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S u m m a r y . We discuss the ideal gas like models of a trading market. The effect 
of savings on the distribution have been thoroughly reviewed. The market with 
fixed saving factors leads to a Gamma-like distribution. In a market with quenched 
random saving factors for its agents we show that the steady state income (m) 
distribution P(m) in the model has a power law tail with Pareto index v equal to 
unity. We also discuss the detailed numerical results on this model. We analyze the 
distribution of mutual money difference and also develop a master equation for the 
time development of P(m). Precise solutions are then obtained in some special cases. 

1 Introduction 

The distribution of wealth among individuals in an economy has been an 
important area of research in economics, for more than a hundred years. Pareto 
[1] first quantified the high-end of the income distribution in a society and 
found it to follow a power-law 

P(m) ~ m-(1+v), (1) 

where P gives the normalized number of people with income m, and the 
exponent v is called the Pareto index. 

Considerable investigations with real data during the last ten years re­
vealed that the tail of the income distribution indeed follows the above men­
tioned behavior and the value of the Pareto index v is generally seen to vary 
between 1 and 3 [2, 3, 4, 5]. It is also known that typically less than 10% of 
the population in any country possesses about 40% of the total wealth of that 
country and they follow the above law. The rest of the low income popula­
tion, in fact the majority (90% or more), follow a different distribution which 
is debated to be either Gibbs [3, 6, 7] or log-normal [4]. 

Much work has been done recently on models of markets, where economic 
(trading) activity is analogous to some scattering process [6, 8, 9, 10, 11, 12, 
13, 14, 15, 16] as in the kinetic theory [17] of gases or liquids. 
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We put our attention to models where introducing a saving propensity 
(or factor) [18] for the agents, a wealth distribution similar to that in the 
real economy can be obtained [8, 12]. Savings do play an important role in 
determining the nature of the wealth distribution in an economy and this 
has already been observed in some recent investigations [19]. Two variants of 
the model have been of recent interest; namely, where the agents have the 
same fixed saving factor [8], and where the agents have a quenched random 
distribution of saving factors [12]. While the former has been understood to a 
certain extent (see e.g, [20, 21]), and argued to resemble a gamma distribution 
[21], attempts to analyze the latter model are still incomplete (see however 
[22]). Further numerical studies [23] of time correlations in the model seem to 
indicate even more intriguing features of the model. In this paper, we intend 
to analyze the second market model with randomly distributed saving factor, 
using a master equation type approach similar to kinetic models of condensed 
matter. 

We have studied here numerically a gas model of a trading market. We have 
considered the effect of saving propensity of the traders. The saving propensity 
is assumed to have a randomness. Our observations indicate that Gibbs and 
Pareto distributions fall in the same category and can appear naturally in the 
century-old and well-established kinetic theory of gas [17]: Gibbs distribution 
for no saving and Pareto distribution for agents with quenched random saving 
propensity. Our model study also indicates the appearance of self-organized 
criticality [24] in the simplest model so far, namely in the kinetic theory of 
gas models, when the stability effect of savings [18] is incorporated. 

2 Ideal-gas like models 

We consider an ideal-gas model of a closed economic system where total money 
M and total number of agents N is fixed. No production or migration occurs 
and the only economic activity is confined to trading. Each agent i, individual 
or corporate, possess money rrii(t) at time t. In any trading, a pair of traders 
i and j randomly exchange their money [6, 7, 8], such that their total money 
is (locally) conserved and none end up with negative money (rrii(t) > 0, i.e, 
debt not allowed): 

mi(t)+m,j(t) = mi(i: + l)+mj(t+l); (2) 

time (t) changes by one unit after each trading. The steady-state (t —> oo) 
distribution of money is Gibbs one: 

P{m) = {I/T) exp(-m/T) ; T = M/N. (3) 

Hence, no matter how uniform or justified the initial distribution is, the 
eventual steady state corresponds to Gibbs distribution where most of the 
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people have got very little money. This follows from the conservation of money 
and additivity of entropy: 

P(mi)P(m2) = P(rrii + m2). (4) 

This steady state result is quite robust and realistic too! In fact, several vari­
ations of the trading, and of the 'lattice' (on which the agents can be put and 
each agent trade with its 'lattice neighbors' only), whether compact, fractal or 
small-world like [2], leaves the distribution unchanged. Some other variations 
like random sharing of an amount 2m2 only (not of mi + m2) when mi > m2 

(trading at the level of lower economic class in the trade), lead to even drastic 
situation: all the money in the market drifts to one agent and the rest become 
truely pauper [9, 10]. 

2.1 Effect of fixed or uniform savings 

In any trading, savings come naturally [18]. A saving propensity factor A is 
therefore introduced in the same model [8] (see [7] for model without savings), 
where each trader at time t saves a fraction A of its money rrii(t) and trades 
randomly with the rest: 

nii(t + 1) = rrii{t) + Am; nij(t + 1) = m.j(t) — Am (5) 

where 
Am = (1 - X)[e{mi(t) + mj(t)} - mi(t)], (6) 

e being a random fraction, coming from the stochastic nature of the trading. 

Fig. 1. Steady state money distribution (a) P{m) for the fixed A model, and (b) 
Pf(m) for some specific values of A in the distributed A model. All data are for 
N = 200. Inset of (b) shows scaling behavior of Pf(m). 



Data and 



Ideal-Gas Like Markets: Effect of Savings 83 

The evolution of money in such a trading can be written as: 

m;(t + 1) = Xirrnit) + eij [(1 - \i)m,i(t) + (1 - \j)mj(t)], (7) 

mj(t + 1) = Xjmj(t) + (1 - eij) [(1 - Xi)mi(t) + (1 - A,-K-(*)] (8) 

One again follows the same trading rules as before, except that 

Am = eij(l - Xj)m,j{t) - (1 - Aj)(l - e ^ m ^ i ) (9) 

here; Aj and Xj being the saving propensities of agents i and j . The agents have 
fixed (over time) saving propensities, distributed independently, randomly and 
uniformly (white) within an interval 0 to 1 agent i saves a random fraction 
A; (0 < Xi < 1) and this Aj value is quenched for each agent (A» are indepen­
dent of trading or t). Starting with an arbitrary initial (uniform or random) 
distribution of money among the agents, the market evolves with the trad­
ings. At each time, two agents are randomly selected and the money exchange 
among them occurs, following the above mentioned scheme. We check for the 
steady state, by looking at the stability of the money distribution in succes­
sive Monte Carlo steps t (we define one Monte Carlo time step as N pairwise 
interations). Eventually, after a typical relaxation time (~ 106 for N = 1000 
and uniformly distributed A) dependent on N and the distribution of A, the 
money distribution becomes stationary. After this, we average the money dis­
tribution over ~ 103 time steps. Finally we take configurational average over 
~ 105 realizations of the A distribution to get the money distribution P(m). 
It is found to follow a strict power-law decay. This decay fits to Pareto law 
(1) with v = 1.01 ± 0.02 (Fig. 2). Note, for finite size N of the market, the 
distribution has a narrow initial growth upto a most-probable value mp after 
which it falls off with a power-law tail for several decades. This Pareto law 
(with v ~ 1) covers the entire range in m of the distribution P(m) in the limit 
N —> oo. We checked that this power law is extremely robust: apart from the 
uniform A distribution used in the simulations in Fig. 2, we also checked the 
results for a distribution 

/9(A)~ |Ao-A| a , A 0 ^ l , 0 < A < 1 , (10) 

of quenched A values among the agents. The Pareto law with u = 1 is universal 
for all a. The data in Fig. 2 corresponds to Ao = 0, a = 0. For negative a 
values, however, we get an initial (small m) Gibbs-like decay in P{m) (see 
Fig. 3). 

In case of uniform distribution of saving propensity A (0 < A < 1), the 
individual money distribution Pf(m) for agents with any particular A value, 
although differs considerably, remains non-monotonic: similar to that for fixed 
A market with mp(X) shifting with A (see Fig. 1). Few subtle points may be 
noted though: while for fixed A the mp(X) were all less than of the order of 
unity (Fig. 1(a)), for distributed A case mp(A) can be considerably larger and 
can approach to the order of N for large A (see Fig. 1(b)). The other important 
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Fig. 3. Steady state money distribution P(m) in the model with for a system of 
N = 100 agents with A distributed as p(X) ~ \ a , with different values of a. In all 
cases, agents play with average money per agent MjN = 1. 

difference is in the scaling behavior of P/(m), as shown in the inset of Fig. 
1(b). In the distributed A ensemble, Pf(m) appears to have a very simple 
scaling: 

Pf(m)~(l-\)r(m(l-\)), (11) 

for A —> 1, where the scaling function T(x) has non-monotonic variation 
in x. The fixed (same for all agents) A income distribution P/(m) do not 
have any such comparative scaling property. It may be noted that a small 
difference exists between the ensembles considered in Fig 1(a) and 1(b): while 
/mPf(m)dm = M (independent of A), J mPf(m)dm is not a constant and 
infact approaches to order of M as A —> 1. There is also a marked qualitative 
difference in fluctuations (see Fig. 4): while for fixed A, the fluctuations in time 
(around the most-probable value) in the individuals' money m;(i) gradually 
decreases with increasing A, for quenched distribution of A, the trend gets 
reversed (see Fig. 4). 

We now investigate on the range of distribution of the saving propensities 
in a certain interval a < \i < b, where, 0 < a < b < 1. For uniform distribution 
within the range, we observe the appearance of the same power law in the 
distribution but for a narrower region. As may be seen from Fig. 5, as a —>• b, 
the power-law behavior is seen for values a or b approaching more and more 
towards unity: For the same width of the interval |6 — a\, one gets power-law 
(with same v) when 6—^1. This indicates, for fixed A, A = 0 corresponds to 
Gibbs distribution, and one gets Pareto law when A has got non-zero width of 
its distribution extending upto A = 1. This of course indicates a crucial role 
of these high saving propensity agents: the power law behavior is truely valid 
upto the asymptotic limit if A = 1 is included. Indeed, had we assumed Ao = 1 
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Fig. 4. Time variation of the money of the ith trader: For fixed A market - (a), (b), 
(c); and for agents with specific values of A in the distributed A market - (d), (e), 
(f)-

in (10), the Pareto exponent v immediately switches over to v = 1 + a. Of 
course, Ao ^ 1 in (10) leads to the universality of the Pareto distribution with 
v = 1 (irrespective of Ao and a). Indeed this can be easily rationalised from 
the scaling behavior (11): P(m) ~ JQ Pf(m)p(\)d\ ~ m~2 for p(X) given by 
(10) and m~(2 + a) if Ao = 1 in (10) (for large m values). 

These model income distributions P(m) compare very well with the wealth 
distributions of various countries: Data suggests Gibbs like distribution in the 
low-income range (more than 90% of the population) and Pareto-like in the 
high-income range [3] (less than 10% of the population) of various countries. In 
fact, we compared one model simulation of the market with saving propensity 
of the agents distributed following (10), with Ao = 0 and a = —0.7 [12]. The 
qualitative resemblance of the model income distribution with the real data 
for Japan and USA in recent years is quite intriguing. In fact, for negative 
a values in (10), the density of traders with low saving propensity is higher 
and since A = 0 ensemble yields Gibbs-like income distribution (3), we see 
an initial Gibbs-like distribution which crosses over to Pareto distribution (1) 
with v = 1.0 for large m values. The position of the crossover point depends 
on the value of a. It is important to note that any distribution of A near 
A = 1, of finite width, eventually gives Pareto law for large m limit. The same 
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Fig. 5. Steady state money distribution in cases when the saving propensity A is 
distributed uniformly within a range of values: (a) width of A distribution is 0.5, 
money distribution shows power law for 0.5 < A < 1.0; (a) width of A distribution is 
0.2, money distribution shows power law for 0.7 < A < 0.9. The power law exponent 
is v ~ 1 in all cases. All data shown here are for TV = 100, M/N = 1. 

kind of crossover behavior (from Gibbs to Pareto) can also be reproduced in a 
model market of mixed agents where A = 0 for a finite fraction of population 
and A is distributed uniformly over a finite range near A = 1 for the rest of 
the population. 

We even considered annealed randomness in the saving propensity A: here 
Xi for any agent i changes from one value to another within the range 0 < 
Xi < 1, after each trading. Numerical studies for this annealed model did not 
show any power law behavior for P(m); rather it again becomes exponentially 
decaying on both sides of a most-probable value. 

3 Dynamics of money exchange 

We will now investigate the steady state distribution of money resulting from 
the above two equations representing the trading and money dynamics. We 
will now solve the dynamics of money distribution in two limits. In one case, 
we study the evolution of the mutual money difference among the agents and 
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look for a self-consistent equation for its steady state distribution. In the other 
case, we develop a master equation for the money distribution function. 

m 
Fig. 6. Steady state money distribution P(m) against m in a numerical simulation 
of a market with N = 200, following equations (7) and (8) with etj = 1/2. The 
dotted lines correspond to m~^1+v'\ v = 1. 

3.1 Distribution of money difference 

Clearly in the process as considered above, the total money (rrii + rrij) of the 
pair of agents i and j remains constant, while the difference Arriij evolves as 

(Amij)t+i = {rrii -m,j)t+i 
Aj + Aj 

(Arriij) f 
A,; — A^ 

(rrii +m,j)t 

+ (2etj - 1)[(1 - Xi)mi(t) + (1 - \j)mj(t)]. (12) 

Numerically, as shown in Fig. 2, we observe that the steady state money 
distribution in the market becomes a power law, following such tradings when 
the saving factor Xi of the agents remain constant over time but varies from 
agent to agent widely. As shown in the numerical simulation results for P(m) 
in Fig. 6, the law, as well as the exponent, remains unchanged even when 
eij = 1/2 for every trading. This can be justified by the earlier numerical 
observation [8,12] for fixed A market (Aj = A for all i) that in the steady state, 
criticality occurs as A —> 1 where of course the dynamics becomes extremely 
slow. In other words, after the steady state is realized, the third term in (12) 
becomes unimportant for the critical behavior. We therefore concentrate on 
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this case, where the above evolution equation for Arriij can be written in a 
more simplified form as 

{Amij)t+1 = aij(Amij)t + Pij{mi + mj)t, (13) 

where a^- = (̂A^ + Xj) and fy = \{Xi — Xj). As such, 0 < a < 1 and 
- I < / 3 < I . 

The steady state probability distribution D for the modulus A = \Am\ of 
the mutual money difference between any two agents in the market can be 
obtained from (13) in the following way provided A is very much larger than 
the average money per agent = M/N. This is because, large A can appear 
from 'scattering' involving rrii — rrij = ±A and when either rrii or rrij is small. 
When both rrii and rrij are large, maintaining a large A between them, their 
probability is much smaller and hence their contribution. Then if, say, rrii is 
large and rrij is not, the right hand side of (13) becomes ~ (a%j + /3ij)(Aij)t 

and so on. Consequently for large A the distribution D satisfies 

D(A) = f dA' D{A') {S(A - (a + p)A') + S(A -{a- p)A')) 

= '<(xMx)>-
where we have used the symmetry of the /3 distribution and the relation 
aij + fiij = Aj, and have suppressed labels i, j . Here (...) denote average over 
A distribution in the market. Taking now a uniform random distribution of 
the saving factor A, p(X) = 1 for 0 < A < 1, and assuming D(A) ~ ^\-U+7) 
for large A, we get 

1 = 2 f dX X"< = 2(1 + 7)-1, (15) 

giving 7 = 1. No other value fits the above equation. This also indicates that 
the money distribution P(m) in the market also follows a similar power law 
variation, P(m) ~ m~(1+") and v = 7. We will now show in a more rigorous 
way that indeed the only stable solution corresponds to v = 1, as observed 
numerically [12, 13, 14]. 

3.2 Master equation and its analysis 

We also develop a Boltzmann-like master equation for the time development 
of P(m,t), the probability distribution of money in the market [25, 26]. We 
again consider the case eij = \ in (7) and (8) and rewrite them as 

CsL^te) ,— *<*%)•• 'H(1±A)- (16) 

Collecting the contributions from terms scattering in and subtracting those 
scattering out, we can write the master equation for P(m, t) as 
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j - 1 \-P(m,t) = { / dnii / dnij P(mi,t)P(mj,t) S(/J.fmi + njrrij -m)), 

(17) 
which in the steady state gives 

P(m) = ( / drrii \ drrij P(mi)P(mj) 5(fj,fmi + fijnij — m)). (18) 

Assuming, P(m) ~ m~(1+") for m —> oo, we get [25, 26] 

1 = {(M+)" + 0 0 " ) = J J d^+dfi-p(fi+)q(fi-) [(ji+y + (jx-)"] . (19) 

Considering now the dominant terms (oc x~r for r > 0, or oc ln(l/a;) for r = 0) 
in the x —>• 0 limit of the integral /0°° m^ + r ^P(m) exp(—mx)dm, we get from 
eqn. (19), after integrations, 1 = 2/(v+ 1), giving finally v = 1 (details in 
Appendix). 

4 Summary and Discussions 

We have numerically simulated here ideal-gas like models of trading markets, 
where each agent is identified with a gas molecule and each trading as an 
elastic or money-conserving two-body collision. Unlike in the ideal gas, we 
introduce (quenched) saving propensity of the agents, distributed widely be­
tween the agents (0 < A < 1). For quenched random variation of A among the 
agents the system remarkably self-organizes to a critical Pareto distribution 
(1) of money with v ~ 1.0 (Fig. 2). The exponent is quite robust: for savings 
distribution p(A) ~ |Ao — A|a, Ao ^ 1, one gets the same Pareto law with v = 1 
(independent of Ao or a). 

A master equation for P(m,t), as in (17), for the original case (eqns. (7) 
and (8)) was first formulated for fixed A (Ai same for all i), in [20] and solved 
numerically. Later, a generalized master equation for the same, where A is 
distributed, was formulated and solved in [22] and [25]. We show here that 
our analytic study clearly support the power-law for P(m) with the exponent 
value v = 1 universally, as observed numerically earlier [12, 13, 14]. 

It may be noted that the trading market model we have talked about here 
has got some apparent limitations. The stochastic nature of trading assumed 
here in the trading market, through the random fraction e in (6), is of course 
not very straightforward as agents apparently go for trading with some def­
inite purpose (utility maximization of both money and commodity). We are 
however, looking only at the money transactions between the traders. In this 
sense, the income distribution we study here essentially corresponds to 'paper 
money', and not the 'real wealth'. However, even taking money and commod­
ity together, one can argue (see [10]) for the same stochastic nature of the 
tradings, due to the absence of 'just pricing' and the effects of bargains in the 
market. 
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Apart from the observation that Gibbs (1901) and Pareto (1897) distri­
butions fall in the same category and can appear naturally in the century-old 
and well-established kinetic theory of gas, that this model study indicates 
the appearance of self-organized criticality in the simplest (gas) model so far, 
when the stability effect of savings incorporated, is remarkable. 
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A Alternative solution of the steady state master 
equation (18) 

Let Sr(x) = /0°° dmP(m)ml'+r exp(-mx); r > 0,x > 0. If P(m) = A/m' 

?r(aO = A f 
Jo 

dm mr exp(—mx) 

A— if r > 0 
r 

^ l n ( - ) if r = 0. (20) 

From eqn. (18), we can write 

Sr(x) = 
/•OO /-O0 

{ / dnii / dnij P(mi)P(mj)(minf + rrij^)v+r exp[-(mi/x+ + rrijfj,j)x]) 

/•oo r /-oo 

~ / drrii J4mp1(exp(-m i /x+x) (Mi1")" T) / drrij P(mj){exp(-mj[ijx)) 
Jo Uo 

/

oo r /-oo 

drrij ^ lm^1(exp(-mj/xjx) (njY r) / dnii P(m;){exp(-mi/x+x)) (21) 

or, 

Sr(x) = I d(4 p(nf) ( dim Ami r exp(-mnj,fx)) (/x+)"+r 

+ / dfij q{nj) [ I dm, Amrfx exp(-mj(i,jx)) {^jY+r (22) 
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since for small x, the terms in the square brackets in (21) approach unity. We 
can therefore rewrite (22) as 

Sr(x) = 2 

-, 1_ 

f dn+{ii+),/+rsr(xii+)+ r dir (M-y+rsr(xlx-) (23) 

Using now the forms of Sr(x) as in (20), and collecting terms of order x r 

(for r > 0) or of order l n ( l / x ) (for r = 0) from both sides of (23), we get (19). 
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