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Abstract

This chapter provides the key steps and parameters required for three different numerical modelling
approaches to predict the environmental fate of petroleum hydrocarbons in contaminated soils during
bioremediation. The first approach is the molecular dynamic simulation which is used to characterise the
molecular-scale adsorption, the diffusion and the distribution of the saturate, aromatic, resin and asphaltene
(SARA) fractions of oil. Such approach provides insights into the microscopic aggregation, the sequestra-
tion and the collision mechanisms which are essential for a better understanding of hydrocarbon bioavail-
ability and biodegradation. The second approach is the use of fugacity modelling to compute the
equilibrium distribution of the aliphatic and aromatic hydrocarbons in an environmental matrix composed
of four compartments: soil, water, air and nonaqueous phase liquid (NAPL). Further to this, the contribu-
tion of the biotic and abiotic processes to the loss of petroleum hydrocarbons including (1) biodegradation
in soil and NAPL, (2) advection in air, (3) leaching from soil and (4) diffusion at the soil–air, soil–water and
soil–air boundaries can be estimated during biopiling experiments. The third approach is the use of machine
learning (ML), an assumption-free data mining method, to predict the changes in the bioavailability of
polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. The main advantage of ML models is that
they are data-based technique allowing computers to learn and recognise the patterns of the empirical data
and work well with highly non-linear systems without relying on prior knowledge on bioremediation
processes which make their prediction more realistic than conventional statistical methods. ML outputs
can be integrated into microbial degradation models to support decision making for the assessment of
bioremediation end points.

Keywords: Bioremediation, Fugacity modelling, Machine learning, Molecular simulation, Petroleum
hydrocarbons

1 Introduction

Despite the fact that a variety of bioremediation technologies have
been successfully applied for petroleum-contaminated sites, the
complicated nature of soil and oil chemistry results in a lack of a
universal technology that can be the solution for all contamination.
Insights into the intricate interactions between oil and soil espe-
cially at the molecular scale are essential for a comprehensive
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appreciation of the fate of petroleum contaminants. Molecular
simulation is a versatile tool to handle such issues. It represents a
category of methods that convert the microscopic-level informa-
tion (e.g. the position and the diffusion velocity of atoms) to the
macroscopic properties (e.g. concentration profile, diffusion coef-
ficient and thermodynamic properties of molecules) using statistical
mechanics [1]. Simulation methods include quantum chemistry,
molecular dynamics (MD), Monte Carlo and mesoscale simulation
with the timescale ranging from femto- to nanoseconds (Fig. 1).
The fast development of these methods during the last decades
improved our understanding of the environmental behaviour of
petroleum contaminants in the environment. Although it remains
difficult to model the chemical interactions between soil and oil
using an ‘average’ molecular formula for the natural soil and oil
from various origins, several models have been developed for pre-
dicting the influence of the inorganic mineral and the organic
matter of soil on the fate of oil. For example, the structural formula
of soil minerals such as gibbsite, kaolinite, pyrophyllite and mon-
tmorillonites has now all been defined [2, 3]. Since the first three-
dimensional model for soil organic matter (SOM) reported by
Schulten and Schnitzer [4], an increasing number of SOM models
have been developed such as the optimised dissolved organic matter
model [5], the Leonardite humic acid model [6] and the Temple–-
Northeastern–Birmingham humic acid model [7]. The progress
made with these models has allowed subsequently to refine the
chemical behaviour prediction of the interlayer structure of
organo-clays by considering the molecular structure of both the
SOM constituents and the minerals [8, 9]. Similarly, molecular
models for individual hydrocarbon compounds and hydrocarbon
fractions (group of hydrocarbons such as saturates, aromatic, ole-
fins, resins, asphaltenes) of petroleum-derived products have been

Fig. 1 Timescale (a) and steps (b) of molecular simulation methods
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developed. For instance, the asphaltene molecules can be mimicked
by the continental model [10] and the archipelago models [11],
which have been validated by instrumental analysis (e.g. nuclear
magnetic resonance, X-ray powder diffraction, Fourier-
transformed infrared spectroscopy, thermogravimetric analysis) in
terms of atom types, functional groups and molecular weight [12].
The development of these models makes possible to characterise
the isotherm and thermodynamic parameters beyond the resolu-
tion of instrumental analysis such as the contribution of Coulomb
electrostatic and van der Waals forces to the adsorption of oil
contaminants on the soil mineral surface [1], the binding energy
between SOM and oil pollutants [13] and the free energy for the
penetration of polycyclic aromatic hydrocarbon through the bacte-
rial membranes [14]. These physicochemical processes are highly
important for bioavailability and biodegradation studies [15, 16].

However, the main challenge of using molecular simulation
method is the timescale. The phenomena observed in the bioreme-
diation process such as ageing often occurred in months or years;
however, it is difficult to model such long timescale process by
molecular simulation due to the extremely high computing data
requirement. Our preliminary test indicated that it took about 1
month to simulate a 100 ns adsorption process of a system contain-
ing 28 asphaltene molecules and 20,000 water molecules usingMD
simulation on a server with 64 CPU cores (data not published).
Accordingly, it would require 1012 months (computation time) to
simulate such adsorption for only 1 day (real time). An alternative is
to use fugacity modelling approach, which is a multimedia environ-
mental fate model based on the thermodynamic theory of fugacity
describing the bulk balance of a chemical substance in an ecosystem
constituted by compartments [17]. The term ‘fugacity’ describes
the ‘fleeing’ or ‘escaping’ tendency of a chemical species from an
environmental compartment. Generally, the thermodynamic equi-
librium includes chemical potential and fugacity. Chemical poten-
tial cannot be measured absolutely which is logarithmically related
to the concentration of a compound [18]. By contrast, the major
advantages of using fugacity are that (1) fugacity is equal to partial
pressure under ideal conditions and is linearly related to concentra-
tion; (2) it is relatively convenient to transform the equations for
chemical reaction, advective flow and non-diffusive transport rate
into fugacity expressions with simple forms; and (3) it is easy to
establish and solve sets of fugacity equations describing the com-
plex behaviour of chemicals in multiphase and nonequilibrium
environments. Various fugacity-based models have been developed
such as generic models, air–water exchange models, soil–air
exchange models, sediment–water exchange models, fish bioaccu-
mulation models, sewage treatment plant models, indoor air mod-
els, plant uptake models, physiologically based pharmacokinetic
models, multiple species bioaccumulation models, the EQuilibrium
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Criterion model, the Level III ChemCAN model, the Level III
CalTOX model, the QWASI (quantitative water, air, sediment
interaction) model and the GloboPOP (chemical fate in the entire
global environment) model [19]. These models have been previ-
ously applied for directing site remediation decisions [20], quanti-
fying vapour emission from contaminated sites [21] and predicting
the fate of organic compounds at landfill sites and constructed
biopiles [22–24].

Both molecular simulation and fugacity modelling assume spe-
cific forms of mathematical equations, and statistical regression is
only used to determine the unknown parameters in the equation.
However, in some cases, the lack of knowledge on the bioremedia-
tion processes makes it difficult to accurately build these models
due to the highly non-linear relationship between multiple vari-
ables. For example, there is not a universal form of equation that
can be used to capture the relationship between ageing process and
the bioavailability changes of different petroleum fractions in con-
taminated soils during composting processes. Instead machine
learning is a data-based and assumption-free approach that distin-
guishes the data pattern and explores the relative influence of the
independent variables on the dependent variables without relying
on prior knowledge on the prediction process. The core of machine
learning methods is allowing computers to extract general informa-
tion from empirical data via ‘learning’ and ‘recognising’ the pat-
terns of empirical data like a human brain. It has proven to be useful
in modelling complex environmental processes, especially highly
non-linear dynamic ecosystems such as the biosorption of metals
[25–27], emissions of PAHs during combustion process [28] and
bioavailability changes of PAHs in compost-amended soils [29].

This chapter provides the key steps and parameters needed
when modelling the fate and transport of petroleum hydrocarbons
using the above three modelling approaches. Their application can
serve several purposes such as (1) improving our understanding of
the chemical sources and their environmental fate and transport,
(2) understanding the various factors that affect the environmental
processes so that researchers can prioritise those factors that most
need additional study, (3) providing tools to give a better mecha-
nistic understanding of the degradation pattern and predict reme-
diation end points and (4) enabling better risk-informed decisions
during site remediation.

2 Molecular Dynamic Simulation

The protocol described belowprovides an example ofMDsimulation
of the adsorption, the diffusion and the distribution of the different
oil fractions on quartz surface (Fig. 2). The model construction, the
energy minimisation and the molecular dynamic simulation can be
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carried out using a variety of software such as Materials Studio
(http://accelrys.com/products/materials-studio/index.html),
Gromacs (http://www.gromacs.org/), LAMMPs (http://lammps.
sandia.gov/), DL_POLY (https://www.stfc.ac.uk/SCD/44516.
aspx) and NAMD (http://www.ks.uiuc.edu/Research/namd/).
Materials Studio was used in this protocol. Despite the differences
in the program interface and computation performance among these
programs, the modelling and simulation procedures are similar to
that described in this protocol:

l Force field: select the condensed-phase optimised molecular
potential for atomistic simulation studies (COMPASS) force
field to describe the bonded and nonbonded potential of inter-
and intra-molecule interactions [30] (see Note 1). Bonded
potential includes quartic bond stretch, angle–bend contribu-
tions, torsion, out-of-plane angle and cross-coupling terms.
Nonbonded potential consists of van der Waals interactions
represented by the Lennard–Jones function and electrostatic
interaction represented by the Coulombic equation (seeNote 2).

l Oil layer modelling: select the following molecular compositions
C54H65NO2S (MW: 792 g mol�1) [31], C50H80S (MW:
713 g mol�1) [32], C46H50S (MW: 635 g mol�1) [33] and
C20H42 (MW: 282 g mol�1) to model the asphaltene, resin,

Fig. 2 Molecular modelling of the adsorption of asphaltenes, resins, aromatics and alkanes on quartz surface
(adapted from [1])
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aromatic and saturate fractions of oil, respectively. Create an
amorphous cell by packing these molecules with molecular num-
ber of 2, 4, 6 and 7, respectively, in a simulation box with 3D
periodic boundary condition (see Note 3).

l Quartz surface modelling: create a quartz (1:1:1) surface using a
quartz cell (a ¼ b ¼ 0.4913 nm, c ¼ 0.5405 nm, α ¼ β ¼ 90�,
γ ¼ 120�), build a 7 � 7 unit cell replica of the quartz surface
and convert it into a 3D cell with 3D periodic boundary
condition.

l Sorption system modelling: create a crystal-layered structure by
adding the oil layer on the top of the quartz surface.

l Energy minimisation: use the smart minimiser approach to relax
the sorption system and ensure that the system has no steric
clashes or inappropriate geometry (see Note 4).

l NVT equilibration: perform an NVT MD simulation with con-
stant number of atoms (N), volume (V) and temperature (T) to
bring the system to the desired temperature for the simulation
and to ensure the correct configuration of the orientation of the
molecules. Assign the dynamic simulation parameters as follows:
dynamics time (100 ps), time step (1 fs), temperature (298 K),
thermostat (Andersen) and trajectory output (final structure)
(see Note 5).

l NPT equilibration: perform an NPT MD simulation with con-
stant number of atoms (N), pressure (P) and temperature (T) to
stabilise the pressure and density of the system. Assign the
dynamic simulation parameters as follows: dynamics time
(100 ps), time step (1 fs), temperature (298 K), pressure
(1 atm), thermostat (Andersen), barostat (Berendsen) and tra-
jectory output (final structure).

l Production MD: perform an NVT MD simulation to the well-
equilibrated system at the desired temperature and pressure.
Parameters to be assigned include dynamics time (500 ps),
time step (1 fs), temperature (298 K), thermostat (Andersen),
trajectory output (full) and frequency of trajectory saved (every
5,000 steps).

l Data analysis: use the trajectory from the production MD simu-
lation to analyse the mean square displacement, diffusion coeffi-
cient, root mean square deviations in structure, interaction
energy, radial distribution functions and concentration profile
of oil fractions on the quartz surface (see Note 6).

3 Fugacity Modelling

This protocol illustrates the application of fugacity models on a
typical biopile with a volume of 624m3 and a mass of 750 t (Fig. 3).
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Level II fugacity model is used to calculate the steady-state and
equilibrium distribution of petroleum hydrocarbon fractions in the
contaminated soils. Level IV fugacity model is used to calculate the
nonsteady-state chemical emission, advection, reaction, intermedia
transport and residence time of petroleum hydrocarbons in the
soil–oil matrix during biopiling. Level II and IV fugacity models
can be easily coded in Microsoft Visual Basic for Applications
(VBA) tool.

l Define four compartments in the biopile as follows: air, water,
soil solids and nonaqueous phase liquid (NAPL). Calculate the
volume of each compartment (an example of calculation is
provided in the previous chapter ‘Protocol for Biopile Construc-
tion Treating Contaminated Soils with Petroleum
Hydrocarbons’).

l Measure the physicochemical characteristics of soils (i.e. soil
density, mass fraction of soil organic carbon) using standard
methods [34]. Measure the total petroleum hydrocarbon
(TPH) concentration in the soil (i.e. using the ultrasonic solvent
extraction method described by Risdon et al. [35]). Assume that
the measured TPH concentration is equal to the NAPL
concentration.

Fig. 3 Predicting the concentration of petroleum hydrocarbon fractions in contaminated soils during biopiling
using fugacity modelling (adapted from [22, 23])
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l Divide the TPH into aliphatic and aromatic fractions. Divide
each fraction into groups according to equivalent carbon num-
ber (see Note 7). Compile the physicochemical properties of
petroleum hydrocarbon fractions (i.e. molecular weight, water
solubility, vapour pressure, Henry’s law constant, log Kow, log
Koc, density) from books [19, 36].

l Calculate the half-lives of each petroleum hydrocarbon fraction
in air, water and soil using the Estimation Program Interface
Suite (http://www.srcinc.com). Assume the half-lives in NAPL
to be equal to that in the bulk soil.

l Calculate the fugacity capacity (Z) for each compartment as
follows:

Compartment

Fugacity
capacities
(mol m�3 Pa)

Constant definitions
and units

Air ZAIR ¼ 1/R·T R ¼ the gas constant
(8.314 Pa m3 mol�1 K�1)

T ¼ temperature (K)

Water ZWATER ¼ 1/H H ¼ Henry’s law constant
(Pa m3 mol�1)

NAPL ZNAPL ¼ Kow/H Kow ¼ octanol–water partition
coefficient

Soil solids ZSOIL ¼ Koc * fOC

* ρSOLIDS *
ZWATER/1,000

Koc ¼ organic carbon partition
coefficient (L kg�1)

ρSOLIDS ¼ density of soil
solids (kg m�3)

fOC ¼ mass fraction of
soil organic carbon (g g�1)

Bulk soil
(without
NAPL phase)

ZBULK ¼ ϕAIR

ZAIR + ϕWATER

ZWATER + ϕSOIL

ZSOIL

ϕAIR ¼ volume fraction
of air (m3)

ϕWATER ¼ volume fraction
of water (m3)

ϕSOIL ¼ volume fraction
of soil
solids (m3)

Bulk soil ZT ¼ ϕAIR ZAIR +
ϕWATER ZWATER

+ ϕSOIL ZSOIL

+ϕNAPL ZNAPL

ϕNAPL ¼ volume fraction
of NAPL (m3)

l Steady-state and equilibrium distribution: assume the fugacity is
equal and constant in all compartments. Calculate the fugacity
(f, Pa) and the concentration of each petroleum hydrocarbon
fraction (C, mol m�3) in each compartment using the total mass
of TPH (M, mol), the fugacity capacity (Z, mol m�3 Pa�1) and
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the volume of each compartment (V, m3) as follows:

M ¼
X

V iC i ¼ f
X

V iZ i:

l Define the reaction and advection processes that occurred dur-
ing biopiling. The former include the biodegradation in bulk soil
and NAPL phase, which are simplified as first-order kinetic
reaction (see Note 8). The latter processes include the advection
in air, leaching from soil and volatilisation to the surrounding air
(i.e. diffusion in soil–air, diffusion in soil–water and diffusion in
the soil–air boundary).

l Calculate theD values (a transport parameter similar in principle
to rate constant) for each process with the formula and para-
meters listed as follows (see Note 9):

Compartment process Equation

Reaction in bulk soil DR ¼ kR V A þ V S þ VWð Þ � ZBULK

Reaction in NAPL DR NAPL ¼ kR NAPL � V NAPL � ZNAPL

Advection in air DA ¼ GAIR � ZAIR

Leaching from soil DL ¼ GL � ZW

Volatilisation DV ¼ 1=DEð Þ þ 1= DA þDWð Þ½ ��1

Diffusion in soil–air DA ¼ A � BA � ZAIR=Y D

Diffusion in soil–water DW ¼ A � BW � ZWATER=Y D

Diffusion across the soil–air
boundary

DE ¼ A �KV � ZAIR

Overall bulk soil D value DT ¼ DR þ DA þ DV þ DL þ DR NAPL

A is the surface area of biopile (m2);Vi is the volume of compart-
ment i (m3). A ¼ air; S ¼ soil solids; W ¼ water. kR is the first-
order reaction rate constant for the fraction considered in the
bulk soil, calculated as ln(2)/TO (h�1); kR_NAPL is the first-order
reaction rate constant for the NAPL (h�1); GAIR is the air flow
rate through the biopile (6.24 m3 h�1); GL is the water flow rate
through the biopile (arbitrary rate of 2.1 � 10�3 m3 h�1); BA is
the effective diffusion coefficient for soil–air, derived from the
Millington–Quirk equation (m2 h�1); BW is the effective diffu-
sion coefficient for soil–water, derived from the Millington–-
Quirk equation (m2 h�1); YD is the (non-tortuous) diffusion
path length, set at the mean depth of the biopile (m); KV is the
partial mass transfer coefficient in the air side of the soil–air
interface (m h�1).

l Nonsteady-state dynamic fate: calculate the dynamic changes in
fugacity (fi) by solving the differential equation as follows –
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d f i=dt ¼ �DTi f i=V TZBULKi. Then, predict the total concen-
tration of all fractions in the bulk soil at each time step as follows:

CT tð Þ ¼
XN

i¼1
Ci tð Þ.

4 Machine Learning Modelling

The protocol below described the application of ML models to
predict the PAH bioavailability changes in contaminated soils dur-
ing the bioremediation process via compost amendment (Fig. 4).
Among the methods developed in ML, the artificial neural network
(ANN)-based models, the tree-learning techniques, the rule-
learning algorithms and linear regression are the most widely used
and therefore are described in this protocol. This protocol provides
example of using these models followed by parameterisation, opti-
misation and validation. It does not elaborate much on the com-
puting theory of these models which is available from previous
publications [29, 37]. All calculations were performed using the
open-source software WEKA (http://www.cs.waikato.ac.nz/ml/
weka/).

Fig. 4 Machine learning models to predict PAH bioavailability changes in soils after compost amendment. As
demonstrated in the figure, the three steps included in machine learning are data collection, model selection
and simulation and prediction. The input data was trained using six models including multilayer perceptron
(MLP), radial basis function (RBF), support vector regression (SVR), M5 model tree (M5P), M5 model rules
(M5R) and linear regression (LR). The model with the lowest root mean square error (RMSE) was finally
selected for predicting PAH bioavailability and remediation end point by providing a new data set
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l Incubation experiments: the data source for theMLmodelling is
obtained from laboratory experiments. In this example, two
types of mature compost into three contaminated soils were
considered, and the change in the bioavailability of the 16 US
EPA priority PAHs was monitored [38]. The protocols for the
physicochemical characterisation of the soils and the composts,
the compost amendment regimes, the incubation time and the
chemical analysis and quantification of the PAHs are available
from Wu et al. [34].

l Data collection: collect the data on soil and compost properties
(i.e. moisture, organic carbon of soil, total nitrogen, total phos-
phorus, available phosphorus, loss on ignition and soil texture),
ratio of compost to soil (250 and 750 t ha�1), initial concentra-
tion of total PAH, incubation time (i.e. 0, 3, 6 and 8months) and
the bioavailable concentration of PAHs at different incubation
times as input parameters. Define the bioavailable concentration
as dependent variable and the others as independent variables.

l Multilayer perceptron (MLP) training: build an MLP network
and set the initial number of nodes in the input layer and output
layer as 11 and 1, respectively. Fix the value of momentum term
as 0.2. Use the CVParameterSelection module in the WEKA
software to optimise twomodel parameters (i.e. the learning rate
and the number of nodes in the hidden layer (initial value:
8–23)). The WEKA will output the root mean square errors
(RMSE) and the hidden-input and hidden-output connection
weights. Use the connection weights to calculate the relative
contribution of input variables (i.e. soil and compost properties)
to the predictive output (i.e. bioavailable concentration of
PAHs) (see Note 10).

l Radial basis function (RBF) training: choose the k-means clus-
tering algorithm to obtain RBF centres, select symmetric multi-
variate Gaussian function to fit the data and use
CVParameterSelection module to optimise two parameters
(i.e. the number of Gaussian radial basis functions (GRBFs) for
the k-means algorithm and the minimum of standard deviation
for the GRBFs) (see Note 11).

l Support vector regression (SVR) training: select the sequential
minimal optimisation (SMO) algorithm to iteratively train the
model and rearrange the non-linear data into linear data. The
only parameter to optimise is the complexity parameter that
determines the trade-off between the complexity of SMO
model and the tolerance of errors. Use a correlation image to
visualise the relationship between the input variables and the
predictive output.

l M5 model tree (M5P), M5 model rules (M5R) and linear
regression (LR) training: use the default parameters in the
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WEKA software to train the models, which do not need
optimisation.

l Cross validation: split the input data into ten groups randomly.
For each model, use the instances from nine groups for model
training, while use the remaining one group for model testing.
Repeat this process ten times using a different group for testing
at each cycle. The above validation method is termed as tenfold
cross validation, which should be repeated ten times by re-
splitting the data into ten groups. Average the root mean square
error (RMSE) from the 100 (10 � 10) calculation to obtain the
overall RMSE. Use RMSE to evaluate the performance of each
model in predicting PAH bioavailability. The lower the RMSE,
the better the goodness of fit.

l Simulation: overall 96 RMSE (16 PAHs � 6 models for each
PAH) are obtained after training each model for each PAH.
Select the best model (with the lowest RMSE) for each PAH as
the final model. Use these well-trained models for predicting the
bioavailable concentration of each PAH by inputting a new set of
data that is not used in the model training or validation. For
example, if we want to predict the bioavailable concentration
after 12 months which was not measured in the incubation
experiment, we just modify the variable of incubation time as
12, input it along with other variables (e.g. soil and compost
properties) into the final models and run the models.

5 Notes

1. Force field is one of the most important mathematical functions
to be selected prior to molecular dynamic simulation, which
should be capable of predicting the structural, vibrational and
thermophysical properties for substances in the model system.
There are several options for force field such as COMPASS,
CVFF, PCFF, GROMOS, CHARMM, AMBER, CLAYFF and
OPLS-AA. Before application, the force field should be para-
meterised (e.g. equilibrium bond distances and angles, bond
and angle force constants, dihedral angles, atom charges and
Lennard–Jones parameters) via X-ray crystallography, vibra-
tional spectra and quantum mechanics calculations. Alterna-
tively, the force field can be empirically selected based on
previous publications. For example, the COMPASS force field
has been validated for a number of organic and inorganic
molecules such as alkanes and benzene-fused ring compounds
[30]. The CLAYFF [39] force field and the CHARMM force
field optimised by Lopes et al. [40] can be effectively used for
simulation of clay and silica, respectively. The GROMOS force
field was initially designed for modelling biomolecules but has
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been increasingly employed to model the petroleum-based
system (e.g. asphaltenes and polycyclic aromatic hydrocarbons)
after modification [10, 31, 41, 42].

2. The nonbonded interactions usually dominate simulations. We
recommend using Gromacs (free software) for MD simulation
as a lot of algorithmic optimisations have been introduced in
the code, and thereby it is extremely fast at calculating the
nonbonded interactions. The program is better run under
Linux operating system with command line options for input
and output files (although there is also a Windows version). For
beginners not familiar with the Linux system, we recommend
to use Materials Studio (commercial software) which has a
more friendly user interface under Windows system.

3. The number of molecules in the MD simulation system should
be decided on the molecular weight and concentration ratio of
the oil fractions in the laboratory experiments. The periodical
boundary condition (PBC) means that if any atoms leave a
simulation box in one direction, then they will enter the simu-
lation box from the opposite direction. The application of PBC
can avoid problems with boundary effects caused by finite size
and make the system more like an infinite one.

4. There are several algorithms to perform energy minimisation
such as steepest descent, conjugate gradient and Newton–-
Raphson. Convergence levels of iterations should be assigned
for these algorithms. The Smart Minimizer is a module in the
Materials Studio package which executes the above algorithms
in sequence according to the changes in the energy potential of
the model system. In this protocol, the convergence levels of
iterations are set as 1,000, 10 and 0.1 kJ (mol Å)�1 for the
above three methods, respectively.

5. A full list of the parameters to set before running MD simula-
tion can be found from the online manual of Gromacs software
at http://manual.gromacs.org/online/mdp_opt.html.

6. The molecular simulation software offers a large selection of
flexible tools for analysing the structural, statistic, dynamic and
thermodynamic properties of the model system using the tra-
jectories. A detail description of the data analysis principles can
be found from Frenkel and Smit [43] and the online manual of
Gromacs (http://www.gromacs.org/).

7. Equivalent carbon number is determined from boiling point or
the retention time of the compounds in gas chromatography
column, which is more appropriate than the actual carbon
number of chemicals [44]. In addition to fractionating the
petroleum oil into groups, specific petroleum hydrocarbons
can also be selected as indicator compounds for fugacity
modelling.
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8. All the reaction processes are expressed in first-order form as a
function of concentration. If a chemical is susceptible to several
reactions in the same phase, the rate constants for the reaction
are simply added to make the total rate constant. The strategy is
to force first-order kinetics on systems by lumping parameters
in the rate constant (i.e. express the second-order rate reactions
in the form of pseudo first-order rate reaction to circumvent
complex reaction rate equations). Such transformation will
make the subsequent calculations much easier.

9. The general form for reaction and advection process is DR ¼
k·V·Z (k, reaction rate constant, h�1; V, volume, m3) and DA

¼ G·Z (G, fluid flow rate, m3 h�1), respectively.

10. The nodes in the input layer are the input-independent vari-
ables, while those in the hidden layer and output layer are
processing elements with non-linear activation functions such
as sigmoid function that enable the network to solve complex
non-linear problems [45]. The number of nodes in the hidden
layer should range from (2n1/2+m) to (2n+1), where n and m
are the number of nodes in the input layer and output layer,
respectively [46]. Each node in one layer is connected with a
certain weight to every node in the following layer. During
model training, the predicted results are compared with the
experimental results to compute the value of error. The con-
nection weights are adjusted to reduce the error. This process is
repeated for a sufficiently large number of cycles until the error
is minimised.

11. RBF is another ANN model, which differs from the MLP in
that it uses a special class of activation functions known as radial
basis functions (e.g. Gaussian function) in the hidden layer.
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