excess of this jump below x by
rx. Since a sample path of {V (t)} increases steadily at rate +1 and
makes no jumps that start below 0, E(bx) = E(rx). We have

P (rx > z|jump starts at level y > 0)
= P (inter-arrival time > y − x+ z|inter-arrival time > y − x)

=
A(y − x+ z)

A(y − x)
.

Thus

E(bx) = E(rx) =

Z ∞

z=0
P (rx > z)dz

=

Z ∞

z=0

Z ∞

y=0
P (rx > z|jump starts at level y > 0)f(y)dydz

=

Z ∞

z=0

Z ∞

y=0

A(y − x+ z)

A(y − x)
Ke−γydydz.

5.1.12 Events During a Sojourn Above a Level

A system time = waiting time + service time. System times are realized
at completions of service (instants of departure from the system). On
the other hand, waiting times are realized at start of service instants.

Number of System Times During ax

Let Nσ
ax denote the number of customers completing service during a

sojourn of {V (t)} above level x ≥ 0. Thus Nσ
ax is the length of a run

of system times > x. Let Si, Ti, i = 1, 2, ... denote the service and
inter-arrival times, counting from the instant a sample path of {V (t)}
upcrosses level x (start of sojourn above x). If x = 0, S1 is a full service
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time. If x > 0, S1 is the remaining service time measured from the
instant of upcrossing x. Thus S1 is exponentially distributed with mean
1
μ by the memoryless property. Then (Fig. 5.1)

Nσ
ax = min

(
n|

nX
i=1

(Si − Ti) ≤ 0
)
, x ≥ 0.

Thus Nσ
ax is a stopping time for {Si − Ti} and for {Si}. The sojourn

time of {V (t)} above x is ax =
PNσ

ax
i=1 Si. By Wald’s equation and since

ax =
dist

B for all x ≥ 0

E(ax) = E(Nσ
ax)E(Si),

E(Nσ
ax) =

E(ax)

E(Si)
=

E(B)
E(S)

. (5.40)

Substituting from (5.37) into (5.40) gives

E(Nσ
ax) =

1
γ
1
μ

=
μ

γ
, (5.41)

independent of x.
From (5.41) E(Nσ

ax) > 1 since μ > γ (see Remark 5.7). This agrees
with intuition, which suggests that there must be at least one departure
instant in a sojourn above x (i.e., a sojourn ends at a departure instant).

Let Nσ
B denote the number of system-time realizations (number of

customers served) in a busy period. Since ax =
dist

B and because of the
memoryless property of the service time, Nσ

B =
dist

Nσ
ax , x ≥ 0. Therefore

E (Nσ
B) =

μ

γ
. (5.42)

Number of Waiting Times During ax

Let Nw
ax denote the number of customers that start service during a so-

journ of {V (t)} above level x ≥ 0. Then Nw
ax is the number of customers

that wait in line > x (strictly) during ax, x ≥ 0. Examination of a sam-
ple path of {V (t)} (Fig. 5.1) indicates that Nw

ax = Nσ
ax − 1. That is, the

count of service starts during ax is one less than the count of service
completions during ax, since the start of service initiating the sojourn
corresponds to a wait ≤ x. Hence

E(Nw
ax) = E(Nσ

ax)− 1 =
μ

γ
− 1 > 0, x ≥ 0. (5.43)
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Remark 5.7 In (5.43) the inequality μ
γ − 1 > 0 holds because of (5.12),

i.e.,
R∞
y=0A(y)e

−γydy = 1
μ ; and A(0) = 1, A(y) = 1 − A(y) is non-

increasing with limy→∞A(y) = 0. Thus there exists finite M > 0 such
that A(y) < 1 (strictly) for y > M . Hence

1

μ
=

Z ∞

y=0
A(y)e−γydy <

Z ∞

y=0
1 · e−γydy = 1

γ
=⇒ μ

γ
> 1.

5.1.13 Events Above a Level During a Busy Period

We first obtain the expected number of SP sojourns above a level during
a busy period.

Number of Sojourns in Busy Period Above Level x > 0

Let C denote a busy cycle. Let N soj
ax (C), N soj

ax (B) be the number of SP
sojourns above level x during a busy cycle and busy period, respectively.
Then N soj

ax (C) =
dist

N soj
ax (B), since all such sojourns take place in an em-

bedded busy period. Let UC(x) denote the number of SP upcrossings of
level x during a busy cycle. Each sojourn above x starts with an up-
crossing of x. Thus N soj

ax (C) =
dist

UC(x). By the theory of regenerative
processes, specific time averages in a busy cycle recapitulate the same
specific limiting time averages (e.g., [96]). Thus

E
³
N soj
ax (C)

´
E(C) =

E(UC(x))
E(C) = lim

t→∞
E(Ut(x))

t
= f(x), x ≥ 0, (5.44)

where Ut(x) is the number of upcrossings of level x during (0, t]. Recall
that f(x) = Ke−γx and E(C) = 1

f(0) =
1
K . Thus, from (5.44)

E
¡
N soj
ax (B)

¢
= E

¡
N soj
ax (C)

¢
= E(UC(x)) = E(C) · f(x)

=
1

K
·Ke−γx = e−γx, x ≥ 0. (5.45)

Setting x = 0 in (5.45) implies

E
¡
N soj
a0 (B)

¢
= E

¡
N soj
a0 (C)

¢
= 1.

Note that the single sojourn above level 0 in a busy cycle and in the
embedded busy period start simultaneously. In other words, a busy
period consists of exactly one sojourn above level 0.
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Number of System Times > x in Busy Period

Let Nσ
ax(B), Nσ

ax(C) denote the number of completed system times > x
during a busy period and busy cycle respectively. ThenNσ

ax(B) = Nσ
ax(C)

since all departures in a busy cycle occur during the contained busy
period. Departures that correspond to system times > x occur during
ax. Also

Nσ
ax(C) =

N so j
ax (C)X
i=1

Nσ
axi (5.46)

where Nσ
axi

is the number of system times > x during the ith sojourn
above x in C. The Nσ

axi’s are iid r.v.’s. with E
¡
Nσ
axi

¢
= μ

γ by (5.41)

independent of the number of sojourns N soj
ax (C) above x (memoryless

property of service time). Taking expected values in (5.46) and using
(5.45) gives

E
¡
Nσ
ax(B)

¢
= E

¡
Nσ
ax(C)

¢
= E

¡
N soj
ax (C)

¢
·E
¡
Nσ
axi

¢
=

μ

γ
e−γx. (5.47)

Number of Waiting Times > x in Busy Period

We obtain the expected number of waiting times > x in B, similarly as
for the derivation of (5.43) (see Remark 5.7). Thus

E
¡
Nw
ax(B)

¢
=

µ
μ

γ
− 1
¶
e−γx, x ≥ 0. (5.48)

Setting x = 0 in (5.48) gives E
¡
Nw
a0(B)

¢
= μ

γ − 1. E
¡
Nw
a0(B)

¢
is also

the expected number of customers in a busy period that wait a positive
time (same as (5.43)). Only the first customer in B waits 0.

Proportion that Wait > 0 We can connect this result with other pa-
rameters of the model. For example, the proportion of customers that
wait > 0 in a busy period is

E
¡
Nw
a0(B)

¢
E
¡
Nσ
B
¢ =

μ
γ − 1

μ
γ

= 1− γ

μ
= 1− P0ι. (5.49)

In (5.49) the denominator E (Nσ
B) is the expected number of service com-

pletions in a busy period (equal to expected number of service starts in
a busy period). Formula (5.49) is intuitive, as a busy cycle is a prob-
abilistic microcosm of the evolution of the system over the entire time
axis. The long-run proportion of customers that wait a positive time is
1− P0ι.
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Number Served in a Sojourn Above Level x < 0

Fix a level in the state space x < 0. After upcrossing x, a sample path
of {V (t)} ascends steadily at rate +1 to level 0. Hence the number of
service completions during ax is

Nax = min

(
n|− x+

nX
i=1

(Si − Ti) ≤ x

)
.

Thus Nax is a stopping time for {Si − Ti} and for {Si}. The sojourn
time above x is ax = −x+

PNax
i=1 Si implying that

E(ax) = −x+E(Nax) ·E(Si).
Thus

E(Nax) =
E(ax) + x

E(Si)

= μ (E(ax) + x) , (5.50)

where E(ax) is given in (5.38). Note that in (5.50) the numerator E(ax)+
x is positive, since ax > −x (see Fig. 5.1).

5.1.14 Revisit of M/M/1

We revisit the M/M/1 model in the light of the results for G/M/1 in
subsections 5.1.12 and 5.1.13.

Consider equation (5.48) for G/M/1. If arrivals are Poisson at rate
λ then γ = μ− λ. Thus

E
¡
Nw
a0(B)

¢
=

μ

γ
− 1 = μ

μ− λ
− 1

=
1

1− λ
μ

− 1 = 1

P0
− 1.

In M/M/1 (and M/G/1), the expected number of customers served
in a busy period is E (Nσ

B) =
1
P0
(formula (3.65)). The customer that

initiates B waits zero. Any other customer served in B waits a positive
time. This explains intuitively why E

¡
Nw
a0(B)

¢
= E (Nσ

B)− 1.
In M/M/1 (and M/G/1) the proportion of customers that wait a

positive time in a busy period is

E
¡
Nw
a0(B)

¢
E
¡
Nσ
B
¢ =

1
P0
− 1
1
P0

= 1− P0 =
λ

μ
= ρ,

which agrees with the result for G/M/1 given in (5.49).
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Related Results for Mλ/Mμ/1

In a similar manner to the analyses above for G/M/1, we obtain the
following results for Mλ/Mμ/1 (see Fig. 3.6). The expected number of
system times completed in a sojourn above level x is

E
¡
Nσ
ax

¢
= E (Nσ

B) =
μ

μ− λ
=
1

P0
, x ≥ 0, (5.51)

where Nσ
B is the number served in a busy period, independent of x.

Equality E
¡
Nσ
ax

¢
= E (Nσ

B) follows because in M/M/1, ax =
dist

B,x ≥ 0.
Also, E

¡
Nσ
ax

¢
> 1 since μ > μ− λ for stability (i.e., 0 < λ < μ).

The expected number that wait > x in ax is

E(Nw
ax) =

μ

μ− λ
− 1 = 1

P0
− 1 = λ

μ− λ
≥ 0. (5.52)

The expected number of sojourns above x in a busy period is

E(N soj
ax (B)) = E(N soj

ax (C)) = E(C) · f(x)

=
1

λP0
· λP0e−(μ − λ)x = e−(μ−λ)x, x ≥ 0. (5.53)

If x = 0 then

E
¡
N soj
ax (B)

¢
= e0 = E

¡
N soj
a0 (B)

¢
= 1.

In fact B has exactly one sojourn above level 0. In contrast, B may have
a random number of sojourns above an arbitrary positive level.

The number of system times (service completions) above level x in a
busy period is

Nσ
ax(B) = Nσ

ax(C) =
N so j
ax (C)X
i=1

Nσ
axi.

By (5.51) and (5.53),

E
¡
Nσ
ax(B)

¢
= E

¡
Nσ
ax

¢
= E (Nσ

B) ·E
¡
N soj
ax (C)

¢
=

μ

μ− λ
· e−(μ − λ)x,≥ 0. (5.54)

The expected number of waiting times > x in B is

E(Nw
ax(B)) =

µ
μ

μ− λ
− 1
¶
· e−(μ − λ)x

=
λ

μ− λ
· e−(μ − λ)x, x ≥ 0. (5.55)
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If x = 0, then E(Nw
ax(B)) =

λ
μ−λ = expected number that wait > 0 in B.

The proportion of customers that wait > 0 in B is

E
¡
Nw
a0(B)

¢
E
¡
Nσ
B
¢ =

λ
μ−λ
μ

μ−λ
=

λ

μ
= 1− P0,

where Nσ
B = number served in B. The intuitive explanation of the last

formula is that the long-run proportion of customers that wait > 0 is
1 − P0 (C is a probabilistic replica of the entire time line. All arrivals
take place in the embedded B).

Proposition 5.7 For M/M/1 the expected number of system times ≤ x
in a busy period B is

E(Nσ
bx(B)) =

μ

μ− λ
− μ

μ− λ
e−(μ−λ)x

=
μ

μ− λ
(1− e−(μ−λ)x), x ≥ 0. (5.56)

Proof. In B, the number of customers with system times ≤ x plus the
number with system times > x, is equal to the total number served in
B, namely Nσ

B . Thus from (5.51)

E(Nσ
bx(B)) +E(Nσ

ax(B)) = E (Nσ
B) =

μ

μ− λ
.

Then (5.56) follows from (5.51) and (5.54).

Proposition 5.8 For M/M/1 the expected number of waiting times ≤ x
in a busy period B is

E(Nw
bx(B)) =

μ

μ− λ
− λ

μ− λ
e−(μ−λ)x, x ≥ 0. (5.57)

Proof. In B, the number of customers with waiting times ≤ x plus the
number with waiting times > x, is equal to the number served in B,
namely Nσ

B . By (5.51),

E(Nw
bx(B)) +E(Nw

ax(B)) = E (Nσ
B) =

μ

μ− λ
.

Thus, (5.57) follows from (5.52) and (5.55).

Remark 5.8 For Mλ/Mμ/1, we have the following.
If x = 0 then E(N

σ

bx
(B)) = 0.X

If x =∞ then E(N
σ

bx
(B)) = μ

μ−λ .X
If x = 0 then E(N

w

bx
(B)) = 1 (initiator of B waits 0).X

If x =∞ then E(N
w

bx
(B)) = μ

μ−λ .X
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5.1.15 Boundedness of Steady-state PDF of Wait

For G/M/1 with service rate μ and inter-arrival time cdf A(y), y > 0,
assume the steady-state pdf of wait f(x), x > 0 exists.

The pdf of the virtual wait is f(x) = Ke−γx, x > 0. From (5.19)
K < γ. Also γ < μ. This f(x) < μ, x > 0.

The pdf of the actual wait is fι(x) = Kιe
−γx, x > 0. From (5.24)

Kι = γ
³
1− γ

μ

´
. Since γ < μ, we obtain fι(x) < μ, x > 0.

Proposition 5.9 below proves boundedness of the steady-state pdf or
the virtual wait in several ways, from "first principles" without drawing
on the result f(x) = Ke−γx, x > 0. We include it for ideas that may
be useful to obtain bounds on the pdf of wait in variants of G/M/1 (or
random variables in other models), from basic LC considerations.

Proposition 5.9
f(x) < μ, x > 0. (5.58)

Proof. We present three proofs for perspective.
(1) In the integral equation for G/M/1 (5.6) (repeated here)

f(x) = μ

Z ∞

y=x
A(y − x)f(y)dy, x > 0,

we have A(z) < 1 for z > M sufficiently large, since limz→∞A(z) = 0.
Thus,

f(x) < μ

Z ∞

y=x
1 · f(y)dy < μ

µ
P0 +

Z ∞

y=0
f(y)dy

¶
= μ,

since the normalizing condition is P0 +
R∞
y=0 f(y)dy = 1.

(2) An alternative form of the LC integral equation for G/M/1 (5.7)
(repeated here for convenience)

f(x) = μ(1− F (x))− μ

Z ∞

y=x
A(y − x)f(y)dy, x > 0. (5.59)

The subtracted term is such that

0 < μ

Z ∞

y=x
A(y − x)f(y)dy < μ

Z ∞

y=x
1 · f(y)dy = μ (1− F (x)) ,

since A(z) < 1 for z in a positive neighborhood of 0.
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Thus
f(x) < μ(1− F (x)) < μ, x > 0.

(3) Consider a sample path of {V (t)} (see (5.1) and Fig. 5.1). Let
Ut(x), Nsrv(t) denote the number of SP upcrossings of level x and num-
ber of service completions during (0, t) respectively. Assume t is larger
than one busy cycle. Then E (Ut(x)) < E (Nsrv(t)) , x ≥ 0 because: (a)
there is a one-to-one correspondence between upcrossings of x and the
first service completions in the immediately ensuing sojourns above x
(completions having system time > x); (b) there may be several ser-
vice completions with system time > x during a sojourn above x; (c)
there may be service completions with system time < x, which do not
correspond to an upcrossing of x during (0, t). Hence

f(x) = lim
t→∞

E (Ut(x))
t

< lim
t→∞

E (Nsrv(t))

t
≤ μ.

The last inequality limt→∞
E(Ns(t))

t ≤ μ holds since Nsrv(t) ≤ Nμ(t)
where Nμ(t) is a Poisson r.v. with rate μt, due to idle periods (see Fig.
5.1).

Example 5.1 Mλ/Mμ/1 is a special case of G/M//1 in which λ < μ
for stability. From Example 3.5, in M/M/1 f(x) < λ < μ.

5.2 Multiple-Server G/M/c Queue

The G/M/c (c = 2, 3, ...) queue generalizes G/M/1 of Section 5.1 to
multiple parallel servers. The same symbols as in Section 5.1 specify the
arrival stream: cdf A(·), pdf a (·), complementary cdf A (·), mean 1

a . For
each customer the service =

dist
Eμ. The service times in servers that are

occupied simultaneously are assumed to be independent.
This section emphasizes the use of LC to analyze the steady-state

pdf’s of the virtual wait and of the actual wait (arrival-point wait). We
derive explicit formulas for the pdf’s in G/M/2, and check them against
the pdf’s in M/M/2; this mildly validates the LC approach. In addition
we derive related properties of G/M/c using LC concepts.

5.2.1 Extended Age Process for G/M/c

For analyzing the multiple-server G/M/c queue, we employ the stochas-
tic process

{V (t),M(t), t ≥ 0} ,−∞ < V (t) <∞,M(t) ∈M .
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Random variable V (t) is the "extended age" at time t. For G/M/c,
V (t) is a slight generalization of V (t) defined for G/M/1 in Subsection
5.1.1 (see next heading in the present subsection).

Random variable M(t) is defined here as the number of customers
in service at time t. Thus M(t) ∈M = {0, 1, 2, ..., c}. When M(t) = c
there are at least c customers in the system.

The state space of {V (t),M(t)} is S = R×M whereR = (−∞,+∞).
Random variable M(t) is the "system configuration". Here, M(t) is de-
fined more simply than for the general M/M/c model in Chapter 4. This
is because we are analyzing a standard G/M/c model without the gen-
erality of the M/M/c model of Chapter 4 (see Subsection 4.5).

The process {V (t),M(t)} is a "system point" process. The state is
two-dimensional. Random variable V (t) is continuous; random variable
M(t) is discrete.

Remark 5.9 The definition of system configuration is flexible. That
is, an analyst utilizes a configuration that expedites the analysis of a
model. We could defineM(t) for G/M/c as in Subsection 4.5 for M/M/c.
However, we use a definition which is sufficient to examine a standard
G/M/c model. If the objective were to analyze a more general G/M/c
model, we would define M(t) along the lines of Subsection 4.5. This
would be the case in models with, for example: service time depending
on wait; service time depending on the types of other customers in ser-
vice at start of service times; service rate selected at random from a set
of possible service rates; etc.

Remark 5.10 The definition of M(t) ∈ {0, 1, ..., c}, is a variation of
the general definition in Subsection 4.5, which is appropriate for M/M/c.
For G/M/c, if M(t) ∈ {0, 1, ..., c− 1, c}, M(t) is the number of occupied
servers "seen" by an arrival. This version of M(t) encompasses a "sheet
c" to denote "all servers are occupied" (instead of "sheet c − 1" as for
M/M/c), because sheet c−1 in the G/M/c model corresponds to arrivals
that "see" c− 1 units in service (Fig. 5.3).

Extended Age and Inter Start-of-service Departure Times

Assume M(t) = c. When M(t) = c, V (t) is the "age" (time already
spent in the system) of the last customer to start service at or before
t. Thus V (t) > 0. Let S denote the time from the instant a cus-
tomer starts service until the first departure from the system thereafter.
Random variable S is the inter start-of-service departure time. Then
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Figure 5.3: Sample path of {V (t),M(t)} for G/M/c queue. There are
c + 1 sheets. Range of sheet c is [0,∞). Range of sheets 0, ..., c − 1 is
(−∞, 0). Sheet c− 1 abuts on sheet c for geometric convenience. Time
between jumps originating on sheet c = Ecμ.

S = min {S1, ..., Sc} where {Si} are iid r.v.’s each =
dist

Eμ. One of the

Si’s is a full service time; c − 1 of the Si’s are remaining service times.
Hence S =

dist
Ecμ.

Relationship Between V (t) and M(t)

When M(t) ∈ {0, 1, 2, ..., c− 1}, random variable −V (t) denotes the re-
maining inter-arrival time required until the next arrival joins the sys-
tem. Thus (Fig. 5.3),

if

(
M(t) = c then V (t) ≥ 0;
M(t) ∈ {0, 1, 2, ..., c− 1} then V (t) < 0.

5.2.2 Steady-state PDF of Virtual Wait

Let T = [0,∞) denote the time axis. Consider a sample path of the
process {V (t),M(t)}. The rate at which the SP moves in T × S between
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downward jumps is

d

dt
V (t) = +1,−∞ < V (t) <∞, M(t) = 0, ..., c, t > 0.

The steady-state pdf of V (t) as t→∞, is the same as that of the virtual
wait W (t) as t→∞ (proved similarly as in Proposition 5.1 for G/M/1).

Denote the steady-state cdf of the virtual wait by F (x), x ≥ 0, having
pdf f(x) = d

dxF (x), x > 0, wherever the derivative exists. The quantity
F (0) is the proportion of time there is fewer than c customers in service.
That is, F (0) is the probability that the system presents a zero wait to a
potential arrival. Let Pi be the proportion of time that an arrival "sees" i
customers in service, i = 0, ..., c−1. The Pi’s are zero-wait probabilities.
Then F (0) =

Pc−1
i=0 Pi.

Integral Equation for PDF of Wait

Consider a sample path of {V (t),M(t)} (Fig. 5.3). The space T × S is
partitioned into (c+ 1) sheets (or pages). The sheets are planar subsets
of T × S. Sheets 0, ..., c− 1 can be thought of as being one behind the
other like pages in a book, below the time axis. Only sheet c is above the
time axis. Sheet c is pictured as being directly above, and contiguous
to, sheet c− 1.

Consider M(t) = c, and corresponding sheet c. Fix level x > 0. The
SP upcrossing rate of level x is

lim
t→∞

Ut(x)
t

=
a.s
lim
t→∞

E(Ut(x))
t

= f(x)

(proved similarly as for the downcrossing rate in M/G/1, e.g., Theorem
1.1).

The SP downcrossing rate of level x is

lim
t→∞

Dt(x)

t
=
a.s
lim
t→∞

E(Dt(x))

t
= cμ

Z ∞

y=x
A(y − x)f(y)dy.

The coefficient cμ of the integral, is the rate at which customers depart
the system when all servers are occupied. Such departures generate SP
downward jumps. Downward jump sizes are distributed as the inter-
arrival time. The term A(y− x) in the integrand is the probability that
an SP jump starts at level y > x and downcrosses level x ∈ (−∞, y).

Rate balance across level x,

lim
t→∞

E(Ut(x))
t

= lim
t→∞

E(Dt(x))

t
,
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gives a basic LC integral equation for G/M/c

f(x) = cμ

Z ∞

y=x
A(y − x)f(y)dy, x > 0. (5.60)

In contrast to (5.6) for G/M/1 where the SP downward jump rate is
μ, in (5.60) for G/M/c the SP downward jump rate is cμ.

Alternative Form of Integral Equation

An alternative form of (5.60) is

f(x) = cμ (1− F (x))− cμ

Z ∞

y=x
A(y − x)f(y)dy, x > 0. (5.61)

In (5.61) cμ (1− F (x)) is the rate at which downward jumps start in
state-space set (x,∞). The integral is the rate at which downward jumps
start in (x,∞) and end in (x,∞); such jumps do not downcross x. Thus
the right side is the downcrossing rate of level x.

5.2.3 Form of PDF of Wait in G/M/c Geometrically

Let Bc−1,c denote a [c− 1, c] busy period. Random variable Bc−1,c is
the time from the instant the number of customers in service increases
from c − 1 to c until the first instant thereafter at which the number
of customers in service decreases back to c− 1 (Fig. 5.3). During Bc−1,c
the number of customers in the system is ≥ c. Thus Bc−1,c is equal to
a sojourn time on sheet c, which starts by an SP upcrossing of level 0
(from top of sheet c−1). Let ax denote a sojourn time above level x ≥ 0
starting with an upcrossing of x (on sheet c). Then Bc−1,c = a0, and
E (Bc−1,c) = E (a0).

The memoryless property of S ( =
dist

Ecμ) implies E(ax) = E(Bc−1,c)
independent of x ≥ 0. Thus the proportion of time the SP spends above
an arbitrary level x > 0 is

lim
t→∞

E (Ut(x)) ·E(ax)
t

= lim
t→∞

E (Ut(x))
t

·E(ax)

= f(x) ·E(Bc−1,c), x ≥ 0.

Similarly as for G/M/1 in Subsection 5.1.5, we have

f(x)E(Bc−1,c) = 1− F (x),

d

dx
ln (1− F (x)) = − 1

E(Bc−1,c)
.
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The solution of this differential equation is the cdf of wait

F (x) = 1− (1− F (0)) · e
− 1

E(Bc−1,c)
x

, x ≥ 0. (5.62)

Taking d
dxF (x) in (5.62) gives

f(x) =
1− F (0)

E(Bc−1,c)
· e−

1
E(Bc−1,c)

x
, x ≥ 0. (5.63)

Hence
f(x) = Ke−γx, x > 0, (5.64)

where

K =
1− F (0)

E(Bc−1,c)
, γ =

1

E(Bc−1,c)
. (5.65)

Using (5.65) we have

E(Bc−1,c) =
1

γ
. (5.66)

Substituting f(x) from (5.64) into (5.60) gives a transcendental equa-
tion for γ, Z ∞

y=0
A(y)e−γydy =

1

cμ
. (5.67)

Note that the Laplace-Stieltjes transform of the inter-arrival distri-
bution evaluated at γ, is A∗(γ) =

R∞
y=0 a(y)e

−γydy. On the left side of
(5.67) integration by parts gives an alternative equation for γ,

A∗(γ) = 1− γ

cμ
. (5.68)

To specify the mixed pdf of wait {F (0) ; f(x), x > 0}, it is required
to solve for F (0) in (5.63) or equivalently for K in (5.64). From (5.65)
we obtain

F (0) = 1− K

γ
. (5.69)

Note that once we know the form of f(x), we could also obtain (5.69)
from the normalizing condition

F (0) +

Z ∞

x=0
f(x)dx = 1,

F (0) +

Z ∞

x=0
Ke−γxdx = 1,

F (0) +
K

γ
= 1.
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Remark 5.11 Another way to obtain (5.69) is directly from the sam-
ple path of {V (t)} and SP motion in the state space. We include this
derivation because it highlights the close relationship between probabilities
of the model and the motion of the SP. Note that F (0) is the propor-
tion of time that the system presents a zero wait. The expected time
between successive SP upcrossings of level 0 due to arrivals that see c−1
customers in service, is 1

f(0)(starts of Bc−1,c busy periods). Also, since
f(x) = Ke=γx,

lim
t→∞

E (Ut(0))
t

= f(0) = K.

After the SP moves on sheet c, it leaves sheet c when a departure propels
it downward onto sheet c− 1. The SP then sojourns among some or all
sheets 0, ..., c − 1. During this SP sojourn, an arrival would wait zero.
The sojourn continues until the SP next upcrosses level 0 from sheet c−1
to sheet c. From the theory of regenerative processes

F (0) =
E(sojourn time among sheets 0, ..., c− 1)
E(time between entrances to sheet c)

=
1
K −E(Bc−1,c)

1
K

=

1
K −

1
γ

1
K

= 1− K

γ
. (5.70)

Value of K

At this point, we must solve for the value of K in order to specify F (0)
and f(x), x > 0 in terms of the model parameters. This requires a further
analysis of sheets 0, ..., c− 1.

Remark 5.12 Applying the normalizing condition

F (0) +

Z ∞

x=0
f(x)dx = 1,

and using (5.63), does not give the value of F (0) in terms of the model
parameters, since it yields the tautology 1 = 1. In Subsection 5.2.4 below
we develop integral equations for the steady-state partial pdf’s of V (t) on
sheets 0, ..., c− 1. These allow us to find an independent expression for
F (0), and then apply the normalizing condition to solve for F (0). We
shall not solve for F (0) explicitly for the general G/M/c queue. How-
ever, we indicate the solution procedure by solving for F (0) explicitly for
G/M/2 in Section 5.3, below.
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5.2.4 Partial PDF’s of Extended Age: Sheets 0 to c− 1
Let gi(x), x < 0, denote the steady-state pdf of V (t) when M(t) = i, i =
0, ..., c − 1. In Fig. 5.3 the partial pdf’s {gi(x), x < 0} correspond to
sheets 0, ..., c − 1. We derive a set of integral equations for gi(x), x <
0, i = 0, ..., c− 1, by applying rate balance of SP exits and entrances of
state-space intervals ((−∞, x) , i) , x < 0 on sheets i = 0, ..., c− 1.

The probability F (0) is the proportion of time that potential arrivals
wait 0 for service. Thus

F (0) =
c−1X
i=0

Z 0

x=−∞
gi(x)dx =

c−1X
i=0

Pi (5.71)

where Pi =
R 0
x=−∞ gi(x)dx is the steady-state probability of i customers

in service, i = 0, ..., c− 1.

Integral Equation for PDF: Sheet c− 1

First consider interval ((−∞, x) , c− 1) , x < 0, on sheet c− 1.

Exit Rate The SP exit rate from ((−∞, x) , c− 1) is

gc−1(x) + (c− 1)μ
Z x

y=−∞
gc−1(y)dy. (5.72)

In (5.72) the first term is the SP (continuous) upcrossing rate of level
x. The second term is the rate at which customers depart the system
when c − 1 servers are occupied and the remaining time until the next
arrival to the system is −y, summed over all y ∈ (−∞, x). Departures
occur at rate (c− 1)μ since there are c − 1 customers in service, and
service times are independent of the remaining time until the next arrival.
Such customer departures generate SP parallel jumps from sheet c − 1
to sheet c− 2 at the same level. That is, just after such departures there
would be c−2 units in service and the remaining inter-arrival time would
still be the same as just before the departure.

Entrance Rate The SP entrance rate into ((−∞, x) , c− 1) is

cμ

Z ∞

y=0
A(y − x)f(y)dy + gc−2(0)A(−x). (5.73)
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In (5.73) the first term is the rate at which the SP jumps downward
from level y > 0 on sheet c into interval ((−∞, x) , c− 1), due to customer
departures that leave c− 1 units in service. An inter-arrival time that is
> y − x causes the SP to jump downward below level x on sheet c − 1
(probability is A(y − x)). In the second term, factor gc−2(0) is the SP
hit rate of level 0 from below ("upcrossing" rate), which is the arrival
rate to the system when there are c− 2 servers occupied. Such arrivals
increase the number of occupied servers to c − 1. The factor A(−x) is
the probability that the immediately following inter-arrival time exceeds
−x, thereby propelling the SP below level x on sheet c− 1.

Equating (5.72) and (5.73) gives the integral equation for gc−1(x),

gc−1(x) + (c− 1)μ
Z x

y=−∞
gc−1(y)dy

= cμ

Z ∞

y=0
A(y − x)f(y)dy + gc−2(0)A(−x), x < 0. (5.74)

Integral Equations for PDF: Sheets 1, ..., c− 2

Consider the state-space interval ((−∞, x) , i) , x < 0 on sheet i where
i ∈ {1, ..., c− 2} (Fig. 5.3). Reasoning as in the derivation of (5.74) for
sheet c− 1, we obtain integral equations

gi(x) + iμ

Z x

y=−∞
gi(y)dy

= (i+ 1)μ

Z x

y=−∞
gi+1(y)dy + gi−1(0)A(−x),

i = 1, ..., c− 2, x < 0. (5.75)

In (5.75) the left side is the SP exit rate from ((−∞, x) , i). The right
side is the SP entrance rate into ((−∞, x) , i).

Integral Equation for PDF: Sheet 0

Consider state-space interval ((−∞, x) , 0) , x < 0.

Exit Rate The SP can exit ((−∞, x) , 0) , x < 0 only by means of a
(left) continuous hit of level x from below (upcrossing). The system is
empty and no customer departures can occur, whenM(t) = 0. Therefore
the exit rate of ((−∞, x) , 0) is g0(x).
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Entrance Rate The SP can enter ((−∞, x) , 0) only by a parallel jump
from ((−∞, x) , 1) on sheet 1. That is, there must be one customer in
service, that customer departs before any arrivals occur, and the remain-
ing inter-arrival time is some y > −x, so that y ∈ (−∞, x). The rate of
this occurrence is 1 · μ

R x
y=−∞ g1(y)dy.

Rate balance of exits and entrances of set ((−∞, x) , 0) gives an in-
tegral equation for sheet 0,

g0(x) = μ

Z x

y=−∞
g1(y)dy. (5.76)

Form of F (0)

The probability of a potential wait of zero is given in (5.71). Here we
shall not detail a procedure to compute F (0) for the virtual wait in
G/M/c for general values of c. However, in Subsection 5.3.1 below we
provide a detailed derivation of F (0) for the virtual wait in G/M/2.

5.2.5 Stability Condition for G/M/c

The stability condition for G/M/c follows directly from (5.64) and (5.67).
The system is stable iff the steady-state pdf in (5.64) exists iff there exists
a positive finite solution γ for equation (5.67). Using an analysis similar
to that given in Proposition 5.4 for G/M/1, we obtain a necessary and
sufficient condition for stability in G/M/c, namely

a < cμ.

5.2.6 Form of PDF of Actual Wait

In the following proposition, we use the principle that the "long run"
proportion of next arrivals that have a property, is the same as the
"overall" proportion of arrivals that have the same property.

Proposition 5.10 For the G/M/c queue, the form of the pdf of actual
wait is

f(x) = Kιe
−γx, x > 0, (5.77)

where Kι > 0.

Proof. The proportion of arrivals that wait > x is

1− Fι(x) =
cμ(1− F (x))− f(x)

cμ (1− F (0)) +
Pc−2

i=1 gi(0)
, x > 0. (5.78)
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In equation (5.78) the term Fι(x) = P (actual wait≤ x); terms F (x), f(x)
are respectively the cdf and pdf of the virtual wait; F (0) = P (virtual
wait = zero); gi(0), i = 1, ..., c− 1 are respectively the arrival rates when
i customers are in service (see Subsection 5.2.4).

In the numerator of (5.78), cμ(1 − F (x)) is the rate of downward
jumps that start at levels > x, i.e., in ((x,∞) , c) (on sheet c). Thus
cμ(1− F (x)) is the rate at which customers are in the system > x. It is
also the rate at which next customers wait in line less than levels where
the jumps started. The term f(x) is the rate of such downward jumps
that end below x. Thus f(x) is the rate at which next customers wait
< x. (Recall that f(x) is the SP upcrossing rate of x, and f(x) is also
the downcrossing rate of x.) Thus the numerator is the rate at which
next customers wait > x.

In the denominator, cμ (1− F (0)) is the rate of downward jumps that
start on sheet c;

Pc−2
i=1 gi(0) is the rate of downward jumps that start at

level 0 on sheets 1, ..., c − 2, combined. Thus, the denominator is the
total rate of all downward jumps, which is precisely the total rate at
which next customers start service.

Thus the right side of (5.78) is the proportion of downward jumps
that start above level x and end above level x on sheet c. This is the
same as the proportion of next customers that wait > x. Note that the
explanation of (5.78) is similar to that in the proof of Proposition 5.2.

From equations (5.62) and ((5.64), we have 1−F (x) = c2e
−γx where

c2 is a positive constant, and f(x) = Ke−γx. Also, cμ (1− F (0)) +Pc−2
i=1 gi(0) is a positive constant. Substituting into the right side of

(5.78) and taking d
dx on both sides of (5.78) yields (5.77) where Kι is a

positive constant.

5.2.7 Steady-state PDF of Actual Wait

Let Wq be the actual wait in line before service (arrival-point wait), in
steady state. Let Fι(0) = P (Wq = 0), and let the pdf ofWq be fι(x), x >
0. The total rate at which zero-waiting customers arrive is equal to the
total rate at which the SP hits level 0 from below, namely

Pc−1
i=0 gi(0)

(see definition of gi(·), i = 0, ..., c−1 in Subsection 5.2.4). That is, gi(0) is
the rate at which customers arrive at the system (remaining inter-arrival
time = 0), when there are i customers in service, i = 0, ..., c− 1.

Let Nt, N
0
t , N

>0
t denote the total number of arrivals during (0, t), the

number of arrivals that wait 0 during (0, t), and the number of arrivals
that wait > 0 during (0, t), respectively.
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Consider a sample path of {V (t)}. Let U i
t (x) denote the number of

SP upcrossings of level x on sheet i during (0, t), i = 0, ..., c− 1. Then

lim
t→∞

U i
t (x)

t
=
a.s.

lim
t→∞

E
¡
U i
t (x)

¢
t

= gi(x), x ≤ 0, i = 0, ..., c− 1.

Note that N0
t =

Pc−1
i=0 U i

t (0).
The proportion of arrivals that wait 0 is

lim
t→∞

N0
t

Nt
= lim

t→∞
N0
t

N0
t +N>0

t

=
limt→∞

N0
t
t

limt→∞
N0
t
t + limt→∞

N>0
t
t

=

Pc−1
i=0 limt→∞

Uit (0)
tPc−1

i=0 limt→∞
Uit (0)
t + limt→∞

N>0
t
t

=

Pc−1
i=0 gi(0)Pc−1

i=0 gi(0) + limt→∞
N>0
t
t

. (5.79)

In the denominator of (5.79), the rate at which arrivals wait a positive
time before service is

lim
t→∞

N>0
t

t
=
a.s.

lim
t→∞

E
¡
N>0
t

¢
t

= cμ

Z ∞

y=0
A(y)f(y)dy

= cμ

Z ∞

y=0
A(y)Ke−γydy

= cμ

Z ∞

y=0

¡
1−A(y)

¢
Ke−γydy

=
cμ

γ
K −K, (5.80)

upon utilizing (5.64) and (5.67). That is, cμ
R∞
y=0A(y)f(y)dy is the rate

at which customers depart after being in the system for a time y, and
the immediately next inter-arrival time is < y, summed over all y > 0.
Then cμ

R∞
y=0A(y)f(y)dy is the rate at which next customers that enter

service wait a positive time. Substituting from (5.80) into (5.79) gives

Fι(0) =

PC−1
i=0 gi(0)PC−1

i=0 gi(0) +
cμ
γ K −K

. (5.81)
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In (5.74) let x ↑ 0. Note that the SP exit rate from sheet c−1 across
level 0 is equal to the SP entrance rate of interval ((0,∞), c) (sheet c).
Thus

lim
t→∞

E
¡
Uc−1
t (0)

¢
t

= gc−1(0) = f(0) = K.

Here we do not carry out the procedure to compute Fι(0) for general
values of c (equation (5.81)). In Subsection 5.3.2 below we derive Fι(0)
explicitly for G/M/2, to indicate the computational procedure.

5.3 G/M/2: PDF of Virtual and of Actual Wait

We derive the steady-state pdf of the virtual wait and of the actual
wait for G/M/2. Consider the process {V (t),M(t)}. When c = 2,
M(t) ∈M = {0, 1, 2}. Graphically, there are three corresponding sheets
in T × S labeled 0, 1, 2. (Fig. 5.3). The analyses below are examples of
the type of solution approach that may be used for c = 3, 4, ... . (The
results for c = 2 are applied in [66].)

5.3.1 PDF of Virtual Wait

In G/M/2 the pdf of the virtual wait has the same form as in the general
G/M/c model,

f(x) = Ke−γx, x > 0.

We repeat the integral equations for sheets 1 and 0 respectively for con-
venience,

g1(x) + μ
R x
y=−∞ g1(y)dy = 2μK

R∞
y=0A(y − x)e−γydy

+g0(0)A(−x), x < 0,
(5.82)

and

g0(x) = μ

Z x

y=−∞
g1(y)dy, (5.83)

as in equations (5.74) and (5.76).
Also g1(0) = K. The proportion of time that the system has less

than 2 customers in service is

F (0) =

Z 0

x=−∞
(g1(x) + g0(x))dx = 1−

K

γ
, (5.84)

as in (5.70).
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Adding corresponding sides of (5.82) and (5.83) and integrating with
respect to x ∈ (−∞, 0), gives

F (0) ≡
Z 0

x=−∞
(g1(x) + g0(x))dx

= 2μK

Z 0

x=−∞

Z ∞

y=0
A(y − x)e−γydydx+ g0(0)

1

a
, (5.85)

where 1
a =

R∞
u=0A(u)du is the mean arrival time.

Taking d
dx in (5.83) gives the relation

g1(x) =
g00(x)

μ
. (5.86)

Substituting (5.86) and (5.83) into (5.82) gives a differential equation for
g0(x)

g00(x) + μg0(x) = 2μ
2K

Z ∞

y=0
A(y − x)e−γydy ++μg0(0)A(−x), x < 0.

(5.87)
The solution of (5.87) is

g0(x) = 2μ
2Ke−μx

Z x

z=−∞
eμz

Z ∞

y=0
A(y − z)e−γydydz

+ μg0(0)e
−μx

Z x

z=−∞
eμzA(−z)dz, x < 0, (5.88)

upon noting that the constant of integration is 0 because limx↓−∞ g0(x) =
0 and limx↓−∞

R x
z=−∞ (· · ·) dx = 0.

Note that limx↑0 e−μx = e0 = 1. In (5.88) letting x ↑ 0 gives an
equation for g0(0) in terms of K (after making the transformation u =
−z)

g0(0) = 2μ2K

Z ∞

u=0
e−μu

Z ∞

y=0
A(y + u)e−γydydu

+μg0(0)

Z ∞

u=0
e−μuA(u)du,

or

g0(0) =

Ã
2μ2

R∞
u=0 e

−μu R∞
y=0A(y + u)e−γydydu

1− μ
R∞
u=0 e

−μuA(u)du,

!
K

≡ H0 ·K. (5.89)
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Equation (5.89) defines the constant H0, which is independent of K.
We now obtain an equation for K. From (5.84) and (5.82),

F (0) = 1− K

γ

= 2μK

Z 0

x=−∞

Z ∞

y=0
A(y − x)e−γydydx+H0K

1

a
. (5.90)

Solving (5.90) for K gives

K =
1

1
γ + 2μ

R 0
x=−∞

R∞
y=0A(y − x)e−γydydx+H0 · 1a

. (5.91)

where H0 is defined in (5.89).
Thus

F (0) = 1− K

γ

= 1− 1

1 + 2μγ
R 0
x=−∞

R∞
y=0A(y − x)e−γydydx+H0 · γa

=
2μγ

R 0
x=−∞

R∞
y=0A(y − x)e−γydydx+H0 · γa

1 + 2μγ
R 0
x=−∞

R∞
y=0A(y − x)e−γydydx+H0 · γa

=
2μγ

R∞
u=0

R∞
y=0A(y + u)e−γydydu+H0 · γa

1 + 2μγ
R∞
u=0

R∞
y=0A(y + u)e−γydydu+H0 · γa

, (5.92)

upon making the transformation u = −x.
The pdf of the virtual wait is {F (0); f(x), x > 0}, where f(x) =

Ke−γx, x > 0 and K is specified in (5.91). The probability of a zero
wait F (0), is given by (5.92).

5.3.2 PDF of Actual Wait

Equation (5.64) becomes

fι(x) = Kιe
−γx, x > 0,

where

Kι =
1− Fι(0)

E(B1,2)
, γ =

1

E(B1,2)
, Fι(0) = P0ι + P1ι.
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From (5.81) the proportion of arrivals that wait 0 is

Fι(0) =

P1
i=0 gi(0)P1

i=0 gi(0) +
2μ
γ K −K

. (5.93)

Taking d
dx on both sides of (5.82) gives an ordinary differential equa-

tion for g1(x) with solution

eμxg1(x) = 2μ

Z x

z=−∞
eμz

Z ∞

y=0
a(y − x)Ke−γydydz

+ g0(0)

Z x

z=−∞
eμza(−z)dz +H1, (5.94)

where H1 is a constant. Note that necessarily limx↓−∞ g1(x) = 0; this
helps to evaluate H1 That is limx↓−∞ eμxg1(x) = 0. Also

lim
x↓−∞

Z x

z=−∞
(· · ·)dz = 0.

Thus H1 = 0.
Additionally limx↑0 eμxg1(x) = g1(0) = f(0) = K. Letting x ↑ 0 in

(5.94) yields
g0(0) = K ·B0, (5.95)

where

B0 =
1− 2μ

R∞
u=0 e

−μu R∞
y=0 a(y + u)e−γydyduR∞

u=0 e
−μua(u)du

, (5.96)

using the transformation u = −z.
Thus

g1(0) + g0(0) = K +KB0,

with B0 given in (5.96).
From (5.93)

Fι(0) =

P1
i=0 gi(0)P1

i=0 gi(0) +
cμ
γ K −K

=
K +KB0

K +KB0 +
2μ
γ K −K

=
1 +B0

B0 +
2μ
γ

, (5.97)

which is independent of K.
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We then calculate Kι from the normalizing condition

Fι(0) +

Z ∞

x=0
fι(x)dx = 1,

Fι(0) +

Z ∞

x=0
Kιe

−γxdx = 1.

Applying (5.97) gives
1 +B0

B0 +
2μ
γ

+
Kι

γ
= 1

which yields

Kι = γ

µ
2μ− γ

2μ+ γB0

¶
= γ (1− Fι(0)) . (5.98)

Thus

Fι(0) = 1−
Kι

γ
= 1−

µ
2μ− γ

2μ+ γB0

¶
=

γ (1 +B0)

2μ+ γB0
. (5.99)

5.3.3 Reduction of G/M/2 PDF to M/M/2 PDF

To enhance intuition, we check that the G/M/2 pdf for the actual wait,
given above, reduces to the M/M/c pdf given in (4.53), (4.54) and (4.55)
when c = 2. In M/M/2 let P0, P1 be the steady-state probabilities of 0
units and 1 unit in the system, respectively. For M/M/2 the pdf’s of the
virtual wait and actual wait are the same, due to Poisson arrivals. We
show that for G/M/2 with Poisson arrivals, Fι(0) = P0 + P1.

From the standard formulas for M/M/c, we have the pdf of wait in
M/M/2, namely

P0 =
1

1+λ
μ
+ λ2

μ(2μ−λ)

P1 =
λ
μP0

f(x) = λP1e
−(2μ−λ)x, x > 0.

(5.100)

From (5.100), in M/M/2 P0 + P1 simplifies to

P0 + P1 =
(2μ− λ) (λ+ μ)

λμ+ 2μ2
. (5.101)

To obtain these values from G/M/2, we first specialize the G/M/2
formula for B0 in (5.96) to M/M/2, by letting a(z) = λe−λz, z > 0, and
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set γ = 2μ−λ. This substitution yields B0 =
μ
λ . Combining with (5.99)

we get

Fι(0) =
(2μ− λ) (λ+ μ)

λμ+ 2μ2
(5.102)

in agreement with (5.101).
The pdf is

fι(x) = Kιe
−γx = γ (1− Fι(0)) e

−(2μ−λ)x

= λP1e
−(2μ−λ)x, x > 0, (5.103)

since γ = 2μ− λ and

γ (1− Fι(0)) = (2μ− λ)
(2μ− λ) (λ+ μ)

λμ+ 2μ2

= λ
λ (2μ− λ)

λμ+ 2μ2
= λP1.

Hence the G/M/2 pdf {Fι(0); fι(x), x > 0} in (5.102) and (5.103),
when the arrival rate is Poisson at rate λ, agrees with the M/M/2 pdf.

5.3.4 Moments of Actual Wait for G/M/2

All statistical moments (about 0) of Wq can be found using

E(Wn
q ) =

Z ∞

y=0
ynKιe

−γydy = Kι
n!

γn+1
, n = 0, 1, 2, ...,

where Kι is given in (5.98). In particular the mean and variance of the
actual wait are

E(Wq) =
Kι

γ
, V ar(Wq) =

Kι(2γ −Kι)

γ4
.

The Laplace-Stieltjes transform of the actual wait is

Fι(0)e
−s.0 +

Z ∞

y=0
e−syKιe

−γydy = Fι(0) +
Kι

s+ γ
, s > 0.

5.3.5 Discussion

Heavy-tailed Inter-arrivals

For the LC analysis of G/M/c the inter-arrival times may have a heavy-
tailed distribution. For example, the inter-arrival times may have a
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Pareto distribution with

A(x) = 1− 1

(1 + x)β
, A(x) =

1

(1 + x)β
, a(x) =

β

(1 + x)β+1
, x ≥ 0,

where β is the shape parameter. All moments exist up to dβ − 1e, where
due denotes the smallest integer ≥ u. The LC solution technique outlined
in the present section applies because the solution for γ depends only on
the complementary cdf A(·), the probability of the tail of distribution,
and not on whether the mean and variance exist.

Similar remarks apply to inter-arrival times which have a folded
Cauchy, or inverse-log distribution, etc. Additional LC results for heavy-
tailed inter-arrival times are given in [66].

Model Variants

The LC solution technique in this section is useful for analyzing models
with state dependence. For example, inter-arrival times and/or service
rates of arrivals, may depend on the number of customers in service, or
on the system time of the last departure from the system. LC can be
used to analyze other generalizations, e.g., bounded workload, or service
rate depending on waiting time. In generalized models, we could derive
integral equations for the pdf of wait in a similar manner as above for
the standard G/M/c or G/M/1 queue, e.g., as in [15].




