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Abstract Classical galactosaemia is a rare disorder of
carbohydrate metabolism caused by galactose-1-phosphate
uridyltransferase (GALT) deficiency (EC 2.7.7.12). The
disease is life threatening if left untreated in neonates and
the only available treatment option is a long-term galactose
restricted diet. While this is lifesaving in the neonate,
complications persist in treated individuals, and the cause of
these, despite early initiation of treatment, and shared GALT
genotypes remain poorly understood. Systemic abnormal
glycosylation has been proposed to contribute substantially
to the ongoing pathophysiology. The gross N-glycosylation
assembly defects observed in the untreated neonate correct
over time with treatment. However, N-glycosylation process-
ing defects persist in treated children and adults.

Congenital disorders of glycosylation (CDG) are a large
group of over 100 inherited disorders affecting largely N- and
O-glycosylation.

In this review, we compare the clinical features observed
in galactosaemia with a number of predominant CDG
conditions.

We also summarize the N-glycosylation abnormalities,
which we have described in galactosaemia adult and
paediatric patients, using an automated high-throughput
HILIC-UPLC analysis of galactose incorporation into
serum IgG with analysis of the corresponding N-glycan
gene expression patterns and the affected pathways.

Introduction

Inborn errors of metabolism to include the primary
Congenital Disorders of Glycosylation (CDG) and galacto-
saemia can provide vast information regarding disordered
metabolic pathways involving glycosylation and potentially
modifiable steps (Brinkman et al. 2006; Morava et al. 2015;
Sun et al. 2015).

The number of CDG has increased dramatically over the
last few years. Over 100 disorders are now described with
on-going characterization of new subsets (Rymen and
Jaeken 2014; Scott et al. 2014; Cartault et al. 2015; Freeze
et al. 2015). While different CDG have well characterized
defects in glycosylation, disorders such as galactosaemia,
often termed secondary disorders of glycosylation, are less
well defined (Morava et al. 2015). An understanding of the
shared disturbed metabolic pathways could lead to
improved understanding of the pathophysiology of these
disorders of glycosylation and possibly improve therapeutic
approaches.

Galactosaemia is a group of rare autosomal recessive
carbohydrate metabolism disorders caused by deficiency of
enzymes involved in the metabolism of the aldose
monosaccharide galactose (Fridovich-Keil and Walter
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2008). The most severe type of galactosaemia, Classical
galactosaemia (OMIM #230400) (subsequently referred to
as galactosaemia in this review), is caused by profound
deficiency of the galactose-1-phosphate uridyltransferase
(GALT) enzyme (EC 2.7.7.12). Following galactose intake
in the affected neonate, there is a toxic build-up of
intermediates of galactose metabolism. Strict dietary
restriction of galactose is lifesaving in the neonate, but
mild to severe long-term complications persist, including
significant cognitive impairment and infertility in females,
regardless of genotype or age at onset of treatment
(Schweitzer et al. 1993; Fridovich-Keil and Walter 2008;
Krabbi et al. 2011; Coss et al. 2013; Timson 2015). The
cause of this pathophysiology is currently under review.

The toxic build-up of galactose intermediates coupled
with deficiency of pathway product is proposed to
contribute to the development of these complications.
These intermediates can result in competitive inhibition of
glycosyltransferases (Lai et al. 2003). A shortage of end-
product UDP-hexose sugars could also lead to disruption of
glycosylation in the posttranslational modification (PTM)
of proteins and lipids (Ng et al. 1989; Ornstein et al. 1992).

Dysregulation of a number of genes and pathways has
been observed in galactosaemia (Coman et al. 2010; Coss
et al. 2014; Maratha et al. 2016), along with abnormal
glycosylation profiles of glycoproteins in both treated and
untreated patients (Charlwood et al. 1998; Quintana et al.
2009; Coman et al. 2010; Berry 2011).

Early stage perturbations of glycosylation, gene expres-
sion and inositol signaling during prenatal galactose
intoxication, in combination with long-term galactose
restriction and individual endogenous galactose production,
likely have a substantial role in determining the long-term
complications seen in galactosaemia (Berry et al. 2004;
Huidekoper et al. 2005; Coss et al. 2014; Schadewaldt et al.
2014; Maratha et al. 2016). Understanding the role of
glycosylation in the development of these complications is
essential.

Congenital Disorders of Glycosylation

CDG are a large group of mainly autosomal recessive
inherited disorders affecting the glycan synthesis. These can
be divided into the following major categories: disorders of
protein N-glycosylation or O-glycosylation, disorders of
lipid and glycosylphosphatidylinositol (GPI) anchor glyco-
sylation and disorders of multiple glycosylation pathways
(Freeze 2006; Hennet 2012), with variable symptomatic
severity. Almost all organs are affected with a particular
impact on nervous development, immune, hepatic and
gastrointestinal systems (Freeze and Aebi 2005; Freeze
et al. 2015).

The majority of CDG disorders are caused by defects in
the N-glycosylation pathway in which N-glycans are
attached to arginine on proteins. N-glycan synthesis starts
in the endoplasmic reticulum (ER), where the assembled
product is attached. The processing of N-glycans into
complex and hybrid structures continues in the Golgi
apparatus. CDG-type I (CDG-I) abnormalities result from
an abnormality of N-glycan assembly in the ER and CDG-
type II (CDG-II) abnormalities result from abnormalities in
N-glycan processing after transfer to the protein in the ER
or steps occurring in the Golgi apparatus (Freeze 2013;
Freeze et al. 2015), as depicted in Fig. 1.

Approximately 1% of the human genome encodes genes
involved in glycosylation and over half of all proteins are
N-glycosylated (Freeze 1998; Pivac et al. 2011). Glyco-
proteins are central to many key biological systems such as
cell–cell signaling, and are important in coagulation,
immunity, fertility, etc. (Zoldos et al. 2010).

Galactosaemia has been reported as a secondary disorder
of glycosylation, displaying characteristics of both CDG-I
and CDG-II defects with both glycan assembly and
processing defects observed (Charlwood et al. 1998;
Sturiale et al. 2005; Quintana et al. 2009; Coman et al.
2010; Coss et al. 2012).

CDG and galactosaemia share multiple clinical charac-
teristics. Tables 1 and 2 summarize a number of CDG
syndromes (I and II) with symptoms which may also be
observed in galactosaemia including neurological involve-
ment, coagulopathies and liver disease. For example,
PMM2-CDG, the most common subtype of CDG, is an
N-glycan assembly defect caused by lack of phosphoman-
nomutase 2 (PMM2) which converts mannose-6-phosphate
to mannose-1-phosphate. The enzymatic deficiency results
in reduced GDP-mannose required for the synthesis of the
lipid-linked oligosaccharide (LLO) precursor. The symp-
toms observed are commonly intellectual disability, hypo-
tonia, cerebellar dysfunction, polyneuropathy and stroke-
like episodes (Dinopoulos et al. 2007).

The key clinical adverse outcomes seen in galactosaemia
include intellectual disabilities, speech abnormalities and
primary ovarian insufficiency (POI) in females. Intellectual
disability occurs in at least 50% of affected individuals
(Waggoner et al. 1990; Schweitzer et al. 1993; Shield et al.
2000; Doyle et al. 2010; Waisbren et al. 2012; Coss et al.
2013; Rubio-Agusti et al. 2013). Abnormal myelination was
first documented in galactosaemia in 1971 (Haberland et al.
1971; Lebea and Pretorius 2005). There is considerable
variability in IQs documented between galactosaemia patients
with scores ranging from very low to well above average.

The presence of speech and language abnormalities
(commonly verbal dyspraxia) is well documented in
galactosaemia. One well-described entity is Childhood
Apraxia of Speech (CAS). Overall, speech and language
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Fig. 1 Schematic representation of: (a) N-glycan assembly in rER
(Congenital Disorders of Glycosylation-type I, CDG-I) and (b) N-
glycan processing in Golgi apparatus (Congenital Disorders of

Glycosylation-type II, CDG-II). Blue arrows for ALG9 (Alpha-1, 2-
mannosyltransferase), MGAT1 and MGAT3 represent respective gene
expression pattern observed in our recent study (Maratha et al. 2016)
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disorders are estimated to affect at least 25% of individuals
with galactosaemia, commonly presenting in childhood
(Schweitzer et al. 1993; Potter et al. 2008, 2013; Timmers
et al. 2012; Waisbren et al. 2012; Coss et al. 2013), with
pathophysiological correlates studied in fMRI brain studies
(Timmers et al. 2015).

Over 80% of galactosaemia females suffer from POI
(91% in Irish female patients) (Waggoner et al. 1990;
Sanders et al. 2009; Coss et al. 2013). The clinical
presentation varies from primary amenorrhea to delayed
pubertal development followed by irregular menses or
secondary amenorrhea. This results in infertility or sub-
fertility as a predominant feature in galactosaemia females
of childbearing age (Rubio-Gozalbo et al. 2010).

The pathophysiology for this presentation is still
unknown. Mechanisms proposed include prenatal toxicity
with galactose and metabolites possibly causing premature
follicular apoptosis/atresia, abnormal cell signaling and
hormone/receptor glycosylation abnormalities. Hypoglyco-
sylation of follicle stimulating hormone (FSH) could
theoretically alter its function and lead to POI in galacto-
saemia. However biochemical tests have shown inconclu-
sive results (Prestoz et al. 1997; Gubbels et al. 2011).

Male galactosaemia patients seem to be less affected and
have successfully fathered offspring, reaching puberty
spontaneously although the age of onset can be delayed
(Rubio-Gozalbo et al. 2010). PMM2-CDG patients also
virilize normally through puberty but with occurrences of

Table 1 CDG-I conditions and common symptoms

CDG name Affected protein/gene Common symptoms

PMM2-CDG Phosphomannomutase 2 Cognitive/motor dysfunction (de Lonlay et al. 2001), failure to thrive, liver
disease, developmental delay (Drouin-Garraud et al. 2001), coagulopathy
(Van Geet and Jaeken 1993) and infection (Matthijs et al. 1997)

MPI-CDG Mannose-6-phosphate-isomerase Coagulopathy (Marquardt and Denecke 2003)

ALG3-CDG Dolichyl-P-Man: Man(5)GlcNAc(2)-PP-
dolichyl mannosyltransferase

Cognitive/motor dysfunction (de Lonlay et al. 2001) and failure to thrive
(Kranz et al. 2007)

ALG12-CDG Dolichyl-P-Man: Man(7)GlcNAc(2)-PP-
dolichyl-alpha-1, 6-mannosyltransferase

Cognitive/motor dysfunction, (Thiel et al. 2002), failure to thrive and infection
(Chantret et al. 2002)

ALG8-CDG Dolichyl-pyrophosphate Glc
Man9GlcNAc2alpha-1,3-
glucosyltransferase

Coagulopathy (Chantret et al. 2003)

ALG2-CDG Alpha-1,3-mannosyltransferase Cognitive/motor dysfunction, coagulopathy and liver disease (Thiel et al. 2003)

ALG1-CDG Chitobiosyldiphosphodolichol beta-
mannosyltransferase

Cognitive/motor dysfunction (Dupré et al. 2010) and coagulopathy (Kranz et al.
2004)

ALG9-CDG Alpha-1,2-mannosyltransferase Cognitive/motor dysfunction, cerebral atrophy, delayed myelination, epilepsy,
failure to thrive, liver disease and skeletal dysplasia (Weinstein et al. 2005;
Frank et al. 2004; AlSubhi et al. 2016)

PGM1-CDG Phosphoglucomutase 1 Hypergonadotropic hypogonadism and growth retardation (Tegtmeyer et al.
2014)

MAN1B1-CDG Alpha-1, 2-mannosidase Cognitive/motor dysfunction (Rafiq et al. 2011)

Data collated from (Sparks and Krasnewich 1993) with 2013 updates (Freeze 2013)

Table 2 CDG-II conditions and common symptoms

CDG name Affected protein/gene Common symptoms

SLC335C1-CDG; Leukocyte
adhesion deficiency II

GDP-fucose transporter 1 Cognitive dysfunction (Etzioni et al. 1992) and infections
(L€ubke et al. 1999)

B4GALT1-CDG Beta-1,4-galactosyltransferase 1 Coagulopathy and developmental disability
(Peters et al. 2002)

COG7-CDG COG complex subunit 7 Cognitive dysfunction (Zeevaert et al. 2009) and
failure to thrive (Morava et al. 2007)

COG4-CDG COG complex subunit 4 Cognitive dysfunction, failure to thrive and developmental
delay (Ng et al. 2011)

Data collated from (Sparks and Krasnewich 1993) with 2013 updates (Freeze 2013)
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decreased testicular volume and increased serum FSH
concentrations (de Zegher and Jaeken 1995).

Altered leptin signaling secondary to glycosylation
abnormalities may be contributory (Knerr et al. 2013).
Leptin is a key energy and fat storage regulator (Kratzsch
et al. 2002) and abnormal leptin signaling due to hypo-
glycosylation has also been considered in abnormal fat
distribution in PMM2-CDG (Wolthuis et al. 2013).

Osteopenia is another long-term complication associated
with galactosaemia. Osteopenia and other skeletal abnor-
malities are common clinical findings in CDG (Coman
et al. 2008; Rimella-Le-Huu et al. 2008). It has been
suggested that hypoglycosylation of noncollagenous bone
proteins may be responsible for decreased bone mass and
increased osteocalcin levels in PMM2-CDG patients (Bar-
one et al. 2002).

Decreased bone mineral density has been consistently
observed in galactosaemia patients (Rubio-Gozalbo et al.
2002; Panis et al. 2004; Waisbren et al. 2012; Batey et al.
2013; Coss et al. 2013; Doulgeraki et al. 2014). Decreased
bone metabolism has been suggested as the mechanism of
reduced bone mineral density in galactosaemia as well as
abnormal galactosylation of the collagen matrix (Kaufman
et al. 1993).

Reduced levels of insulin-like growth factor 1 (IGF-1),
carboxylated osteocalcin, N-terminal telopeptide and C-
terminal telopeptide have been reported in serum samples
from galactosaemia patients (Panis et al. 2004; Fridovich-
Keil and Walter 2008).

Serum IgG N-Glycosylation Abnormalities in
Galactosaemia

As discussed earlier, substantial N-glycan abnormalities
have been demonstrated in serum transferrin IEF patterns in
galactosaemia (Charlwood et al. 1998; Sturiale et al. 2005;
Quintana et al. 2009). UDP-galactose substrate deficiency
is one of the proposed contributing pathophysiological
mechanisms (Gibson et al. 1995; Lai et al. 2003; Parkinson
et al. 2013; Jumbo-Lucioni et al. 2014).

We have documented hypoglycosylation and gross N-
glycan assembly defects in the whole serum of untreated
neonates with galactosaemia similar to what has been
observed in CDG-I defects (Coman et al. 2010; Coss
et al. 2014). While the N-glycan assembly defects resolve
within the first 6 months of life with galactose restriction, it
is apparent that, after this initial effect, N-glycan processing
defects persist, even in young children (Coss et al. 2014).

We also performed a study of N-glycan processing
defects in 10 treated galactosaemia adults on a restricted

galactose diet in comparison to matched controls using
serum IgG analysis (the most abundant circulating N-
glycan glycoprotein), analyzed by NP-HPLC to monitor the
effects and potential benefits of galactose supplementation
with galactosylation of IgG used as a specific biomarker of
dietary galactose tolerance. We demonstrated an increase in
non-galactosylated (G0) and monogalactosylated (G1)
structures with decreased digalactosylated structures (G2)
in diet-restricted galactosaemia patients, indicating
continued N-glycan processing defects despite treatment
(Coss et al. 2012). Five subjects followed a moderate
galactose liberalization trial over 16 weeks. Their IgG
N-glycan profiles showed consistent individual alterations
in response to diet liberalization with improvement of
profiles for three of the five subjects at a galactose intake of
1000 mg/day.

We recently also published a study of 13 children with
galactosaemia which indicated that a moderate increase in
galactose intake may be well tolerated in children and may
improve glycosylation (Knerr et al. 2015).

We previously also identified that children with galacto-
saemia had lower serum leptin levels than normal controls,
expressed as SDS for gender and pubertal age (Knerr et al.
2013). In the above diet relaxation study, there was no
statistical significant difference noted in serum leptin levels
in the patient control group and the diet relaxation groups at
the baseline point. However, patients in the galactose
supplementation group had, as a trend, slightly higher
leptin levels at the end of the study than patient controls
(p < 0.05), but within the normal range.

We have now established a rapid automated robotic
hydrophilic interaction ultra-performance liquid chromatog-
raphy N-glycan analysis for the measurement of IgG N-
glycan galactose incorporation applied to adult galactosae-
mia patients which has demonstrated significant differences
between the G0/G1 and G0/G2 incorporation ratios and
controls (Stockmann et al. 2016).

This analysis of IgG glycosylation has also recently been
applied to the CDG condition MAN1B1-CDG using this
methodology (Saldova et al. 2015).

To further identify the specific N-glycosylation steps that
are affected in galactosaemia, we performed further glycan
subset analysis in the IgG glycosylation study of 40
galactosaemia treated patients compared to controls. In this
work, we identified a significant increase in core fucosy-
lated neutral glycans and a significant decrease in core
fucosylated, afucosylated bisected glycans and N-linked
mannose-5 glycans in circulating serum IgG N-glycans
(Maratha et al. 2016). Figure 1, amended from this study,
illustrates the steps in N-glycan synthesis, which may be
affected in this pathway.
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Abnormal Gene Expression and Cell Signaling in
Galactosaemia

In a pilot microarray study of T-lymphocyte RNA expres-
sion from four galactosaemia patients (Coman et al. 2010),
we identified extensive dysregulation of genes affecting
many signaling pathways including MAP kinase, regulation
of actin cytoskeleton, ubiquitin mediated proteolysis, inosi-
tol signaling, inflammatory pathways and glycan biosynthe-
sis pathways (Coman et al. 2010), and we subsequently
validated dysregulation of a number of N-linked glycosyla-
tion biosynthesis genes linked to CDG-1 and CDG-II, e.g.
ALG (1, 2, 8 and 9) in a larger study (Coss et al. 2014).

We also confirmed and noted the dysregulation of the
genes ANXA1 and ALG9 (Alpha-1,2-mannosyltransferase)
(which also responded to differing levels of galactose
exposure), in cultured galactosaemia patient fibroblast cells
(Coss et al. 2014).

We have subsequently studied the expression of a number
of these genes and other related relevant N-glycan biosynthe-
sis genes in peripheral blood mononuclear cells from affected
galactosaemia adult patients. We noted significant dysregula-
tion of two key N-glycan biosynthesis genes ALG9, which
was up-regulated (p < 0.001), and MGAT1, which was
down-regulated (p < 0.01) with additional dysregulation of
the genes FUT8, and MGAT3 (Maratha et al. 2016). The site
of action of these genes is illustrated in Fig. 1.

The ALG9 (Alpha-1,2-mannosyltransferase) gene product
is involved in the addition of the seventh and ninth mannose
sugar to the growing N-glycan, essential for the formation of
the initial oligosaccharide chain. It has been proposed that the
interaction of ALG9 with ALG12 is required for the ultimate
formation of the disaccharide glycan, which influences further
downstream processing of N-glycans, indicating a potential
regulatory role for the ALG9 gene in glycosylation (Coss
et al. 2014). The clinical phenotype for ALG9-CDG has
recently been expanded (see Table 1) (AlSubhi et al. 2016).

The decreased expression of the MGAT1 gene also has
significant pathological correlates. The MGAT1 gene
encodes GlcNAc transferase I (Alpha-1,3-mannosyl-glyco-
protein 2-beta-N-acetylglucosaminyltransferase), which
adds GlcNAc to high-mannose sites, an essential early step
in producing all branched complex and hybrid N-glycans.

Inactivation of the MGAT1 gene in mice was shown to
impair oogenesis, and mouse MGAT1 knockouts were
unviable (Shi et al. 2004).

Galactosaemia and CDG: Dietary Treatment
Approaches

Our studies of IgG N-glycosylation with varying effects of
galactose exposure in galactosaemia adults and children

have indicated the presence of significant interindividual
tolerance of exogenous galactose in galactosaemia patients.
There are reports on individuals who have relaxed the diet
at an early age with good outcomes (Lee et al. 2003; Panis
et al. 2006). It appears that some affected individuals with
galactosaemia may have more ability to utilize alternative,
accessory pathways to metabolize galactose and its
metabolites than others and may tolerate moderate amounts
of exogenous dietary galactose (Coss et al. 2014). This
may be influenced by epigenetic regulation (Lauc and
Zoldos 2009). As an illustrative example, the over-
expression of human UDP-glucose pyrophosphorylase
(hUGP2), an ‘accessory pathway’ enzyme, using both
galactose-1-phosphate and glucose-1-phosphate as sub-
strates, rescued GALT-deficient yeast cells from galactose
toxicity (Lai and Elsas 2000). The UGP2 reaction may not
be relevant under normal physiological conditions as high
toxic levels of galactose-1-phosphate seem to be required
(Lai et al. 2003), as glucose-1-phosphate is the preferred
substrate (Leslie et al. 2005). As referred earlier, it is
possible that some patients may have the ability to generate
more UDP-galactose, using excess galactose-1-phosphate
as a substrate (Lai and Elsas 2000; Fridovich-Keil and
Walter 2008).

Considering this variability in accessory pathways of
galactose metabolism and linked glycosylation, we propose
that the clinical outcomes observed in galactosaemia are
multifactorial, influenced by prenatal toxicity and postnatal
variation in accessory glycosylation pathways (Coss et al.
2012; Knerr et al. 2015).

Also, while the severe restriction of dietary galactose in
the affected newborn is life saving and largely reverses the
N-glycan assembly defect, our studies suggest that over
restriction of galactose in the long-term may contribute to
ongoing N-glycan processing defects, evident in all the
galactosaemia patients whom we have studied to date
(Coman et al. 2010; Coss et al. 2012; Knerr et al. 2015;
Stockmann et al. 2016).

The manipulation of exogenous provided sugar sub-
strates in CDG is informative. At least four subtypes of
CDG have been treated with dietary modulation of sugars:
MPI-CDG, SLC55C1-CDG, PGM1-CDG (Hendriksz et al.
2001; Harms et al. 2002; Penel-Capelle et al. 2003; de
Lonlay and Seta 2009) and SLC35A2-CDG (Ng et al.
2013; Dorre et al. 2015).

SLC55C1-CDG is caused by a decreased affinity of the
GDP-fucose transporters resulting in decreased fucose,
resulting in immunological defects and severe psychomotor
delay (Goreta et al. 2012). Supplementation with oral
fucose challenges the defective transporters leading to
clinical improvements in some patients, with correction of
immunological dysfunction and psychomotor improvement
(Marquardt et al. 1999; Jaeken 2010).
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PGM1-CDG phosphoglucomutase 1 deficiency (E.C
5.4.2.2) is caused by disruption of the glucose metabolism
pathway whereby phosphoglucomutase catalyzes the bidirec-
tional transfer of phosphate from position 1 to 6 on glucose.
Deficiency of this enzyme, now characterized clinically by
hypoglycaemia, liver disease, cardiomyopathy, short stature,
cleft palate and normal intelligence, has previously been
associated with a primary muscle disease, Glycogen Storage
Disease, XIV (Morava 2014). There are a limited number of
patients reported in the literature; one of the first reported
suffered from exercise-induced rhabdomyolysis and muscu-
lar glycogenosis (Stojkovic et al. 2009; Timal et al. 2012;
Morava 2014). The disruption of this pathway (caused by
reduced PGM1) results in dysregulation of glycolysis and
disruption of the galactose metabolism pathway. It has been
suggested that the build-up of glucose-1-phosphate competes
with galactose-1-phosphate for the UDP-glucose pyrophos-
phorylase enzyme. This drives the product of the pyrophos-
phorylase pathway towards UDP-glucose, reducing the level
of UDP-galactose (Perez et al. 2013). If this is the
dysregulated pathway of PGM1-CDG, then it would indicate
there is some biologically relevant level of UDP-galactose
produced from the UDP-glucose pyrophosphorylase path-
way, which has direct relevance for galactosaemia. A study
of PGM1-CDG patients treated with a combination of D-
galactose and complex carbohydrate supplementation
improved serum transferrin hypoglycosylation and amelio-
rated clinical symptoms. This study indicated increased
levels of activated UDP-galactose in the treated patients
which improved glycosylation (Morava 2014).

In addition, Ng et al. in 2013 reported a disorder of the X-
linked gene UDP-galactose transporter SLC35A2. This disor-
der leads to galactose-deficient glycoproteins as measured by
N-glycans fromwhole serum usingMALDI-TOF. This showed
increased levels of hypogalactosylated glycans, particularly
biantennary species (Ng et al. 2013). Interestingly, in 3 affected
children, the neonatal profile improved and normalized during
the first few years of life. In a recently reported child with this
transporter deficiency, dietary galactose supplementation
resulted in nearly complete normalization of the abnormal
transferrin glycosylation pattern (Dorre et al. 2015).

The beneficial effect of galactose supplementation for
PGM1-CDG and SLC35A2 deficiency suggests the physi-
ological need for supplementary exogenous galactose in the
presence of UDP galactose limited bioavailability. This is
of possible relevance to galactosaemia.

Conclusion

There are many biochemical and clinical similarities
between galactosaemia and CDG syndromes. Early (prena-

tal and perinatal) dysregulation of glycosylation in galacto-
saemia must be a major determinant of both neurological/
cognitive and reproductive deficits, while ongoing abnor-
malities in glycosylation and associated gene dysregulation
and associated cell signaling abnormalities may also have
relevant pathophysiological consequences.

The persistence of aberrant glycosylation and disruption
of CDG-related genes in long-term treated galactosaemia
patients suggest that this is a major area in galactosaemia
research. This requires further investigation which may
offer new biomarkers to monitor affected individuals and
enhance our understanding of this and related conditions.
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