
CHAPTER 1

ORIGIN OF LEVEL
CROSSING METHOD

1.1 Introduction

This chapter presents a condensed version of the original development of
the level crossing method for deriving probability distributions of state
variables in stochastic models (LC). I developed LC concomitantly with
the more general system point method. Thus LC is actually an essential
component of the system point method. A more precise nomenclature for
the overall technique is the system point level crossing method (SPLC).
In this monograph, for simplicity we usually use the abbreviation LC to
refer to the overall procedure.

The LC technique was developed during the period January 1974 to
August 1974, while I was working on my PhD thesis of a different topic,
namely Multiple Server Queues with Service Time Depending on Wait-
ing Time. The work involved analyzing the steady-state distribution of
customer wait in an M/M/c queue with service time depending on wait
before service, since May 1972. This had been my original PhD thesis
topic, suggested by my supervisor M.J.M. Posner. The goal had been
to generalize to M/M/c queues, the (then) forthcoming paper [88] on
M/M/1 queues, using the method of embedded Markov chains, a purely
algebraic technique [77]. That analysis formulates Lindley recursions for
successive customer waits and their probability distributions [82]. The
approach utilizes inequalities, conditional probabilities, and the law of
total probability. It also involves multiple integration, transformation of
variable, differentiation, and limit operations.
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The embedded Markov-chain analysis can be tedious and time con-
suming, especially for complex models. I worked for several thousand
hours (about fifty hours per week) developing, simplifying and solv-
ing "fifty-page" integral equations on computer paper (the old kind
10"×17") over a two year period. Much experience and many observa-
tions had shown that the analyses of different model variants ultimately
converge to a common stage. Each analysis culminates with its own sys-
tem of Volterra integral equations of the second kind with parameter, for
the steady-state pdf (probability density function) of the customer wait.
At this point, all of my analyses were purely algebraic.

While I pondered the complexity and tediousness of various em-
bedded Markov-chain analyses, the question gradually surfaced as to
whether there may exist an alternative, more intuitive technique for de-
riving the integral equation(s) for the pdf. After considerable analysis,
finally in August 1974, I discovered the basic LC theorems and the re-
lated methodology.

For queues, the LC method starts by constructing a typical sample
path (sample function, realization, trajectory, tracing, orbit) of the vir-
tual wait process (see Section 2.2). Then we apply LC theorems. These
theorems utilize sample-path structure to write an integral equation, or
system of integral equations, for the steady-state pdf, by inspection! The
LC approach can save an enormous amount of time when analyzing com-
plex stochastic models. LC provides a common systematic procedure for
studying a wide variety of stochastic models. It focuses attention on
sample paths. Therefore it often leads to new insights into the model
dynamics and its subtleties. In complex models, construction of a sample
path may itself be a challenge. However, the benefit of this construction
is that it often leads to a deeper understanding of the model.

In order to construct the integral equation(s), the LC method em-
ploys a one-to-one correspondence between: (1) the set of algebraic terms
in the integral equation(s) for the pdf, and (2) a set of mutually exclusive
and exhaustive sample-path transitions relative to state-space levels or
state-space sets (see Subsections 2.4.2, 2.4.3).

After my discovery in 1974, I completely rewrote my PhD thesis
using LC, from November 1974 to March 1975. The new thesis was
called System Point Theory in Exponential Queues [7]. This led to the
subsequent publications [37], [38], [39]. Two years later in 1976, J.W.
Cohen [45] discussed the same level crossing ideas, couched in terms of
regenerative processes [96].

The following abridged version of the development of LC deals with
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the single server queue. (This preserves the main ideas, which originally
evolved from analyzing complex M/M/c queues.) We first derive an
integral equation based on the classical algebraic method for GI/G/1
and M/G/1 queues. This was the method used to analyze my original
PhD thesis topic. (Due to multiple servers, that derivation started with
a more general Lindley recursion [34], [35]. It ended with a system of
integral equations for the steady-state pdf of wait. Working papers [34],
[35] illustrate the original thesis using embedded Markov chains.)

1.2 Lindley Recursion for GI/G/1 Wait

Let Wn, Sn, Tn+1 denote respectively the waiting time of customer
n before service, the service time of customer n, and the time interval
τn+1− τn between the arrival instants (epochs) τn, τn+1 of customers n
and n+ 1 at the system, n = 1, 2, .... The well known Lindley recursion
for the waiting time is

Wn+1 = max{Wn + Sn − Tn+1, 0}, n = 1, 2, .... (1.1)

Referring to Fig. 1.1, we have the following inequalities. For fixed x ≥ 0,

0 ≤Wn+1 ≤ x

⇐⇒Wn + Sn − Tn+1 ≤ x

⇐⇒ y + Sn − z ≤ x

⇐⇒ Sn ≤ x+ z − y,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.2)

given Wn = y and Tn+1 = z. (Symbol "⇐⇒" is equivalent to "if and
only if" or "iff".)

Let P (A) denote the probability of an event A.

Definition 1.1 For n = 1, 2, ...

Fn(x) = P (Wn ≤ x), x ≥ 0,

fn(x) =
d
dxFn(x), x > 0, where the derivative exists,

Pn(0) = Fn(0),

B(y) = P (Sn ≤ y), y ≥ 0, n = 1, 2, ...,
B(y) = 1−B(y), y ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.3)
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Figure 1.1: Lindley recursion for {Wn} geometrically.

Thus Fn(·) is the cdf of Wn; fn(·) is the pdf on the positive part of
Wn; Fn(∞) = Pn (0) +

R∞
x=0 fn(x)dx = 1, n = 1, 2, .... Assume that the

input parameters of the queue are such that the steady state cdf F (·)
and pdf {P0, f(·)} of the wait exist, and limn→∞ Fn(x) = F (x), x ≥ 0,
limn→∞ Pn(0) = P0, limn→∞ fn(x) = f(x), x > 0. We define f(·) to be
right continuous. Thus f(x+) = f(x), x > 0. For consistency, we extend
the domain of f(·) to include x = 0, and define f(0+) = f(0). Note that
f(0) adds zero probability to P0.

1.3 Integral Equation for M/G/1 Waiting Time
Derived Using Lindley Recursion

Assume that the arrival process is Poisson at rate λ, and that the ran-
dom variables ∪n∈I+{Sn, Tn+1} are mutually independent (where I+ =
{1, 2, ...}). For this model assume Sn,Wn are independent of each other,
n = 1, 2, .... The classical approach applies inequalities (1.2) to derive an
integral equation, which expresses Fn+1(·) in terms of Pn(0) and fn(·).
The notation P (A|B) denotes the conditional probability of event A
given that event B occurs. Conditioning on Tn+1 and then on Wn, gives
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for x ≥ 0,

Fn+1(x)

=

Z ∞

z=0
P (Wn + Sn − z ≤ x|Tn+1 = z)λe−λzdz

=

Z ∞

z=0

Z x+z

y=0−
P (Sn ≤ x+ z − y|Wn = y, Tn+1 = z)fn(y)λe

−λzdydz.

where 0− emphasizes that the probability of the atom (discrete state)
{0} is included. Substituting from (1.3), we obtain for x ≥ 0,

Fn+1(x) =

Z ∞

z=0

Z x+z

y=0−
B(x+ z − y)fn(y)λe

−λzdydz

= Pn(0)

Z ∞

z=0
B(x+ z)λe−λzdz

+

Z ∞

z=0

Z x+z

y=0
B(x+ z − y)fn(y)λe

−λzdydz. (1.4)

The transformation w = x+ z in (1.4) gives, for x ≥ 0,

Fn+1 (x) = Pn(0)

Z ∞

w=x
B(w)λe−λ(w−x)dw

+

Z ∞

w=x

Z w

y=0
B(w − y)fn(y)λe

−λ(w−x)dydw. (1.5)

For x > 0, take d
dx on both sides of (1.5) wherever it exists. Then

fn+1(x) = λFn+1(x)− λPn(0)B(x)

− λ

Z x

y=0
B(x− y)fn(y)dy, x > 0. (1.6)

By definition,

Fn+1(x) = Pn+1 (0) +

Z x

y=0
fn+1(y)dy, x ≥ 0.

Substituting into (1.6) yields

fn+1(x) = λ

µ
Pn+1 (0) +

Z ∞

y=0
fn+1(y)dy

¶
− λPn(0)B(x)

− λ

Z x

y=0
B(x− y)fn(y)dy, x > 0,
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which simplifies to

fn+1(x) = λ(Pn+1 (0)− λPn(0)B(x))

+ λ

Z x

y=0
(fn+1(y)−B(x− y)fn(y))dy, x > 0. (1.7)

In (1.7), letting n→∞ gives the desired integral equation for the steady

state pdf, namely,

f(x) = λP0B(x) + λ

Z x

y=0
B(x− y)f(y)dy, x > 0. (1.8)

The normalizing condition that all probabilities sum to 1, is

P0 +

Z ∞

x=0
f(x)dx = 1. (1.9)

Equations (1.8) and (1.9) are then solved simultaneously to obtain
the steady-state pdf of wait {P0; f(x), x > 0}. Steady-state operating
characteristics can be computed from {P0; f(x), x > 0}: the cdf F (·); the
Laplace-Stieltjes transform

R∞
y=0− e

−sydF (y), s > 0; the expected values
of the waiting time, system time and number in the system, by applying
Little’s theorem (L = λ ·W ); quantiles of F (·); the probability mass
function (pmf) of the number in the system, by conditioning on the wait
and applying the PASTA principle; etc.

When analyzing more general stochastic models, e.g., state-dependent
models, we obtain variations and generalizations of integral equation
(1.8). Examples are: single and multiple server queues with service time
or arrival rate depending on current workload; inventories where demand
rate or size depends on current inventory level (stock on hand); general
storage systems where input size depends on current content; risk reserve
systems in Insurance where claim size depends on current risk reserve;
systems in the physical and natural sciences with state-dependent para-
meters.

The steps in (1.1) - (1.8), illustrate the classical approach. In com-
plex state-dependent models, the classical approach begins with more
general Lindley recursions than (1.1). Then, significantly more algebra
is typically required to derive an integral equation, or system of integral
equations, for the steady state pdf of the state variable.
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It is important to note that the classical method based on Lindley re-
cursions is very useful both theoretically and computationally, for study-
ing the waiting time in queues, and state variables in many stochastic
models.

The following question gradually evolved while deriving integral equa-
tions for the pdf in complex state-dependent M/M/c models using the
classical method. Does there exist an alternative way to derive inte-
gral equation (1.8), and analogous integral equations in complex state-
dependent models, which: (a) bypasses starting from (1.1); (b) reduces
the amount of accompanying algebra? The goal was to derive equation
(1.8) in a manner similar to the well known, intuitively appealing rate
into state = rate out of state balance equations for the state probabili-
ties in discrete-state, continuous-time Markov chains. Persevering with
this idea, while continuing to apply the classical method, ultimately led
to the SPLC methodology. The developmental process is outlined in
sections 1.4 - 1.7.

1.4 Observations and Questions

The following elementary observations and simple questions considered
together, lead to a very powerful approach for analyzing stochastic mod-
els.

1. For each x ≥ 0, the cdf F (x) ∈ [0, 1]. Thus F (x) is a dimensionless
quantity. It is a real number without associated units.

2. For each x > 0, the pdf f(x)
³
= dF (x)

dx

´
, has dimension

£
1

Time

¤
.

This follows because ∆x has the same dimension as x, namely
[Time] , in the defining formula f(x) = lim∆x→0

F (x+∆x)−F (x)
∆x .

3. In integral equation (1.8), the dimension of both left and right hand
sides is

£
1

Time

¤
. Note that the parameter λ has dimension

£
1

Time

¤
.

4. A number having dimension
£

1
Time

¤
is the measure of a rate, a

notion from Physics.

5. Each side of integral equation (1.8), is the measure of some un-
known rate.

6. In integral equation (1.8), the left hand side f(x) and the right
hand side λP0B(x) + λ

R x
y=0B(x − y)f(y)dy, may represent two

different rates, which have the same value.
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7. Question: What geometric or physical rate, if any, does f(x) mea-
sure?

8. Question: What geometric or physical rate, if any, does λP0B(x)+
λ
R x
y=0B(x− y)f(y)dy measure?

Remark 1.1 The classical approach, starting from Lindley recursions,
is a completely algebraic technique. There was no inkling whatsoever in
1974, of the geometric picture that was about to emerge, as described in
Section 1.5.

1.5 Further Properties of Integral Equation for
PDF of Waiting Time in M/G/1

To answer Questions 7 and 8 of Section 1.4, we study (1.8) further. Let
x ↓ 0 on both sides of (1.8). This yields

f(0+) = λP0. (1.10)

Observation: For the M/G/1 queue in steady state (equilibrium),
consider two discrete states that the system may present from the
viewpoint of an arriving customer: {0}: no wait ; {1}: wait. Over
time the system alternates between presenting states {0} and {1}
to the arrival stream. An arrival waits: (a) zero time iff (if and only
if) the server is idle at the arrival instant; (b) a positive time iff
the server is busy at the arrival instant. Thus we may equivalently
redefine the states from the viewpoint of the system (or server) as:
{0}: idle; {1}: busy.

The rate at which busy periods start is λP0, due to Poisson ar-
rivals, and the notion rate out of state {0} = λP0, as in continuous-time,
discrete-state Markov chains. By conservation of rates out of and into
{0}, the rate at which busy periods end must also be λP0. Furthermore,
a connection is made to integral equation (1.8) via the relation (1.10),
f(0+) = λP0.

Figure 1.2 depicts the motion between the two states {0},{1}. The
sojourn times of visits to {0} are iid (independently and identically dis-
tributed) random variables distributed as an idle period. An idle period
is exponentially distributed with mean 1

λ . The sojourn times of visits
to {1} are iid random variables distributed as a busy period. A sample
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Figure 1.2: Sample path of alternating renewal process {A(t), t ≥ 0}.

path corresponds to that of a two-state alternating renewal process. It
is a special case of a Markov renewal or semi-Markov process with 2× 2
Markov transition matrix kPijk where P01 = P10 = 1. Let {A(t), t ≥ 0}
denote this two-state process, where A(t) = 0 if t ∈ idle period and
A(t) = 1 if t ∈ busy period. A sample path consists of alternating
horizontal, right-continuous line segments (Fig. 1.2).

1.5.1 Connection with Virtual Wait Process

Reflecting on the structure of the alternating renewal process {A(t), t ≥
0}, led to the recognition of a close correspondence with the well known
virtual wait process (thanks to [99] which I had become aware of in
1964). The virtual wait represents how long a customer would wait for
service if the customer arrived at time t. For the M/G/1 queue, the
virtual wait {W (t), t ≥ 0} is a continuous-time, continuous-state process
with state space [0,∞). Sample paths of {W (t), t ≥ 0} are real-valued,
non-negative, right-continuous functions on [0,∞). Characteristically,

dW (t)

dt
=

(
−1 if W (t) > 0,

0 if W (t) = 0

(Fig. 1.3). Jumps occur at Poisson rate λ. Jump sizes are distributed as
the service time. Table 1.1 shows the correspondence between the two
processes.

Observation: Sample paths of {W (t), t ≥ 0} are strictly positive
during busy periods and equal to zero during idle periods. Sample paths
of {A(t), t ≥ 0} have the same property, if we make the correspondence
as in Table 1.1.
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1τ 2τ 3τ 4τ

W(t)

W1 =0 W2
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0

Busy
period
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period

Time

Figure 1.3: Sample path of virtual wait {W (t)} in M/G/1 showing:
actual waits {Wn}; busy, idle periods; system point SP; level x.

(Interestingly, for the process {A(t), t ≥ 0} state {1} can be viewed
as a "black box" containing all possible busy periods. Whenever the
sample path enters {1}, a random busy period is generated.)

Observation: For the M/G/1 queue, it is well known that the cdf and
pdf of W (t) as t→∞ are respectively equal to the cdf and pdf of
Wn as n→∞, provided the limits exist (e.g., [99]).

The above discussion leads to the following observation.

Observation: f(0+) = rate at which a typical sample path of {W (t)}
hits level 0 from above at a 45◦ angle (Fig. 1.3). Hits of level 0
from above occur at the ends of busy periods.

Insight: Shift attention to sample paths of the virtual wait {W (t), t ≥
0}! Focus on the geometry of a typical sample path of {W (t)}!

The last observation provides an alternative interpretation of equa-
tion (1.10). In complex systems, this observation may lead to extra

Time t ≥ 0 A(t) W (t)

t ∈ idle period 0 0

t ∈ busy period 1 ∈ (0,∞)

Table 1.1: Correspondence Between {A(t)} and {W(t)}
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conditions to help solve for unknown constants of integration arising in
the solution of a system of integral (or differential) equations. More
importantly, the foregoing considerations suggest the key question and
conjecture given in subsection 1.5.2.

1.5.2 Looking Upward from Level Zero

Key Question: At what rate does a typical sample path of
{W (t)} hit any state-space level x ≥ 0, from above?

To answer the key question, imagine, temporarily, that the M/G/1
model under consideration were really an M/M/1 model with service rate
μ. The jump sizes of the virtual wait process (Fig. 1.3) would then be
exponentially distributed with mean 1

μ . Fix level x > 0 in the state space.
Consider a jump that starts at some level y < x and ends above x. By
the memoryless property of the exponential distribution, the excess jump
above x would have the same distribution as the total service time. That
is, P (Sn > x− y+ z | Sn > x− y) = e−μz, n = 1, 2, ..., independent of y
and x. This implies that each sojourn time of a sample path above every
x ≥ 0, would be statistically identical to a busy period, independent of x!
Thus, the picture during sojourns above level x would be a probabilistic
replica of Figure 1.3 during busy periods above level 0. However, the
sojourns at or below level x, would be of different durations depending
on x (see Subsection 3.3.12). This leads to the key conjecture. Recall
that f(0) = f(0+).

Key Conjecture: For each x ≥ 0, f(x) is the rate at which a
sample path of {W (t)} hits level x from above.

The key conjecture generalizes the last observation in Subsection 1.1.
The conjecture is readily confirmed mathematically for M/M/1, M/G/1
and GI/G/1 queues. Furthermore, in many general, state-dependent
stochastic models, analogous results connect sample-path hits of a state-
space level, and the pdf of the state variable at that level. The notions
of sample-path smooth hits of a level and jumps across a level, naturally
suggest the concept of level crossings: in particular, downcrossings
and upcrossings.

Remark 1.2 Various areas of real analysis and stochastic processes uti-
lize level crossing concepts. In stochastic processes most work deals with
level crossings of processes having continuous sample paths. Prior to
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1974, level crossings had not been directly connected with, or used to
obtain integral equations to solve for probability distributions of state
random variables. The level crossing method is particularly useful in
continuous-time continuous-state stochastic models, where sample paths
have discontinuous jumps, as occur in Operations Research. However, it
is also applicable to processes with continuous sample paths, as in a dam
with alternating influx and efflux analyzed in Chapter 10.

In this monograph, we shall regularly use the terms: level crossing,
downcrossing, upcrossing. In the present context it is sufficient to use
their intuitive meaning, as in Fig. 1.4. Roughly speaking, for the stan-
dard virtual wait of an M/G/1 queue, a downcrossing of a level at instant
t0 is a smooth or left-continuous hit of that level from above at t0. An
upcrossing at instant t0 is made by a jump, which starts below, and ends
above the level, at t0. These concepts are discussed more precisely in
Chapter 2.

1.5.3 Integral Equation in Light of Sample Path

Consider the left side of (1.8). For each x > 0, f(x) is equal to the
sample-path downcrossing rate of level x. That is, f(x) corresponds to
the rate of a particular type of sample-path transition across level x. This
correspondence has an intuitive appeal, which we now explore further.

Question: Does the right side of equation (1.8), λP0B(x)+λ
R x
y=0B(x−

y)f(y)dy, correspond to the rate of a particular type of sample-path
transition across level x?

The last question prompts consideration of the idea "conservation
law", or principle of set balance (equivalently rate balance). Referring to
W (t), t ≥ 0, (Fig. 1.4), let x0 = W (0), and fix x > 0. The state space is
S = [0,∞) = [0, x] ∪ (x,∞) (union of two disjoint sets). The long-run
sample-path exit and entrance rates of state-space set (x,∞), are equal,
independent of the initial state x0. Intuitively, exits and entrances of
(x,∞) alternate in time and correspond to sample-path downcrossings
and upcrossings of x, respectively. Set balance (rate balance across level
x) suggests interpreting λP0B(x)+λ

R x
y=0B(x−y)f(y)dy as the sample-

path upcrossing rate of level x. We now show that this is the correct
interpretation.
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Busy Period

0

W(t)

Time t

x
y

Idle Period

0x

Figure 1.4: Sample path of {W (t), t ≥ 0} indicating crossings of level x
and hits of level 0.

For the process {W (t)}, the following property holds for a sample-
path jump starting at level y < x (Fig. 1.4).

P (end of jump > x | start of jump = y < x)

= P (service time > x− y)

= B(x− y). (1.11)

If a jump upcrosses x, it starts either at level 0 or at a level y ∈
(0, x). Setting y = 0 in (1.11) shows that the rate of upcrossings of x,
starting at level 0, is λP0B(x). The rate of jumps starting in a small
interval (y, y+ dy) is λf(y)dy. From (1.11), the rate of upcrossings of x,
starting in (0, x) is λ

R x
y=0B(x − y)f(y)dy. Thus, there is a one-to-one

correspondence between the set of three algebraic terms of (1.8) and a set
of three mutually exclusive and exhaustive sample-path crossing rates of
level x (see Fig. 1.6).

1.6 Basic Level Crossing Theorem for M/G/1

The foregoing notions lead to the basic level crossing theorem for the
steady-state pdf of wait in the standard M/G/1 queue, namely Theorem
1.1 below. Assume λE(S) < 1, where λ is the arrival rate and E(S) is
the expected value of the service time. Consider a sample path of the
virtual wait process.
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1.6.1 Downcrossing and Upcrossing Rates

For fixed x > 0 and t > 0, let Dt(x), Ut(x) denote the number of
down- and upcrossings of level x during (0, t), respectively. The average
rates of down- and upcrossings during (0, t) are Dt(x)

t and Ut(x)
t , respec-

tively. Let E(X) denote the expected value of a generic random variable
X. The average rates of the expected number of down- and upcross-
ings during (0, t) are E(Dt(x))

t and E(Ut(x))
t , respectively. Note that the

singleton discrete state {0} is an atom having steady-state probability
P0 > 0. Let Ot({0}) denote the number of exits out of, and It({0}) the
number of entrances into, the discrete state {0} during (0, t). Here, an
intuitive notion of exit and entrance suffices. Define Dt(0) = It ({0})
and limt→∞

Dt(0)
t = limt→∞

It({0}
t . These notions are specified further

in Chapter 2.

Theorem 1.1 (P.H. Brill, 1974) For the virtual wait process in the sta-
ble M/G/1 queue (ρ = λE(S) < 1)

lim
t→∞

E(Dt(x))

t
= f(x), x ≥ 0, (1.12)

lim
t→∞

Dt(x)

t
=
a.s.

f(x), x ≥ 0, (1.13)

lim
t→∞

E(Ut(x))
t

= λP0B(x) + λ

Z x

y=0
B(x− y) f(y)dy, x > 0, (1.14)

lim
t→∞

Ut(x)
t

=
a.s.

λP0B(x) + λ

Z x

y=0
B(x− y) f(y)dy, x > 0, (1.15)

where "=
a.s.
" means equal almost surely or with probability 1.

Proof. (Note: A different proof is given in a corollary of Theorem 3.6
for the transient pdf.)

Here we provide a proof which demonstrates simple intuition under-
lying the SPLC methodology. Consider a sample path of the virtual wait
and levels x > 0 and x+ h, where h > 0 is small (Fig. 1.5).

Just after each downcrossing of level x+h, the sample path spends a
time h in the state-space interval (x, x+h) with probability 1−λh+o(h).
It spends a shorter or longer time in (x, x+ h) with probability o(h).

During a time interval (0, t), t > 0, the expected proportion of time
spent in (x, x+ h) is E(Dt(x+h))·h·(1−λh)+o(h)

t . The limiting proportion of
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0

W(t)

Time t

x
x+h
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Figure 1.5: Sample path of virtual wait in M/G/1 queue. Shows levels x
and x+h and time spent in interval (x, x+h), used in proof of Theorem
1.1.

time spent in (x, x+ h) is, by the definition of the steady-state cdf F (·)
of wait,

lim
t→∞

E(Dt(x+ h)) · h · (1− λh) + o(h)

t
= F (x+ h)− F (x).

Dividing by h and letting h ↓ 0 then gives

lim
t→∞

E(Dt(x
+))

t
= f(x).

Since all downcrossings are left-continuous and smooth (no jump down-
crossings), Dt(x

+) = Dt(x) and thus

lim
t→∞

E(Dt(x))

t
= f(x), x > 0.

This proves (1.12). The counting process {Dt(x)} is a renewal process
due to Poisson arrivals. Therefore limt→∞

E(Dt(x))
t =

a.s.
limt→∞

Dt(x)
t , and

(1.13) follows.
An intuitive proof of (1.14) and (1.15) follows from the discussion in

Subsection 1.5.3.
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Corollary 1.1 For the M/G/1 queue in equilibrium

lim
t→∞

E(Dt(0))

t
= f(0+) = f(0) = λP0, (1.16)

lim
t→∞

Dt(0)

t
=
(a.s.)

f(0+) = f(0) = λP0. (1.17)

Proof. Let x ↓ 0 in (1.12)-(1.15) and apply (1.10)
Note that (1.16) and (1.17) equate the sample-path: (1) downcrossing

rate of level 0 (= entrance rate into discrete state {0}), (2) exit rate from
{0}; and (3) the pdf f(0) at level 0. An important notion is that sample-
path rates into and out of a discrete state, are equal to a particular value
of the pdf of a continuous random variable! This relation connects {0},
which is a boundary of [0,∞), to the state-space interval of continuous
states (0,∞).

Formula (1.18) below, gives the principle of set balance for a state-
space set (x,∞), x > 0, in terms of rate balance across level x.

1.6.2 Principle of Rate Balance for Level x

This is the same as set balance for (x,∞),

limt→∞
Dt(x)
t = limt→∞

Ut(x)
t , x > 0, (a.s),

limt→∞
E(Dt(x))

t = limt→∞
E(Ut(x))

t , x > 0.

⎫⎬⎭ (1.18)

Formula (1.18) means that for each x, the (long-run) SP down- and
upcrossing rates of level x are equal, independent of the initial state
W (0) = x0 at t = 0. Rate balance for levels (set balance for sets having
the level as a boundary) is discussed more fully in Chapter 2, Subsection
2.4.6.

1.7 Integral Equation for M/G/1 Waiting Time
Using Level Crossing Method

We now derive (1.8) using LC, by applying Theorem 1.1 and rate bal-
ance (1.18). Start with a typical sample path of {W (t)}. Fix level x > 0.
Apply the one-to-one correspondence that exists between the set of mu-
tually exclusive and exhaustive sample-path crossing rates of level x, and
the set of algebraic expressions which contain f(·). Write integral equa-
tion (1.8) as a rate-balance equation using (1.18), by inspection (Fig. 1.6)!
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Figure 1.6: One-to-one correspondence between virtual-wait sample-path
rates of crossing level x and terms of integral equation (1.8) for f(x).

Note that starting from level 0, the upcrossing rate of level x > 0 is

lim
t→∞

E(Ot({0}))
t

·B(x) = λP0B(x).

Summary of Steps in LC Derivation of Integral Equation

1. Construct a sample path of {W (t)} (Fig. 1.4).

2. Substitute from (1.12) and (1.14) term by term into (1.18).

3. Write integral equation (1.8) (Fig. 1.6).

This completes an abbreviated outline of the original development in
1974, of the system-point level-crossing method for analyzing stochastic
models.




