
CHAPTER 3

M/G/1 QUEUES AND
VARIANTS

3.1 Introduction

This chapter considers the virtual wait process in M/G/1 queues and
model variants. It first develops relationships between sample-path level
crossings and the time dependent (transient) distribution of wait. These
relationships lead to a proof of the basic LC theorem for the steady-state
pdf of wait in M/G/1 queues, including equation (1.8). The relationships
are of inherent interest for time-dependent LC methods.

Next, alternative forms of the LC integral equation (1.8) are derived
by using LC interpretations. The alternative forms are useful for analyz-
ing certain variants of M/G/1 queues such as those with service times
having discrete distributions.

LC analyses of several M/M/1 and M/G/1 models in the steady state
are given which illustrate LC in practice.

3.2 Transient Distribution of Wait

Consider an M/G/1 queue with Poisson arrival rate λ, positive service
times with cdf B(x), x ≥ 0, and pdf d

dxB(x) = b(x), where the derivative
exists. Let B(x) ≡ 1−B(x). Consider a sample path of the virtual wait
{W (t), t ≥ 0}, and fix level x > 0 in the state space S = [0,∞) (Figs. 2.1,
3.1). Let Dt(x), Ut(x) denote the number of down- and upcrossings of
level x ≥ 0 during (0, t), respectively. Note that {Dt(x), t ≥ 0} and
{Ut(x), t ≥ 0} are counting processes.
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3.2.1 Differentiability and Downcrossings of Level x

The following lemma guarantees the existence of ∂
∂tE(Dt(x)), where

E(Dt(x)) is the expected value of Dt(x). For economy of notation, we
define Dt(0) ≡ Dt(0

+) = Ha,c
t (0) (number of left-limit hits of 0 from

above during (0, t)) = It(0) (number of SP entrances into {0} during
(0, t)) (see Subsection 2.4.10).

Lemma 3.1 The partial derivative ∂
∂tE(Dt(x)), x ≥ 0, exists and is pos-

itive for t > 0.

Proof. The memoryless property of the exponential distribution implies
{Dt(x)} is a delayed renewal process for each x ≥ 0. The delay d0 de-
pends on the initial wait W (0) = x0. If x0 = x, d0 = 0. If x0 6= x, d0
is the time from t = 0 to the first downcrossing of x. Starting at time
d0, let the level-x inter-downcrossing times be d1, d2, ... (Fig. 3.1). Let
Hd0(·), hd0(·) denote the cdf and pdf of d0, respectively. We need only
prove the result when d0 > 0. If d0 = 0, the proof is similar.

The following well known basic renewal relationship holds for n =
1, 2, ... and t > 0,

Dt(x) ≥ n ⇐⇒ d0 + d1 + · · ·+ dn−1 ≤ t.

Thus
P (Dt(x) ≥ n) = P (d0 + d1 + · · ·+ dn−1 ≤ t).

Summing on both sides over n = 1, 2, ... gives

E(Dt(x)) =
∞X
n=1

Fd0+d1+···+dn−1(t)

=
∞X
n=1

Z t

s=0
Fn−1
d1

(t− s)hd0(s)ds

where Fd0+d1+···+dn−1(t) is the cdf of d0+d1+···+dn−1 and Fn−1
d1

(·) is the
(n − 1)-fold convolution of d1. Taking ∂

∂t on both sides (differentiating
under the integral) gives

∂

∂t
E(Dt(x)) =

∞X
n=1

µZ t

s=0

∂

∂t
Fn−1
d1

(t− s)hd0(s)ds+ Fd1(0)hd0(t)

¶

=
∞X
n=1

Z t

s=0

∂

∂t
Fn−1
d1

(t− s)hd0(s)ds
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Figure 3.1: Sample path of virtual wait in M/G/1 showing inter down-
and upcrossing times for level x, {dn}, {un}, and their components, e.g.,
d
0
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2 , u

0
2, u

00
2 , etc.

since Fd1(0) = 0. The right side exists since F
n−1
d1

(t− s) is the cdf of an
(n− 1)-fold sum of continuous random variables, each distributed as d1.
That is, ∂

∂tF
n−1
d1

(t− s) = fn−1d1
(t− s) exists; it is the pdf of a continuous

r.v. Moreover, ∂
∂tE(Dt(x)) > 0 since both fn−1d1

(t − s) > 0, hd0(s) > 0.
Note: Once existence of ∂

∂tE(Dt(x)) is established, positivity follows
since E(Dt(x)) is an increasing function of t.

3.2.2 Differentiability and Upcrossings of Level x

Consider a sample path of the virtual wait. The process {Ut(x)} is a "de-
layed" process. In general, however, {Ut(x)} is not renewal. The delay
u0, is the time from t = 0 to the first upcrossing of x after d0. The level-x
inter-upcrossing times starting at u0 are denoted by u1, u2, ... (Fig. 3.1).
The random variables {ui, i = 1, 2, ...} are identically distributed (with
the same distribution d1). However, {ui} are not mutually independent.
Successive pairs (ui, ui+1) are dependent.

Remark 3.1 For an arbitrary typical sample path in general, successive
pairs ui, ui+1 are dependent. To see this, consider u1, u2 (Fig. 3.1). Let
di = d

0
i + d

00
i , ui = u

0
i + u

00
i , i = 1, 2. Note that u

0
2 (= d

00
2) is dependent

on u
00
1 (= d

0
2), because the excess jump above x, say rax, depends on u

00
1 .

If u
00
1 is small, r

a
x tends to be large. That is, P (r

a
x > z|jump starts at
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y < x) = B(x−y+z)
B(x−y) , which depends on both x and y. Thus u2 depends on

u1. Nevertheless ∂
∂tE(Ut(x)) exists (see the following lemma).

Lemma 3.2 The partial derivative ∂
∂tE(Ut(x)), x ≥ 0, exists and is pos-

itive for t > 0.

Proof. The delay time u0 is a continuous r.v. The process {Ut(x)} is
a counting process, but is not a renewal process (Fig. 3.1). Let Hu0(·),
hu0(·) denote the cdf and pdf of u0, respectively.

The relationship, usually applied for a renewal, process,

Ut(x) ≥ n ⇐⇒ u0 + u1 + · · ·+ un−1 ≤ t, n = 1, 2, ...

also holds for a general counting process even though the inter-arrival
times are not independent. Thus

P (Ut(x) ≥ n) = P (u0 + u1 + · · ·+ un−1 ≤ t).

Summing on both sides over n = 1, 2, ... gives

E(Ut(x)) =
∞X
n=1

Fu0+u1+···+un−1(t)

=
∞X
n=1

Z t

s=0
Fu1+···+un−1(t− s)hu0(s)ds

where Fu1+···+un−1(t) is the cdf of u1+ · · ·+ un−1. The sum u0+ u1+ · ·
· + un−1 is a continuous r.v., since ui is continuous for each i = 1, 2, ....
Taking ∂

∂t on both sides (differentiating under the integral) gives

∂

∂t
E(Ut(x)) =

∞X
n=1

µZ t

s=0

∂

∂t
Fu1+···+un−1(t− s)hu0(s)ds

+ Fu1+···+un−1(0)hu0(t))

=
∞X
n=1

Z t

s=0
fu1+···+un−1(t− s)hu0(s)ds,

where fu1+···+un−1(·) is the pdf of u1+···+un−1, since Fu1+···+un−1(0) = 0.
The right side is finite. Thus ∂

∂tE(Ut(x)) exists. Also,
∂
∂tE(Ut(x)) > 0,

since hu0(s) > 0 and fu1+···+un−1(t − s) > 0. Alternatively, positivity
follows since E(Ut(x)) is an increasing function of t.

The derivatives ∂
∂tE(Ut(x)),

∂
∂tE(Dt(x)) are fundamentally related

(Theorem 3.1 ).
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Remark 3.2 If the service time is exponentially distributed with mean
1
μ , as in M/M/1, then for any sample path the excess jump above x, r

a
x,

is exponentially distributed by the memoryless property, and

P (rax > z|jump starts at y < x)

=
B(x− y + z)

B(x− y)
=

e−(x−y+z)

e−(x−y)
= e−μz,

independent of x and y. In that case, {un} is a delayed renewal
process.

3.2.3 Level Crossings and Transient CDF of Wait

Denote the transient distribution of the virtual wait by

Ft(x) = P (W (t) ≤ x), x ≥ 0, t ≥ 0
P0(t) = P (W (t) = 0), Ft(x), t ≥ 0,

ft(x) =
∂
∂xFt(x), x > 0, t ≥ 0,

(3.1)

wherever ∂
∂xFt(x) exists. Define the joint cdf of (W (t1), W (t2)) as

Ft1,t2(x1, x2) = P (W (t1) ≤ x1,W (t2) ≤ x2), t1 6= t2 ≥ 0, x1, x2 ≥ 0.
(3.2)

Note that Dt(x) − Ut(x) ∈ {0,+1, −1} for every x ≥ 0, t ≥ 0, since
down- and upcrossings of a fixed level alternate in time (Proposition
2.3). The next lemma connects E(Ut(x)), E(Dt(x)) and the transient
cdf Ft(x), by using (3.2) with t1 = 0, t2 = t, x1 = x2 = x.

In M/G/1, Dt(x) = Dc
t (x) (Subsection 2.4.4), since all downcrossings

are left-continuous. Also Ut(x) = U j
t (x), since all upcrossings are jump

upcrossings.

Theorem 3.1 In the M/G/1 queue, for fixed x ≥ 0, t ≥ 0,

E(Dt(x)) = E(Ut(x)) + Ft(x)− F0(x). (3.3)

Proof. The initial condition D0(x) = U0(x) = 0 implies (3.3) holds for
t = 0. For t > 0, examination of possible sample paths {W (s)}, 0 ≤ s ≤
t, (Fig. 3.2) leads to the following values and probabilities for Dt(x) −
Ut(x):

Dt(x)− Ut(x) Probability
0 1− Ft(x)− F0(x) + 2F0,t(x, x)
+1 Ft(x)− F0,t(x, x)
−1 F0(x)− F0,t(x, x)

(3.4)
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Figure 3.2: Values of Dt(x) − Ut(x) are +1, 0, −1, with probabilities
shown in areas of (W (0),W (t)) plane.

From (3.4) we obtain for fixed x ≥ 0, the expected value

E(Dt(x))−E(Ut(x)) = Ft(x)− F0(x), t ≥ 0, . (3.5)

identical to (3.3).
In (3.4) the term Dt(x) − Ut(x) = 0 does not affect the expected

value; it is included for completeness. In further similar computations
of expected value, terms with value 0 may be omitted. Equation (3.5)
leads to the following basic theorem relating the transient distribution
of wait and sample-path properties.

Theorem 3.2 In the M/G/1 queue

∂

∂t
E(Dt(x)) =

∂

∂t
Ft(x) +

∂

∂t
E(Ut(x)), t > 0, x ≥ 0. (3.6)

Proof. Differentiating (3.5) with respect to t gives formula (3.6).

Remark 3.3 Theorem 3.2 is a special case of a general theorem con-
necting the marginal entrance and exit rates of an arbitrary measurable
set A ⊂ S (state space) to the transient probability of A, Pt(A) (see
Theorems 4.1 and 4.1). In the present context, A = [0, x].

3.2.4 Downcrossings and Transient PDF of Wait

The following theorem connects ∂
∂tE(Dt(x)) and ft(x),x ≥ 0, the tran-

sient pdf, where ft(0) ≡ ft(0
+).
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Theorem 3.3 In the M/G/1 queue, for each t > 0,

∂

∂t
E(Dt(x)) = ft(x), x > 0, (3.7)

∂

∂t
E(Dt(0)) = ft(0). (3.8)

Proof. For the virtual wait, fix state-space level x > 0. Consider instants
t and t+ h, t > 0, and small h > 0. Examination of sample paths W (s),
s ∈ (t, t+h) over the state space interval (x, x+h), leads to the following
values of Dt+h(x)−Dt(x) and probabilities (Fig. 3.3):

Dt+h(x)−Dt(x) Probability
+1 Ft(x+ h)− Ft(x) + o(h)
−1 0, since Dt(x) increases with t
≥ 2 o(h)

(3.9)

Taking the expected value of Dt+h(x)−Dt(x) and dividing by h yields

E(Dt+h(x))−E(Dt(x))

h
=

Ft(x+ h)− Ft(x)

h
+

o(h)

h
.

Letting h ↓ 0 gives (3.7); then letting x ↓ 0 yields (3.8). (The value
Dt+h(x)−Dt(x) = 0 does not affect the expected value).

Corollary 3.1 For fixed t > 0,

E(Dt(x)) =
R t
s=0fs(x)ds, x > 0, t > 0. (3.10)

E(Dt(0)) =
R t
s=0fs(0)ds, t > 0. (3.11)

Proof. In (3.7) and (3.8) change s to u and t to s. Then integrate both
sides with respect to s ∈ (0, t). The initial condition E(D0(x)) ≡ 0, x ≥
0, gives the result.

Let {P0; f(x), x > 0}, F (x), x ≥ 0 denote the steady-state pdf and
cdf of the virtual wait, respectively.

Corollary 3.2 If the steady state exists (stability), then

lim
t→∞

∂

∂t
E(Dt(x)) = lim

t→∞
E(Dt(x))

t
= f(x), x > 0 (3.12)

lim
t→∞

∂

∂t
E(Dt(0)) = lim

t→∞
E(Dt(0))

t
= f(0+) ≡ f(0). (3.13)
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Figure 3.3: Sample path examples in time interval (t, t+ h) resulting in
Dt(x + h) −Dt(x) = 1. Probabilities are: P (path type 1) = 1 − λ(y −
x) + o(y − x); P (path type 2) ≤ o(h); P (path type 3) ≤ o(h).

Proof. Let t→∞ in (3.7) and (3.8) giving

lim
t→∞

∂

∂t
E(Dt(x)) = lim

t→∞
ft(x) = f(x), x > 0, (3.14)

lim
t→∞

∂

∂t
E(Dt(0)) = lim

t→∞
ft(0) = f(0). (3.15)

In (3.10) and (3.11) divide both sides by t > 0, and let t → ∞. Since
limt→∞ ft(x) = f(x), x ≥ 0, (3.12) and (3.13) follow.

Let "=
a.s.
" mean "with probability 1" (a.s. ≡ "almost surely").

Corollary 3.3 If the steady state exists, then

lim
t→∞

Dt(x)

t
=
a.s.

f(x), x ≥ 0. (3.16)

Proof. By the elementary renewal theorem,

lim
t→∞

E(Dt(x))

t
=
a.s.

lim
t→∞

Dt(x)

t
.

The result follows from (3.12) and (3.13).
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Corollary 3.4 Rate balance for level crossings:

lim
t→∞

E(Dt(x))

t
= lim

t→∞
E(Ut(x))

t
, x ≥ 0, (3.17)

lim
t→∞

Dt(x)

t
=
a.s.

lim
t→∞

Ut(x)
t

, x ≥ 0. (3.18)

Proof. Dt(x)− Ut(x) ∈ {0,+1,−1},t ≥ 0, x ≥ 0, for all possible sample
paths of the virtual wait. Hence −1 ≤ Dt(x) − Ut(x) ≤ +1, and −1 ≤
E(Dt(x)) − E(Ut(x)) ≤ +1. Dividing by t > 0 and letting t → ∞ gives
(3.17) and (3.18). (see Subsection 2.4.6)

Remark 3.4 Formulas (3.17), (3.18) are also statements of the princi-
ple of set balance, i.e., rate of sample-path exits from set [0, x) =
rate of sample-path entrances into [0, x). The same principle ap-
plies to set [x,∞). SP motion contains the sample path as a subset.
Hence the same principle applies to SP exits and entrances.

3.2.5 Upcrossings and Transient PDF of Wait

The next theorem connects ∂
∂tE(Ut(x)) to P0(t) and ft(y), 0 < y < x.

Theorem 3.4 In the M/G/1 queue with arrival rate λ and service time
cdf B(·)

∂

∂t
E(Ut(x)) = λB(x)P0(t) + λ

Z x

y=0
B(x− y)ft(y)dy (3.19)

∂

∂t
E(Ut(0)) = λP0(t). (3.20)

Proof. Let x > 0, t > 0, be given, and let h > 0 be small. Observation
of possible sample paths {W (s)}, s ∈ (t, t + h) in the vicinity of state-
space interval (x, x + h) yields the following values of Ut+h(x) − Ut(x)
and the corresponding probabilities.

Ut+h(x)− Ut(x) Probability
+1 λhP0(t)B(x)

+λh
R x
0 B(x− y)ft(y)dy + o(h)

≥ 2 o(h);

(3.21)

the first o(h) includes multiple jumps of which exactly one exceeds x.



3.2. TRANSIENT DISTRIBUTION OF WAIT 57

In (3.21), the value Ut+h(x)− Ut(x) = 0 is omitted since it does not
affect the expected value. Negative values are not possible, since Ut(x)
is a counting process (non-decreasing).
Taking the expected value in (3.21) yields

E(Ut+h(x)− Ut(x)) = λhP0(t)B(x)
+λh

R x
y=0B(x− y)ft(y)dy + o(h).

Dividing both sides by h and taking limits as h ↓ 0 gives (3.19) since
B(x) is right continuous. Letting x ↓ 0 in (3.19) gives (3.20) since
Ut(0) ≡ Ut(0+), and B(0) = 1.

Corollary 3.5 For fixed t > 0,

E(Ut(x)) = λ

Z t

s=0
B(x)P0(s)ds+ λ

Z t

s=0

Z x

y=0
B(x− y)fs(y)dyds,

(3.22)

E(Ut(0)) = λ

Z t

s=0
P0(s)ds. (3.23)

Proof. Integrate over time from 0 to t in (3.19) and (3.20). The con-
stants of integration are 0 because E(U0(x)) = 0, x ≥ 0.

Corollary 3.6 If the steady state exists, then

lim
t→∞

∂

∂t
E(Ut(x)) = lim

t→∞
E(Ut(x))

t
= λB(x)P0 + λ

Z x

0
B(x− y)f(y)dy,

(3.24)

lim
t→∞

∂

∂t
E(Ut(0)) = lim

t→∞
E(Ut(0))

t
= λP0. (3.25)

Proof. Note that

lim
t→∞

Ft(x) = F (x), lim
t→∞

ft(x) = f(x), lim
t→∞

P0(t) = P0.

In (3.24) and (3.25), the results for

lim
t→∞

∂

∂t
E(Ut(x)) and lim

t→∞
∂

∂t
E(Ut(0))

follow from (3.19) and (3.20) respectively. The results for

lim
t→∞

E(Ut(x))
t

and lim
t→∞

E(Ut(0))
t

follow from (3.22) and (3.23).
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3.2.6 Equation for Transient PDF of Wait

We apply LC to derive a known integro-differential equation for the
transient distribution of wait, by utilizing Theorems 3.2, 3.3 and 3.4.

Theorem 3.5 For an M/G/1 queue with arrival rate λ and service time
cdf B(·), the transient distribution of the virtual wait satisfies the follow-
ing equations for each t > 0:

ft(x) =
∂

∂t
Ft(x) + λB(x)P0(t)

+ λ

Z x

y=0
B(x− y)ft(y)dy, x > 0, (3.26)

ft(0) =
∂

∂t
P0(t) + λP0(t), (3.27)

P0(t) +

Z ∞

y=0
ft(y)dy = 1. (3.28)

Proof. The theorem follows by applying (3.6), substituting from (3.7),
(3.8), (3.19), (3.20), and using (3.1). Equation (3.28) is the normalizing
condition.

Remark 3.5 Minor extensions of the proofs in this section yield rela-
tionships and integro-differential equations for the transient pdf of wait
when the arrival rate and probability distribution of the service time are
time-dependent. That is, in the formulas of this section, we can replace
λ by λt so that the arrival process is non-homogeneous Poisson. Also,
we can replace B(y) by Bt(y).

Remark 3.6 The LC proofs of (3.26) and (3.27) have important ramifi-
cations. The relationship of both sides of (3.26) and (3.27) to E(Dt(x)),
E(Ut(x)), x ≥ 0, leads to techniques for LC estimation of the tran-
sient distribution of wait by simulation of multiple independent sam-
ple paths (see Remark 9.2). LC estimation (computation, approx-
imation) for steady-state distributions is discussed in Chapter
9. LC estimation is a form of non-parametric distribution (or density)
estimation.

3.2.7 Steady-State Distribution of Wait

Equation (1.8) for the steady state distribution of wait, is now proved
directly from the foregoing LC connections between sample paths and



3.2. TRANSIENT DISTRIBUTION OF WAIT 59

the transient distribution of wait. The next theorem gives two such
proofs.

Theorem 3.6 For an M/G/1 queue with arrival rate λ and service time
S having cdf B(·), where λE(S) < 1, the steady state pdf of the virtual
wait {P0; f(x), x > 0}, is given by

f(x) = λB(x)P0 + λ

Z x

0
B(x− y)f(y)dy, x > 0, (3.29)

f(0) = λP0, (3.30)

P0 +

Z ∞

0
f(y)dy = 1. (3.31)

Proof. Since λE(S) < 1, the transient distribution converges to the
steady state distribution, i.e., limt→∞ Ft(x) = F (x), limt→∞ ft(x) =
f(x), limt→∞ P0(t) = P0. Moreover

lim
t→∞

∂

∂t
Ft(x) = 0, x ≥ 0, lim

t→∞
∂

∂t
P0(t) = 0.

The result follows from Theorem 3.6, by letting t→∞.
Alternatively, the result follows from rate balance for level cross-

ings, i.e., from (3.17), (3.18), and substituting from (3.12), (3.13), (3.24),
(3.25).

Remark 3.7 For the M/G/1 queue with λE(S) < 1, it is well known
that

lim
t→∞

P (W (t) ≤ x) = lim
n→∞

P (Wn ≤ x), x ≥ 0,

where Wn is the waiting time of the nth customer [99]. Hence equations
(3.29) - (3.31) hold for the steady state distributions of both the customer
wait and the virtual wait.

Remark 3.8 It is important to derive (3.29) - (3.31) for the steady
state distribution of wait using LC, because each algebraic term corre-
sponds to a unique down- or upcrossing rate of x ≥ 0. This type of
correspondence enables us to derive integral equations for steady state
distributions of state variables in many complex stochastic models, intu-
itively and straightforwardly. The idea is to study a typical sample path
of the stochastic model, and then write the integral equation(s) and any
boundary conditions (e.g., f(0) = λP0) by inspection using LC theorems
and rate balance or set balance.



60 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

Example 3.1 Consider the M/Ek/1 queue with arrival rate λ and
service time S having pdf

b(x) = e−μx
(μx)kμ

k!
, x > 0, μ > 0, and λ <

μ

k
.

The cdf of the service time is

B(x) =

Z x

y=0
e−μy

(μy)kμ

k!
dy

and the complementary cdf is

1−B(x) = e−μx
Ã
k−1X
i=0

(μx)i

i!

!
, x ≥ 0.

Substituting into (3.29), the integral equation for the steady-state pdf of
wait, f(x), is

f(x) = λP0e
−μx

³Pk−1
i=0

(μx)i

i!

´
+λ

R x
y=0 e

−μ(x−y)
³Pk−1

i=0
(μ(x−y))i

i!

´
f(y)dy, x > 0.

(3.32)

where P0 = 1− λE(S) = 1− kλ
μ .

Case k = 2: Setting k = 2 in (3.32) corresponds to the M/E2/1
queue. The integral equation for f(x) is then

f(x) = λP0e
−μx(1 + μx) + λ

Z x

y=0
e−μ(x−y)(1 + μ(x− y))f(y)dy, x > 0.

(3.33)
Differentiating (3.33) with respect to x twice results in the second order
differential equation

f 00(x) + (2μ− λ)f 0(x) + (μ2 − 2λμ)f(x) = 0, x > 0

with solution
f(x) = a1e

r1x + a2e
r2x, x > 0 (3.34)

where a1, a2 are constants to be determined and

r1 = −μ+
λ

2
− 1
2

q
λ2 + 4μλ,

r2 = −μ+
λ

2
+
1

2

q
λ2 + 4μλ.
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Both r1 < 0, r2 < 0.
The constants a1, a2 and P0 can be determined from the initial con-

dition, f(0) = λP0, and the normalizing condition P0+
R∞
y=0 f(y)dy = 1,

giving

a1 =
r1r2

r1 − r2
(1− P0 +

λP0
r2
),

a2 = λP0 − a1,

P0 = 1−
2λ

μ
.

3.2.8 Alternative Forms of the LC Integral Equation

We can write equation (3.29) for the steady-state pdf of wait as

f(x) = λ(1−B(x))P0 + λ

Z x

y=0
(1−B(x− y))f(y)dy

= λ

µ
P0 +

Z x

y=0
f(y)dy

¶
− λ

µ
B(x)P0 +

Z x

y=0
B(x− y)f(y)dy

¶
= λF (x)− λ

R x
y=0B(x− y)dF (y)

= λF (x)− λ
R x
y=0F (x− y)dB(y).

The last two alternative forms of the LC equation,

f(x) = λF (x)− λ
R x
y=0B(x− y)dF (y), x ≥ 0; (3.35)

f(x) = λF (x)− λ
R x
y=0F (x− y)dB(y), x ≥ 0. (3.36)

have an intuitive interpretation in terms of level crossing dynamics, which
enables them to be written down directly. Consider a sample path of
the virtual wait (e.g., Fig. 1.4) and observe a one-to-one correspondence
between the set of algebraic terms in the equations and a set of mutually
exclusive and exhaustive sample-path crossings of level x, different from
those depicted in Fig. 1.6.

In (3.35) or (3.36) the left side is the SP downcrossing rate of level
x, as usual (see 3.12). On the right side, the first term is the rate of all
SP jumps that start in the state-space interval [0, x]. The second term
subtracts the rate of such jumps that end below level x (do not upcross
x). Therefore the right side is precisely the total rate at which SP jumps
upcross level x. Rate balance, (3.17) or (3.18), gives equations (3.35)
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and (3.36). Note that (3.35) yields (3.36) by using the transformation
z = x− y, dz = −dy, and integrating by parts.

These alternative forms of the LC integral equation are useful when
analyzing variants of M/D/1 and M/Discrete/1 queues (sections 3.8,
3.9), as well as other models. They are also useful in theoretical applica-
tions, such as in TAM (transform approximation method) [66], [93], [94].
The LC "intuitive" construction of (3.35) and (3.36), suggests how to
use LC to develop integral equations for the pdf of wait in more general
models.

Example 3.2 Consider the M/Uniform/1 queue with arrival rate λ.
Assume the service time is uniform on (0, c), c > 0, i.e.,

B(x) =

⎧⎨⎩
0, x < 0,
x
c , 0 ≤ x < c,
1, x ≥ c.

Stability (steady state) exists provided λ c
2 < 1. Substituting the uniform

B(·) into (3.35), gives an integral equation for the steady-state distribu-
tion of wait,

f(x) = λF (x)− λ
R x
y=0

(x− y)

c
dF (y), 0 < x < c, (3.37)

f(x) = λF (x)− λ
R x
y=x−c

(x− y)

c
dF (y)− λF (x− c), x ≥ c. (3.38)

On the right side of equation (3.38), the difference λF (x)−λF (x− c) is
the rate of jumps that start in state-space interval [x− c, x]. Jumps that
start in [0, x− c) cannot upcross x.

Solution Approach for Example 3.2

We carry out only the first step of the solution by solving (3.37), to
suggest a procedure applicable to many M/G/1 variants. We obtain
f(x),x ∈ (0, c), and indicate the iteration on successive intervals of length
c in the state space. Later we obtain an analogous complete solution for
M/D/1 (Section 3.8).

Differentiating (3.37) twice with respect to x results in the second
order differential equation

f 00(x)− λf 0(x) +
λ

c
f(x) = 0.
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The solution is

f(x) = a1·e
λ
2
x cos

Ã
1

2

r
4λ

c
− λ2 · x

!

+ a2 · e
λ
2
x sin

Ã
1

2

r
4λ

c
− λ2 · x

!
,

where a1, a2 are constants. Applying the initial conditions f(0) = λP0,
f 0(0) = λ2P0 − λP0

c with P0 = 1− λc
2 , gives

a1 = λ(1− λc

2
),

a2 =
(1− λc

2 )λ(λ−
1
c )q

4λ
c − λ2

.

Hence

f(x) = e
λ
2
x[(λ(1− λc

2 ) cos

µ
1
2

q
4λ
c − λ2 · x

¶
+
(1−λc

2
)λ(λ− 1

c
)

4λ
c
−λ2

sin

µ
1
2

q
4λ
c − λ2 · x

¶
], 0 < x < c.

(3.39)
We can iterate to solve for f(x), x ∈ [c, 2c), x ∈ [2c, 3c), etc., using

(3.38). For x ∈ [c, 2c), we have

f(x) = λF (x)− λ
R x
y=c

(x−y)
c dF (y)

−λ
R c
y=x−c

(x−y)
c f(y)dy − λF (x− c), c ≤ x < 2c.

(3.40)

We solve for f(x),x ∈ [c, 2c) by substituting for f(y) from (3.39) on the
interval (x − c, c) to evaluate the second integral in (3.40), and using
continuity f(c−) = f(c). (Continuity can be proved similarly as for the
M/D/1 queue in Section 3.10.) The procedure may be repeated recur-
sively on intervals [ic, (i + 1)c), i ≥ 2. When numerics are substituted
for the parameters λ and c, the procedure can be readily programmed
on a computer.

3.2.9 Equation for Distribution of System Time

This subsection uses LC to develop a relationship between the steady-
state pdf of wait and the steady-state cdf of system time. Let σ denote
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Figure 3.4: Sample path of virtual wait showing peaks and troughs, and
a level x.

the total time spent in the system by an arbitrary arrival. Let the pdf
and cdf of σ be fσ(x), Fσ(x),x > 0, respectively. Then σ = Wq + S,
where Wq is the wait before service and S is the common service time.

Consider a sample path of the virtual wait (Fig. 3.4). It has a se-
quence of peaks (relative maxima) and troughs (relative "minima" which
are infima, due to sample-path right continuity). A trough at level 0 is
considered to occur at an instant the SP hits 0 from above.

Fix level x ≥ 0. Let P+t (x), T+t (x) denote the number of peaks and
troughs, respectively, at levels strictly above level x during time interval
[0, t). Recall that Dt(x) is the number of SP downcrossings of x during
(0, t). It is straightforward to show that for fixed t > 0, Dt(x), is a step
function in x, and

Dt(x) = P+t (x)− T+t (x), t > 0. (3.41)

LetNA(t) denote the number of arrivals during (0, t). AssumeNA(t) >
0. Dividing (3.41) by t > 0, we obtain

Dt(x)

t
=

P+t (x)

t
− T+t (x)

t

=
NA(t)

t
· P

+
t (x)

NA(t)
− NA(t)

t
· T

+
t (x)

NA(t)
, t > 0. (3.42)

Note that P+t (x) represents the number of system times greater than
x in (0, t). Also T+t (x) represents the number of waiting times greater
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than x in (0, t). Also

lim
t→∞

NA(t)

t
= λ, lim

t→∞
P+t (x)

NA(t)
= 1− Fσ(x), lim

t→∞
T+t (x)

NA(t)
= 1− F (x).

Thus, letting t → ∞ on both sides of (3.42) gives another alternative
form of the M/G/1 "integral" equation for pdf of wait,

f(x) = λ(1− Fσ(x))− λ(1− F (x)), (3.43)

or
f(x) = λF (x)− λFσ(x). (3.44)

The LC intuitive interpretation of these equations are as follows. On
the right side of (3.43) the first term is the rate of all jumps that end
above level x (system time > x). The second term subtracts the rate of
those jumps that start above level x (wait > x). Thus, the right side is
the rate of SP jumps that upcross x.

The LC interpretation of (3.44) is that the first term on the right side
is the rate of all jumps that start at levels ≤ x (wait ≤ x). The second
term subtracts the rate of those jumps that end at levels ≤ x (system
time ≤ x). The right side is the rate of SP jumps that upcross x.

Equation (3.43) can be rearranged as

λ(1− Fσ(x)) = λP0B(x) + λ
R x
y=0B(x− y)f(y)dy

+λ
R∞
y=x f(y)dy,

(3.45)

upon using (3.29) and

λ(1− F (x)) = λ

Z ∞

y=x
f(y)dy.

Remark 3.9 Equation (3.42) combines sample-path peaks and troughs
and the basic LC theorem limt→∞

E(Dt(x))
t = f(x), to provide a very

simple derivation of the basic LC integral equation for the steady-state
pdf of wait, since (3.43) and (3.44) are immediately transformable to
(3.29.

3.3 Waiting Time Properties

We derive several known properties of the waiting time using LC. (Note
that (3.29) has been derived by LC.)
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3.3.1 Probability of Zero Wait

In (3.29) integrate both sides with respect to x over (0,∞). This yields

1− P0 = λP0

Z ∞

x=0
B(x)dx+ λ

Z ∞

x=0

Z x

y=0
B(x− y)f(y)dydx,

1− P0 = λP0E(S) + λE(S)(1− P0),

P0 = 1− λE(S). (3.46)

Formula (3.46) is the well known steady-state probability of a zero wait.

3.3.2 Pollaczek-Khinchin (P-K) Formula

In (3.29) multiply both sides by x and integrate with respect to x over
(0,∞). We obtainZ ∞

x=0
xf(x)dx = λP0

Z ∞

x=0
xB(x)dx+ λ

Z ∞

x=0

Z x

y=0
xB(x− y)f(y)dydx.

In the double integral, interchange limits, write x = x − y + y, and
simplify, giving

E(Wq) = λP0
E(S2)

2
+ λ(1− P0)

E(S2)

2
+ λE(Wq)E(S).

Thus we obtain the well known Pollaczek-Khinchin (P-K) formula

E(Wq) =
λE(S2)

2(1− λE(S))
=

λE(S2)

2P0
=

λ(V ar(S) + (E(S))2)

2(1− λE(S))
. (3.47)

3.3.3 Expected Number in Queue

Let Nq denote the number of customers waiting before service, and Lq

its expected value, in steady state. From Little’s formula "L = λW "
and (3.47),

E(Nq) ≡ Lq = λE(Wq)

=
λ2E(S2)

2(1− λE(S))
=

λ2E(S2)

2(1− ρ)
.

The expected number in the system is

L = Lq + Ls
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where Ls denotes the expected number in service. Ls is given by

Ls = 1 · (1− P0) + 0 · P0 = λE(S).

Thus

L =
λ2E(S2)

2(1− λE(S))
+ λE(S).

3.3.4 Laplace-Stieltjes Transform

The Laplace—Stieltjes transform (LST) of the wait before service is

F ∗(s) ≡
Z ∞

x=0
e−sxdF (x) = P0 +

Z ∞

x=0
e−sxf(x)dx, s > 0. (3.48)

The LST of the service time is

B∗(s) ≡
Z ∞

x=0
e−sxdB(x).

Note thatZ ∞

x=0
e−sxB(x)dx =

Z ∞

x=0
e−sx(1−B(x))dx =

1

s
(1−B∗(s)).

In (3.29) we multiply both sides by e−sx and integrate with respect
to x over (0,∞), and obtainR∞

x=0 e
−sxf(x)dx = λP0

R∞
x=0 e

−sxB(x)dx

+λ
R∞
x=0

R x
y=0 e

−sxB(x− y)f(y)dydx.
(3.49)

or

F ∗(s)− P0 = λP0
R∞
x=0 e

−sxB(x)dx

+λ
R∞
x=0

R x
y=0 e

−sxB(x− y)f(y)dydx.
(3.50)

In the double integral, express e−sx = e−sye−s(x−y), interchange limits
of integration, and simplify to yield the well known formula (e.g., [63])

F ∗(s) =
sP0

s− λ(1−B∗(s))
=

s(1− λE(S))

s− λ(1−B∗(s))

=
1− λE(S)

1− λE(S)
³
1−B∗(s)
sE(S)

´ , s > 0. (3.51)
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Let ρ = λE(S). We can expand F ∗(s) as a series

F ∗(s) ≡ P0 +

Z ∞

x=0
e−sxf(x)dx

= 1− ρ+ (1− ρ)
∞X
k=1

µ
1−B∗(s)

sE(S)

¶k

. (3.52)

We can invert F ∗(s) to obtain

P0 = 1− ρ,

f(x) = (1− ρ)
P∞

k=1 g
∗k(x), x > 0,

(3.53)

where g∗k(x) is the k-fold convolution of the steady-state excess service
time (see [78] pages 200-201, and our Subsection 10.2.2, or sections on
renewal theory in, e.g., [74] or [91]). We shall see in Section 3.15, that
the series (3.53) is a special case of a more general series having a level-
crosssing interpretation.

Remark 3.10 It is known that equations (3.49) and (3.51) can be inter-
preted as the probability that the waiting time in queue is less than an in-
dependent "catastrophe" random variable which is exponentially distrib-
uted with rate s. That is, the wait in queue finishes before the catastrophe
occurs with probability F ∗(s). This probabilistic interpretation can
often be used to derive Laplace transforms of random variables associated
with stochastic models (e.g., [31], Section 3 ).

3.3.5 System Time

Let σ denote the time spent in the system by an arbitrary arrival in
steady state. Denote its pdf and cdf by fσ(x), Fσ(x), x > 0, respectively.
Let Wq be the wait before service and S the service time. Recall that
f(x), F (x) are the pdf and cdf of Wq. For an arbitrary arrival, σ > x iff
the arrival waits in queue y ≤ x and the service time exceeds x− y, or,
the arrival waits in queue > x. Thus

1− Fσ(x) = P (σ > x)

= P0B(x) +

Z x

y=0
B(x− y)f(y)dy + 1− F (x)

=
f(x)

λ
+ 1− F (x) (3.54)
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and
f(x) = λF (x)− λFσ(x),

which is the same as (3.44). If f(x) is known, then F (x) can be com-
puted. Then Fσ(x) and F 0σ(x) ≡ fσ(x) can be obtained.

3.3.6 PDF of System Time in Terms of PDF of Wait

We now give an LC equation for fσ(x) directly in terms of f(x). Consider
a sample path of the virtual wait and fix level x > 0. We view the SP
jumps at arrival instants from the ends of the jumps (rather than from
the starts of the jumps). The level of the end of the jump represents the
system time of the corresponding arrival.

The downcrossing rate of level x is given by

λ

Z ∞

y=x
e−λ(y−x)fσ(y)dy,

since λfσ(y)dy is the rate of SP jumps that end within a "dy" neighbor-
hood about level y > x, and e−λ(y−x) is the probability that the next
customer arrives more than than y − x later. Thus the time interval of
duration y − x is devoid of new arrivals and corresponding SP jumps.
The SP descends with slope −1 to level x, making a left-continuous
downcrossing of x.

(In this scenario, the jumps that end "at" y may start either be-
low x or in interval (x, y). The end level y is the system time of the
corresponding arrival.)

By the basic LC theorem for M/G/1 (Theorem 1.1), another expres-
sion for the SP downcrossing rate of x is f(x) (equal to upcrossing rate).
Hence we have the equation

λ

Z ∞

y=x
e−λ(y−x)fσ(y)dy = f(x). (3.55)

Multiplying both sides of (3.55) by e−λx and differentiating with respect
to x yields

fσ(x) = f(x)− f 0(x)

λ
, x > 0, (3.56)

wherever f 0(x) exists. Thus, if f(x) is known, fσ(x) can be found directly
using (3.56).
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Example 3.3 In Mλ/Mμ/1, f(x) = λP0e
−(μ−λ)x,x > 0 (see (3.86) be-

low). Substituting into (3.56) yields

fσ(x) = (μ− λ)e−(μ−λ)x, x > 0,

Fσ(x) =

Z x

y=0
fσ(y)dy = 1− e(μ−λ)x, x ≥ 0,

(same as (3.90) below).

3.3.7 Number in System

We obtain the steady state probability distribution of the number in the
system in two ways (for perspective), by conditioning on either Wq or
on σ. Let Pn, n = 0, 1, ..., denote the probability of n customers in the
system at an arbitrary time point. Let an, dn, n = 0, 1, ..., denote the
steady-state probability of n in the system just before an arrival, and just
after a departure, respectively. For the M/G/1 queue it is well known
that Pn = an due to Poisson arrivals, and generally an = dn (e.g., [91]).

Conditioning on Wq, we obtain

Pn = dn =
R∞
y=0P (n− 1 arrivals during y|Wq = y)f(y)dy

=
R∞
y=0e

−λy (λy)
n−1

(n− 1)!f(y)dy, n = 1, 2, ... . (3.57)

We can check that (3.57) is consistent with P0 +
R∞
y=0f(y)dy = 1 since

∞X
n=1

Pn =
∞X
n=1

dn =
R∞
y=0e

−λy
∞X
n=1

(λy)n−1

(n− 1)! · f(y)dy

=
R∞
y=0e

−λyeλyf(y)dy =
R∞
y=0f(y)dy = 1− P0.

Alternatively, conditioning on σ,

Pn = dn =
R∞
y=0P (n arrivals during y|σ = y)fσ(y)dy

=
R∞
y=0e

−λy (λy)
n

n!
fσ(y)dy, n = 0, 1, .... (3.58)

which is also consistent with P0 +
R∞
y=0f(y)dy = 1 since

∞X
n=0

Pn =
∞X
n=0

dn =
R∞
y=0e

−λy
∞X
n=0

(λy)n

n!
· fσ(y)dy

=
R∞
y=0fσ(y)dy = 1.

If f(·), fσ(·) are known for an M/G/1 model, equation (3.57) or (3.58)
can yield{Pn}.
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3.3.8 Expected Busy Period

Let B denote a busy period. Consider a sample path of the virtual wait.
To gain insight and see connections among different approaches, we give
three ways to derive the expected busy period E(B).
(1) The long-run proportion of time that the sample path is in the state-
space set (0,∞) is equal to λP0E(B) (SP rate out of {0} · E(B)). It is
also equal to 1− P0. Hence

λP0E(B) = 1− P0,

E(B) = 1− P0
λP0

=
E(S)

1− λE(S)
. (3.59)

Can the appearance of P0 in the denominator of (3.59) be explained?
We next give a derivation of (3.59) using the virtual-wait sample-path
downcrossing rate of level 0 (hit rate of 0 from above), which provides
intuitive insight.

(2) The long-run proportion of time that a sample path is in the state-
space interval (0,∞) is 1 − P0 = ρ = λE(S). Successive busy cycles
form a renewal process. There is one busy period embedded within each
busy cycle. A sample path is in state-space interval (0,∞) only during
busy periods. Busy periods are iid random variables. By the theory of
regenerative processes (e.g., [96]) we obtain

E(B)
E(Busy cycle)

= ρ = 1− P0.

From renewal theory (e.g., [49], [74], [91]) and LC theory,

E(Busy cycle) =
1

(Downcrossing rate of level 0)
=

1

f(0)
=

1

λP0
.

Hence E(B) is the (1− P0) proportion of a busy cycle, i.e.,

E(B) = (1− P0) ·E(Busy cycle) =
1− P0
f(0)

=
1− P0
λP0

=
E(S)

1− λE(S)
.

The key reason for P0 appearing in the denominator is seen directly
from Theorem 1.1, Corollary 1.1, namely f(0)=λP0! The expression

E(B) = 1− P0
λP0

(3.60)
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appears to be more fundamental than the expression E(B) = E(S)
1−λE(S) ,

since in many model variants of the standard M/G/1 queue, P0 6= 1 −
λE(S) (e.g., sections 3.7, 3.11)

(3) Busy periods and idle periods form an alternating renewal process.
Hence

E(B)
E(B) +E(Idle period)

=
E(B)

E(B) + 1
λ

= 1− P0,

which implies (3.60). This derivation is equivalent to (2), since (Busy
cycle) = B+(Idle period). However, it does not "explain" the appear-
ance of λP0 in the denominator. The LC derivation (2) does provide an
explanation.

Remark 3.11 Formula (3.60), E(B) = 1−P0
λP0

, shows immediately that

E(B) <∞ iff 0 < P0 ≤ 1,

which is equivalent to

E(B) =∞ iff P0 = 0.

The stability condition for the standard M/G/1 queue is P0 > 0
(same as λE(S) < 1). That is, the queue is stable iff state {0} is positive
recurrent, equivalently iff the expected busy period is finite.

Remark 3.12 Formula E(B) = 1−P0
f(0) is more fundamental than E(B) =

1−P0
λP0

, since in some M/G/1 variants f(0) 6= λP0. An example is M/G/1
with bounded virtual wait, as in Variant 2 of Subsection 3.14.3. In that
model the upper bound is K. Then f(0) = λP0(1−B(K)) and

E(B) = 1− P0

λP0(1−B(K))
.

3.3.9 Structure of Busy Period

Consider a busy period of the virtual wait (Fig. 3.5). We derive a prop-
erty of the busy period from direct observation of the sample path. Sup-
pose a customer arrives at t−A and must wait y ≥ 0 before service. The
SP then has coordinates (t−A, y). At tA the sample path jumps an amount
S, to level y+S. Let ty be the first instant after tA such that the sample
path hits level y from above, i.e.,

ty = min{t > tA|X(t) = y}.
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A busy period may be defined as the interval length ty − tA. The
time interval ty − tA is independent of y, since the SP jump at tA is a
full service time distributed as S. We utilize this definition of a busy
period to study the structure of a busy period. (The usual definition of
busy period is made for y = 0 only, e.g., [99].)

Consider a busy period B during which at least one customer arrives
after the start of the busy period. Denote their arrival times within B by
τ1 < τ2 < · · ·. Then 0 < W (τ−i ), i = 1, 2, ... . Define τ

∗
1 = τ1 and τ∗n+1 =

min{τ i|W (τ−i ) < W (τ∗n)}, i > n = 1, 2, ... . Due to the memoryless
property of the inter-arrival times and since d

dtW (t) = −1,W (t) > 0, the
waits {W (τ∗−n )} are distributed the same as the customer arrival times
during the first service time S. We call the customers that arrive at time
points {τ∗n} "tagged" arrivals (see Fig. 3.5).

Let NS denote the number of tagged arrivals during B. Then NS is
distributed as the number of arrivals to the system during the service
time S. The tagged arrivals are those that initiate their own busy
periods starting at {(τ−∗n ,W (τ−∗n ))} in the time-state plane, similar to
B1, B2, B3 depicted in Fig. 3.5. in Fig. 3.5, τ∗1 = τ1, τ∗2 = τ4, τ∗3 = τ6.
The tagged arrivals during B are customers 1, 4 and 6, which initiate B1,
B2, B3, respectively. Note that (τ−∗n ,W (τ−∗n )), n = 1, ..., NS are strict
descending ladder points ([56]) within B. Then

B =
dist

S +

NSX
i=1

Bi, (3.61)

where {Bi} are iid r.v.’s each distributed as B independent of NS. Equa-
tion (3.61) is known, and is usually derived by different, but equivalent,
reasoning (e.g., [78]). From (3.61), we obtain

E(B) = E(S) +E(NS)E(B)
= E(S) + λE(S)E(B)

which gives E(B) as in (3.59).
Also, we can obtain (3.59) by recursively substituting for Bi in (3.61).

This gives an infinite series of terms

B =
dist

S +

NSX
i=1

Si +

NSX
i=1

NSX
j=1

Sij +

NSX
i=1

NSX
j=1

NSX
k=1

Sijk + ...

where Si, Sij,j , Sijk, etc., are distributed as S. Assume 0 < λE(S) < 1,
i.e., the steady state distribution of wait exists and B <∞ (a.s.). Then
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Figure 3.5: Busy period B =
dist

S+
PNS

i=1 Bi. Bi =
dist
B,i = 1, ..., NS. NS

= number of "tagged" arrivals in B. Here NS = 3. NS =
dist

number of

arrivals during S. Tagged arrival times are τ∗1 = τ1, τ
∗
2 = τ4, τ

∗
3 = τ6.

Tagged arrivals 1, 4, 6 during B initiate B1, B2, B3. (In figure symbol
"B" represents "B".)

expected value is

E(B) = E(S) + λ(E(S))2 + λ2(E(S))3 + · · ·
= E(S) · (1+λ(E(S))+λ2(E(S))2 + · · ·)

=
E(S)

1− λE(S)
.

If λE(S) ≥ 1 it is possible for the busy period to be infinite. Then its
mean and variance may not exist.

We compute the known formula (e.g., [91]) for the variance of B
assuming it exists from (3.61) and the definition

V ar(B) = E(B2)− (E(B))2,

for completeness, and because we intend to use the result for E(B2), e.g.,
when discussing M/G/1 priority queues in Section 3.12.

To compute E(B2), we first obtain a formula for B2 from (3.61) as

B2 = S2 + 2S

NSX
i=1

Bi +
Ã

NSX
i=1

Bi

!2
.
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Conditioning on S = s, gives the conditional expected value

E(B2|S = s) = s2 + 2sE

Ã
NsX
i=1

Bi

!
+E

⎛⎝Ã NsX
i=1

Bi

!2⎞⎠ .

In the second term on the right
PNs

i=1 Bi is a compound Poisson process
with rate λ. Thus

E

Ã
NsX
i=1

Bi

!
= λsE(B).

The third term on the right is

E

⎛⎝Ã NsX
i=1

Bi

!2⎞⎠ = E

⎛⎝ NsX
i=1i

B2i +
NsX

i6=j=1
BiBj

⎞⎠
= λsE(B2) +E(Ns(Ns − 1)BiBj)
= λsE(B2) +E(Ns(Ns − 1))(E(B))2

= λsE(B2) + (λs)2(E(B))2.

since

E(Ns(Ns − 1)) =
∞X
n=2

n(n− 1)e−λs(λs)n
n!

= (λs)2.

Thus

E(B2|S = s) = s2 + 2λs2E(B) + λsE(B2) + (λs)2(E(B))2.

Unconditioning with respect to the service time distribution, substituting
from (3.59) and simplifying yields

E(B2) = E(S2)(1 + λE(B))2
1− λE(S)

=
E(S2)

(1− λE(S))3
=

E(S2)

(1− ρ)3
, (3.62)

where ρ = λE(S).
Since V ar(B) = E(B2)− (E(B))2, from (3.59) and (3.62)

V ar(B) = V ar(S) + λ(E(S))3

(1− λE(S))3
.
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3.3.10 Number Served in Busy Period

Notation 3.7 Random variable X =
distr

Ea: means that random variable

X "is distributed as" an exponentially distributed r.v. with mean 1
a , a >

0. (We will use this notation often for brevity.)

LetNB be the number of customers served in a busy period B. Let Si,
Ti denote the ith service and inter-arrival times during B, respectively.
Then NB = min{n|

Pn
i=1(Si−Ti) ≤ 0} is a stopping time (e.g., [74], [91])

for the sequence {(Si−Ti)}. Since Ti =
distr

Eλ, the remaining inter-arrival

time at the end of B is also distributed as Eλ (memoryless property [91]).
Hence

PNB
i=1(Si−Ti) ends a distance below 0, which is distributed as Eλ,

and

E

Ã
NBX
i=1

(Si − Ti)

!
= −1

λ
, (3.63)

E(NB)

µ
E(S)− 1

λ

¶
= −1

λ
, (3.64)

E(NB) =
1

1− λE(S)
. (3.65)

We may also write NB = min{n|
Pn

i=1 Si ≤
Pn

i=1 Ti}. In this form
it is seen that NB is a stopping time for both sequences {Si} and {Ti}.
That is, we observe the r.v.’s in the order S1, T1, S2, T2,... and stop at
n in both sequences when the stopping criterion (

Pn
i=1 Si ≤

Pn
i=1 Ti) is

first satisfied. Thus the event {NB = n} is independent of Sn+1, Tn+1, ....
Moreover, since B =

PNB
i=1 Si where Si ≡

dist
S,

E(B) = E(NB)E(S) =
E(S)

1− λE(S)
,

which yields (3.65).
Denote a busy cycle by d0. Then d0 =

PNB
i=1 Ti, and

E(d0) = E(NB)E(T ) = E(NB)
1

λ
=

1

λ(1− λE(S))
(3.66)

which also gives (3.65).
We may write

NB = 1 +
NSX
i=1

NBi
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where NBi ≡
dist

NB, and NS ≡
dist

number of arrivals in the first service time

of a busy period (see Fig. 3.5). Taking expected values yields

E(NB) = 1 +E(NS)E(NB)

= 1 + λE(S)E(NB),

again leading to (3.65).
Notably (3.65) is the same as E(NB) = 1

P0
. If P0 / 1 (close to 1)

corresponding to a very low traffic intensity ρ, then E(NB) ' 1 (close to
1) meaning most customers in service are alone in the system.

The role of LC in this subsection, is that the downcrossing rate level 0
(SP hit rate of 0 from above) is f(0), which implies E(d0) = 1

f(0) =
1

λP0
.

Noting that d0 is a busy cycle, and applying the stopping time definition
of busy cycle as in (3.66), leads to (3.65).

3.3.11 Inter-Downcrossing Time of a Level

Consider a sample path of the virtual wait (Fig. 3.6). Let dx represent
the time between two successive downcrossings of level x ≥ 0. Starting
at the instant of the first downcrossing of level x, r.v. dx is an interval
of a renewal process {Dt(x)} due to exponential inter-arrival times. The
renewal rate is limt→∞

Dt(x)
t = limt→∞

E(Dt(x))
t = f(x) (Corollary3.2).

Thus,

E(dx) =
1

f(x)
, x ≥ 0 (3.67)

where f(x) is the solution of (3.29) and (3.31).
A busy cycle d0 = B + I where B, I represent the busy and idle

periods, respectively. Letting x ↓ 0 in (3.67) gives the expected busy
cycle

E(d0) =
1

f(0)
=

1

λP0
=

1

λ(1− λE(S))

= E(B) +E(I) = E(B) + 1

λ
.

Thus we obtain the expected busy period as in (3.59),

E(B) = 1

λ(1− λE(S))
− 1

λ
=

E(S)

1− λE(S)
.
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Figure 3.6: Sample path of virtual wait in M/G/1. Shows inter-
downcrossing time dx, sojourn ax, sojourn bx, busy and idle periods.

3.3.12 Sojourn Time Below a Level

Let bx denote a virtual-wait sample-path sojourn time below, or at, level
x ≥ 0 (Fig. 3.6). Assuming the queue is stable (ρ = λE(S) < 1), the
proportion of time a sample path spends at or below x, is f(x)E(bx) and
is also equal to F (x). Hence

E(bx) =
F (x)

f(x)
. (3.68)

Letting x ↓ 0, reduces (3.68) to the expected idle period

E(b0) =
F (0)

f(0)
=

P0
λP0

=
1

λ
.

Also, from (3.68)
d

dx
lnF (x) =

1

E(bx)
.

This leads to expressions for the cdf F (x) and pdf f(x) of wait in terms
of E(by),0 < y < x,

F (x) = P0e
x
y=0

dy
E(by) , x ≥ 0, (3.69)

f(x) =
P0

E(bx)
e

x
y=0

dy
E(by) , x > 0. (3.70)
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3.3.13 Sojourn Time Above a Level

Let ax denote a virtual-wait sample-path sojourn time above level x ≥
0 (Fig. 3.6). Then a0 = B. By Theorem 1.1, for M/G/1 queues in
equilibrium, the down- and upcrossing rates of x are both equal to f(x).
The proportion of time that a sample path spends above x is equal to
f(x)E(ax) and is also equal to 1− F (x). Therefore

E(ax) =
1− F (x)

f(x)
, x ≥ 0. (3.71)

Intuitively, ax ≤
stoch

B where " ≤
stoch

" means "stochastically less than

or equal to", and E(ax) ≤ E(B). Both inequalities seem to hold since
the excess of an SP jump above x is, in general, stochastically less than
a total service time. For x = 0, E(a0) = E(B). Proposition 3.1 below
shows that if E(ax) = E(B) for all x ≥ 0 then the absolutely continuous
part of the pdf is exponentially distributed.

Proposition 3.1 Assume ρ = λE(S) < 1.

(1) E(a0) =
E(S)

1−λE(S) = E(B).
(2) If E(ax) = E(B)) ≡ E(S)

1−λE(S) for all x ≥ 0, then the steady state
cdf and pdf of wait are F (x) = 1− ρe

− x
E(B) and

{P0; f(x), x > 0} = {1− ρ;λP0e
− x
E(B) , x > 0}

respectively.
Proof. (1) Letting x ↓ 0 in (3.71) gives as in (3.59),

E(a0) =
1− F (0)

f(0)
=
1− P0
λP0

=
λE(S)

λP0
=

E(S)

1− λE(S)
= E(B).

(2) If E(ax) ≡ E(B), x ≥ 0, then(from (3.71))

f(x)

1− F (x)
≡ 1

E(B) , x > 0, (3.72)

d

dx
ln(1− F (x)) ≡ − 1

E(B) , x > 0.
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Integration with respect to x yields

1− F (x) = Ae
− x
E(B) , x > 0,

where A is a constant. Letting x ↓ 0 gives

A = 1− F (0) = 1− P0 = ρ.

Thus the cdf is
F (x) = 1− ρe

− x
E(B) , x ≥ 0. (3.73)

Differentiation of (3.73) with respect to x > 0 gives

f(x) = λP0e
− x
E(B) , x > 0, (3.74)

which is the absolutely continuous part of the pdf.

Remark 3.13 The standard M/M/1 queue satisfies case (2) of Propo-
sition 3.1. For M/M/1, the service time is exponentially distributed. Fix
level x > 0. All jumps which start below level x and end above level x,
have excess above x distributed as the exponential service time, by the
memoryless property (discussed further in Section 3.4).

Remark 3.14 Note that (3.72) is the hazard rate ( failure rate) of
the pdf of wait.

In addition to the two cases discussed in Proposition 3.1, we now
show that E(ax) < E(B), x > 0, as intuitively expected. Note the role of
the alternative form of the M/G/1 integral equation (3.35) in facilitating
the proof.

Proposition 3.2 Except for the two cases in Proposition 3.1,

E(ax) =
1− F (x)

f(x)
<

E(S)

1− λE(S)
= E(B), x > 0. (3.75)

Proof. Cross multiplying in the inequality of (3.75) yields

1− F (x)− λE(S) + λE(S)F (x) < E(S)f(x)

or

1− F (x)− λE(S) + λE(S)F (x)

< E(S)

µ
λF (x)− λ

Z x

y=0
B(x− y)f(y)dy

¶
,
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upon substituting for f(x) from (3.35). Cancelling and rearranging
terms, it is required to prove the following inequality holds:

1 + λE(S)
R x
y=0B(x− y)f(y)dy < F (x) + λE(S).

Note that P0 = 1−λE(S), λE(S) < 1, B(x−y) ≤ 1. Hence the left side

1 + λE(S)

Z x

y=0
B(x− y)f(y)dy < 1 +

Z x

y=0
f(y)dy

= 1 + (F (x)− P0)

= F (x) + λE(S),

as required.

3.3.14 Sojourn Above a Level and Distribution of Wait

The following relationship holds between the expected sojourn times
E(ay), 0 < y < x, and the steady-state cdf of wait F (x). In general,
E(ay) varies with y.

Proposition 3.3 For the M/G/1 queue in equilibrium (ρ = λE(S) <
1), the cdf of wait F (x) is related to E(ay) the expected sojourn times of
the virtual wait above level y,0 < y < x, by

F (x) = 1− ρ · e−
x
y=0

1
E(ay)

dy
, x ≥ 0. (3.76)

Proof. Consider a sample path of the virtual wait. The pdf of wait
f(x) is the SP upcrossing (and downcrossing) rate of level x. Hence the
proportion of time the virtual-wait sample path spends above level x is

f(x)E(ax) = 1− F (x).

Thus (the hazard rate of f(x) is)

f(x)

1− F (x)
=

1

E(ax)
, x > 0. (3.77)

Hence
d

dx
ln(1− F (x)) = − 1

E(ax)
, x > 0.

Integrating with respect to x gives

1− F (x) = Ae
− x

y=0
1

E(ay)
dy

.
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Letting x ↓ 0, the constant

A = 1− F (0+) = 1− F (0) = ρ = λE(S).

Hence we obtain (3.76).

Remark 3.15 The term "hazard rate" is usually associated with positive
continuous random variables (e.g., [50]). Here, we also use "hazard rate"
for the non-negative waiting time (atom at 0).

3.3.15 Hazard Rate of Steady-state Wait

Formula (3.77) is recognizable as the hazard rate of the steady-state
random variable wait (see Remark 3.15). From it we can proceed in two
different directions.

First, we may integrate with respect to x and get the expression for
F (x) given in (3.76).

Second, we may use simulation to estimate the hazard rate f(x)
1−F (x) for

various values of x with considerable accuracy. Fix x > 0. We simulate
a single sample path of the virtual wait. Denote the successive sample-
path sojourn times above level x by ax1 , ax2, ..., axN . The simulated time
is made sufficiently long such that N is "large". Then estimate E(ax)
by the average simulated sojourn time

bE(ax) = 1

N

NX
j=1

axj .

Denote the hazard rate of wait at x by φ(x). From (3.77), a plausible
estimate of φ(x) is bφ(x) = 1bE(ax) . (3.78)

By definition

φ(x)dx = P (Wq ∈ (x, x+ dx)|Wq > x)

=
P (x < Wq < x+ dx)

P (Wq > x)
,

where Wq is the steady-state queue wait. Formula (3.77) suggests the
following observation, which has an intuitive meaning. φ(x) varies in-
versely with E(ax). If the hazard rate at x is large then the E(ax) is
small. If the hazard rate at x is small, then E(ax) is large.
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The foregoing discussion suggests different avenues of investigation.
One is an LC estimation method using simulated sample paths (see
Chapter 9). Another is the relationship between hazard rates of state
random variables and their sample-path expected sojourn times with
respect to a level.

Example 3.4 In the Mλ/Erlang-(2, μ)/ 1 queue with arrival rate λ, ex-
pected service time 2

μ and λ · 2μ < 1 (denoted by Mλ/E2.μ/1), consider
a sample path of the virtual wait (see Example 3.1). The service time
is distributed as an Erlang-(2, μ) random variable. The expected sojourn
time above an arbitrary level x > 0 is equal to a busy period of the
Mλ/E2.μ/1 queue, or to a busy period of the Mλ/Mμ/1 queue, depend-
ing on the initial service-time phase that covers x, due to an SP jump
upcrossimg of x. That is, the sojourn’s initial SP upcrossing of x covers
x either during phase 1 or during phase 2 of the Erlang-(2, μ) service
time. If phase 1 covers x, then the excess jump above x is distributed as
Erlang-(2, μ) (memoryless property of exponential). If phase 2 covers x,
then the excess jump above x is distributed as an exponential r.v. with
rate μ. Applying (3.60), for Mλ/Ek,μ/1, we have E(B) = k

μ−kλ . For

Mλ/Mμ/1, E(B) = 1
μ−λ (formula (3.93) below). Thus,

E(ax) = p1(x)

µ
2

μ− 2λ

¶
+ p2(x)

µ
1

μ− λ

¶
,

where pi(x) = P (phase i of SP jump covers x|SP upcrosses x),i = 1, 2.
Thus from (3.76)

F (x) = 1− ρe
− x

y=0
1

p1(y)( 2
μ−2λ)+p2(y)( 1

μ−λ)
dy

. (3.79)

In Example (3.1), equation (3.33) for M/E2/1 yields

p1(x) =
λ P0e−μx+

x
y=0 e

−μ(x−y)f(y)dy

f(x)

p2(x) = 1− p1(x),

(3.80)

in terms of f(y) specified in (3.34).
We provide an LC intuitive interpretation of (3.80). Fix x > 0.

Consider SP jumps that start below and end above x due to arrivals.
The numerator of (3.80),

λ

µ
P0e

−μx +

Z x

y=0
e−μ(x−y)f(y)dy

¶
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is the rate at which phase 1 of the service time covers x. From Theorem
1.1, the denominator f(x) is the SP total upcrossing (and downcrossing)
rate of level x. Thus p1(x) is the proportion of all upcrossings of x, which
upcross x during phase 1.

Alternatively, we could estimate p1(x), p2(x), x > 0, from a simulated
sample path of the virtual wait. Then substitute the estimated values
into (3.79) to estimate F (x), x > 0. This hybrid technique combines
estimated values from simulation and analytical results. Similar hybrid
techniques may be applicable in various M/G/1 variants.

3.3.16 Downcrossings During Inter-downcrossing Time

We state a proposition that gives the expected number of SP downcross-
ings of a level during an inter-downcrossing time of a different level, for
a sample path of the virtual wait {W (t)}. The proof is given later in the
discussion of M/M/1 queues in Section 3.4, as indicated in the "proof"
part of the following proposition.

Proposition 3.4 Consider the virtual wait {W (t), t ≥ 0} of anM/G/1
queue with λE(s) < 1. Denote the steady-state pdf of wait by f(x), x ≥
0. Fix level y ≥ 0 in the state space. Let Ddy(x) denote the number of
SP downcrossings of an arbitrary level x during a sample-path inter-
downcrossing time of level y. Then

E(Ddy(x)) =
f(x)

f(y)
. (3.81)

Proof. The proof is given in Proposition 3.6, since it fits the context of
Subsection 3.4.8 for M/M/1 queues.

3.3.17 Boundedness of Steady-state PDF

For M/G/1 with arrival rate λ and service time distribution B(y),y > 0,
assume the steady-state pdf of wait f(x), x > 0 exists.

Proposition 3.5
f(x) < λ, x > 0.

Proof. We present three proofs for perspective.

(1) In equation (1.8) (repeated here for convenience)

f(x) = λP0B(x) + λ

Z x

y=0
B(x− y)f(y)dy, x > 0,
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B(0) = 1, B(x− y) = 1 − B(x− y) ≤ 1, y > 0. Assume 0 ≤ F (x) < 1.
Then

f(x) ≤ λP0 + λ

Z x

y=0
f(y)dy = λ

µ
P0 + λ

Z x

y=0
f(y)dy

¶
= λF (x) < λ.

If F (x) = 1 then f(x) = d
dxF (x) = 0 < λ (In some models the wait

will be concentrated on a finite interval [0,M ]. Then F (x) = 1, x ≥M .
Recall that 0 ≤ F (x) ≤ 1, and F (x) is right-continuous monotone non-
decreasing.)

(2) Consider the alternative form of the LC integral equation (3.35)
(repeated here)

f(x) = λF (x)− λ

Z x

y=0
B(x− y)f(y)dy, x > 0. (3.82)

On the right side of (3.82), the subtracted term is such that

0 < λ

Z x

y=0
B(x− y)f(y)dy ≤ λ

Z x

y=0
f(y)dy

< λ

µ
P0 +

Z x

y=0
f(y)dy

¶
= λF (x).

From (3.82) f(x) < λF (x) < λ.

(3) Consider a sample path of the virtual wait {W (t)}. Let Dt(x),
NA(t) denote the number of SP downcrossings of level x and number
of arrivals to the system during (0, t) respectively. Examination of the
sample path implies E (Dt(x)) < E (NA(t)) , x ≥ 0, t > 0. Hence

f(x) = lim
t→∞

E (Dt(x))

t
< lim

t→∞
E (NA(t))

t
= λ,

since {Na(t)} is a Poisson process with rate λ.

Example 3.5 In Mλ/Mμ/1, f(x) = λP0e
−(μ−λ)x, x > 0, P0 = 1− λ

μ > 0

(Subsection 3.4.1). Both P0 < 1 and e−(μ−λ)x < 1, x > 0. Arrival rate λ
is a conservative upper bound for f(x) since

f(x) < λP0, f(x) < λe−(μ−λ)x, f(x) < λ, x > 0

and f(0) = λP0.
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3.4 M/M/1 Queue

We now derive some steady-state results for the standard M/M/1 queue
with FCFS (first come first served) discipline. Some well known results
are included to develop facility with LC and reinforce intuitive back-
ground. Let λ = arrival rate, μ = service rate, and traffic intensity
ρ = λ

μ < 1.

3.4.1 Waiting Time

Consider a sample path of the virtual wait (e.g., Fig. 3.4). From rate
balance of SP down- and upcrossings of level x as in Fig. 1.6 (or (3.29)),
we obtain

f(x) = λP0e
−μx + λ

Z x

y=0
e−μ(x−y)f(y)dy, x > 0. (3.83)

where {P0; f(x), x > 0} is the steady state pdf of wait and B(x) =
1− e−μx, x ≥ 0.

Differentiating both sides with respect to x, yields the ordinary dif-
ferential equation

f 0(x) + (μ− λ)f(x) = 0, x > 0, (3.84)

with solution
f(x) = Ae−(μ−λ)x, x > 0; (3.85)

constant A is determined by letting x ↓ 0 in both (3.83) and (3.85). Thus
A = f(0+) = λP0. The pdf of wait is

f(x) = λP0e
−(μ−λ)x, x > 0, (3.86)

where

P0 = 1− λE(S) = 1− λ

μ
= 1− ρ, (3.87)

(e.g., (3.46)). We may also compute P0 by substituting (3.86) into the
normalizing condition,

P0 +

Z ∞

x=0
f(x)dx = 1,

which yields P0 = 1− ρ directly.
The cdf of wait is

F (x) = P0 +
R x
y=0λ(1− ρ)e−(μ−λ)ydy

= 1− ρe−(μ−λ)x, x ≥ 0. (3.88)
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3.4.2 System Time

Let σ denote the steady-state system time, fσ(x) its pdf, Fσ(x) its cdf,
x > 0. Since σ =Wq + S, we obtain

P (σ > x) = P0e
−μx + λP0

R x
y=0 e

−(μ−λ)ye−μ(x−y)dy

+λP0
R∞
x e−(μ−λ)ydy, x ≥ 0.

= P0
1−λ

μ

e−(μ−λ)x

= e−(μ−λ)x.

(3.89)

(We can obtain (3.89) using (3.54).)
Thus σ is exponentially distributed with mean 1

μ−λ , i.e.,

fσ(x) = (μ− λ) e(μ−λ)x, x > 0

Fσ(x) = 1− e(μ−λ)x, x ≥ 0. (3.90)

We can also obtain fσ(x) directly in terms of f(x) using LC, as in
(3.55) and (3.56). Thus we obtain (3.90) as in Example 3.3 above.

3.4.3 Number in System

LetN denote the number of units in the system at an arbitrary time point
in the steady state. Let P (N = n) = Pn, n = 0, 1, ... . Let dn = P (n
units in system just after a departure). We obtain the distribution of
N by conditioning on Wq, or on σ, providing two additional ways of
deriving P0 for M/M/1 (see Subsection 3.3.7). (Recall ρ = λ

μ .)
First, conditioning on Wq,

Pn = dn =
R∞
y=0e

−λy (λy)
n−1

(n− 1)!λP0e
−(μ−λ)ydy

= P0

µ
λ

μ

¶n R∞
y=0e

−μy (μy)
n−1

(n− 1)!μdy

= P0ρ
n, n = 0, 1, ... .

The normalizing condition
P∞

n=0 Pn = 1 yields

P0(1 + ρ+ ρ2...) = 1,

whence P0 = 1− ρ, giving the well known geometric distribution

Pn = P0 (1− P0)
n = (1− ρ)ρn, n = 0, 1, ... . (3.91)
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Second, conditioning on σ,

Pn = dn =
R∞
y=0e

−λy (λy)
n

(n)!
(μ− λ)e−(μ−λ)ydy

=

µ
1− λ

μ

¶µ
λ

μ

¶n

= (1− ρ)ρn, n = 0, 1, ...,

(same as (3.91)).
Note that P (N ≥ n) = ρn, n = 0, ... . Thus

E(N) =
∞X
n=1

P (N ≥ n) =
∞X
n=1

ρn =
ρ

1− ρ
=

λ

μ− λ
. (3.92)

3.4.4 Expected Busy Period

This subsection very brief, but important due to the key role of busy
periods in queueing theory. The Mλ/Mμ/1 queue is an Mλ/G/1 queue
having exponential service S with E(S) = 1

μ . Substituting into (3.59)
gives the well known result

E(B) = 1− P0
λP0

=
ρ

λ (1− ρ)
=

1

μ
³
1− λ

μ

´ = 1

μ− λ
. (3.93)

3.4.5 Geometric Derivation of CDF and PDF of Wait

Consider a sample path of the virtual wait of the M/M/1 queue. Given
that the SP upcrosses level x, the resulting sojourn time above x is dis-
tributed as a busy period B independent of x, due to the memoryless
property of the service time (Fig. 3.7). (See also Subsection 1.5.2, para-
graph following "Key Question".) Therefore the long-run proportion of
time that the sample path spends above x, isµ

lim
t→∞

Ut(x)
t

¶
E(B) = f(x)E(B).

It is also equal to 1− F (x). Thus

f(x)E(B) = 1− F (x), x > 0, (3.94)

f(x)

1− F (x)
=

1

E(B) . (3.95)
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Time    t

Level x

W(t)

0

Sojourn times  above x distributed as a busy period

SP

μE μE μE

Figure 3.7: Sample path of virtual wait for Mλ/Mμ/1 queue showing
sojourns above level x =

dist
B SP excess jumps above x are ≡

dist
Eμ .

Hence
d

dx
ln(1− F (x)) = − 1

E(B) . (3.96)

Integrating (3.96) with respect to x, letting x ↓ 0 to compute the constant
of integration, and using (3.93), gives the cdf of wait

F (x) = 1− ρe
− x
E(B) = 1− ρe−(μ−λ)x, x ≥ 0. (3.97)

Taking d
dx in (3.97) gives the pdf of wait

f(x) = λ(1− ρ)e−(μ−λ)x = λP0e
−(μ−λ)x, x > 0. (3.98)

Note that (3.97) and (3.98) can be obtained immediately from Propo-
sition 3.3. That is, for M/M/1, E(ay) ≡ E(B), y ≥ 0. Thus

− 1

E(ay)
= − 1

E(B) = −(μ− λ), y ≥ 0,

and substituting into (3.76) yields (3.97). The M/M/1 model satisfies
Case (2) of Proposition 3.1.

3.4.6 Inter-crossing Time of a Level

This subsection discusses the time between SP successive downcross-
ings (inter-downcrossing time) and between successive upcrossings (inter-
upcrossing time) of a level. It also considers the expected number of SP
crossings of a level during a busy cycle, and during sojourns above or
below an arbitrary level.
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Inter-downcrossing Time of a Level

Consider the virtual wait {W (t)} and fix state-space level x ≥ 0. Let
dx = SP inter-downcrossing time of level x, bx = sojourn time at or
below x, ax = sojourn time above x. Then

dx = bx + ax, E(dx) = E(bx) +E(ax).

In M/M/1 both inter-arrival and service times are exponentially distrib-
uted. For fixed x ≥ 0, successive triplets {dx, bx, ax} form a sequence of
iid random variables. Thus {dx} forms a renewal process, {bx, ax} form
an alternating renewal process, and

E(dx) =
1

f(x) ,

E(bx) =
F (x)
f(x)

E(ax) =
1−F (x)
f(x)

⎫⎪⎪⎬⎪⎪⎭ (3.99)

For all x ≥ 0, ax =
dist

B. Thus

E(ax) =
1

μ− λ
, x ≥ 0. (3.100)

Hence,

E(dx) =
F (x)

f(x)
+

1

μ− λ
, x ≥ 0. (3.101)

Letting x = 0 in (3.101) gives the expected busy cycle

E(d0) =
F (0)

f(0)
+

1

μ− λ
=

P0
λP0

+
1

μ− λ

=
1

f(0)
=

1

λ(1− ρ)
. (3.102)

We obtain the expected inter-downcrossing time of level x by substituting
f(x) from (3.98) into (3.101). Thus

E(dx) =
1

f(x)
=

e(μ−λ)x

λ(1− ρ)
, x ≥ 0. (3.103)

Thus E(dx) increases exponentially with x (Fig. 3.8).
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( )xE d

Figure 3.8: Expected inter-downcrossing (or inter-upcrossing) time of
level x, E(dx) (or E(ux)) in M/M/1: λ = 1.0, μ = 2.0, ρ = 0.5.

Inter-upcrossing Time of a Level

Denote the inter-upcrossing time of level x by ux. Inspection of sam-
ple paths of the virtual wait process, indicates that ux =

dist
dx due to

the memoryless property of both the inter-arrival and service times in
M/M/1. Hence E(ux) also increases exponentially with x, and the plot
of E(ux) versus x is identical to that of E(dx) versus x (Fig. 3.8).

3.4.7 Number of Crossings of a Level in a Busy Cycle

Note that d0 = busy cycle..Denote the number of downcrossings of level
x ≥ 0 during d0 by Dd0(x). Since Dt(x) is the number of downcrossings
of x during time interval (0, t), from the theory of regenerative processes
(e.g., [96])

E(Dd0(x))
E(d0)

= limt→∞
E(Dt(x))

t

= f(x) = λ(1− ρ)e−(μ−λ)x, x ≥ 0.

Hence,

E(Dd0(x)) = λ(1− ρ)e−(μ−λ)x ·E(d0)

= λ(1− ρ)e−(μ−λ)x · 1
λ(1−ρ) = e−(μ−λ)x, x ≥ 0. (3.104)
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Thus, E(Dd0(x)) ≤ 1. From (3.104), E(Dd0(x)) decreases exponentially
as x increases.

Let Ud0(x) denote the number of upcrossings of level x during a busy
cycle. Note that Dd0(x) = Ud0(x), x ≥ 0. Thus from (3.104)

E(Dd0(0)) = E(Ud0(0)) = lim
x↓0

e−(μ−λ)x = 1. (3.105)

Equation (3.105) is intuitive, since the SP hits level 0 from above and
egresses from level 0 above (upcrosses 0) exactly once during a busy
cycle. The SP hit occurs at the end of the embedded busy period. The
SP egress occurs at the start of the embedded busy period.

3.4.8 Downcrossings at Different Levels

M/M/1

Consider a fixed level y ≥ 0 and a fixed level x > y. SP downcrossings of
x can occur only during an SP sojourn above y. In M/M/1 ay =

dist
a0 =

B, y ≥ 0. SP motion above level y is analogous to SP motion above
level 0. Let Day(x), x > y denote the number of downcrossings of x
during an SP sojourn above y. We obtain an expression for E(Day(x)).
Substituting y for 0 in (3.104) leads to

E(Day(x)) = e−(μ−λ)(x−y) =
e−(μ−λ)x

e−(μ−λ)y

=
E(Dd0(x))

E(Dd0(y))
.

Equivalently
E(Dd0(x)) = E(Dd0(y)) ·E(Day(x)). (3.106)

Equation (3.106) can also be derived from

Dd0(x) =

Ud0(y)X
i=1

Di
ay(x), (3.107)

where Di
ay
(x) ≡

dist
Day(x) and {Di

ay(x)} are iid independent of Ud0(y). In
equation (3.107) Dd0(x) is the total number of SP downcrossings of x
during a busy cycle d0. The upper limit of the sum Ud0(y) is the number
of SP sojourns above y during a busy cycle, since each upcrossing of
y initiates a sojourn above y. The term Di

ay(x) is the number of SP



3.4. M/M/1 QUEUE 93

downcrossings of x during the ith sojourn above y in the busy cycle.
Thus the sum is the total number of SP downcrossings of x during the
busy cycle d0. Each downcrossing of x can occur only during an SP
sojourn above y. A sojourn time above y is distributed as ay (same as
B).

Note that Ud0(y) = Dd0
(y) and E(Ud0(y)) = E(D

d0
(y)), since during

a busy cycle the number of SP down- and upcrossings of an arbitrary
level y are equal. Thus, taking expected values in (3.107) gives

E(Dd0(x)) = E(Ud0(y)) ·E(Day(x))

= E(Dd0(y)) ·E(Day(x)),

which is the same as (3.106).

Generalization to M/G/1 Queues

We generalize the foregoing results for M/M/1 as follows, toM/G/1 (see
Subsection 3.3.16). Let Ddy(x) denote the number of SP downcrossings
of an arbitrary level x during a sample-path inter-downcrossing time of
level y (may have x ≥ y, or x < y if y > 0).

Proposition 3.6 Consider the virtual wait {W (t), t ≥ 0} of anM/G/1
queue with λE(S) < 1. Denote the steady-state pdf of wait by f(x), x ≥
0. Fix level y ≥ 0 in the state space. Then

E(Ddy(x)) =
f(x)

f(y)
, x ≥ 0. (3.108)

Proof. Fix level y ≥ 0. Due to system stability and Poisson ar-
rivals, without loss of generality we may assume the sample-path inter-
downcrossing times of level y,

©
dyi, i = 1, 2, ...

ª
form a renewal process.

The
©
dyi

ª
are iid r.v.’s. Let dyi =

dist
dy, i = 1, 2, ... . Fix arbitrary level

x ≥ 0, independent of y. The regenerative cycle of length dy is a prob-
abilistic replica of the process {W (t), t ≥ 0} at level y over the entire
time line. Let Ddy(x) denote the number of SP downcrossings of level x
during dy. From regenerative processes,

E(Ddy(x))

E(dy)
≡ lim

t→∞
E(Dt(x))

t
= f(x), x ≥ 0 (3.109)
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for each level y ≥ 0. From renewal theory and the basic LC theorem for
M/G/1 (Theorem 1.1), E(dy) = 1

f(y) . Thus

E(Ddy(x)) = E(dy) · f(x)

=
f(x)

f(y)
,

which is the same as (3.108). (If y = 0, (3.108) holds, except x ≥ 0.)

Corollary 3.7 For the M/M/1 queue,

E(Dd(y)(x)) = e−(μ−λ)(x−y), x ≥ 0, y ≥ 0. (3.110)

Proof. In M/M/1, f(x) = λP0e
−(μ−λ)x, x ≥ 0.

From (3.110), in the M/M/1 queue

E(Ddy(x))

⎧⎨⎩
< 1 if x > y
= 1 if x = y
> 1 if x < y

. (3.111)

Setting x = y in (3.111) shows that the expected number of SP down-
crossings of x during an inter-downcrossing time of x is

E(Ddx(x)) = e−(μ−λ)(x−x) = 1, x ≥ 0,

in agreement with intuition. Examination of a sample path of the virtual
wait corroborates this fact.

Corollary 3.8 For levels x, y, y1, y2, ..., yn in the state space S,

E(Ddy(x)).

= E(Ddy(y1)) ·E(Ddy1
(y2)) · · · E(Ddyn−1

(yn)) ·E(Ddyn
(x))

(3.112)

Proof. From (3.108) we obtain

E(Ddy(x)) =
f(x)

f(y)

=
f(y1)

f(y)
· f(y2)
f(y1)

· · · f(yn)

f(yn−1)
· f(x)
f(yn)

which is equivalent to (3.112).
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Remark 3.16 The results in (3.108) and (3.112) hold for the standard
M/G/1 queue, since the proofs depend only on having a Poisson arrival
process. In order to apply (3.108) and (3.112) to a specific M/G/1 queue,
it is necessary to have a formula for f(x). The pdf f(x) is known in
many M/G/1 models (e.g., M/D/1, MEk/1 and variants); if necessary
f(x) can be approximated or estimated by a variety of means.

3.4.9 Number Served in a Busy Period

Substituting E(S) = 1
μ in (3.63), gives

E

Ã
NBX
i=1

(
1

μ
− Ti)

!
= −1

λ
,

E(NB)

µ
1

μ
− 1

λ

¶
= −1

λ
,

yielding

E(NB) =
μ

μ− λ
=
1

P0
. (3.113)

as in (3.65). (See also (3.64).)
Writing NB = min(n|

Pn
i=1 Si ≤

Pn
i=1 Ti), shows that NB is a stop-

ping time for both sequences {Si} and {Ti} as mentioned following (3.65).
Then

E(B) = E

Ã
NBX
i=1

Si

!
= E(NB)E(S) = E(NB)

1

μ
=

1

μ− λ
,

and E(busy cycle) is

E(d0) = E

Ã
NBX
i=1

Ti

!
= E(NB)E(T ) = E(NB)

1

λ
=

μ

λ(μ− λ)
.

The last two equations both lead to (3.113).
The role of LC, is that the downcrossing rate of level 0 (left-continuous

hit rate from above) is f(0) = λP0, and E(d0) =
1

f(0) . Using this fact
and applying the stopping time criterion for a busy cycle, leads to the
value of E(NB).

Remark 3.17 Consider a sample path of the virtual wait for M/M/1.
Subsection 5.1.14 discusses the number of system times above or below
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Time    t

x

W(t) 1
−μ λ

Jump sizes are exponential with mean

0
μ λE −μ λE − SP

Figure 3.9: Sample path of workload for M/M/1/1 queue with arrival
rate λ and service rate μ− λ. Blocked customers are cleared.

a state-space level, during a sojourn time above or below that level. It
also discusses the number of system times above or below a level, during
a busy period. It similarly considers the number of waiting times. The
results are presented in Subsection 5.1.14 because they follow as a special
case of related results for G/M/1, given in subsections 5.1.12 and 5.1.13.

3.4.10 Relationship Between M/M/1 and M/M/1/1

The M/M/1/1 queue is an M/M/1 variant having capacity 1. Only one
customer is allowed to be in the system. Customers that arrive when the
server is busy, are blocked and cleared. Compare the virtual wait process
for M/M/1 (Fig. 3.7) and the workload process for M/M/1/1 (Fig. 3.9).
The LC approach immediately connects the two models in steady-state.
The cdf (3.97) and pdf (3.98) of wait in the Mλ/Mμ/1 (arrival rate λ,
service rate μ), are respectively identical to the steady-state cdf and pdf
of workload in the Mλ/Mμ−λ/1/1 (arrival rate λ, service rate μ− λ).

This identicalness is evident from a sample path of the workload in
Mλ/Mμ−λ/1/1 (Fig. 3.9). Fix level x > 0. The SP downcrossing rate of
x is f(x), as in Theorem 1.1. The SP upcrossing rate of x is λP0e−(μ−λ)x,
since all SP jumps start at level 0, and are distributed as Eμ−λ. In both
M/M/1 and M/M/1/1, E(B) = 1

μ−λ and P0 = 1− λ
μ . In Mλ/Mμ−λ/1/1,

the busy period B and the blocking time are identical, having exponential
pdf (μ − λ)e−(μ−λ)x, x > 0. The Mλ/Mμ−λ/1/1 workload has the same
distribution as the workload in Mλ/Mμ/1, namely

P0 = 1−
λ

μ
, f(x) = λP0e

−(μ−λ)x, x > 0.

A key point of this subsection is that the pdf of workload for Mλ/Mμ−λ/1/1
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is derived by inspection in one line, since all SP jumps start at level 0.
The foregoing relationship suggests re-examining integral equation

(3.83). We substitute the Mλ/Mμ−λ/1/1 solution in the integral, namely

f(y) = λP0e
−(μ−λ)y,

and simplify. The immediate result is the solution for the Mλ/Mμ/1
model

f(x) = λP0e
−(μ−λ)x,

obtained while bypassing differential equation (3.84). This solution for
Mλ/Mμ−λ/1/1 "solves" integral equation (3.83) for Mλ/Mμ/1.

This solution procedure suggests exploring conditions that facilitate
solving for the steady state pdf of state variables "by inspection" in more
general models than M/M/1. The idea is to identify a "companion" or
"isomorphic" model having a simpler sample-path jump structure.

3.5 M/G/1 with Service Depending on Wait

Consider an M/G/1 queue with arrival rate λ and service time de-
pending on the wait before service, S(Wq). Let the conditional cdf of
S(Wq) be P (S(Wq) ≤ x |Wq = y|) = B(x, y), x ≥ 0, y ≥ 0, having pdf
b(x, y) = ∂

∂xB(x, y), x > 0, y ≥ 0, wherever the derivative exists. Let Wq

have steady-state cdf F (x), x ≥ 0 and pdf {P0; f(x), x > 0} (assuming
d
dxF (x) = f(x) exists). We define f(0) ≡ f(0+) for convenience (does
not add probability to P0). A sample path of the virtual wait resembles
that for the standard M/G/1 queue, except that the SP jump size (ser-
vice time) generated by each arrival depends on the SP level at the start
of the jump (actual wait).

3.5.1 Integral Equation for PDF of Wait

Consider a fixed state-space level x ≥ 0. The downcrossing rate of x is
f(x), by Theorem 1.1. The upcrossing rate of x is

λP0B(x, 0) + λ

Z x

y=0
B(x− y, y)f(y)dy;

the term λP0B(x, 0) is the upcrossing rate of x by SP jumps at arrival
instants when the system is empty. The term λ

R x
y=0B(x−y, y)f(y)dy is

the upcrossing rate of x by SP jumps at arrival instants when the virtual
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wait is at state-space levels y ∈ (0, x). Rate balance across level x yields
the integral equation for f(x),

f(x) = λP0B(x, 0) + λ

Z x

y=0
B(x− y, y)f(y)dy, x ≥ 0. (3.114)

As in the standard M/G/1 queue, letting x ↓ 0 gives

f(0) = λP0B(0, 0) = λP0.

Integrating (3.114) with respect to x over (0,∞) gives

1− P0 = ρ0P0 +

Z ∞

y=0
ρyf(y)dy,

P0 =
1−

R∞
y=0 ρyf(y)dy

1 + ρ0
, (3.115)

where ρy ≡ λE(S(y)), y ≥ 0. (Note that (3.115) is an implicit formula
for P0, since the integral contains P0 implicitly. See (3.119) below.)

Consider a partition of the state space {xi, i = 0, ..,M + 1}, where
integer M ≥ 0, and

0 ≡ x0 < x1 < x2 < ... < xM < xM+1 ≡ ∞.

Denote the service time of a zero-waiting customer by S0, and of a y-
waiting customer, y ∈ (xi, xi+1], by Si. Assume the service-time distri-
bution is the same for all customers who wait zero; and the same for
all customers that wait a time within the same state-space subinterval.
Thus the cdf of service time is

B0(x) = B(x, 0), x > 0

Bi(x) = B(x, y), x > 0, xi−1 < y ≤ xi, i = 1, ...,M + 1. (3.116)

Integral equation (3.114) can be written

f(x) = λP0B0(x) + λ
Pj−1

i=1

R xi
y=xi−1

Bi(x− y)f(y)dy

+λ
R x
y=xj−1

Bj(x− y)f(y)dy, x ∈ (xj−1, xj ], j = 1, ...,M + 1.

(3.117)
where

P0
i=1 ≡ 0. We have constructed integral equation (3.117) in an

easy, intuitive, straightforward manner using LC.
Queues with service time depending on wait appear in [41]. A re-

lated theorem is given in [42]. The model was solved in the literature
using Laplace transforms [81], and also by the embedded Markov chain
technique using a Lindley recursion in [88].
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Remark 3.18 Deriving (3.117) using the embedded Markov chain tech-
nique is "relatively" tedious and purely algebraic (see Section 1.3). The
model was generalized to multiple servers using the embedded Markov
chain technique in [34] and [35] ( original topic of my PhD thesis). Af-
ter my discovery of LC in 1974, the model was re-solved using LC [7]. A
two-server analysis is given in [39]; a revised version is given in Section
4.11 below.

3.5.2 M/G/1: Zero-waits Receive Special Service

In the case where the first customer of every busy period receives spe-
cialized service, we have M = 0, x0 = 0, x1 = ∞ (M defined in 3.116)
The integral equation (3.117) reduces to

f(x) = λP0B0(x) + λ

Z ∞

y=0
B1(x− y)f(y)dy, x ≥ 0. (3.118)

Integrating (3.118) with respect to x over (0,∞) and notingZ ∞

x=0
f(x)dx = 1− P0,

gives

P0 =
1− λE(S1)

1− λE(S1) + λE(S0)
=

1− ρ1
1− ρ1 + ρ0

. (3.119)

A necessary condition for stability is ρ1 < 1 (guarantees P0 > 0 and {0}
is a positive recurrent state).

(If ρ1 > 1 then 1− ρ1 < 0. We would then need 1− ρ1 + ρ0 < 0 to
ensure that P0 > 0. But 1 − ρ1 + ρ0 < 0 would imply P0 > 1, which
is impossible. If ρ1 = 1, then P0 = 0,which would imply the queue is
unstable.)

Multiplying both sides of (3.118) by x, and integrating for x ∈ (0,∞)
gives a Pollaczek-Khinchin (P-K)-like result for the expected wait before
service

E(Wq) =
λ(E(S20) +E(S21))

2(1− λE(S1))
. (3.120)

Expected Busy Period When M = 0

Customers that wait 0 have service time S0. Customers that wait a pos-
itive time have service time S1.
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W(t)
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Time
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Figure 3.10: Busy periods {B} in Mλ/G/1 with zero-waits receiving
service time =

dist
S0. {Bi} are busy periods of Mλ/G/1 with all service

times =
dist

S1, generated by arrivals (as if) during S0. In figure B ≡ B.

Method 1 The busy period is

B = S0 +

NS0X
i=1

B1i (3.121)

where NS0 =
dist

the number of arrivals during the first service time of a

busy period, and the B1i’s are iid r.v.’s distributed as a busy period B1
in a standard Mλ/G/1 queue with service time S1 (see Fig. 3.10). Taking
the expected value in (3.121) gives

E(B) = E(S0) + λE(S0)E(B1)

= E(S0) + λE(S0)
E(S1)

1− λE(S1)

=
E(S0)

1− λE(S1)
. (3.122)

Method 2 Applying the LC-based result for the expected busy period
(3.60), we get using (3.119)

E(B) =1− P0
λP0

=
1− 1−λE(S1)

1−λE(S1)+λE(S0)

λ 1−λE(S1)
1−λE(S1)+λE(S0)

=
E(S0)

1− λE(S1)
.

Remark 3.19 We may derive the expression for P0 directly using the
expression for E(B). This serves as a further check on the solution.
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Thus

P0 =
1
λ

1
λ +E(B)

=
1
λ

1
λ +

E(S0)
1−λE(S1)

=
1− λE(S1)

1− λE(S1) + λE(S0)

=
1− ρ1

1− ρ1 + ρ0
.

Example 3.6 Let the service times be exponentially distributed, i.e.,
B0(x) = 1−e−μ0x, B1(x) = 1−e−μ1x. Substitute for B0(x), B1(x−y) in
(3.118) and apply differential operator hD + μ0i hD + μ1i (equivalent to
differentiating twice with respect to x, followed by some algebra) to yield
a second order differential equation

hD + μ1 − λi hD + μ0i f(x) = 0,

with solution

f(x) = ae−(μ1−λ)x + be−μ0x, x > 0,

provided μ0 6= μ1 − λ (if μ0 = μ1 − λ, f(x) has a different solution).
Constants a, b are obtained from two independent initial conditions:

f(0) = λP0 and f 0(0) = −μ0λP0 + λf(0),

giving

a =
−λ2P0

(μ1 − μ0 − λ)
, b =

λ(μ1 − μ0)P0
(μ1 − μ0 − λ)

, P0 =
(1− ρ1)

(1− ρ1 + ρ2)
,

where ρi =
λ
μi
, i = 1, 2.

Expected Busy Period The expected busy period is, from (3.122),

E(B) =
1
μ0

1− λ
μ1

=
μ1

μ0(μ1 − λ)
.

(If μ0 = μ1 = μ, then E(B) = 1
μ−λ , as in the standard Mλ/Mμ/1 queue.)
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3.6 M/G/1 with Multiple Poisson Inputs

Assume customers arrive at a single-server system in N independent
Poisson streams at rates λi, i = 1, ..., N,

PN
i=1 λi = λ. Let the corre-

sponding service times be Si having cdf Bi(x), Bi(x) = 1−Bi(x), x ≥ 0,
and pdf bi(x) = d

dxBi(x), x > 0, wherever the derivative exists. The
service discipline is FCFS. The service time, S, of an arbitrary arrival is
Si with probability λi

λ . Denote the steady-state pdf and cdf of the wait
before service, Wq, by {P0; f (x), x > 0}, and F (x), x ≥ 0, respectively.

We may view the system as an M/G/1 queue with arrival rate λ and
service time

S =

⎧⎪⎪⎨⎪⎪⎩
S1 with probability λ1

λ ,

S2 with probability λ2
λ ,

· · ·
SN with probability λN

λ .

.

Hence E(S) =
PN

i=1
λi
λ E(Si), E(S

2) =
PN

i=1
λi
λ E(S

2
i ) and

P0 = 1− λE(S) = 1−
NX
i=1

λiE(Si) = 1−
NX
i=1

ρi. (3.123)

where ρi = λiE(Si).

Stability

The system is stable iff every typical sample path of the virtual wait
returns to state {0}; i.e., iff P0 > 0 or

NX
i=1

ρi < 1. (3.124)

3.6.1 Integral Equation for PDF of Wait

Consider the virtual wait process. Sample paths resemble those of the
standard M/G/1 queue, except that each jump size depends on the ar-
rival type. Jump sizes have cdf Bi(·) at Poisson rate λi, i = 1, ..., N .
Consider a state-space level x > 0. By Theorem 1.1, the SP downcross-
ing rate is f(x). The SP upcrossing rate due to type i arrivals is

λiP0Bi(x) + λi

Z x

y=0
Bi(x− y)f(y)dy, i = 1, ..., N.
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Balancing the total SP down- and upcrossing rates of level x for all
customer types, yields the integral equation for f(x),

f(x) =
NX
i=1

λi

µ
P0Bi(x) +

Z x

y=0
Bi(x− y)f(y)dy

¶
,

or

f(x) = λP0

Ã
NX
i=1

λi
λ
Bi(x)

!
+ λ

Z x

y=0

Ã
NX
i=1

λi
λ
Bi(x− y)

!
f(y)dy.

(3.125)
Integral equation (3.125) is in the form of an integral equation for the
pdf of wait in a standard M/G/1 queue with λ =

PN
i=1 λi, and B(x) =PN

i=1
λi
λ Bi(x).

3.6.2 Expected Wait Before Service

Since E(S2) =
PN

i=1
λi
λ E(S

2
i ), the Pollaczek-Khinchin (P-K) formula

(3.47) gives the expected wait before service as

E(Wq) =
λE(S2)

2(1− λE(S))
=

PN
i=1 λiE(S

2
i )

2(1−
PN

i=1 λiE(Si))

=

PN
i=1 λiE(S

2
i )

2(1−
PN

i=1 ρi)
=

PN
i=1 λiE(S

2
i )

2P0
. (3.126)

Alternatively, E(Wq) can be obtained by multiplying (3.125) through by
x and integrating both sides with respect to x ∈ (0,∞).

3.6.3 Expected Number in Queue

Let Lq = expected number of units in the queue before service in the
steady state. Then by L = λW and (3.126)

Lq = λE(Wq) =
λ
PN

i=1 λiE(S
2
i )

2(1−
PN

i=1 ρi)
. (3.127)

Denote the steady-state expected number of type i units in the queue
by Lqi. Let the wait of an arbitrary type i customer be Wqi, the wait
of an arbitrary customer be Wq. Then Wqi =

dist
Wq. Thus E(Wqi) =
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E(Wq), i = 1, ..., N , and by L = λW ,

Lqi = λiE(Wqi) = λiE(Wq)

=
λi
PN

i=1 λiE(S
2
i )

2(1−
PN

i=1 ρi)
, i = 1, ..., N . (3.128)

3.6.4 Expected Busy Period

The expected busy period is, applying (3.60),

E(B) = 1− P0
f(0)

=
1− P0
λP0

=

PN
i=1 ρi

λ
³
1−

PN
i=1 ρi

´ . (3.129)

As a mild check on (3.129), let λi ≡ λ
N so that ρi ≡ λ

NE(Si) andPN
i=1 ρi =

λ
N

PN
i=1E(Si). The model reduces to a standard M/G/1

queue with arrival rate λ and E(S) = 1
N

PN
i=1E(Si). Then from (3.129)

E(B) =
λ
N

PN
i=1E(Si)

λ
³
1− λ

N

PN
i=1 ρi

´ = E(S)

1− λE(S)
,

which is the result for the standard M/G/1 queue.

3.6.5 Exponential Service

To outline a solution technique for integral equation (3.125), assume the
service times are exponential, i.e., Bi(x) = 1− e−μix, i = 1, 2, ..,N.Then
(3.125) becomes

f(x) =
NX
i=1

λi

µ
P0e

−μix +

Z x

y=0
e−μi(x−y)f(y)dy

¶
, x > 0. (3.130)

We may apply the differential operator

hD + μ1i hD + μ2i ... hD + μN i

to (3.130), to derive an N th order differential equation with constant
coefficients for f(x), then solve for the constants of integration, giving
f(x) analytically.
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Note that the differential operator hD + constanti is commutative,
i.e., for any permutation (i1i2...iN) of the numbers (1, 2, ..., N)

h(D + μ1) · · · (D + μN )if(x) = hD + μ1i · · · hD + μN i f(x)
=
­
D + μi1

®
· · ·
­
D + μiN

®
f(x))

= h(D + μi1) · · · (D + μ
iN
)if(x).

This commutativity property simplifies the transformation of an integral
equation into a differential equation, when the kernel of any integral is
an exponential function like e−μi(x−y) in (3.130).

Expected Number in Queue

The expected total number of customers in the queue is, substituting
into (3.127),

Lq =
λ
PN

i=1
λi
μ2i³

1−
PN

i=1
λi
μi

´ . (3.131)

The expected number of type i customers in the queue is, substituting
into (3.128),

Lqi =
λi
PN

i=1
λi
μ2i³

1−
PN

i=1
λi
μi

´ , i = 1, ..., N. (3.132)

Two Customer Types

To illustrate the solution, we consider two distinct customer types, and
compute the pdf f(x). Setting N = 2 in (3.130) and applying differential
operator hD+μ1ihD+μ2i to both sides, gives a second order differential
equation­

D2 + (μ1 + μ2 − λ)D + (μ1μ2 − μ1λ2 − μ2λ1)
®
f(x) = 0

having solution
f(x) = aeR1x + beR2x (3.133)

where Ri, i = 1, 2 are the roots for z of the characteristic equation

z2 + (μ1 + μ2 − λ)z + μ1μ2 − μ1λ2 − μ2λ1 = 0.

Both roots are negative since R1R2 = μ1μ2−μ1λ2−μ2λ1 > 0 (stability
condition), and R1 + R2 = −(μ1 + μ2 − λ) < 0. Constants a, b are
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determined by applying two independent initial conditions involving f(0)
and f 0(0) obtained from (3.133) and (3.130), resulting in two equations
for a, b:

f(0) = a+ b = λP0,

and

f 0(0) = R1a+R2b

= −(μ1λ1 + μ2λ2)P0 + λf(0)

= −(μ1λ1 + μ2λ2 − λ2)P0.

Thus f(x) is given by (3.133) and

a =
(−λ1μ1 + λ2 − λ2μ2 − λR2)

R1 −R2
P0,

b =
(λ1μ1 − λ2 + λ2μ2 + λR1)

R1 −R2
P0, (3.134)

where
P0 = 1− λ1

μ1
− λ2

μ2
,

R1 =
−B
2 +

√
B2−4AC
2 ,

R2 =
−B
2 −

√
B2−4AC
2 ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.135)

and

A = 1, B = μ1 + μ2 − λ, C = μ1μ2 − μ1λ2 − μ2λ1.

Example 3.7 Consider a simple numerical example with N = 2, λ1 =
1, λ2 = .5, μ1 = 3, μ2 = 2. Then P0 = 0.4167, R1 = −1.0, R2 = −2.5,
a = 0.1667, b = 1.3333, and

f(x) = 0.1667e−1.0x + 1.3333e−2.5x, x > 0.

To check that F (∞) = 1, compute

F (∞) = P0 +

Z ∞

x=0
f(x)dx

= 0.4167 +

Z ∞

x=0
(0.1667e−1.0x + 1.3333e−2.5x)dx = 1.
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3.7 M/G/1: Wait-number Dependent Service

Arrivals occur at Poisson rate λ. The queue discipline is FCFS. The ser-
vice time is denoted by S(Nq) where Nq = number of customers left wait-
ing in the queue just after a start of service. Note that Nq ∈ {0, 1, ...}.
For exposition, we assume two types of service. Let

S(Nq) =

(
S0, Nq = 0,

S,Nq = 1, 2, ....

Let P (S0 ≤ x) = B0(x), B0(x) = 1−B0(x); P (S ≤ x) = B(x), B(x) =
1 − B(x). Denote the steady-state wait before service by Wq having
cdf P (Wq ≤ x) = F (x) and pdf f(x) = d

dxF (x), x > 0, wherever the
derivative exists.

We represent this non-standard M/G/1 queue by M/G(Nq)/1. We
construct a sample path of the virtual wait by applying the definition of
virtual wait literally. The virtual waitW (t) at instant t, is defined as the
time that a potential (would-be) arrival at t would have to wait before
starting service. The virtual wait is a continuous-state continuous-time
process. Its value at any instant t is conditional on an arrival occurring
at instant t.

3.7.1 Sample Path of Virtual Wait

Consider Fig. 3.11. The first customer (C1) arrives, initiates a busy pe-
riod and receives a service time S0, since zero customers are left behind
it in queue when it starts service. Later C2 arrives during C1’s service
time and is allotted a "virtual" service time S, although C2’s true ser-
vice time is not known until later, at C2’s start-of-service instant. The
reason is that the virtual wait may be considered to be the answer to
the following question asked a non-countably infinite number of times at
every instant t ≥ 0: "How long would a new arrival at instant t
have to wait before its start-of-service instant?" The answer to
this question forces us to allot service time S to C2 at its arrival instant.
For a would-be new arrival immediately after C2’s arrival, would force
C2 to start service with at least one customer left waiting behind C2. In
other words, if C2 arrives at t−, the virtual wait at t is the time that a
would-be new arrival would have to wait before service.

Suppose, as depicted in Fig. 3.11, zero customers arrive during C2’s
wait. Then at C2’s start-of-service instant, C2 must receive an actual
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S

Figure 3.11: Sample path of virtual wait in M/G(Nq)/1 during a busy
period. Shows jumps of size S0 from level 0 and size S from positive
levels. Illustrates possible downward jump in virtual wait.

service time S0. This cancels S assigned at C2’s arrival epoch, and sub-
stitutes an actual service time S0. The System Point (SP), jumps down
to level 0, and up by an amount S0, at the start-of-service instant of C2.
On reflection, all SP upward jumps from level 0 are of size S0, and all
SP upward jumps from positive levels are of size S.

At instants like the start-of-service instant of C2 depicted in Fig. 3.11,
the SP makes a double jump, one downward to level 0, and the other
upward of size S0 (see Examples 2.2 and 2.3.)

Remark 3.20 In standard M/G/1, W (t) is the same as the workload
on the server at instant t. In M/G(Nq)/1, the workload is not known at
the instant just after an arrival, because the added service time is either
S0 or S depending on future arrivals during its wait in queue. Next we
discuss and derive the steady-state distribution of the virtual wait (in
contrast to workload).

3.7.2 Integral Equation for PDF of Virtual Wait

Consider a sample path of the virtual wait; fix level x > 0 in the state
space (Fig. 3.11). The SP downcrossing rate of x has two components:
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1. f(x) by Theorem 1.1,

2. λB(x)Lf (λ) due to SP downward jumps similar to those at the
start-of-service instant of C2, where Lf (λ) =

R∞
y=0 e

−λyf(y)dy is
the Laplace transform of f(x).

In component 2, the rate of such downward jumps is

λP (S > x, and zero customers arrive in a waiting time)

= λP (S > x)P (zero customers arrive in a waiting time)

= λP (S > x)

Z ∞

y=0
e−λyf(y)dy = λB(x)Lf (λ),

by independence of S and the arrival stream. The total downcrossing
rate of x is

f(x) + λB(x)Lf (λ), x > 0. (3.136)

The SP upcrossing rate of x has three components:

1. λB0(x)P0, due to arrivals when the system is empty,

2. λ
R x
y=0B(x − y)f(y)dy, due to arrivals when the virtual wait is

y ∈ (0, x),

3. λB0(x)L(λ), due to arrivals that must wait a positive time and have
zero customers arrive behind them during their wait in queue. The
total upcrossing rate is

λB0(x)P0 + λ

Z x

y=0
B(x− y)f(y)dy + λB0(x)Lf (λ). (3.137)

SP rate balance across level x equates (3.136) and (3.137), leading to
the integral equation for f(x),

f(x) = λB0(x)P0 + λ
R x
y=0B(x− y)f(y)dy

+λ
¡
B0(x)−B(x)

¢
· Lf (λ), x > 0.

(3.138)
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3.7.3 Exponential Service

Assume B0(x) = e−μ0x, B(x) = e−μx, x > 0, and let ρ0 =
λ
μ0
, ρ = λ

μ .
Then (3.138) reduces to

f(x) = λe−μ0xP0 + λ
R x
y=0 e

−μ(x−y)f(y)dy

+λ (e−μ0x − e−μx) · Lf (λ), x > 0.
(3.139)

Applying differential operator hD + μ0ihD + μi to both sides of (3.139)
yields the differential equation

hD2 + (μ0 + μ− λ)D + μ0(μ− λ)if(x) = 0,

with general solution

f(x) = ae−(μ−λ)x + be−μ0x, x > 0, (3.140)

assuming μ0 6= μ−λ. From the first term of 3.140, a necessary condition
for stability is λ < μ, since necessarily f(∞) = 0.

Applying the initial condition f(0) = λP0, substituting

f(x) = ae−(μ−λ)x + be−μ0x (3.141)

from (3.140) into (3.139), and equating coefficients of common exponents,
we obtain

P0 =
1− ρ

1− ρ+ ρ0 + ρ20 − ρ0ρ
, (3.142)

and

a =
−λρ20P0

ρ0 − ρ− ρ0ρ
, b =

λ(1 + ρ0)(ρ0 − ρ)P0
ρ0 − ρ− ρ0ρ

. (3.143)

Expected Busy Period

The rate at which the SP makes left-continuous hits of level 0 from above
is f(0) = λP0 (Fig. 3.11). Hence the expected busy period is, from (3.60),

E(B) = 1− P0
λP0

=
ρ0 + ρ20 − ρ0ρ

λ(1− ρ)
. (3.144)

As a mild check on E(B), set ρ0 = ρ = λ
μ . Then the model reduces

to a standard M/M/1 queue. Formula (3.144) reduces to E(B) = 1
μ−λ ,

corresponding to E(B) for the standard M/M/1 queue.
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Distribution of Number in System

Applying formula (3.57) and using (3.141) and (3.143) we obtain the
steady-state probability of n customers left in the system at departure
instants,

dn =

Z ∞

x=0

e−λx(λx)n−1

(n− 1)! f(x)dx

=
ρ0 ·

¡
ρn−10 − ρρn−20 − ρn(1 + ρ0)

n−1¢
(ρ0 − ρ− ρ0)(1 + ρ0)

n−1 P0, n = 1, 2, .... (3.145)

where P0 (= d0) is given in (3.142). The values in (3.145) agree with dn
in the literature, determined by different means (see [65]).

3.7.4 Workload

Consider the workload process {Wwk(t)}. Then Wwk(t) = amount
of remaining work in the system at time t. Let the steady-state pdf of
Wwk(t) as t→∞ be .{P0wk; fwk(x), x > 0}

In order to construct a sample path, we ask the question immediately
after an arrival when the actual workload is y: "What is the workload
just after the arrival?". The answer logically causes the SP to make
a jump of size S with probability (1 − e−λy) (at least 1 arrival in time
y), or size S0 with probability e−λy (no arrivals in time y). This leads
to the upcrossing rate of level x to be the right side of (3.146) below.
The downcrossing rate of x would be fwk(x). Rate balance across level
x gives

fwk(x) = λB0(x)P0wk + λ

Z x

y=0
B(x− y)(1− e−λy)fwk(y)dy

+λ

Z x

y=0
B0(x− y)e−λyfwk(y)dy. (3.146)

We shall not develop the solution for the steady-state pdf of workload
at this point, although it is interesting to compare with the pdf for the
virtual wait. When service times are distributed as Eμ0 or Eμ, we would
substitute B0(x) = e−μ0x, B(x) = e−μx in (3.146) and solve with the
normalizing condition P0wk +

R∞
x=0 fwk(x)dx = 1.
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Figure 3.12: Sample path of virtual wait for M/D/1 queue.

3.8 M/D/1 Queue

The M/D/1 queue is a classical model in queueing theory, first solved by
A.K. Erlang in 1909 [54].

Here we use LC to derive the steady-state cdf F (x), x ≥ 0, pdf
f(x), x ≥ 0, of wait before service, the distribution of the number of
customers in the system Pn, n = 0, 1, 2, ..., and related results.

The arrival stream is Poisson at rate λ. Denote the service time
for each customer by D > 0. Let the traffic intensity be ρ = λD < 1
implying stability. Consider the virtual wait W (t), t ≥ 0, (Fig. 3.12) and
the waiting time of the nth arrival Wn, n = 1, 2, .... Due to Poisson
arrivals,

F (x) ≡ lim
t→∞

P (W (t) ≤ x) = lim
n→∞

P (Wn ≤ x), x ≥ 0.

Also,

f(x) =
d

dx
F (x), x > 0,

wherever the derivative exists. We define f(x), x > 0, to be right con-
tinuous; and for notational convenience f(0) ≡ f(0+), which adds zero
probability to F (0). The probability of a zero wait is

P0 ≡ F (0) = 1− ρ = 1− λD.
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The total pdf {P0; f(x), x > 0} is related to F (x) by

F (x) = P0 +

Z x

y=0
f(y)dy, F (∞) = P0 +

Z ∞

y=0
f(x)dx = 1.

3.8.1 Properties of PDF and CDF of Wait

Proposition 3.7 gives three properties of the steady-state pdf of wait in
the M/D/1 queue.

Proposition 3.7 For the M/D/1 queue, the steady-state pdf of wait
{P0; f(x), x > 0}: (1) has exactly one atom, which is at x = 0; (2)
has a downward jump discontinuity of size λ(1−ρ) = λP0 at x = D; (3)
is continuous for all x > 0, x 6= D.

Proof. Consider a typical sample path of the virtual wait (Fig. 3.12).
(1) State {0} is an atom since a sample path spends a positive pro-

portion of time in {0} (a.s.), namely P0 = (1−ρ) = 1−λD (from (3.46)).
The state space S = [0,∞) has no other atoms, since the proportion of
time a sample path spends in each state x > 0, is 0.

(2) Consider state-space levels D and D − ε, 0 < ε < D (Fig. 3.13).
Fix t > 0. Recall that T b

t (D) is the number of tangents to level D from
below during (0, t). Referring to Example 2.5 we have

Dt+ε(D − ε) =

Dt(D)+T b
t (D)X

j=1

Ij(D), (3.147)

where Ij(D) = 1 if the jth downcrossing or tangent from below of level
D, is followed by a downcrossing of level D − ε exactly ε time units
later (probability e−λε); and Ij(D) = 0 otherwise. Note that Ij(D) is
independent of Dt(D)+T b

t (D) and E(Ij(D)) = e−λε, j = 1, 2, ... . Taking
expected values on both sides of (3.147) gives

E(Dt+ε(D − ε)) = E(Dt(D) + T b
t (D))e

−λε (3.148)

By Corollary 3.2 the SP downcrossing rates of D and D − ε are

lim
t→∞

E(Dt(D))

t
= f(D) and lim

t→∞
E(Dt(D − ε))

t
= f(D − ε).

Also, limt→∞
E(T b

t (D))
t = λP0. Dividing both sides of (3.148) by t, writ-

ing 1
t =

1
t+ε

t+ε
t on the left side, and letting t→∞ gives

f(D − ε) = (f(D) + λP0)e
−λε.
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Then letting ε ↓ 0 yields
f(D−)− f(D) = λP0.

Hence the pdf has a downward jump discontinuity at D of size λP0 =
λ(1− ρ).

(3) Fix level x > 0, x 6= D. Sample paths are not tangent to level
x with probability 1 due to continuous inter-arrival times (exponentially
distributed). Let ε be small (D /∈ (x− ε, x) and ε < min(x,D)). Then

Dt+ε(x− ε) =

Dt(x)X
j=1

Ij(x) + o(ε) · θx>D (a.s.) (3.149)

where θx>D = 1 if x > D and θx>D = 0 otherwise. (The term o(ε) in
(3.149) is the rate at which the SP jumps from the interval (x − ε −
D,x−D) into interval (x−ε, x) at arrival instants.) Dividing both sides
of (3.149) by t, letting t→∞ and noting that limt→∞Dt(x) =∞ since
{Dt(x)} is a renewal process, gives

lim
t→∞

Dt+ε(x− ε)

t+ ε
· t+ ε

t

= lim
t→∞

Dt(x)

t
· lim
t→∞

1

Dt(x)

Dt(x)X
j=1

Ij(x) + lim
t→∞

o(ε)

t
(a.s.).

By the strong law of large numbers

lim
t→∞

1

Dt(x)

Dt(x)X
j=1

Ij(x) = E(Ij(x)) = e−λε (a.s.).

Hence
f(x− ε) = f(x) · e−λε (a.s.).

Letting ε ↓ 0 yields f(x−) = f(x), so that x is a point of continuity.

Proposition 3.8 The steady-state CDF of wait F (x), x ≥ 0: (1) has a
jump discontinuity at x = 0 of size 1−ρ, (2) is continuous for all ẋ > 0.

Proof. (1) F (x) has a discontinuity at x = 0, since 0 is an atom having
probability F (0) = P0 = 1− ρ.

(2) Fix x > 0 in the state space. Then x is not an atom by the
previous proposition, and therefore P ({x}) = 0. That is, x is not a
point of increase in probability. Thus x is a point of continuity of F (·).
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ε−D

D

t

SP

W(t)

0

Time

t ε+

Figure 3.13: Sample path in M/D/1 showing levels D, D−ε and instants
t, t+ ε. See Proposition 3.7, Proof, part (2).

3.8.2 Integral Equation for PDF of Wait

Applying the alternative form of the basic LC integral equation (3.36)
with B(x − y) = 0 if x − y < D and B(x − y) = 1 if x − y ≥ D, we
immediately write an integral equation for f(x) (differential equation for
the cdf F (x)) noting that f(x) = F 0(x),

f(x) = λF (x)− λF (x−D), x > 0. (3.150)

To explain (3.150) in terms of LC, consider a virtual wait sample
path (Fig. 3.12). In (3.150) the left side f(x) is the SP downcrossing
rate of level x. SP jumps occur at rate λ, all upward of size D. On the
right side of (3.150), the first term λF (x) is the rate of SP jumps that
start in state set [0, x]. The second term, −λF (x − D), subtracts the
rate of those jumps that start in [0, x] and end below x. Jumps starting
below x−D cannot upcross x. Thus the right side is the upcrossing rate
of x. Rate balance across level x then yields (3.150).

Remark 3.21 The properties in Proposition 3.7, and equation (3.150)
are readily inferred intuitively upon considering a sample path (Fig. 3.12),
and applying LC interpretations of transition rates. Such intuitive in-
sights often lead to formal proofs as in Proposition 3.7.



116 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

3.8.3 Analytic Solution for CDF and PDF of Wait

CDF of Wait

We give the classical solution of (3.150), for completeness. For x ∈ (0,D),
F (x−D) ≡ 0; thus f(x) = λF (x), or

F
0
(x)− λF (x) = 0.

The solution of this differential equation is

F (x) = A0e
λx.

Letting x ↓ 0, gives the constant A0 = P0 = 1− ρ. Thus

F (x) = (1− ρ)eλx, x ∈ [0,D).

For x ∈ [D, 2D), (3.150) is equivalent to

F
0
(x)− λF (x) = −λ(1− ρ)eλ(x−D).

Multiplying both sides by the integrating factor e−λ(x−D) and then inte-
grating both sides from D to x yields the solution up to a constant

F (x) = −(1− ρ)λ(x−D)eλ(x−D) +A1e
λ(x−D), x ∈ [D, 2D).

The constant A1 is determined from the continuity of F (x), x > 0
(Proposition 3.7). Thus F (D−) = F (D), or A1 = (1 − ρ)eλD result-
ing in the solution

F (x) = (1− ρ)
³
−λ(x−D)eλ(x−D) + eλx

´
= P0

³
−λ(x−D)eλ(x−D) + eλx

´
, x ∈ [D, 2D).

Mathematical induction on (3.150) yields the classical formula for the
cdf of wait originally derived in [54].

F (x) = (1− ρ)
mX
i=0

(−λ)i (x− iD)i

i!
eλ(x−iD),

x ∈ [m, (m+ 1)D), m = 0, 1, 2, .... (3.151)
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PDF of Wait

The solution for the pdf f(x) may be obtained by differentiating F (x)
with respect to x. We obtain f(x) more simply by substituting (3.151)
into (3.150) giving

f(x) = λP0e
λx, 0 < x < D

and for x ∈ [mD, (m+ 1)D), m = 0, 1, 2, ....,

f(x)

= λP0

Ã
mX
i=0

(−λ)i (x−iD)
i

i! eλ(x−iD)

−
m−1X
i=0

(−λ)i (x−(i+1)D)
i

i! eλ(x−(i+1)D)

!
= λP0

³
(−λ)m (x−mD)m

m! eλ(x−mD)

+
m−1X
i=0

(−λ)i
i! [(x− iD)ieλ(x−iD) − (x− (i+ 1)D)ieλ(x−(i+1)D)]

!
.

(3.152)
The pdf f(x) in (3.152) has a discontinuity at x = D (Proposition

3.7). That is f(D−) = λ(1 − ρ)eλD, and f(D−) − f(D) = λ(1 − ρ),
illustrating that f(x) has a downward jump of size λ(1 − ρ) = λP0 at
x = D. Moreover f(x) is continuous for all other x > 0 (see Fig. 3.14).
Note the concave wave in f(x) for x ∈ [D, 2D) = [1, 2), and that the
waviness dampens to the right of x = 2, in Fig. 3.14. The cdf F (x), for
the same example, is given in formula (3.151) and plotted in Fig. 3.15.
Note the continuity of F (x) and discontinuity of f(x) = d

dxF (x) at x =
D.

Remark 3.22 LC indicates an isomorphism between sample-path prop-
erties of the virtual wait W (t) and analytical properties of the functions
f(x) and F (x).

3.8.4 Distribution of Number in System

Let N be the number of customers in the system at an arbitrary time
point and let Wq be the wait before service, in the steady-state. Then

N ≤ n iff Wq ≤ nD,

N = n iff (n− 1)D ≤Wq < nD.
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Figure 3.14: PDF f(x) of wait in M/D/1: λ = 0.95, D = 1, ρ = 0.95
(high traffic). Shows discontinuity and downward jump of size λP0 at
x = D; and extreme waviness in right neighborhood [D, 2D).

Figure 3.15: CDF F (x) of wait in M/D/1: λ = 0.95, D = 1. Shows
continuity of F (x), x > 0; and decrease in slope of F (x) at x = D.
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Let Pn = P (N = n). Consider an, dn, the steady state probabilities
that the number of customers in the system is n just prior to an arrival,
and just after a departure, respectively. Due to Poisson arrivals, an =
Pn = dn, n = 0, 1, 2, .... Arrivals "see" n customers in the system iff their
wait is in the time interval ((n− 1)D, nD], n = 0, 1, 2, ... . Thus

an = F (nD)− F ((n− 1)D) = Pn = dn, n = 0, 1, 2, ... .

From (3.151)

P0 = F (0)− F (−D) = 1− ρ

P1 = F (D)− F (0) = (1− ρ)eλD − (1− ρ) = (1− ρ)(eλD − 1)
P2 = F (2D)− F (D) = (1− ρ)eλD(−λD + eλD − 1)
... .

The cdf of N is

P (N ≤ n) =
nX
i=0

Pi = F (nD), n = 0, 1, 2, ...,

where F (nD) is computed using (3.151).

3.9 M/Discrete/1 Queue

Consider the M/Discrete/1 queue, which we denote by M/{Dn}/1. This
section derives analytical properties for the steady-state pdf and cdf of
the wait before service, and suggests a technique for deriving analytical
formulas for them. Consider a typical sample path of the virtual wait
(Fig. 3.16).

In M/{Dn}/1, customers arrive in a Poisson stream at rate λ at a
single server. Denote the service time by S. For each arrival,

P (S = Di) = pi,
NX
i=1

pi = 1,

where Di is a positive constant, i = 1...,N, and N is a positive integer.
Then E(S) =

PN
i=1 piDi. Without loss of generality, let

0 ≡ D0 < D1 < ... < DN < DN+1 ≡ ∞.
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D3

D2

D1

0

Time t

W(t)

Figure 3.16: Sample path of virtual wait inM/{Dn}/1 queue withN = 3
service levels.

Customers that receive a service time Di arrive at rate λpi. The traffic
intensity is ρ = λE(S). Assume ρ < 1 (stability). Due to Poisson arrivals

lim
t→∞

P (W (t) ≤ x) = lim
n→∞

P (Wn ≤ x),

where Wn, n = 1, 2, ..., is the actual wait of the nth arrival (e.g., [99]).
Denote the steady-state cdf of wait by F (x), x ≥ 0. The steady-state

pdf of wait is f(x) = d
dxF (x), x > 0, wherever the derivative exists. We

define f(x), x ≥ 0, to be right continuous. The probability of a zero wait
is

P0 ≡ F (0) = 1− ρ = 1− λ
NX
i=1

Dipi.

The total pdf of wait is {P0; f(x), x > 0}. A relationship between the
cdf and pdf is given by

F (x) = P0 +

Z x

y=0
f(y)dy, F (∞) = P0 +

Z ∞

y=0
f(x)dx = 1.

Remark 3.23 The arrival stream may be viewed in two distinct ways:
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1. A homogeneous class of customers arrives at rate λ. Each arrival
gets service time Di with probability pi, independently of other
arrivals.

2. N separate classes of customers arrive at independent Poisson rates
λi ≡ λpi and receive service times Di, i = 1, ..., N , respectively.

These two viewpoints yield the same steady state distribution of wait.
This is reflected in the two equivalent forms for the traffic intensity ρ =
λ
PN

i=1 piDi =
PN

i=1 λiDi.

Remark 3.24 A similar analysis of the M/{Dn}/1 queue applies if N =
∞.

3.9.1 Properties of PDF and CDF of Wait

The steady-state distribution of wait has analytical properties given in
Proposition 3.9.

Proposition 3.9 In the M/{Dn}/1 queue, the steady-state pdf of wait,
{P0; f(x), x > 0}: (1) has exactly one atom which is at x = 0 (state
{0} is atom); (2) has exactly N downward jump discontinuities of sizes
λ(1 − ρ)pi at x = Di, i = 1, ..., N ; (3) is continuous for all x > 0, x 6=
Di, i = 1, ..., N .

Proof. Consider a typical sample path of the virtual wait process
(Fig. 3.16).

(1) State {0} is an atom since a sample path spends a positive pro-
portion of time in {0} (a.s.), namely P0 = (1 − ρ) = 1 − λ

PN
i=1 piDi.

Each sojourn time in {0} =
dist

Eλ. There are no other atoms in the state

space, since the proportion of time that a sample path spends in each
state x > 0, is 0.

(2) Fix i ∈ {1, ...,N}, and consider levels Di and Di − ε in the state
space, where 0 < ε < Di − Di−1 and ε < min {Di} (as in Fig. 3.13).
By Corollary 3.2 of Theorem 3.3 the SP downcrossing rates of Di and
Di−ε are limt→∞

E(Dt(Di))
t = f(Di) and limt→∞

E(Dt(Di−ε))
t = f(Di−ε)

respectively. Analogously to Example 2.5 we obtain

Dt+ε(Di − ε) =

Dt(Di)+T b
t (Di)X

j=1

Ij (3.153)
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where Ij = 1 if the jth downcrossing of level Di results in a downcrossing
of levelDi−ε exactly ε later, and Ij = 0 otherwise. In (3.153) the left side
Dt+ε(Di−ε) is the number of SP downcrossings of levelDi−ε in (0, t+ε).
On the right side the sum’s upper limit Dt(Di) + T b

t (Di) is the number
of SP downcrossings of level Di in (0, t) (continuous downcrossings plus
tangents from below). On the left side the subscript t + ε accounts for
the time taken for the SP to descend from Di to Di−ε. Taking expected
values on both sides of (3.153) gives

E(Dt+ε(Di − ε)) = (E(Dt(Di)) +E(T b
t (Di)))e

−λε

since E(Ij) ≡ e−λε. Dividing by t and letting t→∞ (writing 1t =
1

t+ε
t+ε
t

on the left side) gives

f(Di − ε) = (f(Di) + λpiP0)e
−λε,

where λpiP0 is the rate at which the SP makes a tangent to level Di from
below, which is the same as the arrival rate of type-i customers when
the system is empty (rate of SP jumps of size Di from level 0). Letting
ε ↓ 0 results in

f(D−i )− f(Di) = λpiP0.

Hence the pdf has a downward jump discontinuity at Di of size λpiP0 =
λpi(1− ρ).

(3) Fix level x > 0, x 6= Di, i = 1, ..., N . Sample paths are not tangent
to level x (a.s.) due to continuous inter-arrival times (exponentially
distributed). Let ε be small, i.e., x − ε < mini=1,...,N{Di − Di−1}, no
Di ∈ (x− ε, x) and ε < x. Then

Dt+ε(x− ε) =

Dt(x)X
j=1

Ij .

On the left side the subscript t + ε accounts for the time taken for the
SP to descend from x to x− ε. Taking expected values gives

E(Dt+ε(x− ε)) = E(Dt(x))e
−λε.

Tandem downcrossings of x and x − ε that happen more than ε apart
require an arrival in time ε and a service time < ε, which is impossible
by the choice of ε. Dividing by t and letting t→∞ (writing 1t =

1
t+ε ·

t+ε
t

on the left side) gives

f(x− ε) = f(x) · e−λε.

Letting ε ↓ 0 yields f(x−) = f(x) so that x is a point of continuity.
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t ε+

SP

W(t)

0
Time

i
D
ε−iD
1−iD

1D2D

t

Figure 3.17: Sample path in M/{Dn}/1 showing levels Di,Di − ε and
instants t, t+ ε. See Proposition 3.9, Proof, part (2).

Remark 3.25 From part (2) of Proposition 3.9, the sum of the down-
ward jumps at points of discontinuity of the pdf f(x) is λ(1−ρ)

PN
i=1 pi =

λ(1−ρ) = λP0. This sum is the same as the size of the single downward
jump in the pdf of wait in the M/D/1 model!

Proposition 3.10 In the M/{Dn}/1 queue the steady-state cdf of wait
F (x), x ≥ 0, has a single jump discontinuity at x = 0 of size 1− ρ, and
is continuous for all x > 0.

Proof. F (·) has a jump discontinuity at level 0, since {0} is an atom
having probability P0 = F (0) = 1 − ρ (Proposition 3.9, part (2)). Fix
x > 0 in the state space. Then x is not an atom (Proposition 3.9, part
(3)). Hence x has probability 0. Thus x is a point of continuity of F (·).

3.9.2 Expected Busy Period

From (3.59) the expected busy period is

E(B) = E(S)

1− λE(S)
=
1− P0
λP0

=

PN
i=1Dipi

1− λ
PN

i=1 piDi

.
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Let I denote an idle period. Another way to compute P0 is

P0 =
E(I)

E(I) +E(B) =
1
λ

1
λ +

N
i=1 piDi

1−λ N
i=1 piDi

= 1− λ
NX
i=1

piDi.

3.9.3 Integral Equation for PDF of Wait

The alternative form of the LC integral equation for M/G/1 (3.36) leads
immediately to an integral equation for the pdf f(x) (differential equation
for cdf F (x)),

f(x) = λF (x)− λ
NX
i=1

piF (x−Di)

= λF (x)−
NX
i=1

λiF (x−Di), x > 0. (3.154)

To verify (3.154) consider a virtual-wait sample-path (Fig. 3.16). In
(3.154), the left side f(x) is the downcrossing rate of level x. SP jumps
occur at rate λ =

PN
1=1 λi; having size Di with probability pi =

λi
λ . On

the right side, the first term λF (x) is the rate at which SP jumps start in
state-space set [0, x]. The second term, −λ

PN
i=1 F (x−Di)pi, subtracts

the rate of those jumps which start in state set [0, x] and end below level
x. SP jumps of size Di that start below x−Di, cannot upcross level x.
Thus the right side is the sample-path upcrossing rate of x. Rate balance
across level x gives (3.154).

3.9.4 Solution for CDF of Wait

Differential equation (3.154) for F (x) is solvable. However the form of
F (x) differs in state-space state space intervals

[0,D1), [D1, 2D1),

..., [j11D1,D2), [D2, (j11 + 1)D1), [(j11 + 1)D1, (j11 + 2)D1),

etc., where j11 =
j
D2
D1

k
(greatest integer ≤ D2

D1
). At D3 in the state space,

we need to consider j12 =
j
D3
D1

k
and j22 =

j
D3
D2

k
, etc. This makes the
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solution procedure complex. We must keep track of the positions in the
state space of the break points where the functional form changes, by
considering the relative sizes of D1, D2, ...,DN .

3.9.5 Alternative Approach for CDF of Wait

An alternative way to obtain a solution for F (x) is to derive the cdf
of wait in a "specialized" M/{Dn}/1 queue. We can assume, without
loss of computational accuracy, that all Di’s are rational numbers. Let
D1 = k1D,D2 = k2D, ...,DN = kND, D = gcd{D1, ...,DN} and 0 <
k1 < k2 < · · · < kN are positive integers (gcd denotes greatest common
divisor).

To accomplish this, consider an M/{Dn}/1 queue whereDi = iD, i =
1, ..., N . We call this model an M/{iD}/1 queue. It is somewhat easier
to obtain an analytical solution for the cdf and pdf of wait in M/{iD}/1
than in M/{Dn}/1. Once a solution for M/{iD}/1 is obtained, then
adjust the arrival rates for customers that get service times kiD (= Di)
so that they correspond to those of the original M/{Dn}/1 queue. Arrival
rates for intermediate service time values {iD|iD 6= Di, i = 1, ...,N} are
set to 0 in the solution. The resulting cdf for M/{iD}/1 is equal to the
cdf of wait for the original M/{Dn}/1 model (i.e., solution of (3.154)).

Thus M/{iD}/1 (D = gcd{D1, ...,DN}) may be considered as equiv-
alent M/{Dn}/1. Also, it is more amenable analytically and computa-
tionally.

3.10 M/{iD}/1 Queue

This section analyzes the M/{iD}/1 queue, keeping in mind its close
relationship to M/{Dn}/1 (Subsection 3.9.5).

In M/{iD}/1 there are N types of arrivals at Poisson rates λi, i =
1, ..., N , where N is a positive integer. Customers of type i receive a
service time iD,D > 0. Equivalently, customers arrive at Poisson rate
λ and get a service time iD with probability pi,

PN
i=1 pi = 1. Thus

λpi ≡ λi. The expected service time is E(S) =
PN

i=1 iDpi. Assume
λE(S) < 1 (stability). Let P0 denote the steady-state probability that
the system is empty. Then

P0 = 1− λE(S) = 1− λ
NX
i=1

iDpi = 1−
NX
i=1

iDλi.
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The M/D/1 queue is a special case of M/{iD}/1 with N = 1. The
M/{iD}/1 queue is a special case of M/{Dn}/1, with Dn = knD, D =
gcd{D1, ...,DN} and kn ∈ {1, ..., N}. Paradoxically, M/{iD}/1 may also
be considered as a generalization of M/{Dn}/1 (Subsection 3.9.5)!

3.10.1 Integral Equation for CDF of Wait

Let Wq denote the wait before service in the steady state, having cdf
F (x) ≡ P (Wq ≤ x), x ≥ 0 and pdf f(x) = d

dxF (x), x > 0, wherever the
derivative exists. We apply equation (3.35) involving the pdf and cdf of
wait to obtain

f(x) = λF (x)− λ
NX
i=1

F (x− iD)pi

= λF (x)−
NX
i=1

λiF (x− iD), x > 0. (3.155)

Consider the virtual wait process (similar to Fig. 3.16). In (3.155)
the left side is the virtual-wait sample path downcrossing rate of x. On
the right side, the term λF (x) is the rate of jumps that start at levels in
[0, x]. The term −

PN
i=1 λiF (x − iD) subtracts the rate of those jumps

that start at levels in [0, x] and end below x. For example, λiF (x− iD)
is the rate of type-i jumps of size iD that do not upcross x, since they
start below x − iD. Hence, the right side is the upcrossing rate of x.
Equation (3.155) results by rate balance across level x.

3.10.2 Recursion for CDF of Wait

This subsection outlines a procedure to solve (3.155) recursively for F (x),
x ∈ [mD, (m+ 1)D), m = 0, 1, 2, .... Let

F (x) ≡ Fm(x), f(x) ≡ fm(x), x ∈ [mD, (m+ 1)D),m = 0, 1, 2, ...

and F−k(x) ≡ 0 if k is a positive integer. Then write (3.155) as

fm(x) = λFm(x)−
NX
i=1

λiFm−i(x− iD),

x ∈ [mD, (m+ 1)D), m = 0, 1, 2, ... (3.156)
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Figure 3.18: PDF of wait in M/{iD}/1 queue: four arrival types (N =
4), λ = .2, p1 = p4 = .01, p2 = .39, p3 = .59. Downward jumps at
x = 1, 2, 3, 4.

Figure 3.19: CDF of wait in M/{iD}/1 queue. N = 4, λ = .2, p1 =
p4 = .01, p2 = .39, p3 = .59. Slope decreases abruptly at x = 1, 2, 3, 4.
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Consider state-space interval [0,D). Note that F (x − iD) = 0 if
x− iD < 0. For x ∈ [0,D), equation (3.156) reduces to

f0(x) = λF0(x), x ∈ [0,D),
dF0(x)

dx
= λF0(x), x ∈ (0,D),

with solution

F0(x) = (1− ρ)eλx, x ∈ [0,D).

Next, equation (3.156) reduces to

f1(x) = λF1(x)− F0(x−D)λ1, x ∈ [D, 2D),

f1(x) = λF1(x)− (1− ρ)eλ(x−D)λ1, x ∈ [D, 2D).

Substituting f1(x) = d
dxF1(x) in the last equation makes it a differential

equation in F1(x), which is readily solved up to a constant. The constant
is evaluated using continuity F0(D−) = F1(D). The solution is

F1(x) = (1− ρ)
³
eλx + λ1(D − x)e−λ(D−x)

´
, x ∈ [D, 2D),

which can be written as

F1(x) = F0(x) + (1− ρ)λ1(D − x)e−λ(D−x), x ∈ [D, 2D),

if we extend the domain of F0(x) to [0,∞).
In a similar manner, we obtain recursively

F2(x), x ∈ [2D, 3D), . F3(x), x ∈ [3D, 4D), F4(x), x ∈ [4D, 5D).

where we extend the domain of Fm(x) to [m,∞). The recursive for-
mulas in (3.157) below summarize the values of F (x) on state-space
interval [0, 5D) by specifying the corresponding functions on intervals
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[0,D),...,[4D, 5D).

F0(x) = (1− ρ)eλx,

F1(x) = F0(x) + (1− ρ)λ1(D − x)e−λ(D−x),

F2(x) = F1(x) + (1− ρ)
³
λ2(2D − x) +

λ21(2D−x)2
2!

´
e−λ(2D−x),

F3(x) = F2(x) + (1− ρ)(λ3(3D − x) + λ2λ1(3D − x)2

+
λ31(3D−x)3

3! )e−λ(3D−x),

F4(x) = F3(x) + (1− ρ)(λ4(4D − x) + λ3λ1(4D − x)2

+
λ22(4D−x)2

2! +
λ2λ

2
1(4D−x)3
2! +

λ41(4D−x)4
4! )e−λ(4D−x).

(3.157)
The recursion (3.157) can be continued. It can shown that the general
form is (Shortle and Brill [92])

Fm(x) = Fm−1(x) + (1− ρ)e−λ(mD−x)
X

L∈P(m)

(mD − x)|L|

H(L)
Y
j∈L

λj ,

(3.158)
where P(m), L, H(L), and

Q
j∈L λj are explained in the next subsection.

3.10.3 Solution for CDF and PDF of Wait

Using mathematical induction, it can be shown that an analytical solu-
tion of recursion (3.158) for the cdf of wait is

Fm(x) = (1− ρ)
Pm

i=0 e
−λ(iD−x)P

L∈P(i)
(iD−x)|L|
H(L)

Q
j∈L λj ,

x ∈ [mD, (m+ 1)D), m = 0, 1, ...,

(3.159)
where: P(i) is the set of partitions of integer i; L is a partition in P(i);
r1 > r2 > · · · > rd are the distinct integers in L with multiplicities
n1, · · · , nd, respectively; H(L) ≡ n1!n2! · · · nd!; |L| = n1+ n2+ · · · +nd;Q

j∈L λj ≡ λn1r1 λ
n2
r2 · · ·λ

nd
rd
. Also, if i = 0, then

X
L∈P(0)

(iD − x)|L|

H(L)
Y
j∈L

λj ≡ 1.



130 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

The pdf of wait is fm(x) = d
dxFm(x). Differentiating (3.159) with respect

to x, gives for x ∈ (mD, (m+ 1)D),m = 0, 1, 2, ... ,

fm(x) = (1−ρ)
mX
i=0

e−λ(iD−x)
X
L∈P(i)

(λ(iD−x)−|L|)(iD − x)|L|−1

H(L)
Y
j∈L

λj .

As a mild check on (3.159), we obtain the cdf of wait for an M/D/1
queue from it, namely

Fm(x) = (1− ρ)
mX
i=0

e−λ(iD−x)
(iD − x)i

i!
λi

= (1− ρ)
mX
i=0

(−λ)i (x− iD)i

i!
e−λ(iD−x),

x ∈ [mD, (m+ 1)D),m = 0, 1, ... .

The latter M/D/1 formula results since: (1) λ1 = λ and λi = 0, i > 1;
(2) for each i, the only partition in P(i) that contributes positive terms
is that of i 1’s, {1, ..., 1}; (3) each i yields one such partition with n1 = i,
H(L) = i!, and

Q
j∈L λj = λi.

Remark 3.26 Formula (3.159) can also be obtained by inversion of the
Laplace transform of wait (see equation (3.51)) [92]. The inversion pro-
cedure is at least as involved as the LC derivation above. Moreover, it
also requires the induction step. The advantages of the LC approach are:
(1) the analysis prior to the induction step is intuitive and directly in the
time domain; (2) the effect on the solution, due to the discontinuities in
f(x) and continuity of F (x), is clear; (3) because LC emphasizes sample
paths, it enhances intuitive understanding of the model dynamics, and
suggests new avenues for research.

3.11 M/G/1 with Reneging

In this section we analyze an M/G/1 queue in which arrivals: (1) stay
for full service if their wait is zero, (2) may renege from the waiting line,
(3) may wait in line but balk at service, (4) may wait and receive full
service if their required wait is positive.

Let the service time S having cdf B(x) and B(x) = 1−B(x), x ≥ 0.
Let W (t), t ≥ 0 denote the virtual wait. Let τn be the arrival time of
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customer Cn,n = 1, 2, ... . Then W (τ−n ) ≡Wn is the required wait before
service of Cn, n = 1, 2, ... . Define for n = 1, 2, ... ,

θWn =

½
1 if Cn waits and receives a full service,
0 if Cn reneges while waiting or waits and balks at service.

(3.160)

3.11.1 Staying Function

For each y ≥ 0, define the common conditional probabilities

R(y) ≡ P (θWn = 1|Wn = y),

R(y) ≡ P (θWn = 0|Wn = y), (3.161)

independent of n = 1, 2, .... From (3.160) R(y) +R(y) = 1, y ≥ 0.
Random variable θy has a Bernoulli distribution for each required

wait y ≥ 0. The probability of staying for full service is R(y). The
probability of reneging from the waiting line or balking at service is
R(y).

This section assumes R(y) is monotone non-increasing (decreasing in
the wide sense), and bounded below by 0. Then limy→∞R(y) exists. Let
limy→∞R(y) = L. Then 0 ≤ L ≤ 1. Let H(y), y ≥ 0 denote a generic
cdf.

If
½

L = 0 then R(y) = 1−H(y),
L > 0 then R(y) 6= 1−H(y).

Since no balking is allowed at an arrival instant, R(0) = 1.
If R(y) ≡ 1, y ≥ 0, then L = 1. There would be no reneging from the

waiting line and no balking at service. Then each Cn, n = 1, 2, ... would
wait and receive full service. The model would reduce to a standard
M/G/1 queue.

Remark 3.27 In a more general model, R(y) may be an arbitrary func-
tion such that R(y) ∈ [0, 1], y ≥ 0, not necessarily monotone. In that
case, the presented analysis applies as well. However, the stability con-
dition would be slightly modified (see Theorem 3.8 and Remark 3.31 be-
low).

We can use R(y) to model balking upon arrival (e.g., 0 < R(0) < 1)
and/or reneging from service. The model may also incorporate state
dependence (e.g., service time depending on wait).
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( )R x

Figure 3.20: Staying function R(x) = e−rx. (r = 1); L = 0. R(x) =
1−H(x) where H(x) is a cdf.

Staying Function

We call R(y) the staying function . R(y) is the probability that an
arrival waits in line and stays for a full service, given that y is the required
wait before service (see Figs. 3.20-3.22).

3.11.2 Reneging While Waiting or Balking at Service

We analyze the required wait before service. We may think of customers
who renege from the waiting line as if they wait until start of service
and then balk at service. (This makes no difference to the virtual wait
for stayers.) Service-balkers receive zero service time. They are cleared
from the system just before start of service. Thus they add zero to the
required wait of any customer.

3.11.3 Sample Path of Virtual Wait for Stayers

The virtual wait W (t) is the required wait of a would-be time-t arrival
that stays for service. Consider a sample path of {W (t), t ≥ 0}. If the
actual wait is Wn = 0 then the SP jump size at τn has cdf B(·), starting
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( )R x

x

Figure 3.21: Staying function R(x) = 1, x < 1, R(x) = 0, x ≥ 1. L = 0.
R(x) = 1−H(x), where H(x) is a cdf.

( )R x

x
0

0 1 2 3 4

Figure 3.22: R(x) = 1, x < 1, R(x) = 0.5, 1 ≤ x < 2, R(x) = 0.1, x ≥ 2.
R(x) 6= 1−H(x), where H(x) is a cdf.
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from level 0. If the event

{Wn = y > 0, θy = 1}

occurs then the SP jump size at τn has cdf B(·), starting at level y. The
probability that a jump occurs is R(y). If the event

{Wn = y > 0, θy = 0}

occurs then Cn reneges or balks at service; the SP makes no jump at τn.
The probability of no jump is R(y).

A would-be arrival at τ+n just after a reneger (or service-balker) Cn

arrives, also would have a required wait y until service. This implies
W (τn) =W (τ−n ) = y. The sample path would be continuous with slope
−1 at τn (Fig. 3.23).

Remark 3.28 In Fig. 3.23 we consider a single busy period. Stayers ar-
rive at τn; renegers arrive at an, n = 1, 2, .... If at least one stayer arrives
after an, the start-of-service time of the first such stayer is denoted by
σn. If zero stayers arrive after an, the end of the busy period is denoted
by bn. Knowledge of an, σn, bn are sufficient to compute the required
wait of the reneger arriving at an. If the reneger is cleared from the sys-
tem prior to its required wait, the required wait is a "censored" variable.
In order to compute the required wait we must observe the sample path
until the end of the busy period in which the reneger arrives.

The required waits of stayers and of renegers or service-balkers are
useful quantities for a particular method of non-parametric estimation of
the staying function from observations of the queue in continuous time.

3.11.4 Equation for PDF of Wait of Stayers

Denote the steady-state pdf of the required wait for stayers (virtual wait),
by {P0; f(x), x > 0} where P0 is the probability of a zero required wait.
An LC-derived integral equation for f(x) is

f(x) = λP0B(x) + λ

Z x

y=0
B(x− y)R(y)f(y)dy. (3.162)

In (3.162) the left side is the SP downcrossing rate of level x.
On the right side of (3.162), λP0B(x) is the rate of SP jumps starting

from level 0, that upcross level x (stayers). The term

λ

Z x

y=0
B(x− y)R(y)f(y)dy
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1τ 2τ 3τ 5τ

W(t)

S1

S2 SP

0

Busy period

Time

1a

2 1σ σ=
2a

3a
4a 5a

5 4 3σ σ σ= =
6a

6b

Renege or
balk at service

Figure 3.23: M/G/1 busy period showing stayers (τn), renegers (an) σn,
and b6 (end busy period), used to compute required waits of renegers.

is the rate of SP jumps starting at levels y ∈ (0, x), that upcross level x.
The right side is the SP total upcrossing rate of level x due to stayers.
Rate balance across level x yields integral equation (3.162). The pdf
on the left side is the time-average pdf. The pdf under the integral on
the right side is the embedded pdf at arrival instants. Due to Poisson
arrivals the two pdf’s are equal. (We verify this claim by deriving integral
equation (3.162) using the embedded LC method later in Subsection
8.4.2. In the embedded LC technique, f(x) = limn→∞ fn(x) inherently.)

Proportion of Customers That Get Full Service

Stayers are zero waiters or waiters that reach the server and receive full
service. Denote by qS, the proportion of arrivals that are stayers. Then
qS is the probability that an arbitrary arrival gets full service. Thus

qS = P0 +

Z ∞

y=0
R(y)f(y)dy. (3.163)

The proportion of customers that renege while waiting, or balk at start
of service, is

1− qS =

Z ∞

y=0
R(y)f(y)dy.
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3.11.5 M/M/1 with Reneging

Let B(x) = e−μx, x ≥ 0 (service rate μ). Then (3.162) becomes

f(x) = λP0e
−μx + λ

Z x

y=0
e−μ(x−y)R(y)f(y)dy. (3.164)

Applying differential operator hD + μi to both sides of (3.164) yields the
first order differential equation

hD + μi f(x) = λR(x)f(x),

f 0(x) + (μ− λR(x))f(x) = 0.

Separation of variables followed by integration gives the solution

f(x) = Ae
− μx−λ x

y=0R(y)dy , x > 0, (3.165)

where A is a constant. Letting x ↓ 0 in (3.164) and (3.165) implies
f(0) = A = λP0.

From LC, f(0) is the SP entrance rate into T ×{0} (level 0) from above.
The term λP0 is the SP exit rate from level 0 into the state-space interval
(0,∞). The resulting pdf of wait is

f(x) = λP0e
− μx−λ x

y=0R(y)dy , x > 0. (3.166)

The normalizing condition P0 +
R∞
x=0 f(x)dx = 1 leads to

P0 =
1

1 + λ
R∞
x=0 e

− μx−λ x
y=0R(y)dy dx.

. (3.167)

3.11.6 Stability Condition for M/M/1 with Reneging

Theorem 3.8 gives a necessary and sufficient condition on the model
parameters such that the steady-state distribution of required wait exists
(stability).

Theorem 3.8 Consider an Mλ/Mμ/1 queue in which customers may
renege before service, or wait the required time and then balk at service.
Let the staying function be R(x), x ≥ 0, where R(x) is monotone non-
increasing and R(0) = 1. Let L = limx→∞R(x). A necessary and
sufficient condition for stability is

λ <

( μ
L if 0 < L ≤ 1,
∞ if L = 0.

(3.168)
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Proof. (Adapted from [69]) Note that limx→∞R(x) = L, 0 ≤ L ≤ 1
exists. This is because R(0) = 1, R(x) is monotone non-increasing and
bounded below by 0. Stability holds iff the discrete state {0} is positive
recurrent iff 0 < P0 ≤ 1. Let I ≡

R∞
x=0 e

− μx−λ x
y=0R(y)dy dx in the

denominator of (3.167). For stability, I is necessarily finite. That is we
must have

I <∞. (3.169)

We show that (3.169) is equivalent to (3.168).
Since L ≤ R(x), x ≥ 0

λLx = λ

Z x

y=0
Ldx ≤ λ

Z x

y=0
R(y)dy

⇐⇒ e−μx+λLx ≤ e
−μx+λ x

y=0R(y)dy

⇐⇒
Z ∞

x=0
e−(μ−λL)xdx ≤ I. (3.170)

For given ε > 0 there exists Mε > 0 such that R(x) < ε + L for
x > Mε. Thus

λ

Z x

y=0
R(y)dy < λ

Z Mε

y=0
R(y)dy + λ

Z x

y=Mε

(ε+ L) dy

= C1 + λ (ε+ L)x, x > Mε

=⇒ e
−μx+λ x

y=0R(y)dy < C2e
−μx+λ(ε+L)x, x > Mε

=⇒
Z ∞

x=Mε

e
−μx+λ x

y=0R(y)dy dx < C2

Z ∞

x=Mε

e(−μ+λL+λε)xdx

=⇒ I < C3 + C2

Z ∞

x=Mε

e(−μ+λL+λε)xdx, (3.171)

where C1, C2, C3 are positive constants. Combining inequalities (3.170)
and (3.171) givesZ ∞

x=0
e−(μ−λL)xdx ≤ I < C3 + C2

Z ∞

x=Mε

e(−μ+λL+λε)xdx. (3.172)

Consider (3.172). If I <∞ thenZ ∞

x=0
e−(μ−λL)xdx <∞ ⇐⇒ μ− λL > 0. (3.173)
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If μ − λL > 0 then choose ε so that −μ + λL + λε < 0, i.e., choose
ε < μ−λL

λ . ThenZ ∞

x=Mε

e(−μ+λL+λε)xdx <∞ =⇒ I <∞. (3.174)

The stability condition (3.168) is equivalent to (3.173) and (3.174).

Remark 3.29 To shed additional perspective on the stability condition
(3.168), consider the exponent in the integrand of

I ≡
Z ∞

x=0
e
− μx−λ x

y=0R(y)dy dx.

The function μx is linear with slope μ > 0. The function of x,Z x

y=0
R(y)dy, x > 0,

is positive and increasing with slope

d

dx

Z x

y=0
R(y)dy = R(x), x > 0.

Assume R(x), x > 0, is strictly decreasing and differentiable. ThenR x
y=0R(y)dy is concave since

d2

dx2

Z x

y=0
R(y)dy =

d

dx
R(x) < 0, x > 0.

Also

lim
x→∞

d

dx

Z x

y=0
R(y)dy = lim

x→∞
R(x) = L.

We compare the graphs of μx and λ
R x
y=0R(y)dy, x > 0 in Fig. 3.24.

If L > 0 then there exists M ≥ 0 such that μx − λ
R x
y=0R(y)dy > 0

for all x ≥ M iff μ > λL. If L = 0, there exists M ≥ 0 such that
μx− λ

R x
y=0R(y)dy > 0 for all x ≥M iff μ ≥ λ · 0. Thus λ can assume

any positive value, i.e., 0 < λ <∞.

Remark 3.30 If R(x) is piecewise continuous, we can obtain similar
perspective as in Remark 3.31.
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x

xμ

0 ( )x
y R y dyλ =∫

slope

M

Lλ→

slope
=  1

*λ λ=

0λ =
1λ =

μ→
slope

Figure 3.24: Functions μx and λ
R x
y=0R(y)dy, indicating M such that

μx − λ
R x
y=0R(y)dy > 0 for x ≥ M . Indicates range 0 < λ < λ∗ such

that stability holds. System is stable for λ if λ
R x
y=0R(y)dy intersects

and remains below μx thereafter.

Alternative Proof of Theorem 3.8

We provide an alternative proof of the stability condition, in order to
clarify the intuition behind the result. Consider an optimization problem
where λ is the decision variable. We shall derive a range 0 < λ < λ∗

for which there exists M ≥ 0 such that μx − λ
R x
y=0R(y)dy > 0 for all

x ≥ M (system is stable). The value λ∗ is the solution of the following
optimization problem P. (Note that μ > 0, L ≥ 0.)

Problem P
Maximize λ

such that μ− λL ≥ 0
subject to λ > 0.

The solution of problem P is readily seen to be

λ∗ =

( μ
L if L > 0,

∞ if L = 0,

which is the same result as in Theorem 3.8.
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Remark 3.31 The stability condition given in Theorem 3.8 was origi-
nally proved in [12] together with a theorem in which the staying function
may be other than monotone non-increasing. That proof is based on the
fact thatZ ∞

x=0
e
− μx−λ x

y=0R(y)dy dx =

Z ∞

x=0
e−μx · eλ

x
y=0R(y)dydx

is the Laplace transform of eλ
x
y=0R(y)dy evaluated at parameter μ. A suf-

ficient condition for the Laplace transform to be finite is that eλ
x
y=0R(y)dy

is of exponential order. Let

L = lim sup
x→∞

R(x).

A sufficient condition for stability is

λ <
μ

L
if L > 0,

λ <∞ if L = 0.

3.11.7 M/M/1 with Exponential Staying Function

Assume B(x) = e−μx, x ≥ 0, and R(y) = e−ry, y > 0, r > 0. Thus R(y)
is monotone decreasing and L = limy→∞ R(y) = 0 in the notation of
subsection 3.11.5.

Equation (3.162) becomes

f(x) = λP0e
−μx + λ

Z x

y=0
e−μ(x−y)e−ryf(y)dy. (3.175)

Substituting e−ry for R(y) in (3.166) gives the pdf of wait for stayers,

f(x) = λP0e
−μx+λ

r
(1−e−rx)

= λeλ/rP0e
−μx−λ

r
e−rx , x > 0. (3.176)

We obtain

P0 =
1

1 + λeλ/r
R∞
x=0 e

−μx−λ
r
e−rxdx

=
1
λ

1
λ + eλ/r

R∞
x=0 e

−μx−λ
r
e−rxdx

. (3.177)
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In the denominator of P0 the term
R∞
x=0 e

−μx−λ
r
e−rxdx < 1

μ <∞ for every

trio of positive numbers {λ, μ, r}, since the integrand e−μx−λ
r
e−rx < e−μx.

Thus P0 > 0 for all positive {λ, μ, r}. In particular P0 > 0 for every
arrival rate λ > 0. This corroborates Theorem 3.8 with limx→∞R(x) =
L = 0.

Expected Busy Period

In the standard M/G/1 queue, E(B) = E(S)
1−λE(S) , where B is the busy

period. In M/G/1 with reneging P0 6= 1 − λE(S). Hence, we use the
more fundamental formula for E(B) in terms of P0. From (3.60) and
(3.177),

E(B) = 1− P0
f(0)

=
1− P0
λP0

= e
λ
r

Z ∞

x=0
e−μx−

λ
r
e−rxdx =

Z ∞

x=0
e−μx+

λ
r
(1−e−rx)dx. (3.178)

(Note that (3.178) is part of the denominator of (3.177). This infers
(3.178.)

3.11.8 M/M/1 with Reneging and Standard M/M/1

We compare M/M/1 with reneging and the standard M/M/1 queue.
Assume λ < μ (stability condition for standard M/M/1). In (3.178),
(1− e−rx) < rx ∀x > 0 and (1− e−r·0) = r · 0 = 0. Thus

E(Br) <
Z ∞

x=0
e−μx+λxdx =

1

μ− λ
= E(Bs),

where subscript r represents M/M/1 with reneging, and subscript s rep-
resents standard M/M/1.

In (3.177), we again apply the inequalityZ ∞

x=0
e−μx+

λ
r
(1−e−rx)dx <

1

μ− λ
.

This gives

Pr0 >
1

1 + λ · 1
μ−λ

= 1− λ

μ
= Ps0.

The comparisons for E(B) and P0 are intuitive. The effective arrival rate
of customers that increase workload on the server, is less in the reneging
model than in the standard model.
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3.11.9 Number in System for M/M/1 with Reneging

Let Psn, asn, dsn denote the steady-state probabilities of n stayers in the
system at an arbitrary time point, just before an arrival, and just after
a departure, respectively. Then Psn = asn = dsn, n = 0, 1, 2, ..., and
Ps,0 = P0 given in (3.177). Furthermore

dsn =

Z ∞

x=0
e−λR(x)x

(λR(x)x)n−1

(n− 1)! f(x)dx

=

Z ∞

x=0
e−λe

−rxx (λe
−rxx)n−1

(n− 1)! λe
λ
r P0e

(−μx−λ
r
e−rx), n = 1, 2, ....

(3.179)

In formula (3.179), λR(x) (= λe−rx) is the arrival rate of stayers when
the required wait is x.

Remark 3.32 We outline a derivation of (3.179) using an approxi-
mation of R(x) by a step function. Let [0,Ω) be a large waiting-time
interval in the state space. Partition [0,Ω) into n subintervals ∆i =
[xi, xi+1), i = 0, ...,m− 1, where x0 = 0, xn = Ω. We approximate R(x)
by R(x) ≡ R(xi), x ∈ ∆i. Thus the arrival rate of stayers is a constant
λR(xi) if the required wait ∈ [xi, xi+1). The probability that n−1 stayers
arrive given the required wait ∈ ∆i is approximately

e−λR(xi)x
0
i(λR(xi)x

0
i)
n−1

(n− 1)!

where x0i ∈ ∆i. The unconditional probability that n − 1 stayers arrive
during (0,Ω) is approximately the Riemann sum

m−1X
i=0

e−λR(xi)x
0
i(λR(xi)x

0
i)
n−1

(n− 1)! f(x00i ) |∆i|

where x00i ∈ ∆i. Let n→∞ and |∆i| ↓ 0. Then xi, x0i, x
00
i → x and

lim
m→∞,|∆i|↓0

m−1X
i=0

e−λR(xi)x
0
i
(λR(xi)x

0
i)
n−1

(n− 1)! f(x00i ) |∆i|

=

Z Ω

x=0
e−λR(x)x

(λR(x)x)n−1

(n− 1)! f(x)dx.

Letting Ω→∞ implies (3.179).
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3.11.10 Proportion of Customers Served

Consider M/M/1 with exponential reneging. From (3.163) the propor-
tion of customers that get complete service is

qS = P0 +

Z ∞

x=0
e−rxf(x)dx

=

³
1 + λe

λ
r

R∞
x=0 e

−μx−λ
r
e−rx−rxdx

´
³
1 + λe

λ
r

R∞
x=0 e

−μx−λ
r
e−rxdx

´ . (3.180)

The proportion of customers that renege while waiting, or reach the
server and balk at service, is 1− qS .

In the expressions for P0, E(B), qS the integrals do not have closed
forms. They can be evaluated readily using series expansion or numerical
methods, for given values of λ, μ, r.

3.12 M/G/1 with Priorities

Assume N types of customers arrive at a single-server system in inde-
pendent Poisson streams at rates λi, i = 1, ...,N . The respective service
times Si have cdf Bi(x), Bi(x) = 1−Bi(x), x ≥ 0, and pdf bi(x), x > 0.
We assume type 1 (i = 1) has the highest priority, type 2 the next high-
est,..., and type N (i = N) the lowest priority. The service discipline is
FCFS within priority classes. The priority discipline is non-preemptive.
Any customer that starts service is allowed to complete it. The customer
at the head of the highest-priority line, among all waiting customers, will
start service immediately after the next service completion.

Denote the steady-state pdf and cdf of wait before service of a type
i customer, by {P0; fi(x), x > 0}, and Fi(x), x ≥ 0 respectively. Note
that the probability of a zero wait P0 is independent of type.

3.12.1 Two Priority Classes

For exposition we consider two priority classes. If there are two priority
classes, N = 2. We confirm the well known stability condition, λ1E(S1)+
λ2E(S2) < 1, using an LC approach. Consider sample paths of the
virtual wait for type-1 customers (Fig. 3.25). Fix level x > 0 in the
state space.
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Figure 3.25: Sample path of virtual wait for high priority type-1 arrivals.
Low priority type-2 arrivals that must wait, start service at the end of a
B1 or a B21 (Fig. 3.26) busy period. All type 2 jumps start at level 0.

3.12.2 Equation for PDF of Wait of Type-1 Customers

From the sample path, we construct an integral equation for the pdf
f1(x), x > 0,

f1(x) = λ1B1(x)P0 + λ2B2(x)P0 + λ1
R x
y=0B1(x− y)f1(y)dy

+λ2(1− P0)B2(x).
(3.181)

In (3.181) the left side f1(x) is the SP downcrossing rate of x (as in
basic LC Theorem 1.1). On the right side terms λ1B1(x)P0, λ2B2(x)P0
are the SP upcrossing rates of x due to type-1 and type-2 arrivals, re-
spectively, when the system is empty. The term λ1

R x
y=0B1(x−y)f1(y)dy

is the upcrossing rate of x due to type-1 arrivals that wait a positive time
y ∈ (0, x). The term λ2(1 − P0)B2(x) is the upcrossing rate of x due
to type-2 arrivals that wait positive times before they start service. The
first-in-line of such type 2’s must wait until the end of a type 1 busy
period to start service. Any other such type 2’s wait longer before they
start service. Those type 2’s can start service only when the type-1
virtual wait hits level 0. The corresponding SP jumps of size S2 start
at level 0. The long-run rate at which such type 2’s start service is
λ2(1− P0) since all type 2’s must eventually get served in a finite time,
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due to stability.

3.12.3 Stability Condition

Integrate both sides of (3.181) with respect to x on (0,∞). Note thatR∞
x=0 f1(x)dx = 1− P0. Collect terms to yield

P0 = 1− λ1E(S1)− λ2E(S2) = 1− ρ1 − ρ2, (3.182)

where ρi = λiE(Si), i = 1, 2. For stability, we must have 0 < P0 < 1, or

0 < ρ1 + ρ2 < 1,

which implies both ρ1 < 1 and ρ2 < 1.

3.12.4 Expected Wait of High Priority Customers

We confirm the known formula for the expected wait of type-1 customers
using (3.181). Denote the wait in queue before service of an arbitrary
type-1 arrival by Wq1. Multiply both sides of (3.181) by x and integrate
on (0,∞). The left side becomes

R∞
0 xf1(x)dx = E(Wq1). We obtain

E(Wq1) =
³
λ1

E(S21)
2 + λ2

E(S22)
2

´
P0 + λ1E(S1)E(Wq1)

+λ1(1− P0)
E(S21)
2 + λ2(1− P0)

E(S22)
2 .

or, the familiar result (e.g., [91])

E(Wq1) =
λ1E(S

2
1) + λ2E(S

2
2)

2(1− ρ1)
. (3.183)

3.12.5 Equation for PDF of Wait of Type-2 Customers

Let {W2(t)} be the virtual wait process of type-2 customers. LetWq2 be
the steady-state wait. Denote the pdf of Wq2 by f2(x), x > 0. We now
develop an integral equation for f2(x).

Preliminaries

Let B1(x), x > 0 denote the cdf of an M/G/1 type-1 busy period. Let
B1(x) = 1 − B1(x). We use B21 to denote a busy period in which the
first service is type 2. All linked subsequent services are type 1 (Fig.
3.26). Let random variable NS21 denote the number of strict descending
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ladder points that occur in a sample path of a B21 busy period. Then
NS21 has the same distribution as the number of type-1 customers that
arrive in a type-2 service time S2. Thus we have

B21 =
dist

S2 +

NS21X
i=1

B1i, (3.184)

where the B1i’s are iid random variables distributed as an M/G/1 type-1
busy period B1 independent of NS21 . Equation (3.184) follows due to the
memoryless property of the type-1 inter-arrival times (exponential with
rate λ1). (A related discussion of busy period structure is given above
in Subsection 3.3.9.)

We illustrate the meaning of NS21 in Fig. 3.26. In that figure NS21 =
3. There are three type-1 busy periods in B21. There are four vertical
gaps, each distributed as an inter-arrival time, separating and bordering
on these three busy periods. The basic observation is that the sum of
the four gaps is equal to S2.

From (3.59)

E(B1) =
E(S1)

1− λ1E(S1)
. (3.185)

Taking expected values in (3.184) we obtain

E(B21) = E(S2) + λ1E(S2)E(B1)

= E(S2) + λ1E(S2)
E(S1)

1− λ1E(S1)

=
E(S2)

1− λ1E(S1)
=

E(S2)

1− ρ1
. (3.186)

Remark 3.33 Note that E(B21) is the same as the expected busy period
in an M/G/1 queue in which zero-waiting customers receive specialized
service. Thus we can obtain (3.186) immediately as a special case of
(3.122).

Let B21(x) denote the cdf of B21, and B21(x) = 1 −B21(x), x ≥ 0.
Consider a sample path of the virtual wait of type-2 customers {W2(t)}
(Fig. 3.27). The sample path illustrates that type-2 customers may view
the model as a queue with server vacations. When a type 1 arrives to
an empty system, the server vacation is a type-1 busy period. When a
type 2 arrives, the server vacation consists of NS21 type-1 busy periods.
By (3.184) type 2 generated SP jumps are distributed as B21.
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Figure 3.26: Busy period B21. Initial jump is a type 2 service S2. Each
subsequent jump is a type 1 service S1. B1,j , j = 1, 2, ..., are M/G/1 type
1 busy periods.

Integral Equation for f2(x)

We now construct an integral equation for f2(x), namely

f2(x) = λ1B1(x)P0 + λ2B21(x)P0 + λ2

Z x

y=0
B21(x− y)f2(y)dy. (3.187)

In (3.187) the left side f2(x) is the sample-path downcrossing rate of
level x (as in basic LC Theorem 1.1). On the right side of (3.187) the term
λ1B1(x)P0 is the SP upcrossing rate of x due to type-1 arrivals when the
system is empty. A potentially arriving type-2 customer, immediately
after the initial type 1 starts service, would wait a type-1 busy period
before starting service. The term λ2B21(x)P0 is the SP upcrossing rate
of x due to type-2 arrivals when the system is empty. A potentially
arriving type-2 customer, immediately after the type 2 starts service,
would wait a busy period, B21, before starting service. It is possible that
B21 consists of the initial type-2 service only. Possibly no type 1’s arrive
during the initial service time. Generally, B21 includes an additional run
ofNS21 M/G/1 type-1 busy periods (Fig. 3.26). The term λ2

R x
y=0B21(x−

y)f2(y)dy is the upcrossing rate of x due to type-2 arrivals that must
wait a positive time y ∈ (0, x). A would-be type-2 customer that arrives
immediately after such a type-2 arrival, would face an additional wait
equal to busy period B21, before starting service.

The three terms on the right of (3.187) account for all arrivals to the
system. The type 2’s are counted in the last two terms. These terms
include all type 2’s that wait ≥ 0. The type 1’s are counted in all three
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Figure 3.27: Sample path of virtual wait for low priority, type 2 arrivals.
High priority type 1’s that arrive when the system is empty generate
jumps distributed as B1busy periods. All type 2 arrivals generate jumps
distributed as B21 busy periods (see Fig. 3.26). All type 1’s that must
wait, are counted in the B21 jumps.

terms. The type 1’s that wait zero are counted in the first term. The
type 1’s that wait a positive time are counted in all three terms.

Both Types Have Same P0

We test for consistency of integral equations (3.187) and (3.181), by
checking whether they give the same value of P0. It is required to show
that (3.182) results from (3.187). We integrate both sides of (3.187) with
respect to x on (0,∞). Simplification gives

1− P0 = λ1E(B1)P0 + λ2E(B21)P0 + λ2E(B21)(1− P0)

= λ1E(B1)P0 + λ2E(B21).

Substituting for E(B1), E(B21) from (3.185), (3.186) respectively we ob-
tain

1− P0 = λ1
E(S1)

1− λ1E(S1)
P0 + λ2

E(S2)

1− λ1E(S1)
,

or

P0 = 1− λ1E(S1)− λ2E(S2) = 1− ρ1 − ρ2,

which is identical to (3.182); QED.
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3.12.6 Expected Wait of Type-2 Customers

We obtain the expected wait E(Wq2) of type-2 customers. We multiply
integral equation (3.187) by x on both sides and integrate with respect
to x on (0,∞). Some algebra gives

E(Wq2) = λ1
E(B21)
2 P0 + λ2

E(B221)
2 P0

+ λ2
E(B221)
2 (1− P0) + λ2E(B21)E(Wq2)

or

E(E(Wq2)) =
λ1E(B21)P0 + λ2E(B221)
2(1− λ2E(B21))

.

Substituting from (3.62), (3.182) and (3.186) gives

E(Wq2) =

³
λ1

E(S21)
(1−ρ1)3

(1− ρ1 − ρ2) + λ2E(B221)
´
· (1− ρ1)

2 (1− ρ1 − ρ2)
. (3.188)

The term λ2E(B221) in the numerator of (3.188) is

λ2E(B221) = λ2E

⎛⎜⎝
⎛⎝S2 +

NS2,1X
i=1

B1,i

⎞⎠2
⎞⎟⎠

= λ2E(S
2
2) + 2λ2E

⎛⎝S2

NS21X
i=1

B1,i

⎞⎠+ λ2E

⎛⎝⎛⎝NS21X
i=1

B1,i

⎞⎠2⎞⎠ .

We condition on NS21 = n, S2 = s in the last two terms. Then NS21 is a
Poisson random variable with parameter λ1s. We then carry out some
algebra, and "uncondition". This procedure yields

λ2E(B221) = λ2E(S
2
2) + 2λ2E(S

2
2)

ρ1
1− ρ1

+λ2(λ1E(S2)E(B21) + λ21 (E(B1))2E(S22)).

Substituting from (3.62) into the last equation gives

λ2E(B221) = λ2E(S
2
2) + 2λ2E(S

2
2)

ρ1
1−ρ1

+ρ2λ1
E(S21)
(1−ρ1)3

+ λ2
ρ21

(1−ρ1)2
E(S22).

(3.189)
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Substituting the expression in (3.189) for λ2E(B221) in the numerator
of (3.188) gives

coefficient of (E(S21)) =
λ1

(1− ρ1)
,

coefficient of (E(S22)) =
λ2

(1− ρ1)
.

Hence

E(Wq2) =

λ1
(1−ρ1)

E(S21) +
λ2

(1−ρ1)
E(S22)

2 (1− ρ1 − ρ2)

=
λ1E(S

2
1) + λ2E(S

2
2)

2(1− ρ1) (1− ρ1 − ρ2)
, (3.190)

which agrees with the known result in the literature.

Remark 3.34 We have used LC to derive E(Wq1) from the integral
equation for f1(x /), and E(Wq2) from the integral equation for f2(x).
The importance of this approach is that we essentially have an analytic
solution for the pdf’s and cdf’s of wait of both priority classes. The
LC analysis is in the time domain without use of transforms. Integral
equations (3.181), (3.187) can be solved analytically in some cases; or
else numerically. The LC analysis highlights conceptual properties of the
priority queue that are in common with queues having: (1) service time
depending on wait, (2) multiple Poisson inputs, (3) server vacations.
In addition, the exercise of constructing the sample paths of wait for the
different priority classes, leads to an intuitive understanding of the model
dynamics.

3.12.7 Exponential Service

We solve for the steady-state pdf of wait for high priority customers
{P0, f1(x), x > 0} when inter-arrival and service times are exponentially
distributed. Assume the service times of type-1 and type-2 arrivals are
exponentially distributed with rates μ1 and μ2, respectively. Substituting
from the exponential cdf’s into (3.181) gives an integral equation for
f1(x),

f1(x) = λ1e
−μ1xP0 + λ2e

−μ2xP0 + λ1
R x
y=0 e

−μ1(x−y)f1(y)dy

+λ2(1− P0)e
−μ2x.

(3.191)
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We apply differential operator hD + μ1i hD + μ2i to both sides of
(3.191). This operation gives the second order differential equation

hD + μ2i hD + μ1 − λi f1(x) = 0,

with solution
f1(x) = ae−(μ1−λ1)x + be−μ2x, x ≥ 0, (3.192)

where constants a, b are to be determined.
Let x ↓ 0 in (3.191) and (3.192). We get equation

a+ b = λ1P0 + λ2. (3.193)

Take d
dx on both sides of (3.191) and let x ↓ 0. This gives

f 01(0) = −λ1μ1P0 + λ21P0 + λ1λ2 − λ2μ2. (3.194)

Take d
dx in (3.192) and let x ↓ 0. Equating to (3.194) we get

−(μ1 − λ1)a− μ2b = −λ1μ1P0 + λ21P0 + λ1λ2 − λ2μ2. (3.195)

We use (3.192) and the normalizing condition P0 +
R∞
x=0 f1(x)dx = 1 to

obtain

P0 +
a

μ1 − λ1
+

b

μ2
= 1. (3.196)

We now solve the system of three equations (3.193), (3.195), (3.196)
for P0, a, b to obtain

P0 =
(μ2μ1 − μ2λ1 − μ1λ2)

μ2μ1
, (3.197)

a =
λ1(μ2μ

2
1 + 2μ2μ1λ1 + μ22μ1 − μ2λ

2
1 − μ22λ1 + μ21λ2 − μ1λ2λ1)

(−μ1 + λ1 + μ2)μ2μ1
,

(3.198)

b =
λ2(μ2 − μ1)

(−μ1 + λ1 + μ2)
. (3.199)

Check on Values

We conduct a mild check (indicated by X) on the values of P0, a, b. Set
λ2 = 0. The model reverts to a standard Mλ1/Mμ1/1 queue. In that
model the steady-state absolutely continuous part of the pdf of wait
f(x), and P0 are given in (3.86) and (3.87).

Substituting λ2 = 0 in (3.197), (3.198), (3.199) respectively yields:

P0 = 1− λ1
μ1
; a = λ1

³
1− λ1

μ1

´
; b = 0 X.
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Figure 3.28: Sample path of virtual wait in M/G/1 queue with a server
vacation after each service completion.

3.13 M/G/1 with Server Vacations

We apply LC to a basic M/G/1 server-vacation model. Let the arrival
rate be λ and service time be S having cdf B(x), x > 0. Assume that
after each service completion the server goes on vacation for a time U
having cdf V (x), x > 0. During U the server may be doing required work
after each service. For example, a doctor updates a record after seeing
each patient, a bank teller does required paper work after serving each
customer, an auto service manager fills out forms after receiving a car
for service. Consider the virtual wait process (Fig. 3.28).

Denote the complementary cdf of S + U by B ∗ V (x). An integral
equation for the steady-state pdf of wait f(x) is

f(x) = λP0B ∗ V (x) + λ

Z x

y=0
B ∗ V (x− y)f(y)dy, x ≥ 0. (3.200)

In (3.200) the left side f(x) is the SP downcrossing rate of level x. On
the right side λP0B ∗ V (x) is the SP upcrossing rate of level x, starting
from level 0. The term λ

R x
y=0B ∗ V (x − y)f(y)dy is the SP upcrossing

rate of level x, starting in state-space interval (0, x).
Comparing (3.200) and (3.29) indicates that the server-vacation and

standard M/G/1 models are equivalent with regard to the integral equa-
tion for the pdf of wait in the queue; only the "service time" cdf’s differ.
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3.13.1 Probability of Zero Wait

Let P0 denote the steady-state probability that an arrival waits zero time
for service. Since the queue behaves like an Mλ/G/1 queue with service
time S + U , with respect to the customer wait for service, then

P0 = 1− λE(S + U)

provided λE(S + U) < 1.

3.13.2 Expected Busy and Idle Period

Define the idle period I as the time interval when the server is available to
start service and no customers are waiting. Then E(I) = 1

λ (memoryless
property). Let Bs = time that the server is busy serving a customer,
Bu = time that server is "on vacation", during a "busy period" B, where
B = Bs+Bu. Then B is distributed as a regular busy period in a standard
Mλ/G/1 queue with service time S + U . Hence

E(B) =1− P0
λP0

=
λE(S + U)

λ(1− λE(S + U))
.

Given the server is "busy", the pairs {Si, Ui} , i = 1, 2, ..., form an al-
ternating renewal process (Fig. 3.28). During a "busy" period, the pro-
portion of time the server is busy serving customers = E(S)

E(S)+E(U) ; "on

vacation" = E(U)
E(S)+E(U) . Thus

E(Bs) =
E(S)

E(S) +E(U)
·E(B), E(Bu) =

E(U)

E(S) +E(U)
·E(B),

or

E(Bs) =
E(S)

1− λE(S + U)
, E(Bu) =

E(U)

1− λE(S + U)
.

3.13.3 Number in System

Let dn denote the probability of n customers in the system just after the
server returns from vacation. Then

dn =

Z ∞

x=0

e−λx(λx)n−1

(n− 1)! f(x)dx.

Let an denote the probability that an arrival "sees" n customers in the
system. Then an = dn due to Poisson arrivals.
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3.13.4 M/M/1 with Server Vacations

Let V (x) = e−νx, B(x) = e−μx, x ≥ 0. Assume ν 6= μ > 0. Then

B ∗ V (x) = (μe−νx − νe−μx)

μ− ν
, x ≥ 0,

and (3.200) reduces to

f(x) = λP0
(μe−νx−νe−μx)

μ−ν

+λ 1
μ−ν

R x
y=0

¡
μe−ν(x−y) − νe−μ(x−y)

¢
f(y)dy, x ≥ 0.

(3.201)
In (3.201), applying differential operator hD+νihD+μi to both sides

results in a second-order differential equation

f 00(x) + (ν + μ− λ)f 0(x) + (νμ− λμ− λν)f(x) = 0

with solution
f(x) = c1e

R1x + c2e
R2x, x ≥ 0,

where roots R1, R2 are the (negative) roots of

z2 + (ν + μ− λ)z + (νμ− λμ− λν) = 0.

Applying the initial conditions f(0) = λP0, f 0(0) = λ2P0, and the nor-
malizing condition P0 +

R∞
y=0 f(x)dx = 1 yields

c1 = λP0
λ−R2
R1 −R2

, c2 = −λP0
−R1 + λ

R1 −R2
,

P0 =
c1R2 + c2R1 +R1R2

R1R2
.

Busy Period

The expected values of B, Bs, Bu are

E(B) =
1
μ +

1
ν

1− λ
³
1
μ +

1
ν

´ ,
E(Bs) =

1
μ

1
μ +

1
ν

E(B), E(Bu) =
1
ν

1
μ +

1
ν

E(B).
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Number in System

The probability that the server finds n in the system just after a vacation
is for n = 1, 2, ...,

dn =

Z ∞

x=0

e−λx(λx)n−1

(n− 1)!
¡
c1e

R1x + c2e
R2x
¢
dx

=
1

λ

µµ
λ

λ−R1

¶n

c1 +

µ
λ

λ−R2

¶n

c2

¶
,

where Ri, ci, i = 1, 2 are given in Subsection 3.13.4. The probability
that an arrival "sees" n customers in the system is an = dn.

3.14 M/G/1 with Bounded System Time

We provide two M/G/1 variants having virtual wait bounded by a con-
stant K > 0. These models are of inherent interest. Among other
properties, they demonstrate the existence of models which are useful in
the proof of Proposition 9.1 (Chapter 9). When K →∞, both variants
become a standard M/G/1 queue. Let the arrival rate be λ and the cdf
of service B(·) with B(·) = 1−B(·).

3.14.1 Variant 1

Assume that for each customer, wait plus service < K. Thus all waiting
times (before service) are < K. A customer reneges from service
when its total system time reaches K. The virtual waitW (t) ≤ K, t ≥ 0.
Customers that complete their service have system times < K. Consider
a sample path of {W (t)} (Fig. 3.29). Using rate balance across level x
we immediately obtain an integral equation for the steady-state pdf of
wait, f(x), as

f(x) = λP0B(x) + λ

Z x

y=0
B(x− y)f(y)dy, 0 < x < K. (3.202)

The normalizer is

P0 +

Z K

y=0
f(x)dx = 1.

The solution for f(x) approaches that of a standard M/G/1 model as
K →∞ (compare equations (3.29)-(3.31)).
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3.14.2 Variant 1: M/M/1 Model

If the queue is an Mλ/M/μ1 model, the solution of (3.202) together with
the normalizer is

f(x) = λP0e
−(μ−λ)x, 0 < x < K,

P0 =
μ− λ

μ+ e−(μ−λ)K
.

(3.203)

If K →∞ then P0 → 1− λ
μ and the range of f(·)→ (0,∞). This is the

solution for a standard Mλ/M/μ1 queue.

3.14.3 Variant 2

Assume customers balk upon arrival if their system time would be
≥ K. We assume system time is known by a "system manager", at
each arrival instant. The virtual wait W (t) < K, t ≥ 0. Customers that
wait, receive full service and depart before their system times reach K.
Consider a sample path of {W (t)} (Fig. 3.30).We obtain via LC analysis
an integral equation for f(x),

f(x) = λP0
¡
B(x)−B(K)

¢
+λ

R x
y=0

¡
B(x− y)−B(K − y)

¢
f(y)dy, 0 < x < K,

(3.204)
and normalizer

P0 +

Z K

y=0
f(x)dx = 1.

3.14.4 Variant 2: M/M/1 Model

If variant 2 is an Mλ/M/μ1 model, we obtain the solution of (3.202)
and the normalizer as a special case of the M/M/c queue with bounded
system time given in Example 1 of [38], with the number of servers = 1.
We get the solution

f(x) = λeρbP0e
μ(ρ−1)x(1− beμx)e−μbe

μx
, 0 < x < K,

P0 =
1

1 + λeρb
RK
x=0 e

μ(ρ−1)x(1− beμx)e−μbeμxdx
,

(3.205)

where ρ = λ
μ , b = e−μK . This single-server Markovian result is also

obtained in [59]. The solution (3.205) is more complex than the solution
(3.203) for variant 1.
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W(t)

Time
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K

Figure 3.29: Variant 1. Sample path of virtual wait in M/G/1 with
bounded virtual wait (bounded system time)

0

W(t)

Time

x
SP

t

K

Arrivals balk because
system time > K

Figure 3.30: Variant 2. Sample path of virtual wait in M/G/1 with
bounded virtual wait (boundrd system time)

If K →∞ then b ↓ 0. We get

f(x) = λP0e
−(μ−λ)x, x > 0, P0 = 1−

λ

μ

as in the standard M/M/1 queue.

3.14.5 Convergence to Standard M/G/1

Variants 1 and 2 have different steady-state pdf’s of wait when K is
finite. Let K →∞. In variant 1 no one reneges from service. In variant
2 no one balks at arrival. Both variants "converge" to a standard M/G/1
queue as K → ∞. We have given explicit examples of this convergence
for M/M/1 with bounded system time.
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3.15 PDF of Wait and Busy-period Structure

We shall utilize the busy-period structure of M/G/1 to write a series
for the pdf of wait in the M/G/1 queue by inspection. This technique
allows us to write an analogous series for model variants as well. We will
illustrate the series for a model with balking and where zero-wait stayers
receive special service.

3.15.1 Model Description

Let the arrival rate be λ. Arrivals balk with probability β0 (β0 = 1−β0)
if their required wait is zero, and with probability β1 (β1 = 1 − β1) if
their required wait is positive. Joiners (stayers) that wait zero receive
a service time =

dist
S0. Joiners that wait a positive time before service

receive a service time =
dist

S1. Let the cdf of Si be Bi(x), x ≥ 0, i = 0, 1
(Bi(x) = 1−Bi(x)). Define λi = λβi, i = 0, 1. Let ρi = λiE(Si), i = 0, 1.
Denote the steady-state pdf of stayers by {P0; f(x), x > 0}. An integral
equation for f(x) is

f(x) = λ0P0B0(x) + λ1

Z x

y=0
B1(x− y)f(y)dy, x > 0. (3.206)

Upon integrating both sides of (3.206) with respect to x ∈ (0,∞) we
obtain

P0 =
1− ρ1

1− ρ1 + ρ0
. (3.207)

3.15.2 Busy Period Structure

Consider Fig. 3.31. Fix level x > 0. The SP upcrossing rate of level x
due to arrivals that initiate generation-1 busy periods is λ0P0B0(x). The
SP upcrossing rate of x due to arrivals that initiate generation-2 busy
periods is

λ0P0λ1E(S0)
¡
g0 ∗B1

¢
(x) = P0ρ0ρ1 (g0 ∗ g1) (x), (3.208)

where gi(·) is the pdf of the remaining service time of a type-Si, i = 0, 1,
and "∗" denotes convolution.
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Generation-1 Busy Period

Time

0S
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1S 1S
Level x

1S
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Gen.-3 BP Generation-5 BP

Gen.-4 BP

Figure 3.31: Multiplicative structure of busy-period. Each arrival gen-
erates an initial jump of a busy period of some generation. Initial busy
periods of all generations account for all arrivals.

Explanation of (3.208)

Due to Poisson arrivals, the ordinates of the starts of the initial jumps
of the generation-2 busy periods (their base ordinates) are distributed as
independent Poisson arrivals at rate λ1, in S0. Thus the expected num-
ber of generation-2 busy periods within a type-1 busy period, is λ1E(S0).
The generation-2 base ordinates are =

dist
g0(·) (PASTA principle). The

initial jump of each generation-2 busy period is =
dist

S1. Hence the prob-

ability of an upcrossing of level x due to generation-2 initial jumps
is
¡
g0 ∗B1

¢
(x). However, from renewal theory, g1(x) = 1

E(S1)
B1(x).

Therefore, multiplying and dividing the left side of (3.208) by E(S1)
results in the right side of (3.208).

By similar reasoning, it is seen that the SP upcrossing rate of x due
to arrivals that initiate generation-3 busy periods is

λ0P0λ1E(S0)
¡
(g0 ∗ g1) ∗B1

¢
(x) = P0ρ0ρ

2
1

³
g0 ∗ g(2)1

´
(x), (3.209)

where g(2)1 (·) is the two-fold convolution of g1(·).
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3.15.3 Multiplicative Structure of PDF of Wait

By a recursive argument, it is seen that the pdf

f(x) = P0ρ0 ∞
k=1

ρk−11

³
g0 ∗ g(k−1)1

´
(x), (3.210)

where g(k−1)1 (·) is the (k − 1)-fold convolution of g1(·).
In (3.210) the k

th
term is the SP upcrossing rate of level x due to

initial jumps of the generation-k busy periods. From Fig. 3.31 we see
that every arrival is the first customer of some generation-k busy period.
Hence, the initial jumps of the generation-k busy periods, k = 1, 2, ...,
account for all arrivals to the system. In (3.210), the left side is the
SP downcrossing rate of level x. Hence, (3.210) is an alternative way
of writing the balance equation for f(x). Due to the geometric factor
ρk−11 , the series converges rapidly to f(x), in most situations. This series
bypasses the standard Volterra integral equation for the pdf. In fact,
the right side is a series expansion of the integral. By approximating
the convolutions

³
g0 ∗ g(k−1)1

´
(x), k − 1, 2, ..., we can quickly arrive at

an estimate of f(x).
Note that for the standard M/G/1 queue, the series (3.210) reduces

to (3.53).

3.16 Discussion

We have indicated how to apply LC to derive transient and steady-state
properties of the waiting time in several M/G/1 and M/M/1 queues.
We have emphasized steady-state results. Many of the derived proper-
ties have been obtained in the literature by different methods. Some
properties and results given here are new. A vast array of additional
models and variants have been analyzed using LC. We mention just a
few.

M/G/1 with Markov-generated server vacations [29] generalizes the
standard M/G/1 server-vacation model. The vacation time following a
service completion depends on the length of the immediately preceding
vacation. Such dependency arises in many situations. A teller in a bank
may have to do paper work following a service. After the next service the
amount of paper work may depend on how much was completed during
the preceding vacation. Similar remarks apply to medical practitioners
who fill out reports after seeing patients.
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We have analyzed variants of the M/G(a,b)/1 queue with bulk ser-
vice in [16], [71] using LC. The model utilizes a two-dimensional state
(W (t),M(t)) where W (t) is the virtual wait. Random variable M(t) is
discrete. It represents the number of customers in the waiting line mod
b (modulo b) where b is the quorum size. It is called a system config-
uration, which is explicated for M/M/c queues in subsections 4.5 — 4.6
below. System configurations are very useful in many stochastic models.
They are akin to supplementary variables, and make a model Markovian.




