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S u m m a r y . In this paper we present detailed simulation results on the wealth dis­
tribution model with quenched saving propensities. Unlike other wealth distribution 
models where the saving propensities are either zero or constant, this model is not 
found to be ergodic and self-averaging. The wealth distribution statistics with a sin­
gle realization of quenched disorder is observed to be significantly different in nature 
from that of the statistics averaged over a large number of independent quenched 
configurations. The peculiarities in the single realization statistics refuses to van­
ish irrespective of whatever large sample size is used. This implies that previously 
observed Pareto law is essentially a convolution of the single member distributions. 

In a society different members possess different amounts of wealth. Indi­
vidual members often make economic transactions with other members of the 
society. Therefore in general the wealth of a member fluctuates with time and 
this is true for all other members of the society as well. Over a reasonably 
lengthy time interval of observation, which is small compared to the inherent 
time scales of the economic society this situation may be looked upon as a 
stationary state which implies that statistical properties like the individual 
wealth distribution, mean wealth, its fluctuation etc. are independent of time. 

More than a century before, Pareto observed that the individual wealth 
(m) distribution in a society is characterized by a power-law tail like: P(m) ~ 
m-(1+") a n c j predicted a value for the constant v « 1, known as the Pareto 
exponent [1]. Very recently, i.e., over the last few years, the wealth distribution 
in a society has attracted renewed interests in the context of the study of 
Econophysics and various models have been proposed and studied. A number 
of analyses have also been done on the real-world wealth distribution data 
in different countries [2, 3, 4]. All these recent data indeed show that Pareto 
like power-law tails do exist in the wealth distributions in the large wealth 
regime but with different values of the Pareto exponent ranging from v = 1 to 
3. It has also been observed that only a small fraction of very rich members 
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Fig. 1. The three probability densities of wealth distribution, namely Probi(m) 
(solid line), Prob2(m) (dashed line) and Prob(m) (dot-dashed line) are plotted with 
wealth m for N = 256 in (a) for the DY model and in (b) for the CC model for A 
= 0.35. The excellent overlapping of all three curves indicate that both the DY and 
CC models are ergodic as well as self averaging. 

actually contribute to the Pareto behavior whereas the middle and the low 
wealth individuals follow either exponential or log-normal distributions. 

In this paper we report our detailed simulation results on the three re­
cent models of wealth distribution. The three models are: (i) the model of 
Dragulescu and Yakovenko (DY) [5] which gives an exponential decay of the 
wealth distribution, (ii) the model of Chakrabort i and Chakrabart i (CC) [6] 
with a fixed saving propensity giving a Gamma function for the wealth distri­
bution and (iii) the model of Chatterjee, Chakrabart i and Manna (CCM) [7] 
with a distribution of quenched individual saving propensities giving a Pare to 
law for the wealth distribution. 

All these three models have some common features. The society consists of 
a group of AT individuals, each has a wealth rrii(t),i = 1, N. The wealth distri­
bution {rrii(t)} dynamically evolves with time following the pairwise conser­
vative money shuffling method of economic transactions. Randomly selected 
pairs of individuals make economic transactions one after another in a t ime 
sequence and thus the wealth distribution changes with t ime. For example, 
let two randomly selected individuals i and j , (i ^ j) have wealths rrii and 
rrij. They make transactions by a random bi-partitioning of their total wealth 
rrii + rrij and then receiving one par t each randomly: 

nn{t + 1) = e(t)(mi(t) + mj(t)) 

mj(t + 1) = (1 - e(t))(mi(t) + mj(t)). (1) 

Here time t is simply the number of transactions and e(t) is the t-th random 
fraction with uniform distribution drawn for the t-th transaction. 
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Fig. 2. For the CC model with N = 256 and A = 0.35 these plots show the functional 
fits of the wealth distribution in (a) and the variation of the most probable wealth 
mp(A) in (b). In (a) the simulation data of Prob(m) is shown by the solid black line 
where as the fitted Gamma function of Eqn. (5) is shown by the dashed line. In (b) 
the nip (A) data for 24 different A values denoted by circles is fitted to the Gamma 
function given in Eqn. (6) (solid line). The thin line is a comparison with the mp(A) 
values obtained from the analytical expression of a(A) and 6(A) in [10]. 

In all three models the system dynamically evolves to a stationary state 
which is characterized by a time independent probability distribution Prob(m) 
of wealths irrespective of the details of the initial distribution of wealths to 
start with. Typically in all our simulations a fixed amount of wealth is assigned 
to all members of the society, i.e. Prob(m,t = 0) = 5(m — (m)). The model 
described so far is precisely the DY model in [5]. The stationary state wealth 
distribution for this model is [5, 8, 9]: 

Prob(m) = -;—r-exp(—m/(m)). 
(m) (2) 

Typically (m) is chosen to be unity without any loss of generality. 
A fixed saving propensity is introduced in the CC model [6]. During the 

economic transaction each member saves a constant A fraction of his wealth. 
The total sum of the remaining wealths of both the traders is then randomly 
partitioned and obtained by the individual members randomly as follows: 

mi(t + 1) = Ami(f) + e(*)(l - A)(m;(t) + m^t)) 

nij(t + 1) = Xm,j(t) + (1 - e(i))(l - X)(m,i(t) + mj(t)). (3) 

The stationary state wealth distribution is an asymmetric distribution with a 
single peak. The distribution vanishes at m = 0 as well as for large m values. 
The most probable wealth mp(X) increases monotonically with A and the 
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Fig. 3. The wealth distribution Prob(m) in the stationary state for the CCM model 
for a single initial configuration of saving propensities {A,} with iV=256 is shown 
by the solid line. Also the wealth distributions of the individual members with 
seven different tagged values of Xtag are also plotted on the same curve with dashed 
lines. This shows that the averaged (over all members) distribution Prob(m) is the 
convolution of wealth distributions of all individual members. 

distribution tends to the delta function again in the limit of A —> 1 irrespective 
of the initial distribution of wealth. 

In the third CCM model different members have their own fixed individ­
ual saving propensities and therefore the set of {Xi,i = l,iV} is a quenched 
variable. Economic transactions therefore take place following these equations: 

rm(t + 1) = Xnrnit) + e(t)[(l - X^m^t) + (1 - Xj)mj(t)] 

mj(t + 1) = \jmj(t) + (1 - e(t))[(l - \i)mi(t) + (1 - Aj -KM] (4) 

where Xi and Aj are the saving propensities of the members i and j . The 
stationary state wealth distribution shows a power law decay with a value of 
the Pareto exponent v m 1 [7]. 

In this paper we present the detailed numerical evidence to argue that 
while the first two models are ergodic and self-averaging, the third model is 
not. This makes the third model difficult to study numerically. 

We simulated DY model with N = 256,512 and 1024. Starting from an 
initial equal wealth distribution Prob(m) = 5(m — 1) we skipped some trans­
actions corresponding to a relaxation time tx to reach the stationary state. 
Typically tx oc N. In the stationary state we calculated the three differ­
ent probability distributions, namely: (i) the wealth distribution Probi(m) 
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Fig. 4. The individual member's wealth distribution in the CCM model. A member 
is tagged with a fixed saving propensity Atag=0.05 in (a) and 0.999 in (b) for iV=256. 
In the stationary state the distribution Probi(m) is asymmetric in (a) and is fitted 
to a Gamma function. However for very large A the distribution in (b) is symmetric 
and fits very nicely to a Gaussian distribution. 

of an arbitrarily selected tagged member (ii) the overall wealth distribution 
Prob2(m) (averaged over all members of the society) on a long single run 
(single initial configuration, single sequence of random numbers) and (iii) the 
overall wealth distribution Prob(m) averaged over many initial configurations. 
In Fig. 1(a) we show all three plots for N = 256 and observe that these three 
plots overlap excellent, i.e., these distributions are same. This implies that the 
DY model is ergodic as well as self-averaging. 

Similar calculations are done for the CC model as well (Fig. 1(b)). We see 
a similar collapse of the data for the same three probability distributions. This 
lead us to conclude again that the CC model is also ergodic and self-averaging. 
Further we fit in Fig. 2(a) the CC model distribution Prob(m) using a Gamma 
function as cited in [10] as: 

Prob(m) ~ ma(x' exp(—&(A)m) (5) 

which gives excellent non-linear fits by xmgrace to all values of A in the range 
between say 0.1 to 0.9. Once fitting is done the most-probable wealth is esti­
mated by the relation: mp(\) = a(\)/b(\) using the values of fitted parameters 
a(X) and b(X). Functional dependences of a and b on A are also predicted in 
[10]. We plot mp(\) so obtained with A for 24 different values of A in Fig. 2(b). 
We observe that these data points fit very well to another Gamma function 
as: 

mp(A) = AA"exp(-/3A). (6) 

The values of A w 1.46, a « 0.703 and f3 « 0.377 are estimated for N = 256, 
512 and 1024 and we observe a concurrence of these values up to three decimal 
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Fig. 5. (a) The mean wealth of a tagged member who has the maximal saving 
propensity is plotted as a function of time for four different values of A m M . In (b) 
this data is scaled to obtain the data collapse. 

places for the three different system sizes. While mp(0) = 0 from Eqn. (6) is 
consistent, mp( l ) = 1 implies A = exp(/?) is also consistent with estimated 
values of A and /?. Following [10] we plotted mp(A) = 3A/(1 + 2A) in Fig. 2(b) 
for the same values of A and observe that these values deviate from our points 
for the small values of A. 

However, for the CCM model many inherent structures are observed. We 
argue that this model is neither ergodic nor self-averaging. For a society of 
N = 256 members a set of quenched individual saving propensities {0 < Aj < 
l,i = l,N} are assigned drawing these numbers from an independent and 
identical distribution of random numbers. The system then starts evolving 
with random pairwise conservative exchange rules cited in Eqn. (4). First 
we reproduced the Prob(m) vs. m curve given in [7] by averaging the wealth 
distribution over 500 uncorrelated initial configurations. The data looked very 
similar to that given in [7] and the Pareto exponent u is found to be very close 
to 1. 

Next we plot the same data for a single quenched configuration of saving 
propensities as shown in Fig. 3. It is observed that the wealth distribution 
plotted by the continuous solid line is far from being a nice power law as 
observed in [7] for the configuration averaged distribution. This curve in Fig. 
3 has many humps, especially in the large wealth limit. To explain this we 
made further simulations by keeping track of the wealth distributions of the 
individual members. We see that the individual wealth distributions are sig­
nificantly different from being power laws, they have single peaks as shown 
in Fig. 4. For small values of A, the Probi(m) distribution is asymmetric and 
has the form of a Gamma function similar to what is already observed for the 
CC model (Fig. 4(a)). On the other hand as A —> 1 the variation becomes 
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Fig. 6. In the stationary state the mean value of the wealth of the member with max­
imum saving propensity Xmax is plotted with \max • This value diverges as \max —¥ 1 
for TV = 64 (circle), 128 (square), 256 (triangle up), 512 (diamond) and 1024 (tri­
angle down), (b) This data is scaled to obtain a data collapse of the three different 
sizes. 

more and more symmetric which finally attains a simple Gaussian function 
(Fig. 4(b)). The reason is for small A the individual wealth distribution does 
feel the presence of the infinite wall at m = 0 since no debt is allowed in 
this model, where as for A —> 1 no such wall is present and consequently the 
distribution becomes symmetric. This implies that the wealth possessed by 
an individual varies within a limited region around an average value and cer­
tainly the corresponding phase trajectory does not explore the whole phase 
space. Therefore we conclude that the CCM model is not ergodic. 

Seven individual wealth distributions have been plotted in Fig. 3. corre­
sponding to six top most A values and one with somewhat smaller value. We 
see that top parts of these Probi(m) distributions almost overlap with the 
Prob2(m) distribution. This shows that Prob2(m) distribution is truly a su­
perposition of N Probi(m) distributions. In the limit of A —> 1, large gaps 
are observed in the Prob2(m) distribution due to slight differences in the A 
values of the corresponding individuals. These gaps remain there no matter 
whatever large sample size is used for the Prob2(m) distribution. 

We further argue that even the configuration averaging may be difficult 
due to very slow relaxation modes present in the system. To demonstrate 
this point we consider the CCM model where the maximal saving propensity 
Amaa: is continuously tuned. The iV-th member is assigned Xmax and all other 
members are assigned values {0 < Â  < Xmax,i = 1,N — 1}. The average 
wealth (m(\max))/N of the iV-th member is estimated at different times for 
N = 256 and they are plotted in Fig. 5(a) for four different values of Amax. 
It is seen that as Xmax —> 1 it takes increasingly longer relaxation times to 
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reach the stationary state and the saturation value of the mean wealth in the 
stationary state also increases very rapidly. In Fig. 5(b) we made a scaling of 
these plots like 

[(m(\max))/N](l - Xmax)
0-725 ~ Q[t(l - Xmax)]. (7) 

This implies that the stationary state of the member with maximal saving 
propensity is reached after a relaxation time tx given by 

tx CX (1 - Xmax)^1- (8) 

Therefore we conclude that in CCM the maximal A member takes the longest 
time to reach the stationary state where as rest of the members reach their 
individual stationary states earlier. 

This observation poses a difficulty in the simulation of the CCM model. 
Since this is a problem of quenched disorder it is necessary that the observ-
ables should be averaged over many independent realizations of uncorrelated 
disorders. Starting from an arbitrary initial distribution of rrn values one gen­
erally skips the relaxation time tx to reach the stationary state and then 
collect the data. In the CCM model the 0 < Xi < 1 is used. Therefore if M 
different quenched disorders are used for averaging it means the maximal of 
all M x N X values is around 1 — 1/(MN). From Eqn. (8) this implies that the 
slowest relaxation time grows proportional to MN. Therefore the main mes­
sage is more accurate simulation one intends to do by increasing the number 
of quenched configurations, larger relaxation time tx it has to skipp for each 
quenched configuration to ensure that it had really reached the stationary 
state. 

Next, we calculate the variation of the mean wealth («i(Amax))/iV of the 
maximally tagged member in the stationary state as a function of Xmax and 
for the different values of N. In Fig. 6(a) we plot this variation for N = 64, 
128, 256, 512 and 1024 with different symbols. It is observed that larger the 
value of N the (m(Xmax))/N is closer to zero for all values of Xmax except for 
those which are very close to 1. For Xmax -¥ 1 the mean wealth increases very 
sharply to achieve the condensation limit of (m(Xmax = 1))/N = 1. 

It is also observed that the divergence of the mean wealth near Xmax = 1 is 
associated with a critical exponent. In Fig. 6(b) we plot the same mean wealth 
with the deviation (1 — Xmax) from 1 on a double logarithmic scale and observe 
power law variations. A scaling of these plots is done corresponding to a data 
collapse like: 

[(m(Xmax))/N}N-°-15 ~ T[(l - Xmax)N
l-b]. (9) 

Different symbols representing the data for the same five system sizes fall 
on the same curve which has a slope around 0.76. The scaling function 
T[x] ->• x~s as x ->• 0 with 5 « 0.76. This means (m(Afflo:t)}JV-L15 ~ 
(1 - A™*)- 0- 7 6^- 1- 1 4 or (m{Xmax)) ~ (1 - AroM)-°-76iV0-01. Since for a 
society of N traders (1 — Xmax) ~ 1/N this implies 
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(m(Xmax)) ~ AT0-77. (10) 

This result is therefore different from the claim that {m(\max)) ~ N [7]. 
To summarize, we have revisited the three recent models of wealth distri­

bution in Econophysics. Detailed numerical analysis yields that while the DY 
and CC models are ergodic and self-averaging, the CCM model with quenched 
saving propensities does not seem to be so. In CCM existence of slow modes 
proportional to the total sample size makes the numerical analysis difficult. 
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