
CHAPTER 10

ADDITIONAL
APPLICATIONS

10.1 Introduction

This chapter applies SPLC to a variety of stochastic models, in order to
indicate the scope, applicability and flexibility of the methodology, and
to suggest new applications. The chapter begins with the LC analysis
of a replacement model, which is structured using renewal processes. In
that model, we derive limiting pdf’s of the excess life, age and total life
of a renewal process, using LC. The chapter ends with the LC analysis
of a classical renewal problem. The intervening sections analyze several
models that suggest many additional potential applications of SPLC.

10.2 Renewal Processes

We shall derive steady-state pdf’s of renewal processes in the context of
a replacement model. This model is a variant of a GI/G/r(·) dam.

10.2.1 A Replacement Model

Consider a continuous-time stochastic process {X(t) ≥ 0, t ≥ 0} having
iid jumps of size Xn > 0 at τn, where 0 = τ0 < τ1 · ·· < τn < · · ·.
Thus X(τn) = Xn, n = 0, 1, 2, ..., (Fig. 10.1). Consider a sample path
of {X(t)} ( we use X(t) to denote the state variable and a sample path,
for economy of notation). Assume dX(t)

dt = −r(X(t)), t ∈ [τn, τn+1), n =
0, 1, ..., where r(x) > 0, x > 0. Thus X(t) is a piecewise deterministic
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function. Let the state space be S = [0,∞). Assume that for all v > 0,

lim
u↓0

Z v

y=u

1

r(y)
dy <∞. (10.1)

Condition (10.1) guarantees that a sample path X(t), t ≥ 0, starting
from any level v > 0, returns to level 0 in a finite time. The process
{X(t)} is a variant of the GI/G/r(·) dam such that inputs {Xn} occur
only at instants when the dam becomes empty. This mechanism can
be thought of as that of a replacement model. New inputs replace the
preceding inputs as soon as the latter become used up.

Denote the inter-replacement times by {Zn}. The random variables
Zn and Xn are related by the equation

Zn =

Z Xn

y=0

1

r(y)
dy, n = 0, 1, ... . (10.2)

From (10.2), Zn is the time required for {X(t)} to descend from level
Xn to level 0. The {Zn} are iid random variables.

Renewal Processes {Zn} and {Xn}

The sequence {Zn} is a renewal process synchronized with the sequence
{Xn} and with the piecewise deterministic continuous efflux rate r(X(t)).
Due to the structure of the model, the sequence {Xn} is also a renewal
process.

Let Xn ≡
dist

X and Zn ≡
dist

Z.

Example 10.1 Consider a newly-installed battery at τ0 with initial elec-
trical charge X0 ≡

dist
X. Assume that the charge declines at a rate that

depends on the present charge. That is, dX(t)
dt = −r(X(t)) < 0, t ∈

[τ0, τ1). Assume the battery operates continuously. Its charge dissipates
non-uniformly and descends to 0 after a time τ1 = Z0 ≡

dist
Z. The battery

is immediately replaced by a new fully-charged one. This procedure is re-
peated as batteries wear out. Thus Zn ≡

dist
Z, Xn ≡

dist
X, n = 0, 1, 2, ....

Then

Z =

Z X

y=0

1

r(y)
dy, (10.3)

is the inter-replacement time. The dimension of Z is [Time]. The
dimension of X is [Coulombs]. The function r(X(t)) has dimension
[Coulomb][Time]−1.
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Figure 10.1: Sample path of excess life γX(t), age δX(t), total life βX(t).
Also shows a level x in the state space.

10.2.2 Renewal Process {Xn}

Excess Life, Age, Total Life

Let γX(t) (≡ X(t)) denote the excess life of content at instant t ≥ 0.
Then dγX(t)

dt = −r(γX(t)). Let δX(t) denote the age of the content,
i.e., amount of content used up at instant t, from the latest renewed
amount prior to t. Then dδX(t)

dt = +r(δX(t)). Let βX(t) denote the total
life (span) of the latest renewed amount of content at t (Fig. 10.1). (In
Example 10.1, γX(t)), δX(t), βX(t) are respectively to the remaining
charge, the charge used up, and the total charge, of the battery in use
at time t.)

In the sample paths of the processes {γ(t)}, {δ(t)}, {β(t)} all upward
jumps start at level 0 and are =

dist
X. All downward jumps start at a

level X and end at level 0.

Limiting Distributions

We now apply LC to derive the limiting pdf’s fγX (x), fδX (x), fβX (x), x >
0, of r.v.’s γX(t), δX(t), βX(t), as t → ∞, assuming the limits exist.
Consider sample paths of {γX(t)}, {δX(t)}, {βX(t)}, t ≥ 0 (Fig. 10.1).

Let FX(x), fX(x), μX be the cdf, pdf and expected value respectively
of r.v. X. Let FX(x) ≡ 1− FX(x).
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Limiting PDF of Excess Life

Consider a sample path of {γ(t)}. The long-run SP expected downcross-
ing rate of a content level x > 0, is

lim
t→∞

E(Dt(x))

t
= r(x)fγX (x). (10.4)

(as in Corollary 6.2).
The long-run SP expected upcrossing rate of level x is

lim
t→∞

E(Ut(x))
t

=
1

E(Z)
· FX(x), (10.5)

since the expected time between upward jumps starting from level 0 is
E(Z) (= E(τn+1 − τn), n = 0, 1, ...); also FX(x) = P (SP jump starting
at level 0 is > x). In (10.3), substituting from (10.2), conditioning on
X = x gives

E(Z) =

Z ∞

x=0

µZ x

y=0

1

r(y)
dy

¶
fX(x)dx

=

Z ∞

y=0

Z x

x=y

1

r(y)
fX(x)dxdy =

Z ∞

y=0

FX(y)

r(y)
dy. (10.6)

Equating (10.4) and (10.5) for rate balance across level x, and using
(10.6), yields the equation

r(x)fγX (x) =
FX(x)

E(Z)
=

FX(x)R∞
y=0

FX(y)
r(y) dy

, (10.7)

fγX (x) =
FX(x)

r(x)
R∞
y=0

FX(y)
r(y) dy

.. (10.8)

The dimension of fγX (x) is [content]
−1 ([Coulomb]−1 in Example 10.1).

Limiting PDF of Excess Life when r(x) ≡ 1

If the efflux rate r(x) ≡ 1, formula (10.8) reduces to

fγX (x) =
FX(x)R∞

y=0 FX(y)dy
=

FX(x)

μX
, (10.9)

since
R∞
y=0 FX(y)dy = E(X) = μX . (Note that γX represents the limiting

excess life of content having pdf fγX (x).) Formula (10.9) is exactly the
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same as the well known limiting pdf of the excess life in a "standard"
renewal process. However, here the dimension of fγX (x) is [content]

−1

instead of [Time]−1.

Limiting PDF of Age

For the process {δX(t)}, the long-run SP expected upcrossing rate of a
content level x > 0, is

lim
t→∞

E(Ut(x))
t

= +r(x)fδX (x), (10.10)

(as in Corollary 6.2). The long-run SP (expected) downcrossing rate of
level x is

lim
t→∞

E(Dt(x))

t
=

1

E(Z)

Z ∞

y=x
fX(y)dy =

FX(x)

E(Z)
, (10.11)

since (1) downward jumps occur at rate 1
E(Z) , (2) in order for the SP to

downcross level x by a jump at some τ−n , the upward jump at τn−1 from
level 0 must have been such that Xn−1 > x. Additionally, Xn−1 is equal
to the downward jump size at τ−n (Fig. 10.1).

Equating (10.10) and (10.11) for rate balance across level x, gives

r(x)fδX (x) =
FX(x)

E(Z)
=

FX(x)R∞
y=0

FX(y)
r(y) dy

;

fδX (x) =
FX(x)

r(x)
R∞
y=0

FX(y)
r(y) dy

. (10.12)

Comparison of (10.8) with (10.12) shows that fδX (x) ≡ fγX (x). The
dimension of fδX (x) is [content]

−1.

Limiting PDF of Age when r(x) ≡ 1

If r(x) ≡ 1, we obtain similarly as in (10.9), the limiting pdf

fδX (x) =
FX(x)

μX
. (10.13)

The dimension of fδX (x) is [content]
−1. It is well known that for a

"standard" renewal process, the limiting distributions of the excess life



410 CHAPTER 10. ADDITIONAL APPLICATIONS

and age are identical. In the variant of a GI/G/r(·) dam possessing the
renewal structure here, these distributions are also identical with regard
to the content, even when the efflux rate has a general form r(x), x > 0.
That is, formulas (10.8) and (10.12) are identical.

Limiting PDF of Total Life

For the process {βX(t)}, the long-run SP expected downcrossing rate of
a content level x > 0, is

lim
t→∞

E(Dt(x))

t
=

Z ∞

y=x

Ã
1R y

u=0
1

r(u)du

!
fβX (y)dy. (10.14)

In (10.14), we have conditioned on βX(t) = y > x. The SP downward
jump rate across level x starting at level y is 1

y
u=0

1
r(u)

du
, which is the

reciprocal of the expected sojourn time of {βX(t)} at level y (Fig. 10.1).
At the end of a level-y (y > x) sojourn time, the SP jumps downward to
level 0. It downcrosses every state-space level in (0, y), including level x.

The SP long-run (expected) upcrossing rate of level x is

lim
t→∞

E(Ut(x))
t

=
1

E(Z)

Z ∞

y=x
fX(y)dy =

FX(x)

E(Z)
, (10.15)

since the expected time between SP upward jumps out of level 0 is E(Z),
and the probability that such an SP jump exceeds level x is FX(x). Note
that the SP double jumps in opposite directions at each renewal instant
of the sequence {Zn}. One jump is downward ending at level 0; the
"opposite jump" is upward starting at level 0.

Equating (10.14) and (10.15) for rate balance across level x, results
in the integral equation for fβX (·),Z ∞

y=x

1³R y
u=0

1
r(u)du

´fβX (y)dy = FX(x)

E(Z)
. (10.16)

In (10.16), we differentiate with respect to x to yield

− 1³R x
u=0

1
r(u)du

´fβX (x) = −fX(x)E(Z)
.
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Hence

fβX (x) =

³R x
y=0

1
r(y)dy

´
fX(x)

E(Z)
=

³R x
y=0

1
r(y)dy

´
fX(x)R∞

y=0
F (y)
r(y) dy

. (10.17)

The dimension of fβX (x) is [content]
−1.

Limiting PDF of Total Life when r(x) ≡ 1

Assume r(x) ≡ 1. Then Zn = Xn and E(Zn) = E(Xn) = μX in value.
However, the dimensions differ: thus [Xn] = [content] and [Zn] = [Time].
Formula (10.17) resembles the well known limiting pdf of total life (span)
for a standard renewal process,

fβX (x) =
xfX(x)

E(Z)
=

xfX(x)

μX
, (10.18)

except that the dimension of fβX (x) is [content]
−1 instead of [Time]−1.

That is, in the variant of the GI/G/r(·) dam described, the "life" is
measured in content dimensions.

Remark 10.1 This variant of GI/G/r(·) exhibits SP multiple jumps at
the same instant (renewal instant). Recall that SP jumps in the state
space do not occur in Time. (See Examples 2.2, 2.3 in Section 2.3,
regarding SP multiple jumps.)

Example 10.2 Suppose r(x) = kx, x > 0, where k > 0 is a constant.
Then the inequality (10.1) does not hold. However, the SP returns to
every level x > 0, however small. We may select a small ε > 0, such
that when the content hits level ε from above, a replenishment of new
content is inserted (e.g., in Example 10.1, replace a battery with a new
one when its charge decreases to ε Coulombs).

Then for each positive v > ε,Z v

y=ε

1

kx
dx =

1

k
ln

v

ε
<∞,

so that the content returns to level ε in a finite time.
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10.2.3 Renewal Process {Zn}
Excess Life, Age, Total Life of {Zn} Process

Consider {Zn}. Let γZ (t), δZ (t), βZ
(t) denote the excess life, age, total

life respectively, at instant t > 0. Denote the limiting r.v.’s by γ
Z
, δZ ,

β
Z
respectively.
Define G(x) ≡

R x
y=0

1
r(y)dy, x > 0. Then G(x) is an increasing differen-

tiable function of x (since d
dxG(x) =

1
r(x)). This implies G−1(x) (inverse

of G(x)) exists, and

d

dx
G−1(x) = 1

d
dxG(x)

=
1
1

r(x)

= r(x), x > 0.

Thus G−1(x) is also an increasing (differentiable) function of x. The
quantity G(x) is the time required for the SP to descend from level x to
level 0. The inverse G−1(x) is the starting level of content, from which a
descent to level 0 takes time x.

We may derive the pdf’s of γ
Z
, δZ , βZ

from the the results for the
pdf’s of γ

X
, δX , βX , respectively.

Limiting PDF of Excess Life of {Zn}

The relation between Zn and X(t) implies

γ
Z
≤ x iff γX ≤ G−1(x)).

Hence
Fγ

Z
(x) = Fγ

X
(G−1(x)). (10.19)

(see Fig. 10.1).
Taking d

dx on both sides of (10.19) and referring to (10.8) gives

fγ
Z
(x) = fγX (G

−1(x)) · d

dx
G−1(x)

= fγX (G
−1(x)) · r(x) = r(x) · FX(G−1(x))

r(G−1(x))
R∞
y=0

FX(y)
r(y) dy

. (10.20)

The dimension of fγ
Z
(x) is [Time]−1.

If r(y) ≡ 1 then G(x) = G−1(x) = x. In that case fγ
Z
(x) =

FX(x)
∞
y=0 FX(y)dy

= fγX (x), but the dimension of fγZ (x) is [Time]−1, whereas

the dimension of fγX (x) is [content]
−1.



10.2. RENEWAL PROCESSES 413

Limiting PDF of Age of {Zn}

In a similar manner as for the excess life, the age satisfies

δZ ≤ x iff δX ≤ G−1(x).

Thus, FδZ (x) = FδX (G
−1(x)). Taking d

dx then yields

fδZ (x) =
r(x)FX(G−1(x))

r(G−1(x))
R∞
y=0

FX(y)
r(y) dy

. (10.21)

Thus fδZ (x) ≡ fγ
Z
(x). The dimension of fδZ (x) is [Time]−1.

If r(y) ≡ 1 then G(x) = G−1(x) = x. Then fδZ (x) =
FX(x)

∞
y=0 FX(y)dy

=

fδX (x). The dimension of fδZ (x) is [Time]−1, whereas the dimension of
fδX (x) is [content]

−1.

Limiting PDF of Total Life of {Zn}

Note that βZ ≤ x iff βX ≤ G−1(x). Hence, as for fδZ (x), fγX (x) above,
we obtain

fβZ (x) = fβX (G
−1(x)) · d

dx
G−1(x)

= fβX (G
−1(x)) · r(x).

From (10.17) we get

fβZ (x) =
r(x) ·

³R x
y=0

1
r(y)dy

´
fX(G−1(x))R∞

y=0
FX(y)
r(y) dy

. (10.22)

The dimension of fβ
Z
(x) is [Time]−1 whereas the dimension of fβX (x)

is [content]−1. When r(x) ≡ 1, fβZ (x) =
xfX(x)

∞
y=0

FX (y)

r(y)
dy
, having dimension

[Time]−1.

10.2.4 Standard Renewal Process

We now obtain the steady-state pdf’s for the standard renewal process
as a special case of those for the replacement model. In the standard
renewal process, we have Xn = Zn, n = 0, 1, 2..., and r(X(t)) ≡ 1. The
dimensions ofXn and Zn are the same, usually [Time]. The pdf’s fγZ (x),
fδZ (x), fβZ (x), x > 0 are the same as (10.9), (10.13), (10.18) respectively,
and all have dimension [Time]−1.
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Remark 10.2 The LC derivations of the limiting pdf’s of excess life,
age and total life are relatively simple in the replacement model, and
are much simpler for the standard renewal process. They are intuitive,
and naturally suggest potential generalizations.

Remark 10.3 The derivations in this section are based directly on my
unpublished notes of June 18-July 26, 1992 [23]. These notes were mo-
tivated by a talk at the 21st conference on Stochastic Processes and their
Applications, York University, Toronto, June 15-19, 1992 by van Harn
and Steutel (see Partial Bibliography).(Their generalization differs con-
ceptually from LC.) Results using LC for standard renewal processes
were published independently by Katayama (2002) (see Partial Bibliog-
raphy).

10.3 A Technique for Transient Distributions

In this section we outline a technique for deriving transient distributions
of processes with a continuous or discrete state, and a continuous pa-
rameter. The technique is based on the general version of Theorem B
(Theorem 4.1). We repeat formulas (4.1) and (4.2) of Theorem B here
for reference. For fixed t > 0

E(It(A)) = E(Ot(A)) + Pt(A)− P0(A), t ≥ 0, (10.23)
∂

∂t
E(It(A)) =

∂

∂t
E(Ot(A)) +

∂

∂t
Pt(A), t > 0, (10.24)

where It(A) is the number of SP entrances and Ot(A) is the number
of SP exits, of state-space set A during [0, t]. Let the parameter set be
T = [0,∞)

Remark 10.4 If the limiting distribution of the state variable exists,
it is obtained by taking the limit of the derived transient distribution as
t→∞.

10.3.1 State-space Set with Variable Boundary

State Space S ⊆ R

In formulas (10.23) and (10.24) assume set A depends on a continuous
variable x and define A ≡ Ax, x ∈ S. Thus x may be a state-space level,
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e.g., T ×{x} (a line in the T -S coordinate system). For fixed x, replace
formulas (10.23) and (10.24) by

E(It(Ax)) = E(Ot(Ax)) + Pt(Ax)− P0(Ax) (10.25)
∂

∂t
E(It(Ax)) =

∂

∂t
E(Ot(Ax)) +

∂

∂t
Pt(Ax). (10.26)

Assume the following mixed partial derivatives exist and are equal, i.e.,

∂2

∂x∂t
E(Ot(Ax)) =

∂2

∂t∂x
E(Ot(Ax)),

∂2

∂x∂t
Pt(Ax) =

∂2

∂t∂x
Pt(Ax).

Taking ∂
∂x in (10.26) we obtain

∂2

∂x∂t
E(It(Ax)) =

∂2

∂t∂x
E(Ot(Ax)) +

∂2

∂t∂x
Pt(Ax). (10.27)

State Space S ⊆ Rn

Let {X(t), t ≥ 0} denote a continuous-time, continuous-state stochastic
process with n-dimensional state space S ⊆ Rn. The state space may
be discrete or continuous. Let vector x = (x1, ..., xn), and state-space
set Ax = ∩ni=1(−∞, xi] ⊆ S. Then Pt(Ax) = Ft(x) = Ft(x1, ..., xn) is
the joint cdf of the n state variables at time t ≥ 0.

From the general result (10.25) the joint cdf is given by

Ft(x) = E(It(Ax))−E(Ot(Ax)) + F0(x)

where F0(x) =

(
1 if X(0) ∈ Ax,

0 if X(0) /∈ Ax.
Provided the derivatives exist, we obtain

∂Ft(x)

∂xi
=

∂

∂xi
[E(It(Ax))−E(Ot(Ax))] , i = 1, ..., n,

∂nFt(x)

∂x1 · · · ∂xn
=

∂n

∂x1 · · · ∂xn
[E(It(Ax))−E(Ot(Ax))] ,

∂Ft(x)

∂t
=

∂

∂t
[E(It(Ax))−E(Ot(Ax))] .

If ∂E(It(Ax))
∂t , ∂E(Ot(Ax))

∂t can be expressed as functions of Ft(x) or ft(x),
then we may be able to derive an integro-differential equation for Ft(x)
or ft(x).
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If n = 1 the state space is one-dimensional. We get Ax = (−∞, x].
Thus

ft(x) =
∂

∂x
[E(It((−∞, x]))−E(Ot((−∞, x]))]

where ft(x) represents the transient pdf of X(t).

LC Computation

The expressions in this subsection can aid in estimating or computing the
transient cdf and pdf of an n-dimensional continuous-parameter process
using level crossing estimation or computation (LCE) for transient dis-
tributions. We will not expound on this transient LCE technique further
in this monograph. Remarks 3.6 and 9.2 briefly discuss the technique.

10.4 Discrete-Parameter Processes

Let {Xn, n = 0, 1, 2, ...} denote a discrete-parameter process taking val-
ues in a state space S, which may be discrete or continuous. Let A,
B, C be (measurable) subsets of S. Let Pn(A) = P (Xn ∈ A) and
Pm,n(B,C) = P (Xm ∈ B,Xn ∈ C).

Definition 10.1 The SP exits set A at time n if Xn ∈ A and Xn+1 /∈
A.
The SP enters set A at time n if Xn−1 /∈ A and Xn ∈ A.
In(A)) = number of SP entrances into A during [0, n].
On(A) = number of SP exits out of A during [0, n].

We state a theorem for discrete-time processes which is analogous to
Theorem B.

Theorem 10.1 Let {Xn, n = 0, 1, 2, ...} be a discrete-time process with
state space S. Let A ⊆ S.

E(In(A)) = E(On(A)) + Pn(A)− P0(A). (10.28)

where P0(A) =

(
1 if X0 ∈ A,

0 if X0 /∈ A.

Proof. The proof is similar to that of Theorem 4.1 in Chapter 4, upon
replacing t by n.



10.4. DISCRETE-PARAMETER PROCESSES 417

10.4.1 Application to Markov Chains

Let {Xn, n = 0, 1, ...} be a Markov chain with the discrete state space
S. For example, let S = {0,±1,±2, ...}. Let the set A = j ∈ S. Then

E(In(j)) =
X
i6=j

n−1X
m=0

Pm
i Pij , and E(On(j)) =

X
i6=j

nX
m=0

Pm
j Pji,

where Pij is the one-step transition probability from i to j and Pm
j ≡

Pm(A) = Pm(j). Substituting into (10.28) gives

Pn
j =

X
i6=j

n−1X
m=0

Pm
i Pij −

X
i6=j

nX
m=0

Pm
j Pji + P 0j . (10.29)

Assume the following limiting probabilities exist:

lim
n→∞

Pn
ij = lim

n→∞
Pn
jj = lim

n→∞
Pn
j ≡ πj ,

where Pn
ij is the n-step transition probability from i to j. That is, the

chain is positive recurrent and aperiodic. Note that
P

j∈S πj = 1. Di-
viding both sides of (10.29) by n and letting n→∞ yields

lim
n→∞

Pn
j

n
=
X
i6=j

Ã
lim
n→∞

1

n

n−1X
m=0

Pm
i

!
Pij

−
X
i6=j

Ã
lim
n→∞

1

n

nX
m=0

Pm
j

!
Pj,i + lim

n→∞

P 0j
n
,

0 =
X
i6=j

πiPij −
X
i6=j

πjPji + 0,X
i6=j

πjPji =
X
i6=j

πiPij ,

πj(1− Pjj) =
X
i6=j

πiPij ,

πj =
X
i∈S

πiPij , j ∈ S.

Thus we have derived the classical equations for the limiting probabilities
{πj} by using an LC method, namely

πj =
P

i∈S πiPij , j ∈ S,P
j∈S πj = 1.

(10.30)
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Remark 10.5 We have applied the discrete-time analog of Theorem B
to a standard Markov chain in order to demonstrate its applicability to
discrete-time discrete-state models. Note that Theorem B emphasizes
the system point aspect of the SPLC method. SPLC utilizes SP en-
trance/exit rates of state-space sets. (SP level crossings are special cases
of SP entrances and exits.)

10.5 Semi-Markov Process

Consider a semi-Markov process (SMP) {X(t), t ≥ 0}, with discrete state
space S (also called a Markov renewal process ). Let the sojourn time
in state j ∈ S have a general distribution with mean μj > 0. The type
of distribution of the sojourn time may differ from state to state; only
the means are utilized in this analysis. At the end of a sojourn in state
i, say instant τ−, assume P{X(t) = j|X(t−) = i) = Pij ,j 6= i, j ∈ S.
The matrix kPijk is a Markov matrix. Assume the Markov chain with
transition matrix kPijk is positive recurrent and aperiodic so that the
limiting probabilities πj , j ∈ S exist.

Let Pj(t) = P (X(t) = j), t ≥ 0; Pj = limt→∞ Pj(t), j, j ∈ S. We
shall derive the probabilities Pj , j ∈ S, by using SPLC.

Consider a sample path of {X(t)}. Let Tt(i) denote the total time
spent by the SP in state i during (0, t). Then

E(Tt(i)) =

Z t

s=0
Pi(s)ds. (10.31)

The expected number of SP exits from state i during (0, t) is E(Tt(i))
μi

since the mean of each sojourn time in i is μi. The expected number
of SP i → j transitions during (0, t) is E(Tt(i))

μi
Pij . The expected total

number of SP transitions into (entrances into) state j during (0, t) is

E(It(j)) =
X
i6=j

E(Tt(i))

μi
Pij . (10.32)

By a similar argument, the expected number of SP exits out of j during
(0, t) is

E(Ot(j)) =
E(Tt(j))

μj
. (10.33)
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Substituting from (10.32) and (10.33) into Theorem B (10.23) givesX
i6=j

E(Tt(i))

μi
Pij =

E(Tt(j))

μj
+ Pj(t)− Pj(0). (10.34)

(We assume the interchange of summation and the limit operation is
valid. This applies if, e.g., S is finite.)

From (10.31), the proportion of time the SP is in state i is

lim
t→∞

E(Tt(i))

t
= Pi, i ∈ S.

Also

lim
t→∞

Pj(t)

t
= lim

t→∞
Pj(0)

t
= 0,

since 0 ≤ Pj(t) ≤ 1, t ≥ 0. We divide (10.34) by t > 0 and let t → ∞.
This gives X

i6=j

Pi
μi
Pij =

Pj
μj

, j ∈ S (10.35)

Suppose
P

j∈S
1
μj
Pj = K > 0. Then

P
j∈S

³
1

Kμj
Pj

´
= 1. Dividing

(10.35) by K and transposing terms gives the system of equations for
{Pi},

1
Kμj

Pj =
P

i6=j

³
1

Kμj
Pi

´
Pij , j ∈ SP

j∈S

³
1

Kμj
Pj

´
= 1.

(10.36)

The system of equations (10.36) for
n³

1
Kμj

Pj

´o
is identical to the system

(10.30) for {πj}. Thus

1

Kμj
Pj = πj , j ∈ S,

Pj = (πjμj)K, j ∈ S. (10.37)

We obtain K from the normalizing conditionX
j∈S

Pj = K
X
j∈S

πjμj = 1,

namely

K =
1P

j∈S πjμj
. (10.38)
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Substituting from (10.37) into (10.38) gives the well known formula

Pj =
πjμjP
j∈S πjμj

, j ∈ S. (10.39)

The key steps in this SPLC derivation of (10.39) are: (1) obtain
expressions for the expected SP entrance and exit rates of a state; (2)
apply formula (10.23) of Theorem B; (3) divide by t and take limt→∞; (4)
evaluate the constant K by recognizing the role of the linear Markov-
chain equations (10.30) for {πj}.

10.6 Non-homogeneous Pure Birth Processes

Let {X(t), t ≥ 0} denote the number of births during (0, t), t > 0. Let
X(0) = i, where i is a non-negative integer. Consider the sequence of
positive functions (birth rates) {λk(t), k = i, i + 1, ...; i = 0, 1, ...} such
that

P (X(t+ h)−X(t) = 1|X(t) = k) = λt(k)h+ o(h),

P (X(t+ h)−X(t) = 0|X(t) = k) = 1− λt(k)h+ o(h),

where h > 0.
Define Pn(t) = P (X(t) = n). We shall compute Pn(t), t > 0, n =

0, 1, 2, ...; by utilizing Theorem B, i.e., (10.23) and (10.24).
The expected number of SP entrances into state i during (0, t) is

E(It(i)) = 0, since X(0) = i, and X (·) never returns to i, once it
increases from i to i+1. On the other hand the expected number of SP
exits out of state i during (0, t) is E(Ot(i)) =

R t
s=0 λs(i)Pi(s)ds, since an

SP i→ i+1 exit can occur at any instant s ∈ (0, t). Note that Pi(0) = 1.
Substituting E(It(i)), E(Ot(i)), Pi(0) into (10.23), we obtain

0 =

Z t

s=0
λs(i)Pi(s)ds+ Pi(t)− 1. (10.40)

Differentiating (10.40) with respect to t gives

d

dt
Pi(t) + λt(i)Pi(t) = 0

having solution
Pi(t) = e−mt(i), t ≥ 0, (10.41)

where mt(i) =
R t
s=0 λs(i)ds, since Pi(0) = 1.
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Next, consider an arbitrary state j > i. Then

E(It(j)) =
Z t

s=0
λj−1(s)Pj−1(s)ds, (10.42)

E(Ot(j)) =

Z t

s=0
λj(s)Pj(s)ds. (10.43)

Substituting from (10.42) and (10.43) into (10.23) givesZ t

s=0
λs(j − 1)Pj−1(s)ds =

Z t

s=0
λs(j)Pj(s)ds+ Pj(t)− 0. (10.44)

Taking d
dt in (10.44) yields

d

dt
Pj(t) + λt(j)Pj(t) = λt(j − 1)Pj−1(t),

with solution

Pj(t) = e−mt(j)

Z t

s=0
ems(j)λs(j − 1)Pj−1(s)ds. (10.45)

Formula (10.45) provides a recursive solution for Pj(t), j = i, i+ 1, ... .

10.6.1 Non-homogeneous Poisson Process

The non-homogeneous Poisson process is a special case of the pure growth
process. Assume X(0) = 0, λt(j) ≡ λt independent of the state, so that
m(t) =

R t
s=0 λsds. Setting i = 0 gives P0(t) = e−m(t). From (10.45) we

obtain (by induction) the well known formula

Pn(t) = e−m(t)
(m(t))n

n!
, n = 0, 1, 2, ... . (10.46)

Formula (10.46) is a Poisson distribution with mean m(t). The {Pn(t)}
for the standard Poisson process are obtained by letting λt ≡ λ, so that
m(t) ≡ λt.

10.6.2 Yule Process

The Yule process is a special case of the pure growth process. Assume
X(0) = 1 and λt(i) = iλ, t ≥ 0, i = 1, 2, ... . Thus the growth rate
is directly proportional to the current population, but independent of t.
Then P1(t) = e−λt (= probability of no births in (0, t)). Using (10.45) and



422 CHAPTER 10. ADDITIONAL APPLICATIONS

mathematical induction, we obtain the well known geometric distribution
for the Yule process

Pn(t) = (1− e−λt)n−1e−λt, n = 1, 2, ... . (10.47)

For completeness, we include the probability Pik(t) that i independent
Yule processes with the same parameter λ, yield a sum equal to k ≥ i
at time t > 0 (total number of individuals = k at time t). Assume each
process starts in state 1 at time 0. Since Pn(t) in (10.47) is a geometric
distribution, we obtain a negative binomial distribution

Pik(t) =

µ
k − 1
i− 1

¶
e−iλt(1− e−λt)k−i, k = i, i+ 1, ... . (10.48)

Formula (10.48) can be derived in several ways (e.g., [74], [91]). We shall
outline a direct proof using LC.

We derive in a similar manner as for (10.45),

Pik(t) = (k + 1)λe
−kλt

Z t

s=0
ekλsPi,k−1(s)ds+Cke

−kλt, k ≥ i, (10.49)

where Ck =

(
1 if k = i,

0 if k > i.
Now, P (no births in (0, t)) = P (Eiλ > t)

where Eiλ is an exponentially distributed r.v. with mean 1
iλ . Hence

Pii = e−iλt. (10.50)

Thus (10.48) holds for k = i. From (10.50) and (10.49) with k = i + 1,
we obtain

Pi,i+1(t) = ie−iλt
³
1− e−λt

´
=

µ
i+ 1− 1
i− 1

¶
e−iλt

³
1− e−λt

´
. (10.51)

Therefore (10.48) holds for k = i+ 1.
Assume (10.48) holds for an arbitrary integer k > i. We then show

using (10.49) that it holds for k+1. Hence it holds for all k = i, i+1, ...,
by mathematical induction.

10.7 Revisit of Transient M/G/1 Queue

We very briefly revisit the transient M/G/1 queue of Section 3.2. It
is readily proved by a slight generalization of the proofs in Section 3.2,
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that the theory holds for models where the arrival rate λ and cdf of
service time B(x) depend on time. Denote them by λt and Bt(x), x ≥ 0,
respectively. We obtain

ft(x) =
∂
∂tFt(x) + λtBt(x)P0(t)

+λt
R x
y=0Bt(x− y)ft(y)dy, x > 0,

ft(0) =
∂
∂tP0(t) + λtP0(t).

(10.52)

The solution of the differential equation for P0(t) in (10.52) is

P0(t) = e−m(t)
Z t

s=0
em(s)fs(0)ds+ P0(0)e

−m(t), (10.53)

where m(t) =
R t
s=0 λsds and P0(0) =

(
1 if W (0) = 0,

0 otherwise.

10.8 Pharmacokinetic Model

We outline an LC approach to pharmacokinetics with a brief discussion of
a simplified one-compartment model. We assume bolus dosing, i.e., a full
dose is absorbed into the blood stream immediately at a dosing instant.
Also, inter-dose times are =

dist
Eα. Thus doses occur in a Poisson process

at rate λ. This assumption is valid outside of a controlled environment.
Statistical tests have shown that many patients take certain medications
non-uniformly over time in a Poisson process [33]. We first suppose the
dose amounts are deterministic of size D.

We assume first-order kinetics. That is, the concentration of the
drug in the blood stream decays at a rate which is proportional to the
concentration. This is equivalent to a plot of the concentration over time
having a negative exponential shape between doses (similar to Fig. 10.2).

This model is equivalent to an M/D/r(·) dam (Section 6.2). Let
W (t), t ≥ 0, denote the drug concentration at time t. Let the dose times
be {τn}. τn < τn+1, n = 0, 1, 2, ... , where τ0 ≡ 0. The decay rate is

dW (t)

dt
= −kW (t), τn ≤ t < τn+1, n = 0, 1, 2, ..., (10.54)

where k > 0. The dimension of the concentration W (t) is [W (t)] =£
Mass
V olume

¤
;
h
dW (t)
dt

i
=
£

Mass
V olume

¤
·
£
Time−1

¤
; [k] = [Time]−1.
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Let f(x), x > 0 denote the steady-state pdf of concentration. The
steady-state probability that the concentration is zero, is equal to 0.
This is because a sample path never declines to level 0 once dosing be-
gins, due to the negative exponential shape of the decay. In theory, the
concentration of the drug never vanishes. In practice, it goes to 0 or is
negligible. (We are not discussing the treatment effects of dosing; only
the concentration dynamics.)

10.8.1 Equation for PDF of Concentration

Consider a sample path of {W (t)}. Fix level x > 0 (Fig. 10.2). The SP
downcrossing rate of level x is kxf(x). The SP upcrossing rate of x is
equal to λF (x) − λF (x − D) (see Section 3.8). Rate balance across x
gives an equation forf(x) and F (x), namely

kxf(x) = λF (x)− λF (x−D), x > 0. (10.55)

In integral equation (10.55) for the F (·), note that F (x−D) = 0 for
x ∈ (0,D). Also

f(x)

F (x)
=

d lnF (x)

dx
=

λ

kx
,

with solution
F (x) = Ax

λ
κ , x ∈ (0,D), (10.56)

where A is a positive constant. The solution for F (x) on the state-space
intervals [iD, (i+ 1)D), i = 1, 2, ..., can be obtained by an iteration pro-
cedure (not carried out here). We add that F (x) is continuous for all
x > 0. This continuity property helps to solve for F (x) on successive
state-space intervals [iD, (i+ 1)D), i = 1, 2, ... , in terms of A. The con-
stant A in (10.56) is then determined using the normalizing condition
F (∞) = 1. Once F (x) is obtained, we can determine f(x) by substitut-
ing into (10.55) (as in Section 3.8 ). Alternatively, we may solve for f(x)
using LC estimation, or a hybrid LC estimation procedure since we have
a partial analytical solution in (10.56) (see Section 9.6).

10.8.2 Exponentially Distributed Doses

We may rationalize a model using exponentially distributed doses if the
amount absorbed is affected by the dosing environment (e.g., acidity,
presence of enzymes, interaction with other medications, etc.). Another
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M/G/r(·) Dam Pharmacokinetic Model
Input instant Bolus dose instant
Input amount (jump size) Dose amount (jump size)
Content W (t), t ≥ 0 Concentration W (t), t ≥ 0
Sample-path slope −r(x), x > 0 Sample-path slope −r(x), x > 0
CDF/PDF of content CDF/PDF of concentration
Mean content Average drug concentration
Variance of content Variance of concentration

Table 10.1: M/G/r(·) Dam versus Pharmakokinetic model

Level x

Concentration
 mg/ml

Time
0

Figure 10.2: Sample path of drug concentration in one-compartment
model with bolus dosing and first-order kinetics

instance could occur when eye drops are instilled by a patient, say ap-
proximately every six hours. The sizes of the individual drops may vary
considerably, due to usually using a hand-squeezed container. The loca-
tion on the cornea of the instillation may vary from dose to dose, thereby
affecting absorption. This could create random increases in concentra-
tion with the successive doses during a dosing regime. Similar remarks
apply to fast-acting sprays, such as nitrolingual pump sprays, or to nasal
sprays. Also, for certain drugs it may be feasible to randomize dose sizes
as an exponential random variable inherently in a prescription. Such
randomization may tend to decrease variability in the long run concen-
tration during the dosing regime.

Assume the bolus dose amounts are random, distributed as Eμ. Then
the equation for the pdf of concentration is

kxf(x) = λ

Z x

y=0
e−μ(x−y)f(y)dy. (10.57)
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Equation (10.57) has the solution

f(x) =
1

Γ
¡
λ
k

¢(μx)(λk−1)e−μxμ, x > 0. (10.58)

where Γ (·) is the Gamma function (see Section 6.4). Let W denote the
steady-state concentration. The mean and second moment of W are

E(W ) =
λ

kμ
, E(W 2) =

λ

kμ2

µ
λ

k
+ 1

¶
.

The variance of W is

V ar(X) = E(W 2)− (E(W ))2 =
λ

kμ2
.

We can find the probability that the steady-state concentration is be-
tween two threshold limits, say α < β, using

P (α < concentration < β) =

Z β

x=α

1

Γ
¡
λ
k

¢μ(μx)(λk−1)e−μxdx. (10.59)

The information in (10.59) may be useful when dosing continues for a
long time, e.g., when administering the blood thinner coumadin. If the
concentration is< α coumadin is not effective for the intended treatment.
If the concentration is > β the blood becomes too thin.

The type of analysis outlined briefly here can be extended to various
pharmacokinetic models of varying complexity.

Remark 10.6 We mention in passing that it is possible to apply Theo-
rem B to compute the time-dependent pdf and cdf of concentration
(see formulas (10.23) - (10.26)). Knowledge of transient distributions
may be useful in dosing regimes where it important to estimate the con-
centration after a short dosing duration.

Remark 10.7 Some related stochastic models have characteristics in
common with the pharmacokinetic model. One group of models involves
consumer response (CR) to non-uniform advertisements [30]. Such mod-
els can be analyzed along similar lines, using LC.

10.9 Counter Models

We consider the transient total output of type-1 and type-2 counters.
We first treat a type-2 counter.
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10.9.1 Type-2 Counter

Consider a type-2 counter. Electrical pulses arrive in a Poisson process
at rate λ. Each arriving pulse is followed immediately by a fixed locked
period of length D > 0, during which new arrivals cannot be detected
by the counter. If a new arrival occurs at a time t when the counter
is locked, then the locked period is extended to time t + D. Thus the
locked time "telescopes". Assume the locked periods are =

dist
L; note that

L ≥ D. Arrivals can be detected only when the counter is unlocked or
free. Assume that the counter is free at time 0.

Let the amplitudes of the pulses be ≡
dist

X, having cdf B(y), y > 0.

Let ηi(t), t ≥ τ i, denote the output at time t due to the detected pulse
Xi occurring at τ i. Assume that ηi(t) dissipates at rate

dηi(t)

dt
= −k · ηi(t), t > τ i, (10.60)

where the constant k > 0 is the same for all i = 1, 2, ... .
Let ηt denote the total output at time t, due to all registered pulses

that arrive during (0, t) (see Fig. 10.3). Then

ηt =
nX
i=1

ηi(t), τn ≤ t < tn+1, n = 1, 2, ..., (10.61)

d

dt
ηt = −k

nX
i=1

ηi(t) = −kηt, τn ≤ t < tn+1, n = 1, 2, ....

(10.62)

Denote the cdf and pdf of ηt by Ft(x) and ft(x) =
d
dtFt(x),x > 0, wher-

ever the derivative exists.

10.9.2 Sample Path of Total Output

A sample path of the process {ηt, t ≥ 0} consists of segments that decay
exponentially with decay constant k, between the τ i’s (Fig. 10.3). That
is,

ηt =
nX
i=1

Xie
−k(t−τ i), τn ≤ t < tn+1, n = 1, 2, .... (10.63)

Note that a sample path cannot descend to level 0 due to exponential
decay.
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1X 2X 3X

L L L

tη

Time

λE λE

Level x

1τ 2τ 3τ
0 λE

Figure 10.3: Sample path of total output ηt for type-2 counter model.
Locked periods are each =

dist
L ≥ D. Arrivals during L are not detected,

but extend the locked period. Arrival process of pulses is Poisson at rate
λ.

Probability that the Counter is Free at Time t

Let p(t) = P (counter is free at time t). Then

p(t) =

(
e−λt, 0 < t < D,

e−λD, t ≥ D.
(10.64)

The reason for (10.64) is that for 0 < t < D, the counter is free at t
iff there is no arrival in (0, t), which has probability e−λt. For t ≥ D,
the counter is free at time t iff there has not been an arrival during
the interval (t−D, t). The probability of this event is e−λD, by the
memoryless property of Eλ (see, e.g., [74]).

10.9.3 Integro-differential Equation for PDF of Output

Consider level x > 0 in the state space; and state-space set Ax = (0, x].
We can show as in Theorem 6.2.8, that for SP entrances into set Ax

(downcrossings of level x)

∂

∂t
E(It(Ax)) =

∂

∂t
E(Dt(x)) = kxft(x), t > 0. (10.65)
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For SP exits out of Ax (upcrossings of level x)

∂
∂tE(Ut(x)) =

∂
∂tE(Ot(Ax))

=

(
λe−λt ·

R x
y=0B(x− y)ft(y)dy, x > 0, 0 < t < D,

λe−λD ·
R x
y=0B(x− y)ft(y)dy, x > 0, t ≥ D.

(10.66)

Substituting (10.65) and (10.66) into Theorem B (noting that ∂
∂tFt(x) =

− ∂
∂t(1− Ft(x)), we get integro-differential equations for the pdf ft(x),

kxft(x) = λe−λt ·
R x
y=0B(x− y)ft(y)dy − ∂

∂t(1− Ft(x)),

x > 0, 0 < t < D,
(10.67)

kxft(x) = λe−λD ·
R x
y=0B(x− y)ft(y)dy − ∂

∂t(1− Ft(x)),

x > 0, t ≥ D,
(10.68)

since the arrival rate is λ, and an arrival can be registered at time t iff
the counter is unlocked or free at time t.

10.9.4 Expected Value of Total Output

We obtain the expected value of ηt by integrating both sides of (10.67)
and (10.68) with respect to x ∈ (0,∞). (In (10.67) and (10.68), we
assume that ∂

∂tFt(x) is continuous with respect to t > 0. This condition
is required to apply Fubini’s Theorem on interchanging the operationsR∞
x=0 and

∂
∂t .)

Upon integrating (10.67) we obtain

kE(ηt) = λe−λtE(X)− ∂

∂t
E(ηt),

∂

∂t
ektE(ηt) = λe(k−λ)tE(X),

E(ηt) =
λe−λtE(X)

k − λ
+Ae−kt, 0 < t < D, (A constant),

E(ηt) =
λE(X)

k − λ

³
e−λt − e−kt

´
, 0 < t < D, (10.69)

since E(η0) = 0.



430 CHAPTER 10. ADDITIONAL APPLICATIONS

Integrating (10.68), we obtain

kE(ηt) = λe−λDE(X)− ∂

∂t
E(ηt),

∂

∂t
ektE(ηt) = λe−λDE(X)ekt,

E(ηt) =
λe−λDE(X)

k
+Ae−kt, t ≥ D, (10.70)

where the constant A is given by

A = λE(X)

Ã
e−(λ−k)D − 1

k − λ
− e−(λ−k)D

k

!
.

To obtain the value of A, we have used the fact that ηD− = ηD (see
Fig. 10.3), which implies continuity of E(ηt) at t = D (a.s.). Thus, from
(10.69), E(ηD) =

λE(X)
k−λ

¡
e−λD − e−kD

¢
.

If t→∞, then (10.70) reduces to

lim
t→∞

E(ηt) =
λe−λDE(X)

k
.

If D = 0, then A = −λE(X)
k . We then obtain E(ηt) =

λE(X)
k

¡
1− e−kt

¢
and limt→∞E(ηt) =

λE(X)
k , as in [74].

10.9.5 Type-1 Counter

A type-1 counter differs from a typre-2 counter (Subsection 10.9.1) only
in the locking mechanism. In a type-1 counter, only registered arrivals
when the counter is free, generate locked periods. Arrivals when the
counter is locked, have no effect on the locked period. Thus every locked
period has length D > 0. Aside from the locking mechanism, we gener-
ally use the same notation and assumptions for type-1 and type-2 coun-
ters.

Thus equations (10.60) - (10.63) hold for type-1 counters.

10.9.6 Sample Path of Total Output

A sample path of the process {ηt, t ≥ 0} consists of segments that decay
exponentially with decay constant k, between the τ i’s (Fig. 10.4).
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1X 2X 3X 4X

D D D D

tη

Time

λE λE λE

Level x

1τ 2τ 3τ 4τ
0

Figure 10.4: Sample path of total output ηt for type-1 counter model.
Locked periods are each = D (arrivals not detected therein, and have no
effect on locked period) Arrival process of pulses is Poisson at rate λ.

Probability that the Counter is Free at Time t

The probability that the counter is free to register a newly arriving pulse
at time t is given by the following recursion ([70]).

p1(t) = e−λt, 0 < t < D,

p2(t) = e−λ(t−D)p1(D) +
(λ(t−D)) e−λ(t−D)

1!
,D ≤ t < 2D,

· · ·

pn(t) =
n−1X
j=1

(λ(t− (n− 1)D))j−1 · e−λ(t−(n−1)D)
(j − 1)! pn−j((n− j)D)

+
(λ(t− (n− 1)D))n−1 e−λ(t−(n−1)D)

(n− 1)! ,

(n− 1)D ≤ t < nD, n = 1, 2, ... , (10.71)

where
P0

j=1 ≡ 0.

Remark 10.8 Let p(t) = P (the counter is free at time t),t ≥ 0. Then
limt→∞ p(t) =

1
λ

1
λ
+D

(a known result for alternating renewal processes

[49]). Hence we have proved using probability arguments that

lim
n→∞

pn(nD) =
1
λ

1
λ +D

,
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where pn(nD) is the series obtained by substituting t = nD in (10.71).
More strongly, for every α ∈ [0, 1],

lim
n→∞

pn(α(n− 1)D + (1− α)nD) =
1
λ

1
λ +D

.

10.9.7 Integro-differential Equation for PDF of Output

Consider level x > 0 in the state space; and state-space set Ax = (0, x].
We can show as in Theorem 6.2.8, that for SP entrances into set Ax,

∂

∂t
E(It(Ax)) =

∂

∂t
E(Dt(x)) = kxft(x), t > 0. (10.72)

For SP exits out of Ax,

∂

∂t
E(Ot(Ax)) =

∂

∂t
E(Ut(x))

= λpn(t) ·
Z x

y=0
B(x− y)ft(y)dy,

(n− 1)D ≤ t < nD, n = 1, 2, ... . (10.73)

In (10.73), the factor pn(t) occurs because an arrival is registered iff it
arrives when the counter is free.

Substituting (10.72) and (10.73) into Theorem B, we get an integro-
differential equation for the pdf ft(x),

kxft(x) = λpn(t) ·
Z x

y=0
B(x− y)ft(y)dy +

∂

∂t
Ft(x), x > 0,

kxft(x) = λpn(t) ·
Z x

y=0
B(x− y)ft(y)dy,−

∂

∂t
(1− Ft(x)), x > 0,

(n− 1)D ≤ t < nD, n = 1, 2, ... . (10.74)

10.9.8 Expected Value of Total Output

We obtain the expected value of ηt by integrating both sides of the
integral equations (10.74) with respect to x ∈ (0,∞). We obtain

E(ηt) =
λE(X)

k − λ

³
e−λt − e−kt

´
, 0 < t < D (10.75)

in the same manner as (10.69). Similarly, we can obtain E(ηt), nD ≤
t < (n+ 1)D,n = 1, 2, ... . (We shall not carry out this computation
here.)



10.10. A DAM WITH ALTERNATING INFLUX AND EFFLUX 433

Remark 10.9 If the locked period has value D = 0, then pn(t) = 1, n =
1, 2, ... . Then every arrival is registered. We then obtain the known
result E(ηt) =

λE(X)
k

¡
1− e−kt

¢
, t > 0 (e.g., [74]).

If t→∞, then (10.75) reduces to limt→∞E(ηt) =
λE(X)

k .

Remark 10.10 When there is no locked time (D = 0), the foregoing
type-1 and type-2 counter models coincide with an M/G/r(·) dam with
efflux rate proportional to content. Thus, results for a dam with r(x) =
kx, x > 0, can be derived as a special case of either counter model.

10.10 ADamwith Alternating Influx and Efflux

Consider a dam in which the content alternates between random peri-
ods of continuous influx and continuous efflux. We arbitrarily classify
periods of emptiness as being parts of periods of efflux, for notational
convenience. Periods of efflux are =

dist
Eλ1 and periods of efflux are =

dist

Eλ2 . Let W (t) ≥ 0 denote the content of the dam at time t ≥ 0. As-
sume that during an influx period, the rate of increase of content is
dW (t)
dt = +q(W (t)), where q(x) > 0, x > 0. Assume that during an ef-

flux period, the rate of decrease of content is dW (t)
dt = −r(W (t)), where

r(x) > 0, x > 0.When the dam is empty (i.e., W (t) = 0), dW (t)
dt = 0. By

the memoryless property of Eλ2 , sojourns at level 0 are also distributed
as Eλ2 (Fig. 10.5). The empty period is analogous to an idle period in
an M/G/1 queue or empty period in an M/G/r(·) dam. The efflux rate
r(x) is similar to that of the M/G/r(·) dam (Section 6.2).

Consider the stochastic process {W (t),M(t)} where W (t) denotes
the content at instant t, and the configuration M(t) ∈ M = {0, 1, 2}.
The state space is S = [0,∞) ×M . The meaning of M(t) is given in
the following table.(See Subsections 4.5 — 4.6 for discussions on system

configuration.)

M(t) Meaning

0 Empty period.

1 Influx phase; content increasing.

2 Efflux phase; content decreasing or at level 0.

A sample path of {W (t),M(t)} evolves on two sheets corresponding
to configurations 1 and 2, and on one line corresponding to an empty
period (W (t) = 0) (Fig. 10.6).
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W(t)

Time

1

1
λ

2

1
λ 1

1
λ 2

1
λ

1

1
λ 2

1
λ

0

SP
slope q(x) slope -r(x)

Level   x

Figure 10.5: Sample path of dam with continuous influx and efflux. Slope
at level x: during influx is d

dtW (t) = q(x); during efflux is −r(x). Slope
at level 0 is d

dtW (t) = 0. Influx and efflux times are distributed as Eλ1 ,
Eλ2 , respectively.

W(t)

0

slope q(x)
Level   x

Time

0

slope -r(x) SP

Sheet 1

Sheet 2W(t)

Level   x

( , )x ∞

( , )x ∞

Line 0
2

Eλ

2
Eλ2

Eλ 2
Eλ 2

Eλ

1
Eλ 1

Eλ 1
Eλ 1

Eλ

Figure 10.6: Sample path of dam with continuous influx and efflux,
showing line and sheets (pages). Line 0 ↔W (t) = 0, dam empty. Sheet
1 ↔ M(t) = 1, influx phase. Sheet 2 ↔ M(t) = 2, efflux phase. Also
indicates composite states h(x,∞), ii, i = 1, 2. Slope at level x > 0:
during influx is d

dtW (t) = q(x); during efflux is −r(x). Slope at level 0
is d

dtW (t) = 0. Influx and efflux durations are distributed as Eλ1 , Eλ2 ,
respectively. Empty duration is distributed as Eλ2 .
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10.10.1 Steady-state PDF of Content

Denote the "partial cdf’s" of content by

Fi(x) = lim
t→∞

P (W (t) ≤ x,M(t) = i), x > 0, i = 1, 2.

Denote the steady-state "partial" pdf of content by

fi(x) =
d

dx
Fi(x), i = 1, 2, x > 0,

wherever the derivative exists.
The total pdf of content (marginal pdf) is

f(x) = f1(x) + f2(x), x > 0. (10.76)

Let P0 = limt→∞ P (W (t) = 0). We shall derive: fi(x), i = 1, 2; f(x); P0;
F (x) = P0 +

R x
y=0 f(y)dy, in terms of the input parameters λ1, λ2, q(x),

r(x). The steady-state probability that the dam is in the influx phase
(i = 1) or efflux phase (i = 2) is Fi(∞) =

R∞
x=0 fi(x)dx, i = 1.2.

10.10.2 Equations for PDF’s

Consider composite state ((x,∞), 1) , x > 0, on sheet 1. The SP rate out
of ((x,∞), 1) is λ1

R∞
y=x f1(y)dy, since the end of an influx period signals

an instantaneous SP 1 → 2 transition from ((x,∞), 1) to ((x,∞), 2) at
the same level .

The SP rate into ((x,∞), 1) is

q(x)f1(x) + λ2

Z ∞

y=x
f2(y)dy,

since: (1) the SP upcrosses level x on sheet 1 at rate q(x)f1(x), (2) the
SP enters ((x,∞), 1) from ((x,∞), 2) (2 → 1 transition) at the same
level (the rate at which efflux periods end when the SP is in ((x,∞), 2)
is = λ2). Set balance, namely

SP rate out of ((x,∞), 1) = SP rate into ((x,∞), 1) ,

gives an integral equation relating f1(x) and f2(x),

λ1

Z ∞

y=x
f1(y)dy = q(x)f1(x) + λ2

Z ∞

y=x
f2(y)dy. (10.77)
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Similarly, balancing SP rates out of, and into ((x,∞), 2) , x > 0, on
sheet 2 yields the integral equation

λ2

Z ∞

y=x
f2(y)dy + r(x)f2(x) = λ1

Z ∞

y=x
f1(y)dy. (10.78)

In (10.78), the left and right sides are the SP exit and entrance rates
respectively, of ((x,∞), 2).

Addition of (10.77) and (10.78) yields

q(x) · f1(x) = r(x) · f2(x). (10.79)

There is an easy alternative derivation 0f (10.79), which follows by view-
ing the sample-path via the "cover". That is, we project the segments of
the sample path from sheets 1, 2 (pages) onto a single t-W (t) coordinate
system (Fig. 10.5). Then we apply SP rate balance across level x:

total upcrossing rate = total downcrossing rate,

which translates to (10.79).
Using (10.79), we substitute f2(x) =

q(x)
r(x)f1(x) into (10.77), and take

d
dx in (10.77). Then we solve the resulting differential equation, and
applying the initial condition

r(0+)f2(0) = λ2P0 = q(0+)f1(0).

These operations result in the formula

f1(x) =
λ2P0
q(x)

· e− λ1
x
y=0

1
q(y)

dy−λ2 x
y=0

1
r(y)

dy
, x > 0. (10.80)

Since f2(x) =
q(x)
r(x)f1(x), we have

f2(x) =
λ2P0
r(x)

· e− λ1
x
y=0

1
q(y)

dy−λ2 x
y=0

1
r(y)

dy
, x > 0. (10.81)

The total pdf of content is f(x) = f1(x) + f2(x). Adding (10.80) and
(10.81) gives

f(x) = λ2

µ
1

q(x)
+

1

r(x)

¶
P0 · e

− λ1
x
y=0

1
q(y)

dy−λ2 x
y=0

1
r(y)

dy
, x > 0,

= λ2

µ
q(x) + r(x)

q(x)r(x)

¶
P0 · e

− λ1
x
y=0

1
q(y)

dy−λ2 x
y=0

1
r(y)

dy
, x > 0.

(10.82)
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The normalizing condition is

P0 +

Z ∞

x=0
f(x)dx = 1. (10.83)

From (10.82) and (10.83)

P0 =
1

1 + λ2
R∞
x=0

µ³
q(x)+r(x)
q(x)r(x)

´
· e− λ1

x
y=0

1
q(y)

dy−λ2 x
y=0

1
r(y)

dy
¶
dx

.

(10.84)

Remark 10.11 Formulas (10.80)-(10.84) are asymmetric with respect
to λ1 and λ2. This is because empty periods are distributed as Eλ2 (clas-
sified as part of efflux phase).

Remark 10.12 The model can be generalized in various ways. There
may be several different important state-space levels at which there is no
change in content (no influx or efflux), rather than only at level 0. Such
levels may be due to a control policy or due to natural phenomena. There
would then be more than one atom in the state space. Also, the influx
and efflux periods may have general distributions. The content may be
bounded above, resulting in an atom. Some of these variants are easy to
analyze; others are more complex. We do not treat such variants here.

Stability Condition

A necessary condition for the pdf to exist is f(∞) = 0. Thus, the

exponent
³
λ1
R x
y=0

1
q(y)dy − λ2

R x
y=0

1
r(y)dy

´
in (10.84) must be positive

for all ẋ > 0. That is

λ2

Z x

y=0

1

r(y)
dy < λ1

Z x

y=0

1

q(y)
dy,

λ1

Z x

y=0

1

q(y)
dy − λ2

Z x

y=0

1

r(y)
dy > 0, for all x > 0. (10.85)

10.10.3 Numerical Example

Let λ1 = 1, λ2 = 2, q(x) =
√
x, r(x) = 3

√
x. Substituting into (10.85)

gives
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λ1

Z x

y=0

1

q(y)
dy − λ2

Z x

y=0

1

r(y)
dy = 2

√
x

µ
λ1 −

λ2
3

¶
= 2
√
x

µ
1− 2

3

¶
> 0, x > 0,

implying stability. Thus the steady-state pdf f(x) exists. From (10.82),
we obtain

f(x) =
8

3
√
x
P0 · e−

2
3

√
x, x > 0. (10.86)

From the normalizing condition (10.83),

P0 =
1

1 +
R∞
x=0

8
3
√
x
e−

2
3

√
xdx

=
1

9
= 0.111111. (10.87)

Thus
f(x) =

8

27
√
x
e−

2
3

√
x, x > 0. (10.88)

From (10.87) and (10.88), the cdf is (see Figs. 10.7, 10.8),

F (x) = P0 +

Z x

y=0
f(y)dy = 1− 8

9
e−

2
3

√
x. (10.89)

Proportion of Time in Influx and Efflux Phases

From ((10.79)) and (10.76) we obtain

f1(x) =
2

9
√
x
e−

2
3

√
x, x > 0,

f2(x) =
2

27
√
x
e−

2
3

√
x, x > 0.

Hence the proportion of time the dam is in the influx, efflux phase re-
spectively is

F1(∞) =
Z ∞

x=0

2

9
√
x
e−

2
3

√
xdx = 0.666667,

F2(∞) =
Z ∞

x=0

2

27
√
x
e−

2
3

√
xdx = 0.222222.

These values are also the steady-state probabilities of the dam being in
these phases at an arbitrary time point. A check on the normalizing
condition is

P0 + F1(∞) + F2(∞) = 0.111111 + 0.666667 + 0.222222 = 1.
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f (x )

x

Figure 10.7: Steady-state pdf f(x) = 8
27
√
x
e−

2
3

√
x, x > 0, in continuous

dam with alternating influx/efflux periods: λ1 = 1, λ2 = 2, q(x) =
√
x,

r(x) = 3
√
x.

F (x )

0P

x

Figure 10.8: Steady-state cdf F (x) = 1− 8
9e
− 2
3

√
x, x > 0, P0 = 0.1111, in

continuous dam with alternating influx/efflux periods: λ1 = 1, λ2 = 2,
q(x) =

√
x, r(x) = 3

√
x.



440 CHAPTER 10. ADDITIONAL APPLICATIONS

10.11 Estimation of Laplace Transforms

We very briefly discuss a procedure for estimating the LST (Laplace-
Stieltjes transform) of the state variable of a stochastic model. We shall
use the virtual wait in a GI/G/1 queue as an example.

Suppose we want to estimate the LST of the steady-state pdf of the
virtual wait in a GI/G/1 queue. Let the steady-state cdf of the virtual
wait be F (x), x ≥ 0, having pdf f(x), x > 0, and let P0 = F (0). The
LST of the mixed pdf {P0; f(x), x > 0} is defined as

F ∗(s) =

Z ∞

x=0
e−sxdF (x), s > 0. (10.90)

10.11.1 Probabilistic Interpretation of LST

The probabilistic interpretation of the LST (10.90) is as follows ([78], and
used in various papers, e.g., [31]). In (10.90), the right side is the prob-
ability that an independent "catastrophe random variable", distributed
as Es, is greater than the virtual wait having cdf F (x), x ≥ 0.

10.11.2 Estimation of LST

In order to estimate F ∗(s), we can simulate a sample path of the virtual
wait W (u), u ≥ 0, over a long period of simulated time (0, t). Next, we
generate a sample path of a renewal process {C(u), u ≥ 0} with inter-
renewal times equal to the catastrophe r.v., and overlay it on the same
time-state coordinate system (see Fig 10.9). Fix s > 0. The SP jump
sizes and inter-renewal times in the sample path of {C(u)}, are iid r.v.’s
distributed as Es. This is because the process C(u) represents the excess
life γ at time u (see Subsection 10.2.4). The steady-state pdf of excess
life is fγ(x) = s · e−sx, x > 0.

Now we observe the sample paths of {W (u)} and {C(u)} on the time
interval (0, t). We compute the sum, Ts =

P
i Tsi, of all time intervals

such that C(u) > W (u), u ∈ (0, t) (Fig. 10.9). An estimate of F ∗(s)
is then cF ∗(s) = Ts

t , which is the proportion of time that C(u) exceeds
W (u) during (0, t). The probabilistic interpretation of the LST strongly
suggests that Ts

t is an appropriate estimate.
We repeat the procedure using different values of s > 0. For example,

we may choose a partition of N uniformly-spaced values for s, such as
∆, 2∆, 3∆, ..., N∆, where N is a large positive integer and ∆ is a small
positive number. (Different spacing for the partition may improve the
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W(u) ( )C u

1sT 2sT 3sT
Time   u

t6sT

Figure 10.9: Sample paths of virtual wait {W (u), u ≥ 0, } and renewal
process with inter-arrival time distributed as Es, the catastrphe r.v.,
{C(u), u ≥ 0} . Ts = Ts1 + Ts2 + · · ·+ Ts6.

estimates, e.g., if F (·) is known to have certain properties such as a long
tail.) This procedure results in a set of estimates cF ∗(n∆) = Tn∆

t , n =

1, ..., N . (From (10.90), cF ∗(0) = 1., which is the normalizing condition.)
Finally, we can plot the points³

0,cF ∗(0)´ = (0, 1) and
³
n∆,cF ∗(n∆)´ , n = 1, ...,N,

on a two-dimensional
³
s,cF ∗(s)´ coordinate system. The {n∆} grid is

on the horizontal axis; the cF ∗(n∆) terms are ordinates parallel to the
vertical axis.

The plot will be a discrete estimate of the LST of the pdf of the
virtual wait. It may be improved by smoothing techniques. In order
to obtain an estimate of the pdf of the virtual wait from it, we can use
numerical inversion of

ncF ∗(n∆)o.
10.12 Simple Harmonic Motion

We analyze an elementary model of deterministic simple harmonic mo-
tion, using LC.
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T im e   t

L e v e l   x

X (t)

Figure 10.10: Sample path of simple harmonic motionX(t) = sin t. State
space is S = [−1,+1]. Shows level x in S.

Consider a particle moving according to simple harmonic motion
(SHM) (see, e.g., [6]). Let X(t) denote the position of the particle
at instant t ≥ 0, and X(0) = 0. Let the state space be the interval
S = [−1,+1]. In this version of the standard SHM model there is only
one sample path, namely,

X(t) = sin(t), t ≥ 0.

We wish to determine the stationary pdf f(x) and cdf F (x) of X(t)
when the particle is observed at an arbitrary time point, as t→∞.

Consider the sample path X(t), t ≥ 0 (Fig. 10.10). The slope of the
sample path at level x is

r(x) ==
d

dt
sin t|t=sin−1 x = cos

¡
sin−1 x

¢
=
p
1− x2, x ∈ [−1,+1] .

(10.91)
Consider levels x, x + h ∈ S, where h > 0 is small. The time required
for the SP to ascend from level x to level x+ h isZ x+h

y=x

1

r(y)
dy =

Z x+h

y=x

1p
1− y2

dy. (10.92)



10.12. SIMPLE HARMONIC MOTION 443

The symmetries of the sample path imply that the time required for the
SP to descend from level x+ h to level x is also given by (10.92).

Applying (10.92), we see that the long-run proportion of time the SP
spends in state-space interval (x, x+h) in a cycle of length 2π time units
is

2

2π

Z x+h

y=x

1p
1− y2

dy = F (x+ h)− F (x). (10.93)

Formula (10.93) leads to

1

π
h

1q
1− (x∗)2

= F (x+ h)− F (x) (10.94)

where x∗ ∈ (x, x+h), by the definition of F (x) as the long-run proportion
of time the process is in state-space interval [−1, x]. Dividing both sides
of (10.94) by h and letting h ↓ 0, yields

f(x) =
1

π
√
1− x2

, x ∈ [−1,+1] . (10.95)

The stationary pdf f(x) in (10.95) is interesting and suggests intuitive
insights (Fig. 10.11). Note that limx↓(−1) f(x) = limx↑(+1) f(x) = ∞.
Also, minx∈S f(x) = 1

π , at x = 0. The pdf f(x) is symmetric about
x = 0, and is convex.

From (10.95), the cdf is

F (x) =

Z x

y=−1
f(y)dy,

=
1

π

¡
sin−1(x)− sin−1(−1)

¢
=

1

π
sin−1(x) +

1

2
, x ∈ [−1,+1]. (10.96)

10.12.1 Inferences Based on PDF and CDF

From (10.91), the speed of the particle r(x) =
√
1− x2 = 0 at x = ±1.

Hence, intuitively, it is much more likely to observe the particle close to
the boundaries of S (x = ±1), at an arbitrary time point in the long run.
This fact implies that the particle spends a much greater proportion of
time near the boundaries x = ±1 than near the center x = 0. At the
center, the speed is r(0) = 1. This is the maximum speed.
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f ( x )

x

Figure 10.11: Stationary pdf f(x) = 1
π
√
1−x2 , x ∈ [−1,+1], for particle

moving in simple harmonic motion, X(t) = sin t, t ≥ 0.

x

F(x)

Figure 10.12: Stationary cdf F (x) = 1
π sin

−1(x) + 1
2 , x ∈ [−1,+1], for

particle moving in simple harmonic motion, X(t) = sin t, t ≥ 0.
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From computations using (10.96), the proportion of time the SP (par-
ticle) spends in the central interval [−.5,+.5] is equal to F (.5)−F (−.5) =
0.333. The proportion of time the particle spends in the outer regions
[−1.0,−.5] ∪ [.5, 1.0], is equal to 2 · (F (1.0)− F (.5)) = 0.667. The "me-
dian" symmetric outer edges with respect to time spent by the particle,
is A0.5 ≡ [−1.0,−.707] ∪ [.707, 1.0]. That is, P (particle ∈ A0.5) = 0.5.
This indicates that it is equally likely to find the particle in two bands
of equal width 0.293 touching the edges ±1.0 (total width .586), as it is
to find it in a central interval of width 1.414 about 0. Arbitrary observa-
tions on operating pendulum clocks, readily corroborate these theoretical
computations.

Remark 10.13 The type of LC analysis in this section, may be extend-
able to analyze random trigonometric functions (e.g., like A sin (θt) +
B cos(θt), t ≥ 0, where A, B are random variables and θ is a constant).
Extensions may also be applicable in some models of physics, and in the
analysis of roots of equations.

10.13 Renewal Problem with Barrier

Consider a renewal process {Zn}, n = 1, 2.... . Assume Zn =
dist

U(0,1)),

a uniform random variable on (0, 1) (Fig. 10.13). Let NK denote the
number of renewals required to first exceed a barrier K > 0. In this
section we derive the expected value E(NK),K = 1, 2, 3, ... , and related
results. It is well known that E(N1) = e, the base of natural logarithms.
The general formula for E(NK) has not been reported previously in the
literature or is not well known. It is usually shown that E(N1) = e by
a standard renewal argument. That is, condition on the first renewal
distance s (Fig. 10.13). Derive a renewal equation, and solve it.

In this section we derive E(N1) by an alternative method, which also
leads to the values of E(NK),K = 1, 2, ... . This alternative method
facilitates finding the expected number of renewals required to exceed
a barrier, in other (seemingly unrelated) models. The idea is to extend
the one-dimensional renewal process to a two-dimensional nested renewal
process. The new construct has applications in a variety of stochastic
models.
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Figure 10.13: Renewal process {Zn} showing renewals. N(t) is the num-
ber of renewals within (0, t). N1 = N(1) + 1 is number of renewals
required to first exceed barrier K = 1. N1 is a stopping time for the
sequence {Zn} where Zn =

dist
U(0,1).

10.13.1 Alternative Solution Method

We construct a continuous-time continuous-state stochastic process

{X(t), t ≥ 0},X(0) = 0,

which is related to {Zn} (Fig. 10.14). A sample path of {X(t)} is a non-
decreasing step function. In sample paths of {X(t)}, SP upward jumps
of size =

dist
U(0,1), occur at an arbitrary Poisson rate λ. (We will select

λ = 1 for convenience.) The upward jumps are denoted by

bn ≡
dist

U(0,1), n = 1, 2, ... .

(Note that Zn ≡ bn. We replace symbol Zn by bn for generality beyond
boundary K = 1, and because of applicability to other models.)

Let

NK = min{n|
nX
i=1

bi > K},K = 1, 2, ... . (10.97)

Random variable NK is a stopping time for the sequence {bn}.
Let random variable a =

dist
Eλ = E1. Thus E(a) = 1.

Define random variable c by

c =

NKX
i=1

ai, where ai ≡
dist

a. (10.98)
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Let {cn} be a renewal process where cn ≡
dist

c. Then {cn} is a nested
renewal process with components {cn} and sub-components {ai}. Note
that NK is also a stopping time for the sequence {ai}. Taking the ex-
pected value in (10.98) yields

E(c) = E(NK)E(α) = E(NK), (10.99)

by Wald’s equation (e.g., [91] or [101]).
At each instant when a sample path of {X(t)} upcrosses level K,

the SP jumps downward (rebounds) to level 0, and the process {X(t)}
starts over again at level 0. Our construction guarantees that the limiting
distribution of X(t) exists as t → ∞. Random variable NK equals the
number of SP jumps required for {X(t)} to first exceed level K. R.v.
NK is also equal to the number of subintervals which are =

dist
a, that

comprise a cycle c.

Relation to hs, Si with No Decay

It is notable that other stochastic models have a related structure. For
example, the hs, Si inventory with no decay in Example 2.3 is the "flip"
(like l) of the {X(t)} process, in whichK = S−s, and the jump sizes are
distributed as Eμ. In that hs, Si model E(NS−s) is the expected number
of orders in an ordering cycle.

10.13.2 Number of Renewals Required to Exceed 1

We first determine E(N1). Denote the limiting distribution of {X(t)}
as t → ∞, by {π0; f0(x), 0 < x < 1}. Consider a sample path of
{X(t)}. Fix level x ∈ (0, 1) (Fig. 10.14). SP upcrossings of level x are
due to jumps starting at level 0 or at level y, 0 < y < x. Thus the SP
upcrossing rate of level x is

1 · π0 · P (b > x) + 1 ·
Z x

y=0
P (b > x− y) · f(y)dy, (10.100)

where r.v. b ≡
dist

bi, and upward jumps occur at rate 1
E(α) = λ = 1.

The SP downcrossing rate of level x is equal to the upcrossing rate
of level 1 for all x ∈ (0, 1). That is, the SP rebounds to level 0 at every
instant it upcrosses level 1. (The SP makes a double jump. Compare
with hs, Si inventory with no decay in Example 2.3.) The rate of SP
downward jumps is also the rate of SP entrances into state {0} from
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Figure 10.14: Sample path of {X(t), t ≥ 0}, in renewal problem to de-
termine E(N1) when renewal times =

dist
U(0,1).

above. This rate is the same as the SP exit rate out of {0}, namely
λπ0 = 1 · π0 = π0. Letting x = 1 in (10.100) we obtain

1 · π0 · P (b > 1) + 1 ·
Z 1

y=0
P (b > 1− y) · f(y)dy = π0. (10.101)

Note that since b =
dist

U(0,1),

P (b > x) = 1− x, 0 < x < 1. (10.102)

We substitute from (10.102) into (10.100). Then we apply rate bal-
ance across level x to equate (10.100) to the right-hand side of (10.101),
resulting in

π0(1− x) +

Z x

y=0
(1− x+ y)f(y)dy = π0, 0 < x < 1. (10.103)

Taking d
dx twice in (10.103), and solving the resulting ordinary dif-

ferential equation gives

f(x) = π0e
x, 0 < x < 1. (10.104)

We substitute from (10.104) into the normalizing condition π0 +R 1
x=0 f(x)dx = 1. This gives

π0 =
1

e
. (10.105)
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Figure 10.15: Sample path of {X(t)} for renewal problem, with state
space S = [0, 2). Facilitates solution for E(N2).

The renewal rate of {cn} is 1
E(c) = SP entrance rate into {0} = π0.

Thus E(c) = 1
π0
. From (10.99) and (10.105),

E(N1) = E(c) ·E(a) = 1

π0
· 1 = e = 2.71828. (10.106)

We have derived E(N1) in detail using the nested renewal process
structure, to fix ideas. The following results are new (or not well known).

10.13.3 Number of Renewals Required to Exceed 2

Next we determine E(N2). Let the steady-state PDF of {X(t)} be

{π0; f0(x), 0 < x < 1} ; { f1(x), 1 ≤ x < 2} .

Consider a sample path of {X(t)} (Fig. 10.15), where the state space
is S = [0, 2). Balancing SP up- and downcrossing rates of x ∈ (0, 1), as
in the case K = 1, gives

π0(1− x) +

Z x

y=0
(1− x+ y)f0(y)dy = π0, 0 < x < 1. (10.107)
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Fix x ∈ [1, 2). Balancing SP up- and downcrossing rates of x, givesZ 1

y=x−1
(1− x+ y)f0(y)dy +

Z x

y=1
(1− x+ y)f1(y)dy = π0. (10.108)

The lower limit in the first integral of (10.108) is y = x − 1 because an
SP jump upcrosses x only if it starts in interval (x− 1, x).

Taking d
dx in (10.108) and solving in a similar manner as for K = 1,

we obtain
f0(x) = π0e

x, 0 < x < 1,

f1(x) = π0(1− e−1x)ex, 1 ≤ x < 2.
(10.109)

The normalizing condition is

π0 +

Z 1

x=0
f0(x)dx+

Z 2

x=1
f(x)dx = 1. (10.110)

Substituting from (10.109) into (10.110) gives

π0 =
1

−e+ e2.
. (10.111)

From (10.99),

E(N2) = E(c)E(a) =
1

π0
= −e+ e2 = 4.67077. (10.112)

10.13.4 Number of Renewals Required to Exceed 3

To explore further the pattern of {E(NK)} ,K = 1, 2, ... we derive E(N3).
The state space is S = [0, 3). Let the steady state PDF of {X(t)} be

{π0; f0(x), 0 < x < 1} ; {f1(x), 1 ≤ x < 2} ; {f2(x), 2 ≤ x < 3} .

We now balance SP up- and downcrossing rates across arbitrary levels x
∈ (0, 1); x ∈ [1, 2); x ∈ [2, 3). This gives respectively, integral equations

π0(1− x) +

Z x

y=0
(1− x+ y)f0(y)dy = π0, (10.113)

Z 1

y=x−1
(1− x+ y)f0(y)dy +

Z x

y=1
(1− x+ y)f1(y)dy = π0, (10.114)Z 2

y=x−1
(1− x+ y)f1(y)dy +

Z x

y=2
(1− x+ y)f2(y)dy = π0. (10.115)
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Solving integral equations (10.113), (10.114), (10.113) in a similar man-
ner as for K = 1, 2 above, gives

f0(x) = π0e
x, 0 < x < 1,

f1(x) = π0(1− e−1x)ex, 1 ≤ x < 2,

f2(x) =
1
2π0(−2xe−2 + e−2x2 − 2xe−1 + 2)ex, 2 ≤ x < 3.

(10.116)

The normalizing condition is

π0 +

Z 1

x=0
f0(x)dx+

Z 2

x=1
f1(x)dx+

Z 3

x=2
f2(x)dx = 1, (10.117)

yielding

π0 =
1

1
2e− 2e2 + e3

.

Substituting from (10.116) into (10.117) gives

E(N3) =
1

π0
=
1

2
e− 2e2 + e3 = 6.66656563. (10.118)

10.13.5 Number of Renewals Required to Exceed K

After carrying out the procedure for several more steps, I hypothesized
that the formula for general integer K is E(NK) =

PK
i=1

(−i)K−i
(K−i)! e

i. This
formula can be verified by mathematical induction. Thus

E(NK) =
KX
i=1

(−i)K−i
(K − i)!

ei,K = 1, 2, ... . (10.119)

The induction is carried out by assuming that the formulas for fi(x), i =
0, ...,K − 1 are similar to those in (10.116). Then we obtain (10.119) in
a similar manner as for the derivation of (10.118).

10.13.6 Asymptotic Formula for E(NK)

We can show that E(NK) given in (10.119) is asymptotic to 2K + 2
3 .

That is

lim
K→∞

E(NK)

2K + 2
3

= 1. (10.120)

For example, using (10.120), an approximation to E(N20) is 2(20)+ 2
3 =

40.6667. The analytical value using (10.119) is 40.6667. The accuracy
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of the computation depends on the number of digits carried, and on the
computational algorithm.

Remarkably, from the analytical values of E(N2) and E(N3) given in
(10.112) and (10.118), the approximation (10.120) is very accurate for
K = 2, 3, ... . Even for K = 1, we have 2K+ 2

3 = 2.6666, which is within
1.90% of e = 2.71828.

Derivation of Asymptotic Formula

We give a renewal-theoretic derivation of formula (10.120).
Let γx denote the excess life at a point x ∈ S. The pdf of γx as

x → ∞ is given by fγ(y) =
1
μ (1−B(y)) , y > 0 where B(y) is the

common cdf of the renewal r.v. having mean μ (formula (10.9)). In the
present context, the renewal r.v. =

dist
U(0,1). Thus B(y) = y, 0 < y < 1

and μ = 1
2 . Hence limx→∞E(γx) is given by

lim
x→∞

E(γx) =
1

μ

Z ∞

y=0
yfγ(y)dy

= 2

Z 1

y=0
y (1− y) dy =

1

3
. (10.121)

Let γK denote the excess life at K; then E(γK) ≈ 1
3 . Also,

K + γK =

NKX
j=1

Zj , (10.122)

where {Zj} are iid, Zj ≡
dist

U(0,1), and NK is a stopping time for {Zj}.
Taking expected values in (10.122) yields K + 1

3 ≈ E(NK)
1
2 . If K →∞,

we obtain (10.120). Moreover, if α > 0 is a real number, then E(Nα) ≈
2α+ 2

3 , where Nα is the number of renewals required to first exceed α.

10.13.7 Number of Renewals Within an Interval

Let N(a, b) denote the number of renewal instants occurring within in-
terval (a, b), during a single cycle of {cn}. Without loss of generality,
X(0) = 0, and we stop after NK renewals of {an}. Then

N(0,K) = NK − 1, and E(N(0,K)) = E(NK)− 1.



10.13. RENEWAL PROBLEM WITH BARRIER 453

Thus the values of E(N1), E(N2), E(N3) lead to the expected number of
renewal instants within intervals (0, 1), (0, 2), (0, 3), (1, 2), (2, 3), namely

E(N(0, 1)) = E(N1)− 1 = e− 1 = 1.7183,
E(N(0, 2)) = E(N2)− 1 = −e+ e2 − 1 = 3.6708,

E(N(0, 3)) = E(N3)− 1 =
1

2
e− 2e2 + e3 − 1 = 5.6666,

E(N(1, 2)) = E(N(0, 2))−E(N(0, 1)) = E(N2)−E(N1) = 1.9525,

E(N(2, 3)) = E(N(0, 3))−E(N(0, 2)) = E(N3)−E(N2) = 1.9958.
(10.123)

For large K,

E(N(K,K + 1) = E(0,K + 1)−E(0,K)

= E(NK+1)−E(NK) ≈ 2.

Note that in (10.123), the values of E(N(1, 2)), E(N(2, 3)) are already
within 2.38% and 1.40% of the limiting value 2.0, respectively.

Suppose 0 < α < β < 1, where α, β are arbitrary real numbers. We
obtain E(Nα) = eα, and E(Nβ) = eβ, analogously as for the solution for
E(N1). Hence, E(N(0, α)) = eα − 1, E(N(0, β)) = eβ − 1. Therefore,
the expected number of renewals within (α, β) is

E(N (α, β)) = E(Nβ)−E(Nα) = eβ − eα, 0 < α < β < 1. (10.124)

For example

E
¡
N
¡
2
3 , 1
¢¢
= e− e

2
3 = 0.77055,

E
¡
N
¡
1
3 ,
2
3

¢¢
= e

2
3 − e

1
3 = 0.55212,

E
¡
N
¡
0, 13

¢¢
= e

1
3 − e0 = 0.39561.

Thus approximately 44.84% of the renewals occur in the top third,
32.13% in the middle third and 23.02% in the bottom third, of inter-
val (0, 1). Hence, renewal instants tend to accumulate in the top portion
of (0, 1). For a possible intuitive explanation of this phenomenon, fix the
length of a "sliding interval" Ih to be |Ih| = h, 0 < h < 1. As Ih slides
from position (0, h) to position (1 − h, 1), the probability that Ih will
contain n renewals increases for every n = 1, 2, .... .

We can extend the analysis to determine the expected number of
renewals within an arbitrary interval (α, β) , 0 ≤ α < β <∞.
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10.13.8 Discussion

We can apply the nested renewal model of this section, to an arbitrary re-
newal process such that {bn} are non-lattice positive r.v.’s. The analysis
can also be extended to models where {bn} are such that −∞ < bn <∞.
In that case, {bn} is not a renewal process, but {cn} and {an} are renewal
processes, with {an} nested in {cn}.

Possible applications are to problems where it is required to deter-
mine the expected number of events until a stopping criterion is satisfied.
Examples are the number of: customers served in a busy period of a
queue; orders in an ordering cycle of an inventory; inputs until overflow
of a dam; shocks until failure of a machine part; claims until ruin in an
actuarial model; doses of a drug until an overdose; ads until a favorable
consumer response to a product occurs.




