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Abstract

Computational methods and tools are nowadays widely applied for rational Metabolic Engineering
approaches. However, what is still missing are clear advices on the right order of the application of these
tools. The availability of genomic information for a large number of cellular systems especially requires the
use of computers to store, analyze, and process knowledge of single enzymes, metabolic pathways, and
cellular networks. The trend of integrating measured quantities for the metabolome, the transcriptome, and
the proteome into mathematical models, combined with methods for the rational design of cellular
networks, has led to the research field Systems Metabolic Engineering, a field that extends and amplifies
the classical field of Metabolic Engineering. This chapter describes mathematical and computational
approaches on the cellular and the process levels. In the Material section, modeling approaches and
methods for model analysis are introduced, and the current state of the art is reviewed. In the Method
section, we propose a protocol for efficiently combining various approaches for the optimal production of
desired biotechnological products.

Keywords: Constraint-based modelling, Dynamic flux balance analysis, Flux balance analysis, In silico
strain optimization, Metabolic Engineering, Metabolic models, Stoichiometric analysis, Succinate
production, Systems Metabolic Engineering, Theoretical yields

1 Introduction

Computational methods and tools are nowadays widely applied for
rational Metabolic Engineering approaches. The optimization of
hydrocarbon and lipid production or degradation is one concrete
example for the application of this tool and has already been applied
successfully by a number of research groups [1–4]. Usually, a large
amount of biological data is necessary for Metabolic Engineering.
For example, the availability of genomic information for a large
number of cellular systems especially requires the use of computers
to store, analyze, and process knowledge of single enzymes, meta-
bolic pathways, and cellular networks. The trend of integrating
measured quantities for the metabolome, the transcriptome, and
the proteome into mathematical models, combined with methods
for the rational design of cellular networks, has led to the research
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field SystemsMetabolic Engineering, a field that extends and ampli-
fies the classical field of Metabolic Engineering. In recent years
different views have become popular that describe the field (Fig. 1).

All views address a different question but have a common aim,
namely, the efficient production of a target. Depending on the
applied tools, methods, and researcher expertise, the cell-based
view, the compound-driven view, or the laboratory-based view pre-
dominate. The cell-based view starts by exploring the capabilities of
the cellular systems and modifies enzymes, pathway elements, or
network elements to optimize the system [5]. Furthermore, the ease
of genetic manipulation and cultivation of the cells is the driving
force. The compound-based view [6] starts with the target compo-
nent and asks how the component can be synthesized. The
laboratory-based view distinguishes between experimental and the-
oretical approaches.

In the theoretical laboratory-based view, computational tools
must perform diverse tasks to support the optimization of cellular
systems with respect to the production of desired compounds.
Three main tasks can be identified: search for information in
genomic and metabolic databases, description and integration of
experimental data in mathematical models, and application of opti-
mization strategies to improve single enzymes, to design pathways
and networks, and to construct new cellular circuits.

For the first of these tasks, databases like KEGG [7], EcoCyc
[8] or Brenda [9] provide information about compounds, reac-
tions, and networks for various cellular systems. Moreover, kinetic
information, that is, information on the temporal behavior of
enzymes, can also be found. In general, the information is very
detailed, ranging from the chemical structure of compounds and
promoter and ribosome sequences to pathway information. In this
way, databases support all strategies for modification of cellular
systems. The setup and the analysis of mathematical models are
further pillars in Systems Metabolic Engineering. Such models are

Target selection
Evolutionary engineering
Integrated bioprocess

Experimental / wet lab
Theoretical / dry lab

Capacity/ network level
Genetic manipulation
Cultivation

Laboratory based

Metabolic Engineering

Compound driven Cell based

Target

Fig. 1 Views describing the field of Metabolic Engineering. Each view tackles the engineering problem of the
efficient target production using different tools and focuses. This chapter describes theoretical tools used in
the laboratory-based view
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helpful in two ways: first, they integrate what we know of a system
in terms of mathematical equations. Since these equations are based
on physical and chemical laws, models are used to check the consis-
tency of the knowledge and thereby allow researchers to detect
missing or incorrect items. Second, quantitative models, that is,
models that are validated with quantitative experimental data, have
potential for prediction. The chance to make predictions about
conditions that were not used for model validation opens possibi-
lities for model-based modifications such as optimization of cellular
properties. Optimization itself plays the most important role in
Systems Metabolic Engineering and is used not only on the cellular
level but also on the process level.

When optimizing the metabolic system with respect to the
production of a target, there are two possible cases. Figure 2
shows that either the target is already inherently produced by the
host cell (case A), or a noninherent pathway has to be inserted (case
B). In case A, a metabolite is often produced only at a low specific
rate r, while the organism is growing at a high growth rate (Fig. 2a,
left). The aim is to construct a strain with a higher specific produc-
tion rate. Caused by a reorganization of the available resources, a
lower growth rate results (Fig. 2a, right). If the target is not
produced by the strain inherently (Fig. 2b, left), heterologous
DNA information should be introduced into the strain. When
new enzymes are expressed and the desired product is built, it is
expected that the growth rate also decreases (Fig. 2b, right).

This chapter describes mathematical and computational
approaches on the cellular and the process level. In the Material
section, modeling approaches and methods for model analysis are
introduced, and the current state of the art is reviewed. In the
Method section, we propose a protocol for efficiently combining
various approaches for the optimal production of desired biotech-
nological products.

Fig. 2 Resource usage in two different cases. The circles represent the available cellular resources and how
they are used in different situations: (a) the target is already produced inherently by the cell (left). Optimization
of this metabolic system results in a rearrangement of the resources (right). (b) If the target is not produced
naturally (left), a noninherent pathway has to be introduced. This also causes a reorganization of the cellular
metabolism. Here, the plasmids represent the heterologous DNA introduced into the host cell (right)
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2 Materials

Commonly used materials for computer-guided Metabolic Engi-
neering include metabolic reconstructions, model equations for the
cellular reaction network and for the bioreactor system, experimen-
tal data, and software. The last category included solvers, comput-
ing environments, and/or programming languages.

2.1 Metabolic

Reconstruction

A genome-scale metabolic reconstruction is a mathematical repre-
sentation of the metabolism of a living cell. It is typically made up of
the stoichiometry of all known reactions that take place inside an
organism and the enzymes and genes associated with that reaction.
Additionally, a reaction accounting for biomass generation
[Eq. (1)] which is based on the biomass composition of that
microorganism and an estimation for growth- (GAM) and
nongrowth-associated energy requirements (NGAM) are also
important components of the metabolic reconstruction. The con-
cept of GAM and NGAM for the description of the energetics of
bacterial cell growth was first mathematically formalized by Pirt
[10]. GAM accounts for the energy needed to synthetize macro-
molecules (DNA, RNA, lipids, etc.) necessary for cell growth, while
NGAM refers to the energy consumed for functions other than
production of new cellular material.

Proteinþ RNA þDNA þ lipidþ lipopolysaccarideþ � � �
þ energy !μ biomass: ð1Þ

High-quality genome-scale metabolic reconstructions for many
industrially important microorganisms are freely available in public
repositories (http://sbrg.ucsd.edu/Downloads). The methods for
building those reconstructions are alsowell established [11]. Curated
metabolic models can be used in constraint-based modeling
approaches for the estimation of metabolic capabilities of the cell,
hypothesis testing and generation, and Metabolic Engineering [12].

The scope and coverage of the metabolic reconstructions can
vary substantially. Table 1 shows the evolution of the genome-scale
metabolic reconstruction of Escherichia coli (E. coli) over the last
decade [13, 14].

During this period of time, many new reactions have been
introduced, and some others have been updated based on newly
available biochemical knowledge. The selection of a specific meta-
bolic reconstruction depends on the aim of the simulations to be
performed. However, it is highly recommended to start with a small
version (core model) of the metabolic network of interest. This
allows a better understanding of the methods used while keeping an
overview of the results obtained.
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2.2 Model Equations In this section, mathematical equations describing the dynamics of
metabolite concentration inside the cell and the reactor are dis-
cussed. The idealized case of perfect mixing, in which no spatial
concentration gradients are considered, is assumed for the reactor
and the cell. The mass balance for the intracellular metabolites is
formulated for an average cell, which is assumed to be representa-
tive of the whole cell population.

2.2.1 Intracellular

Reaction Networks and

Constraint-Based Modeling

Biochemical reactions taking place in a cell can be generically
written as:

γA1j j A þ γB1j j B !r1 γC1j j C þ γD1j j D
γA2j j A þ γX2j j X !r2 γF2j j F þ γG2j j G:

⋮

ð2Þ

γij are stoichiometric coefficients andA, B, X, D, F, and G represent
network components. The corresponding mass balance for each
intracellular component reads:

dCA

dt
¼ γA1 � r1 þ γA2 � r2 � � � � μ �CA ,

⋮
ð3Þ

where CA is the concentration of component A in the cell
[mmol gDW�1] and ri represents the reaction rate of the reaction
i [mmol gDW�1 h�1]. Note that the stoichiometric coefficients γij
are contained in the so-called stoichiometric matrix S. Therefore,
the matrix S itself can be used for the intracellular mass balance
formulation:

dc

dt
¼ Sr � μc; ð4Þ

where r is a flux vector, μ is the growth rate, and c is the concentra-
tion vector, which contains the concentrations for all components

Table 1
Evolution of the metabolic reconstruction of E. coli. Exchange reactions are related to reactions that
permit mass exchange between the cell and culture media

E. coli core iJR904 [15] iAF1260 [16] iJO1366 [17]

Included genes 137 904 1260 1366

Reactions 95 931 2077 2251

Exchange reactions 20 143 298 329

Metabolites 72 761 1039 1136
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(CA, CB, etc.). In most cases, the dilution term (μ c) is small in
comparison to the intracellular fluxes, and the equation can be
simplified as follows:

dc

dt
¼ S r: ð5Þ

The steady state is a special case in which no temporal change of the
intracellular concentrations is considered. This can be mathemati-
cally expressed as:

0 ¼ S r: ð6Þ

The equation above does not have a unique solution. The
number of variables (reactions of the metabolic network) is usually
much larger than the number of equations (metabolites), and
measured reaction fluxes are normally scarce. Additional constraints
can be applied to further reduce the number of allowable flux
distributions [18]. Limits on the range of individual flux values
can be used for this purpose; thermodynamic constraints [19]
expressed as the directionality of a given reaction [16] can thus be
used by setting one of the boundaries for that reaction to zero if the
reaction is irreversible. In a similar way, maximum flux values can be
estimated based on enzymatic capacity limitations [20], or for the
case of exchange reactions, measured maximal uptake rates can be
used (Sect. 3.3). Regulation of gene expression can also be consid-
ered in cases where the regulatory effects have a great influence on
cellular behavior [21]. Usually, these constraints are not sufficient
to reduce the solution space to a single solution. Therefore, linear
programming methods are used to find a flux distribution that
satisfies the problem:

max Z
subject to :

Sr ¼ 0
lb � r � ub;

ð7Þ

where Z is the objective function to be maximized (see Sect. 3.4.1),
r is the flux vector, lb and ub are the lower and upper flux bound-
aries, respectively, and S is the stoichiometric matrix of the meta-
bolic network. A reaction describing biomass generation [Eq. (1)]
has been successfully used as an adequate objective function for
predicting in vivo cellular behavior [22–24]. The above-explained
approach is known as flux balance analysis (FBA) and is the most
commonly used method for simulating the cellular phenotype.
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2.2.2 Model for

Bioreactor System

A generic mass balance equation for any component in a bioreactor
can verbally be formulated as:

accumulation of component ¼ mass added to the system
�mass extracted from the system
þmass converted in the system:

ð8Þ

The term “mass converted in the system” refers to the catalytic
activity of living cells. The equation is used to formulate mass
balance equations for the volume of the reactor, for the biomass,
and for the components in the liquid phase of the reactor. Table 2
gives an overview of the variables used. For a more complete
description, refer to Kremling [25].

Volume of the Bioreactor The dynamics of the reactor volume can be described by:

dmR

dt
¼

X
qin, jρ� qoutρ: ð9Þ

If ρ is assumed to be constant and since mR ¼ VRρ:

dV R

dt
¼

X
q in, j � qout: ð10Þ

Table 2
Overview of the used variables and units for the reactor system

Name Symbol Units

Density ρ g l�1

Reactor volume VR l

Growth rate μ h�1

Biomass yield on substrate i YXS g g�1

Volumetric feed j qin,j l h�1

Volumetric reactor efflux qout l h�1

Mass of liquid in reactor mR g

Biomass mB g

Mass of component i mSi g

Biomass concentration cB g l�1

Concentration of component i cSi g l�1

Molecular weight of component i wSi g mol�1

Exchange reaction for component i rSi
e mol gDW�1 h�1
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Biomass For modeling of the biomass, it is assumed that the feed contains no
cells. Cell recirculation is also not considered. The mass balance for
the biomass reads:

dmB

dt
¼ μmB � qoutcB: ð11Þ

The growth rate μ can be typically expressed as a function of the
substrate uptake rate and the biomass yield: μ ¼ YX=S r e

Si wSi. For
convenience, the biomass dynamics are now expressed in terms of
biomass concentration. This is done by expressing the biomass in
the reactor [g] as a function of the biomass concentration [g l�1]
and the reactor volume [l]:

dmB

dt
¼ d V RcBð Þ

dt
¼ VR

dcB
dt

þ dV R

dt
cB: ð12Þ

Substituting Eqs. (12) and (10) into Eq. (11) and solving for
biomass concentration lead to:

VR
dcB
dt

þ dV R

dt
cB ¼ μmB � qoutcB

dcB
dt

¼ μcB �
X

q in, j
V R

cB: ð13Þ

Components in the Liquid

Phase

The mass balance for substances (substrates/products) in the liquid
phase is derived in a similar way as for the biomass. The mass
balance for the component i is shown in Eq. (14). In this case,
exchange reactions rSi

e between the cell and culture media have to
be considered. A positive sign is used for products secreted by the
cell, whereas a negative sign precedes rSi

e for substrates absorbed by
the cell.

dmSi

dt
¼ q in, j c

in
Si � qoutcSi � r e

SicB V R wSi

dcSi
dt

¼ q in, j
V R

c inSi �
X

q in, j
V R

cSi � r e
Si cB wSi : ð14Þ

Themass balance equations derived for biomass, reactor volume, and
components in the liquid phase can be used to describe the dynamics
of a continuous (q in, j 6¼ 0; qout 6¼ 0), a batch (q in, j ¼ qout ¼ 0), or a
fed-batch process (q in, j 6¼ 0, qout ¼ 0).
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2.3 Experimental

Data

With the development of high-throughput technologies, it is
currently possible to produce large amounts of experimental data
to characterize the proteome, genome, metabolome, and transcrip-
tome of a microorganism under specific conditions. This allows a
system-wide analysis of the cell response to genetic perturbations
and operating conditions in the bioreactor, such as glucose and
oxygen concentrations. Genome-scale reconstructions provide a
suitable framework for the analysis and integration of these large
datasets. To this end, many approaches have been developed over
the last years. Hyduke [26] and Kim and Lun [27] provide a good
overview of the possibilities of integrating omics data with genome-
scale models. A recent multi-scale, genome-wide model of E. coli
[28] represents an illustrative example of integrative modeling. The
model incorporates the gene expression data of 4,189 genes in
2,198 conditions, transcriptional regulation, signal transduction,
and metabolic pathways.

If the abovementioned high-throughput measurements are not
readily available for the organism of interest, insights into the
metabolism of wild-type and mutant strains can be gained using
simple experiments. For instance, measurements of the time course
of concentrations of extracellular metabolites can be used to deter-
mine cell-specific uptake and production rates [29]. The resulting
rates can then be used as constraints for the corresponding
exchange reactions used to reduce the solution space of the meta-
bolic model describing the metabolism of the cell (see Sects. 2.2.1
and 3.3).

2.4 Software Table 3 summarizes some commonly used software packages that
support the calculations necessary for Metabolic Engineering.
Some tools, like YANA, are stand-alone and need no extra software
for their operation. Some others, like the widely used COBRA
Toolbox, are packages that require previous installation of a specific
platform (Matlab or Python) and a solver. Python + COBRApy +
Glpk represent high-quality, free, open-source options and are
recommended if a Matlab license is not available. Gurobi offers a
free academic license and is therefore a good option when
performing quadratic or quadratically constrained programming.

2.5 Next-Generation

Models for Metabolic

Engineering

Metabolic processes taking place in the cell are strictly coordinated
by highly interconnected, complex, and sometimes intricate net-
works. The activity level of a specific enzyme in the cell can be
regulated at the transcription/translation level as well as by using
posttranslational modifications, which in turn are coordinated by
signaling networks. Thus, observable cellular behavior results from
a complex interplay of multiple cellular networks. First attempts to
integrate metabolic reconstructions into additional networks have
already been made by many research groups [28, 35–37].
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Table 3
Commonly used software for calculations in Metabolic Engineering

Description Reference/URL

Platform Matlab High-level language for numerical computation,
visualization, and application development

www.mathworks.com

Python High-level, multi-paradigm programming
language. It is a free and open-source software
and has a community-based development model

www.python.org

Mathematica Computational software program used in many
scientific, engineering, mathematical, and
computing fields, based on symbolic
mathematics

www.wolfram.com/
mathematica

Toolbox COBRA for
Matlab

Matlab package for implementing COBRA
(constraint-based reconstruction and analysis)
methods to simulate, analyze, and predict a
variety of metabolic phenotypes using genome-
scale models

[30]

COBRA for
Python
(COBRApy)

Python package that provides support for basic
COBRA methods. COBRApy includes parallel
processing support for computationally intensive
processes

[31]

CellNetAnalyzer Matlab toolbox that provides a graphical user
interface and various computational methods
and algorithms for exploring structural and
functional properties of metabolic, signaling, and
regulatory networks

[32]

Pathway Pioneer Web-based biological engineering tool that allows
dynamic interaction with biological models. The
underlying data is flux balance analysis (FBA)
computed using COBRApy

www.
pathwaypioneer.
org

SNA:
stoichiometric
network
analysis

Interactive, high-performance toolbox for
analyzing steady-state behavior of metabolic
networks. The toolbox is mainly implemented in
Mathematica

[33]

YANA Platform-independent, dedicated toolbox for
metabolic networks with graphical user interface
to calculate, edit visualize, centralize, and
compare elementary flux modes

[34]

Solver Glpk The GNU Linear Programming Kit (Glpk) is
intended for solving large-scale linear
programming (LP), mixed integer programming
(MILP), and other related problems

www.gnu.org/
software/glpk

Gurobi Commercial solver for optimization problems. Free
academic license available. Supports LP,
quadratic and quadratically constrained
programming (QP and QCP), and MILP

www.gurobi.com

Lindo Commercial optimization modeling software www.lindo.com
Mosek Tool for solving mathematical optimization

problems: LP, QP, conic problems, MILP
www.mosek.com
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A current example is the development of the first model, which
aims to integrate metabolism and gene expression (ME-Models)
for E. coli [35, 36]. ME-Models extend the prediction capabilities
of the traditional metabolic models (M-models), allowing, for
instance, the assessment of the metabolic burden observed in cells
expressing large engineered pathways. Thus, with ME-Models,
engineering strategies to overcome the metabolic burden can be
better explored. With the addition of further details and the refin-
ing of the ME-Models [37], the dimension of the stoichiometric
matrix grows to a computationally challenging magnitude.
The great scope of the ME-Models encompasses not only their
tractability but also their analysis of the simulation results. As an
alternative to these detailed models, a mechanistic ODE-model
(compartment model) that describes transcription and translation
[38, 39] of gene pools can be coupled with a metabolic model.
The application of such a compartment model that describes the
relationship between growth rate and the content of RNA, DNA,
and bulk protein, and additionally accounts for the amount of free
and bounded ribosomes, improves the prediction capabilities of the
extended model while keeping it tractable.

3 Methods

Here, we propose a five-step Metabolic Engineering strategy to
achieve the optimal production of a target molecule in a selected
host microorganism. Figure 3 summarizes the main phases of the
strategy and shows the associated chapters, in which each step is
explained in detail.

Theoretical flux
distribution

FBA
Strain & medium

optimization

Feasible optimal
flux distribution

Data integration
& flux calculation

Dynamic process
and strain model

Dynamic flux
balance analysis

Valid flux
distribution

Process
optimization

Target

3.1

3.3 / 3.4

3.5

3.2

Material

3.5

Fig. 3 Five-step Metabolic Engineering strategy. Light gray symbols represent methods, while the dark gray
symbols represent the result of these methods. Material is an input in different stages but is shown only for the
first method. The sections of this book chapter are represented by the numbers
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In the first step, a theoretical characterization of the capabilities
of the strain is performed. Moreover, optimal pathway configura-
tion and medium composition are estimated for the production of
the target. For this purpose, an adequate metabolic model is ana-
lyzed using flux balance analysis (FBA) and its extensions. In the
second step, in silico strain optimization algorithms are used to
predict gene/reaction deletions that redirect the carbon flow
toward the production pathways. In the third and fourth steps,
experimental data is analyzed and integrated. The comparison of
the estimated intracellular flux pattern of the wild-type and mutant
strains can be used to evaluate the effect of genetic manipulations
on the improvement of product yield. In the last step, the perfor-
mance of the engineered strains in a bioreactor is assessed, and by
selecting adequate process conditions, improvements of productiv-
ity and final titer are achieved. Dynamic flux balance analysis plays a
central role in this last step.

3.1 Theoretical

Product Yields and

Pathways

Even before experimental data for the strain to be engineered is
available (Sect. 2.3), a pure theoretical characterization of the met-
abolic system capabilities can be performed using a suitable meta-
bolic reconstruction. The methods discussed in this section
include:

– Theoretical product yields: can be used as an indicator for the
performance potential of the wild-type/mutant strains under
different conditions

– Optimal pathway configuration: facilitates decisions about which
pathway or pathway combinations have to be used to optimally
produce the target molecule

– Optimal medium composition: guides the selection of the real
medium composition by showing which substrates have a posi-
tive impact on product yield

3.1.1 Calculation of the

Theoretical Product Yields

A metabolic reconstruction, specific for the host strain used, is
necessary to calculate the maximal theoretical product yield sup-
ported by the host microorganism. The theoretical product yield is
a function of the thermodynamic, stoichiometric, and physiological
constraints considered when performing the calculations. The pro-
cedure for calculating the maximal theoretical yield is explained for
the production of succinate in E. coli as a case study.

1. Choose a metabolic reconstruction of E. coli. See Table 1.

2. Set the production of succinate as an objective function. Here
one can choose between selecting an existing reaction and
adding a new one to the model. In case of the E. coli core
model, the reaction SUCCt3 (succinate transport out via pro-
ton antiport) is a good candidate for the objective function. If
one decides to add a new reaction, it should be of the form
“succ[c] !.”
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3. Define the medium composition. This is done by modifying
the upper and lower limits of the exchange reactions. For this
specific example, we will assume that glucose is the sole carbon
source.

4. Add additional constraints to the model (gene deletions,
growth rate, GAM value, etc.).

5. Assume an arbitrary uptake rate for glucose (if no experimental
measurements are available) and solve the linear programming
problem using an adequate solver (see Note 1).

6. The resulting flux distribution should now be scaled to the
input flux of glucose in order to get the value of the maximal
theoretical yield (see Note 2).

The COBRA Toolbox provides a set of functions that facilitate
the execution of all these steps with only a few code lines (Table 4).
For a detailed explanation of these functions, refer to the COBRA
Protocol [30].

The effect of imposing different constraints on the maximal
theoretical yield is illustrated in Fig. 4. Aerobic and anaerobic culti-
vations are considered with glucose as the sole carbon source. Three
situations are analyzed: two cases in which growth is not considered
and one case in which the growth rate has an arbitrary value of
0.35 h�1. The yield values reported in Fig. 4 represent the limits
for the metabolic system under these conditions. No higher yields
are possible as long as the metabolic network is not modified (addi-
tion or stoichiometry modification of reactions). It can be seen
that growth has a negative effect on the maximal theoretical yield.

Table 4
Theoretical maximal yield calculations using the core model of the E. coli metabolism and functions
of the COBRA Toolbox

Matlab code Explanation

model¼readCbModel(’ecoli_core_model.
xml’);

Load the E. coli core model

model¼changeObjective(model,’SUCCt3’); Set the objective function

model¼changeRxnBounds(model,’EX_glc
(e)’,-1,’l’);

Assume an uptake rate for glucose

model¼changeRxnBounds(model,’EX_o2
(e)’,0,’b’);

Define the medium composition, e.g.,
oxygen

model¼changeRxnBounds
(model,’SUCCt2_2’,0,’b’);

Constrain the solution to avoid cycles

model¼changeRxnBounds
(model,’ATPM’,0,’b’);

Optional: assume no maintenance ATP
requirement

solution¼optimizeCbModel(model,’max’); Optimize the LP problem
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This is a logical consequence if the biomass is considered as an
additional product that has to be synthetized by the metabolic
system. The more biomass is produced, the less carbon will be
available for the production of the target biomolecule. Additionally,
Fig. 4 shows that for the succinate production in E. coli, a maximal
theoretical carbon yield of one can only be reached under aerobic
conditions. This is further analyzed in Sect. 3.1.3.

3.1.2 Determining an

Optimal Pathway

Configuration Using

Stoichiometric Analysis

Many bio-products can be produced using different biochemical
routes. These routes can occur naturally either in the host strain
itself (native pathways) or in other organisms (heterologous path-
way), or they can be synthetically generated. Metabolic engineers
are thus often confronted with the task of selecting the best path-
way configuration to be engineered in the host cell. Pathway con-
figuration refers here to the situation of using pathway A, pathway
B, or a combination of both for the biosynthesis of a target product
R (Fig. 5a). This choice should be made considering many aspects,
e.g., energy, cofactor, and reduction equivalent consumption.
Curated metabolic models can be used to guide the selection
process of the pathway configuration with the best performance
index: molar and carbon yield are commonly used performance
indices when comparing pathways (see Note 3). The procedure of
finding a pathway configuration that reaches the maximal perfor-
mance index is explained using a hypothetical case study, in which
pathway A and pathway B lead to the formation of the product R.
In the hypothetical case study, pathway A is a native pathway, while
pathway B is a heterologous one.

1.5

1.2

0.8

Molar yield
[mol succinate/mol glucose]

1

0.8

0.53

Carbon yield
[C-mol succinate/C-mol glucose]

Aerobic succinate production
µ=0 h-1

Anaerobic succinate production
µ=0 h-1

Anaerobic succinate production
µ=0.35 h-1

Fig. 4 Effect of constraints on theoretical yields: aerobic and anaerobic cultivations are considered with
glucose as sole carbon source for the production of succinate in E. coli. Three different situations are analyzed:
two cases in which growth is not considered (μ ¼ 0) and one case with a growth rate of 0.35 h�1. The
maximal possible yields are calculated for each situation, and the results are presented as molar (left) and
carbon (right) yields. A carbon yield of 1 (equivalent to a molar yield of 1.5) indicates that the metabolic system
is capable of converting all supplied carbon atoms into product
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b

Fig. 5 (a) Pathway configuration for wild-type and engineered but suboptimal strain: two different situations
are shown. The left panel shows the wild type, in which the substrate flows only into the native pathway A
(f ¼ 1). The native pathway A consumes one molecule of ATP and NAD(P)H. In the central panel, pathway B is
added to the wild-type strain. The heterologous pathway B produces one molecule of ATP and NAD(P)H. In this
engineered strain, 10% of the carbon flows into the native pathway A and the rest into pathway B (f ¼ 0.1).
This pathway configuration is not optimal. Equations describing the carbon distribution are shown in the right
panel. rA and rB represent the rates through the first reaction of pathways A and B, respectively. A f-value of
one means that all of the carbon flows into pathway A. (b) Simulation of different pathway configurations. The
maximal performance index is reached when 37% of the substrate flows into the native pathway A (f ¼ 0.37).
The synergy observed arises from the dynamics of ATP and NADPH between the two pathways
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1. Identify the different pathways that lead to the target bio-
product formation.

2. Incorporate new biochemical routes, if necessary.

3. Identify the common branch point of the pathways. See
Fig. 5a.

4. Use the flux ratio between pathway A and B to specify the flux
through each pathway. Use the variables x and f as shown in
Fig. 5a for this propose.

5. Add the marked equation in Fig. 5a as a new constraint in the
stoichiometric matrix. The coefficients are x and�1 for the first
reaction of pathways A and B, respectively.

6. Calculate the maximal theoretical performance index for differ-
ent pathway configurations, i.e., different values of flux ratio x
or flux fraction f. Note that the variable f (flux fraction) can
only take values between 0 and 1, while the flux ratio ranges
from 0 to infinity.

7. Select the optimal pathway configuration from the simulation
results. See Fig. 5b.

The effect of the pathway configuration on the selected perfor-
mance index, in this case molar yield, is illustrated in Fig. 5b. In this
hypothetical case study, the native pathway A has a lower perfor-
mance index than the heterologous pathway B. However, the sys-
tem only becomes optimal when both pathways are expressed in a
fraction of f ¼ 0.37. Shen and Liao [40] experimentally proved the
validity of the approach described above when engineering E. coli
for the production of 1-propanol. They observed an improvement
of the 1-propanol yield of 30–50% when expressing both the heter-
ologous citramalate pathway and the native threonine pathway for
the production of the 1-propanol intermediate 2-ketobutyrate,
compared to the yield when using only one pathway. The synergy
observed was in good agreement with the predictions made with
the approach explained above.

3.1.3 Estimation of the

Culture Medium

Composition

Which are the optimal substrates for the production of a desired
target molecule? Should the production be performed under aero-
bic or anaerobic conditions? Can the totality of the assimilated
carbon be transformed into product by the metabolic system in its
actual configuration? Finding the answers to these and similar
questions can be challenging and requires a great experimental
effort. However, when dealing with these issues, a sensitivity analy-
sis of the metabolic model of the strain being engineered can be
helpful. The general procedure is illustrated again, using the exam-
ple of succinate production in E. coli.

1. Select an adequate metabolic reconstruction of the analyzed
strain. See Sect. 2.1.
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2. Define a base model. This model will represent the starting
conditions for the sensitivity analysis. In the concrete case of
the succinate production in E. coli, the starting conditions
correspond to no carbon source and anaerobic conditions.

3. Define a biologically meaningful range for each analyzed
exchange reaction. For instance, the glucose uptake rate was
assumed to have a maximal value of 18 mmol gDW�1 h�1.

4. Vary the lower limit of an arbitrary exchange reaction, inside of
the predefined range, in order to permit the system to absorb
the corresponding compound.

5. Calculate the maximal value of the desired performance index.
See Sect. 3.1.1.

6. Repeat steps 4 to 5 until all exchange reactions of interest are
analyzed.

7. Sort the results in a table and make decisions about what
compound should be added to the culture medium (base
model) in order to improve the performance index.

8. If the desired value for the performance index is not reached
after modifying the base model, repeat steps 1–7 until the
desired performance is accomplished.

The production of succinate in E. coli is an extensively studied
process. Therefore it is a good case study to show the utility of the
approach explained above in guiding the selection of medium
composition. Encouraging steps toward an engineered E. coli strain
with high yield, productivity, and titer have been made. Most of the
work reported to enhance the succinate production has been per-
formed under anaerobic conditions [41–43]. Interestingly, a simple
sensitivity analysis shows (Table 5b) that the maximal theoretical
carbon yield can only be reached under aerobic conditions. E. coli
mutants, which produce succinate under aerobic conditions, and a
theoretically designed high-performance aerobic strain have been
reported [44, 45]. The sensitivity analysis can also guide the devel-
opment of an anaerobic cultivation process. It shows that the
addition of carbon dioxide to the system has a positive effect on
the maximal yield. It is therefore logical to use a carbon dioxide
atmosphere in anaerobic cultivations. This fact has been identified
and used by many research groups [46–48].

3.2 In Silico Strain

Optimization

Genome-scale reconstructions of metabolism have been used for
over a decade now to predict genetic modifications that improve
the product yield and production performance of the engineered
production strains. Some manipulation strategies that can be
explored in silico are listed in Table 6. A more extensive overview
of these methods can be found in [5]. The first algorithms for in
silico strain design permit us to predict the effect of reaction
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knockouts, that is, they consider the effect that reaction deletions
have on the metabolic network and product yield. Predicting the
up- and downregulation of reactions represents an extension of
these first algorithms. Additionally, if gene-protein reaction

Table 5
Sensitivity analysis of succinate production in E. coli. The core model was used for the calculations.
(a) First round of the sensitivity analysis. The maximal theoretical carbon yield [C-mole succinate/
C-mole glucose] for each carbon source is shown. Malate and fumarate exhibit the highest performance,
followed by fructose and glucose. (b) Glucose is selected as the carbon source and a second round of
sensitivity analysis is performed. The addition of oxygen permits themodel to reach themaximal possible
carbon yield. Under these conditions it is theoretically possible to use all carbon atoms of glucose for the
synthesis of succinate (c). After addition of oxygen, the system has reached its optimum, and further
modifications have no effect on the yield

(a) Base model: no carbon source,
anaerobic, μ ¼ 0

(b) Base model: glucose,
anaerobic, μ ¼ 0

(c) Base model: glucose,
aerobic, μ ¼ 0

EX_mal-L (e) 0.85714 EX_o2 (e) 1 EX_ac (e) 1

EX_fum (e) 0.85714 EX_fum (e) 0.99966 EX_acald (e) 1

EX_fru (e) 0.8 EX_mal-L (e) 0.99966 EX_akg (e) 1

EX_glc (e) 0.8 EX_co2 (e) 0.98778 EX_co2 (e) 1

EX_pyr (e) 0.44444 EX_akg (e) 0.97978 EX_etoh (e) 1

EX_acald (e) 0.4 EX_pyr (e) 0.87516 EX_for (e) 1

EX_akg (e) 0.4 EX_gln-L (e) 0.85674 EX_fru (e) 1

EX_lac-D (e) 0.23529 EX_glu-L (e) 0.85674 EX_fum (e) 1

EX_ac (e) 0 EX_ac (e) 0.8 EX_glc (e) 1

EX_co2 (e) 0 EX_fru (e) 0.8 EX_gln-L (e) 1

EX_etoh (e) 0 EX_glc (e) 0.8 EX_glu-L (e) 1

EX_for (e) 0 EX_lac-D (e) 0.8 EX_h2o (e) 1

EX_gln-L (e) 0 EX_acald (e) 0.8 EX_h (e) 1

EX_glu-L (e) 0 EX_etoh (e) 0.8 EX_lac-D (e) 1

EX_h2o (e) 0 EX_for (e) 0.8 EX_mal-L (e) 1

EX_h (e) 0 EX_h2o (e) 0.8 EX_nh4 (e) 1

EX_nh4 (e) 0 EX_h (e) 0.8 EX_o2 (e) 1

EX_o2 (e) 0 EX_nh4 (e) 0.8 EX_pi (e) 1

EX_pi (e) 0 EX_pi (e) 0.8 EX_pyr (e) 1

EX_succ (e) 0 EX_succ (e) 0.8 EX_succ (e) 1

EX_mal-L(e) exchange reaction for L-malate, ac acetate, acald acetaldehyde, akg 2-oxoglutarate, etoh ethanol, for
formate, fru D-fructose, fum fumarate, glc D-glucose, gln L-glutamine, glu L-glutamate, h H+, lac-D D-lactate, mal-L L-
malate, nh4 ammonia, pi phosphate, pyr pyruvate, succ succinate
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(GPR) mappings are available for the metabolic system being ana-
lyzed, algorithms that only predict gene knockouts can be used and
should be preferred, as exactly these modifications will later be
experimentally implemented in the real biological systems.

The general procedure used to perform in silico strain optimi-
zation is explained using the metabolic network shown in Fig. 6, as
described by Kremling [25]. X and P represent the biomass and the
target product, respectively. P, C, and B are intermediates. In this
example, the synthesis of P is coupled to growth (X).

1. Set up the metabolic model or choose an existing genome-scale
metabolic reconstruction.

2. Identify the reactions that contribute to the production of the
target molecules. In this example the reactions r4 and r6 synthe-
tize the product P, and the reactions r2, r3, r5, and r6 contribute
to the formation of biomass.

Table 6
Common strain optimization algorithms

Strategy Algorithm Approach Reference

Reaction knockout OptKnock Bilevel optimization, MILP [49]
RobustKnock Bilevel max-min optimization, MILP [50]

Gene knockout OptGene Genetic algorithm [51]
GDLS MILP [52]

Reaction upregulation/
downregulation

EMILiO Bilevel optimization, iterative linear program
(ILP), and MILP

[44]

OptForce LP [53]
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2X
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a b c

Fig. 6 (a) Hypothetical metabolic network for the production of P and X. (b) The network consists of seven
reactions. A, B, C, and D are intermediates. (c) Two reaction knockouts – r3 and r7 – are necessary to
maximize the production of biomass and at the same time product P [25]
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3. Define the objective functions: Z1 ¼ f(r4,r6) and Z2 ¼ f(r2,r3,
r5,r6) for product and biomass, respectively.

4. Select the set of reactions that can be deleted from the network.

5. Determine the number, n, of reactions to be knocked out. The
computing time required to find a solution depends on the
algorithm used and can increase exponentially or linearly with
the total number of knockouts in the mutant strain.

6. Select a strain optimization algorithm (Table 6) and perform
the simulation. It is strongly recommended to use more than
one algorithm to perform the in silico strain optimization.
Since each algorithm examines the solution space in a different
way (local/global search, one path/multiple path), finding
different solutions is to be expected. OptKnock is a good
starting point and is already implemented in the COBRA
Toolbox.

7. Analyze the predicted gene deletions in respect to biological
consistence and select the best option to be experimentally
implemented. Note that due to inherent inaccuracies in the
metabolic model, not all predicted mutants are biologically
feasible. Further genetic modifications might be necessary in
order to obtain the optimal flux distribution that maximizes
the product yield. A good example for this situation is the
design of a high-performance aerobic E. coli strain for the
succinate production, in which additional genetic modifica-
tions are necessary to obtain the optimal flux distribution pre-
dicted by EMILiO [44].

In the case of the network shown in Fig. 6, only two reaction
knockouts are sufficient to maximize the reaction flux through the
product and biomass. The network was optimized using the
OptKnock algorithm. Reaction two to reaction seven conform
the set of reactions that can be deleted. The calculation time
required was 0.005 s.

3.3 Analysis

of Experimental Data

For analyzing and optimizing a host strain, substrate uptake rates
and product excretion rates must be determined to calculate the
complete flux distribution. The rates measured can be used to
identify bottlenecks as well as to confirm engineering success.
Basically, the more metabolic data are available, the more precise
and better is the evaluation of the fluxes.

Biomass and substrate concentrations especially are easily mea-
surable during an experiment, and commercial kits for accessing
them are often available. In many laboratories, measurement tools
like HPLC to quantify the cellular output in the form of metabo-
lites have already been established. In an open system, such as the
standard shaking flask, it is not possible to close the mass balance
because of the impossibility of determining all carbon fluxes in

172 M.A. Valderrama-Gomez et al.



the system (e.g., CO2 that is produced by the cells). Therefore, a
bioreactor system and an exhaust gas analyzing system are
recommended.

After pre-culturing, the strain of interest should be inoculated
in a defined minimal medium with a carbon source of interest.
According to the fermentation strategy, either a feeding strategy
or a batch cultivation with a specific initial concentration of the
carbon source can be applied. Substrate feeding has to be included
in the mathematical analysis as described in 2.2.2. The specific
uptake and formation rates are determined depending on the
corresponding time course data for the metabolite concentrations
in the bioreactor system. To determine all relevant rates, data for all
metabolites and for cell dry mass have to be taken from the same
time frame and growth phase as shown in the gray-shaded area
in Fig. 7a.

As the rates should be normalized to the cell dry mass (DW), as
a first step it is useful to correlate the measured optical density (OD)
with the biomass (Fig. 7b). If there is no DW available, the OD can

Fig. 7 Fictive data for strain performance during a production process (a). The measured optical density
increases with rising biomass (b). Graph c shows the logarithmic optical density in the exponential phase
against time. Substrate concentration (d) and product concentration (e) are plotted with respect to the cell dry
weight. To evaluate the respective rates, concentrations are related to biomass formation. Therefore,
equations of the contemplated gradients are necessary. The rate is equal to the slope of the straight line
multiplied by the growth rate. Corresponding rates have to be analyzed in the same time frame and growth
phase (gray shaded). A high coefficient of correlation R2 is required to obtain conclusive results
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also be used as a proxy for biomass. In order to correlate substrate
uptake and product formation rates, it is important to always use
the same parameters (wavelength, growth stage, medium, etc.).
At least three biological replicates should be measured to minimize
the standard deviation of the measurement.

The biomass formation, also known as specific growth rate μ, is
one particular case of formation rate. It can be determined directly
from the slope of the measured logarithmic OD curve. Due to the
(linear) correlation between OD and biomass concentration
(Fig. 7b), the slope of the data points in the chosen interval is
equal to the growth rate μ [Fig. 7c, Eq. (15)].

Metabolic rates have to be determined from the extracellular
time course data of substance depletion or accumulation dcsi

dt that has
to be related to the currently measured biomass concentration cB
[Eq. (16)]. Uptake and formation rates r for a substance S not only
correspond to the respective time point of the measurement but
also to the already generated biomass cBt [29]. The temporal alter-
ation of biomass [Eq. (15)] has to be linked to the uptake or
formation rate [Eq. (16)] to analyze those rates:

μ ¼ 1

cBt
*
dcB
dt

resp: cBt ¼
1

μ
*
dcB
dt

ð15Þ

r ¼ 1

cB
*
dcsi
dt

¼ μ*dt

dcB
*
dcsi
dt

¼ μ*
dcsi
dcB

: ð16Þ

In order to calculate the substrate uptake rate as well as the product
formation rate, the according concentration has to be plotted
against the corresponding biomass (Fig. 7d and e). The slope dcsi

dcB
multiplied by the growth rate μ gives the respective rate [Eq. (16)]
(see Note 4).

3.4 Estimation

of the In Vivo Flux

Distribution

First of all, measured rates can be fed into the already established
metabolic model to restrict the solution space (Fig. 8). Addition-
ally, to provide realistic flux estimations, an objective function and
an adjusted value for GAM (see below) are included in the
calculations.

Experimental data

Objective function

Constraints
rsubstrate
rproduct
µ

Model
Fluxes:
rATP
YP/S;YX/S
µmax

Fig. 8 In a comprehensive model, there are more unknown variables than equations. For defining a range of
solutions, some constrains have to be given [11]. Additionally, a suitable objective function concerning the
model output is required to compute an optimal network state and a resulting flux distribution [14]
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3.4.1 Selecting an

Adequate Objective

Function

The most common assumption is that microbial cells maximize
their growth [54]. For this reason biomass production is a fre-
quently used objective function. However, depending on the
growth phase, different objective functions as summarized in [54]
are possible. So, in some cases it will be advantageous to combine a
number of objective functions to restrict the solution space. If there
is no growth, the energetic efficiency could be optimized instead of
biomass yield. In this case the objective function would be the ATP
yield. Another approach is to minimize the substrate consumption
or the required number of reaction steps.

3.4.2 Calculation

of Growth-Associated

Maintenance (GAM)

Energy has to be considered for growth prediction. Cells have a
specific energy requirement for maintenance metabolism [10]. This
rate is defined as nongrowth-associated maintenance energy
(NGAM) [14]. The yield of substrate uptake necessary for the
resulting growth is defined as growth-associated maintenance
metabolism (GAM) [14]. The available energy is specified with
respect to the ATP concentration in order to meet different sub-
strate compositions. The following steps need to be completed to
calculate specific GAM values:

1. Determine growth rate and substrate uptake rates of the ana-
lyzed strain from different experimental setups (here named as
setups 1–5) with various growth rates (e.g., adjusted by dilu-
tion rate in a continuous culture using a chemostat [11]
(Fig. 9a)).

2. Compute the slope of the linear growth rate/substrate uptake
rate correlation between μ ¼ 0 and μmax (Fig. 9b).

3. Calculate, with the help of the already available stoichiometric
model, different theoretical yields YX/S under different theo-
retical GAMs (here named GAM1–GAM3) (Fig. 9c) as
described above (Sect. 3.1.1). The strain-specific NGAM
value is assumed to be the same.

4. After correlation of the used theoretical GAMs (here again
GAM1–GAM3) with calculated yield YX/S (Fig. 9d), the theo-
retical GAMout of the interpolated experimental data (Fig. 9b)
can be read out as shown in Fig. 9e.

5. Depending on the model, wild-type E. coli strains have a GAM
around 60 mmolATP gDW�1 h�1 [16]. Mutants with an
altered network structure will show a different behavior, and
growth yields can be compared (Fig. 9f).

6. The existing model can be adapted to be strain specific with the
experimentally determined GAM. For the modeled strain, it is
possible to predict growth rate and flux distributions for a given
substrate uptake as well as vice versa.
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The value for NGAM can be calculated as described in
Sect. 3.1.1 by setting ATP as an objective function and measured
qS NGAM as input (Fig. 9b).

3.4.3 Reconstructing In

Vivo Flux Distributions

The strain performance has to be recorded under various conditions
and experimental setups with different growth rates to determine flux
distributions. Flux balance analysis enables the calculation of the flux
through the metabolic network of the cell (see above Sect. 3.1.1).
For many organisms, these networks are already available online. It is
possible to reconstruct the flux distribution in a microbial cell based
on metabolic reconstructions in the systems biology markup lan-
guage (SMBL) format available online with the help of the COBRA
Toolbox [30]. This toolbox allows the visualization of the actual
fluxes and offers us the opportunity to compare fluxes in mutant
strains with wild-type flux distributions (seeNote 5).

As shown in Fig. 10a, many rates in the E. coli coremodel are not
available (thin arrows). It is possible to calculate the carbon flux in
silico by setting themeasured uptake and excretion rates as additional
constraints. Figure 10b shows a hypothetical flux distribution
through the network. Setting the hypothetical flux D–E to zero
(e.g., by a mutation) results in a measurable shift in the production
rate of metabolite I. If the predicted flux distributions are not con-
gruent to the actual measured rates, it is an indication that regulatory
interactions or further pathways are missing in the model.

Fig. 9 The strain of interest can be analyzed by considering different growth rates and substrate uptake yields
under various setups (a, b). Theoretical strain behavior with fixed GAM values has to be computed (c) to create
the YX/S to GAM ratio (d). From this correlation the GAM of the strain can be determined (e). The yield of the
substrate with respect to the growth rate can be compared to the performance of other strains (f), and growth
rates can be predicted
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The presentation of metabolic networks is realized via graphical
visualization of subnetworks. The output generated by Matlab
enables a comparison of flux rates as shown in Fig. 10b. Maps
from different metabolic pathways are available in BiGG knowledge
base [55]. To create the image it is necessary to load the chosen
map of interest into Matlab and draw it as a Matlab figure. This can
be realized with only a few commands [30].

The stoichiometric matrix has to be modified to adapt the
reconstruction to mutant strains proposed via in silico strain opti-
mization. To get an idea of the most probable solution, the solution
space of the mutant could be analyzed using the MOMA method,
which is the minimization of metabolic adjustment [56]. This
theory is based on the assumption that the “fitness” of the wild
type has evolved over millions of years and represents the optimal
metabolic state. This kind of pressure is not present for genetically
modified organisms, which means that they probably do not pos-
sess the optimal growth configuration [56]. Caused by this, the
most realistic flux distribution is the one derived from the solution
space which contains the minimal distance to the wild-type flux
distribution.

3.5 Assessing and

Improving the

Performance of

Engineered Strains in a

Bioreactor

The goal of the algorithms for strain optimization discussed in
Sect. 3.2 is the redesign of the host metabolic network to maximize
the yield of a target molecule while simultaneously supporting
growth. This approach does not explicitly take into account the
subsequent utilization of the engineered strain in a bioprocess, and
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Fig. 10 Metabolic data can only partially be determined via experimental setups. As shown in a schematic cell
with metabolites A–I, experimental measured rates (thick arrows) have to be supplemented by in silico
calculated rates (thin arrows) for wild type and mutants to determine the complete flux distribution (a). Dark
numbers in (b) represent the actual flux rates. A modification in the network, for example, the fluxD ! E is set
to zero, results in an altered flux distribution as shown in (b). New rates are depicted in light gray
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consequently, the selected strain might not be optimal from an
economical/operational point of view. The solution to this
problem can be addressed in two different ways. The first approach
considers criteria related to bioprocess design in the early stages of
strain design. This can be done by combining existing in silico
strain optimization algorithms with dynamic flux balance analysis
[23, 57, 58] to optimize yield (Y), titer (T), and productivity (P) in
a balanced fashion. Zhuang [59] presented a Dynamic Strain Scan-
ning Optimization (DySScO) strategy that uses this rationale to
produce strains that balance the product yield, titer, and productiv-
ity. DySScO searches for a strain design that maximizes a user-
defined metric of the form: Z ¼ f(Y, T, P). The second approach
consists of decoupling the production of the target molecule from
growth. The production process is thus divided into two phases.
In the first phase, biomass is produced at a high rate and no
production occurs. The second stage is characterized by low to no
growth and production of the target chemical. The switching time
from the growth phase to production has a high impact on the
overall process performance.

Irrespective of the approach used, dynamic flux balance analysis
(dFBA) has a central role in assessing and improving the perfor-
mance of engineered strains in a bioreactor. dFBA combines both
the process dynamics with the metabolic network, thus allowing the
simulation of concentration profiles and flux distributions over
time in the reactor and the cell, respectively. Shown here is the
general procedure for performing a dFBA simulation with the
COBRA Toolbox. Moreover, the utility of dFBA is illustrated
with a case study.

1. Select a metabolic reconstruction and perform the necessary
adjustment of the network (gene/reaction deletions, new path-
ways) in order to describe the metabolism of the strain studied.
See Note 6.

2. Specify values for strain-specific parameters. This refers to sub-
strate uptake and production rates, maximum growth rate,
product inhibition, etc. These values can be taken from the
literature or correspond to experimental measurements.

3. Define initial values for process-specific parameters. This refers
to mode of operation (batch, fed batch), initial concentration
of biomass and substrates, duration of the process, maximal
reactor volume and feeding strategy (continuous substrate
feeding, substrate pulses), time point of induction, etc.

4. Perform a dFBA simulation and determine values for yield,
titer, and productivity.

5. Repeat steps 3 to 4 with a modified set of process-specific
parameters until the desired performance for yield, titer, and
productivity is reached. Alternatively, an optimization
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algorithm can be used to find the set of optimal process-specific
parameters that maximize yield, titer, and productivity.

The procedure explained above will, in the following, be used
to study a hypothetical case for which experimental data is available.
The production system consists of a strain carrying an inducible
plasmid, which expresses heterologous enzymes necessary to
synthetize some product R. In this hypothetical experiment, cells
were cultivated until a defined optical density was reached, and then
the synthesis ofR was induced. The effect of varying the time point
of induction on the yield, productivity, and titer will be analyzed.
Figure 11 shows the experimentally obtained concentration profiles
of biomass, glucose, and product inside the bioreactor over time.
As can be concluded from the glucose concentration profile in
Fig. 11 (circles, middle plot), the production of R occurs in a
semibatch process in which glucose is added to the reactor in the
form of two pulses over the course of the fermentation. The
measured concentrations, shown as circles in Fig. 11, are used to
determine glucose uptake and production rates before and after
induction of the system. It is assumed that these parameters do not
depend on the point of induction of the culture.

Figure 11a shows the consequences of varying the time point of
induction for the plasmid-based system on the overall process
performance. The dashed and dotted lines correspond to simula-
tions performed with a modified time point of induction of 1.25*
tind,exp or 0.5* tind,exp, respectively. tind,exp refers to the experimental
time point of induction and is used as a reference for the simula-
tions. Increased product and biomass concentration is predicted by
dFBA when the induction occurs at 1.25*tind,exp. Interestingly,
under this circumstance, the simulation also indicates that the
actual fermentation setup would not support growth and produc-
tion throughout the whole process time. The initial glucose
concentration or the first glucose pulse has to be increased so that
the process time is the same as in the experimental setup. The
simulation also predicts the effect of a premature time point of
induction. If the induction occurs at 1/2*tind,exp, the biomass
concentration remains comparatively low and the glucose concen-
tration high. This in turn generates a lower end titer and produc-
tivity (right plot).

Figure 11b represents the behavior of the system which was
simulated when the induction was made at 1.25*tind,exp, and the
first glucose pulse is sevenfold increased. This increase is realized to
extend the process time of the simulated process thus allowing for a
comparison with the experimental data. The improved feeding
strategy leads to a twofold increase of the productivity and the
end titer, as can be seen in Fig. 11b.
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4 Notes

1. Glpk is a free, widely used linear programming solver.
However, its installation and use with the COBRA Toolbox
can sometimes be difficult. Gurobi offers a good alternative
when there is trouble with Glpk. At the homepage http://
www.gurobi.com/, a free distribution can be downloaded for
academic use.

Fig. 11 Dynamic flux balance simulations for the production of a hypothetical target compound R. Biomass,
glucose, and product concentration in the reactor over process time are shown. Circles (○) correspond to
hypothetical measured concentrations. Solid lines represent simulated profiles using the experimental time
point of induction, tind,exp. Dashed lines (-) were simulated with a time point of induction of 1.25*tind,exp and
dotted (l) lines with a time point of induction of 0.5*tind,exp. (a) The experimental feeding strategy is conserved
for the simulations. (b) The first glucose pulse is increased sevenfold and the simulation for the process with
an induction time point of 1.25*tind,exp is performed again
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2. The reaction ’SUCCt2_2’, which transports succinate from
the culture medium to the cytoplasm of the cell, has to be
constrained to carry a reaction flux of zero. This prevents the
occurrence of cycles when calculating the maximal theoretical
succinate yield. These cycles lead to the reabsorption of the
secreted succinate and thus generate an artificially high flux
through the reaction ’SUCCt3’. As a consequence, the calcu-
lated maximal theoretical yield has no biological meaning. This
holds true for the calculation of the maximal theoretical yield
for any target molecule using metabolic models. An easy way to
verify the consistency is to calculate the carbon yield associated
with the maximal yield being computed (molar or mass yield).
Values for carbon yields greater than one are not consistent and
need to be verified.

3. Many performance indices can be used in order to quantita-
tively assess the efficiency of a metabolic network with respect
to the production of a target molecule. The most used perfor-
mance index is the molar yield. Since the maximal value of this
performance index depends on the substrate used and the
target to be produced, it does not directly give an indication
of the network efficiency. An alternative to the molar yield is the
carbon yield. The carbon yield is related to the molar yield and
has always, independent of the substrate used and target, a
maximal value of 1. It provides therefore directly insight of
the network performance and should be preferred if the net-
work efficiency has an important role in the analysis being
performed. If economic aspects should be considered, the
maximal profit can be used. This performance index corre-
sponds to the product of the molar yield and the market
value of each component.

4. Because not only biomass but also intracellular fluxes vary with
cellular behavior and time, for a stringent analysis, it is explicitly
necessary to use corresponding rates that were measured simul-
taneously at the same time.

5. The flux distribution calculated for the wild-type or mutant
strain using FBA is not unique in most cases. In order to
compare the intracellular flux patterns of two strains, it is
necessary to calculate the flux variability of the network [60].
This can be done by using the flux variability analysis (FVA)
function of the COBRAToolbox. Once the variability range for
each reaction in the network has been calculated, it is recom-
mended to limit the scope of the analysis to the reactions with a
narrow or no variability range. Reactions with a broad varia-
bility range are often not essential for the network
performance.
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6. The suitability of a specific model that describes the behavior of
a designed strain depends mainly on the accuracy of the
assumptions made by the implemented model. For example,
when modeling the metabolism of a strain that is used for
heterologous protein production, a model that accounts for a
fixed, comparatively low protein content will not be suitable for
describing the behavior of the cell. In this case, a model that
takes into account variable cell composition, such as a compart-
ment model coupled with a metabolic model, will be more
suitable for modeling the cell metabolism.
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3. Röling WFM, van Bodegom PM (2014)
Toward quantitative understanding on micro-
bial community structure and functioning: a
modeling-centered approach using degrada-
tion of marine oil spills as example. Front
Microbiol 5:125. doi:10.3389/fmicb.2014.
00125

4. Sierra-Garcı́a IN, Correa Alvarez J, de Vascon-
cellos SP et al (2014) New hydrocarbon degra-
dation pathways in the microbial metagenome
from Brazilian petroleum reservoirs. PLoS
One 9, e90087. doi:10.1371/journal.pone.
0090087

5. Lewis NE, Nagarajan H, Palsson BO (2012)
Constraining the metabolic genotype-
phenotype relationship using a phylogeny of
in silico methods. Nat Rev Microbiol
10:291–305. doi:10.1038/nrmicro2737

6. Lee JW, Kim TY, Jang Y-S et al (2011) Systems
metabolic engineering for chemicals and mate-
rials. Trends Biotechnol 29:370–378. doi:10.
1016/j.tibtech.2011.04.001

7. Ogata H, Goto S, Sato K et al (1999) KEGG:
Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 27:29–34. doi:10.1093/
nar/27.1.29

8. Karp P (1996) EcoCyc: an encyclopedia of
Escherichia coli genes and metabolism. Nucleic
Acids Res 24:32–39. doi:10.1093/nar/24.1.32

9. Schomburg I, Hofmann O, Baensch C et al
(2000) Enzyme data and metabolic informa-
tion: BRENDA, a resource for research in biol-
ogy, biochemistry, and medicine. Gene Funct
Dis 1:109–118. doi:10.1002/1438-826X(
200010)1:3/4<109::AID-GNFD109>3.0.
CO;2-O

10. Pirt SJ (1965) The maintenance energy of bac-
teria in growing cultures. Proc R Soc Lond Ser
B Biol Sci 163:224–231

11. Thiele I, Palsson BØ (2010) A protocol for
generating a high-quality genome-scale meta-
bolic reconstruction. Nat Protoc 5:93–121.
doi:10.1038/nprot.2009.203

12. Oberhardt MA, Palsson BØ, Papin JA (2009)
Applications of genome-scale metabolic recon-
structions. Mol Syst Biol 5:320. doi:10.1038/
msb.2009.77

13. Reed JL, Palsson BO (2003) Thirteen years of
building constraint-based in silico models of
Escherichia coli. J Bacteriol 185:2692–2699.
doi:10.1128/JB.185.9.2692-2699.2003

14. Feist AM, Palsson BØ (2008) The growing
scope of applications of genome-scale meta-
bolic reconstructions using Escherichia coli.
Nat Biotechnol 26:659–667. doi:10.1038/
nbt1401

15. Reed JL, Vo TD, Schilling CH, Palsson BO
(2003) An expanded genome-scale model of
Escherichia coli K-12 (iJR904 GSM/GPR).
Genome Biol 4:R54. doi:10.1186/gb-2003-
4-9-r54

16. Feist AM, Henry CS, Reed JL et al (2007) A
genome-scale metabolic reconstruction for
Escherichia coli K-12 MG1655 that accounts
for 1260 ORFs and thermodynamic informa-
tion. Mol Syst Biol 3:121. doi:10.1038/
msb4100155

17. Orth JD, Conrad TM, Na J et al (2011) A
comprehensive genome-scale reconstruction

182 M.A. Valderrama-Gomez et al.

http://dx.doi.org/10.1073/pnas.1309299110
http://dx.doi.org/10.1073/pnas.1309299110
http://dx.doi.org/10.1016/j.plipres.2013.05.002
http://dx.doi.org/10.1016/j.plipres.2013.05.002
http://dx.doi.org/10.3389/fmicb.2014.00125
http://dx.doi.org/10.3389/fmicb.2014.00125
http://dx.doi.org/10.1371/journal.pone.0090087
http://dx.doi.org/10.1371/journal.pone.0090087
http://dx.doi.org/10.1038/nrmicro2737
http://dx.doi.org/10.1016/j.tibtech.2011.04.001
http://dx.doi.org/10.1016/j.tibtech.2011.04.001
http://dx.doi.org/10.1093/nar/27.1.29
http://dx.doi.org/10.1093/nar/27.1.29
http://dx.doi.org/10.1093/nar/24.1.32
http://dx.doi.org/10.1002/1438-826X(200010)1:3/4%3C109::AID-GNFD109%3E3.0.CO;2-O
http://dx.doi.org/10.1002/1438-826X(200010)1:3/4%3C109::AID-GNFD109%3E3.0.CO;2-O
http://dx.doi.org/10.1002/1438-826X(200010)1:3/4%3C109::AID-GNFD109%3E3.0.CO;2-O
http://dx.doi.org/10.1002/1438-826X(200010)1:3/4%3C109::AID-GNFD109%3E3.0.CO;2-O
http://dx.doi.org/10.1002/1438-826X(200010)1:3/4%3C109::AID-GNFD109%3E3.0.CO;2-O
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1038/msb.2009.77
http://dx.doi.org/10.1038/msb.2009.77
http://dx.doi.org/10.1128/JB.185.9.2692-2699.2003
http://dx.doi.org/10.1038/nbt1401
http://dx.doi.org/10.1038/nbt1401
http://dx.doi.org/10.1186/gb-2003-4-9-r54
http://dx.doi.org/10.1186/gb-2003-4-9-r54
http://dx.doi.org/10.1038/msb4100155
http://dx.doi.org/10.1038/msb4100155


of Escherichia coli metabolism–2011. Mol Syst
Biol 7:535. doi:10.1038/msb.2011.65

18. Covert MW, Famili I, Palsson BO (2003) Iden-
tifying constraints that govern cell behavior: a
key to converting conceptual to computational
models in biology? Biotechnol Bioeng
84:763–772. doi:10.1002/bit.10849

19. Hamilton JJ, Dwivedi V, Reed JL (2013)
Quantitative assessment of thermodynamic
constraints on the solution space of genome-
scale metabolic models. Biophys J
105:512–522. doi:10.1016/j.bpj.2013.06.
011

20. Beg QK, Vazquez A, Ernst J et al (2007) Intra-
cellular crowding defines the mode and
sequence of substrate uptake by Escherichia
coli and constrains its metabolic activity. Proc
Natl Acad Sci U S A 104:12663–12668.
doi:10.1073/pnas.0609845104

21. Covert MW, Schilling CH, Palsson B (2001)
Regulation of gene expression in flux balance
models of metabolism. J Theor Biol
213:73–88. doi:10.1006/jtbi.2001.2405

22. Edwards JS, Ibarra RU, Palsson BO (2001) In
silico predictions of Escherichia coli metabolic
capabilities are consistent with experimental
data. Nat Biotechnol 19:125–130. doi:10.
1038/84379

23. Varma A, Palsson BO (1994) Stoichiometric
flux balance models quantitatively predict
growth and metabolic by-product secretion in
wild-type Escherichia coli W3110. Appl Envi-
ron Microbiol 60:3724–3731

24. Pramanik J, Keasling JD (1997) Stoichiometric
model of Escherichia coli metabolism: incor-
poration of growth-rate dependent biomass
composition and mechanistic energy require-
ments. Biotechnol Bioeng 56:398–421. doi:
10.1002/(SICI)1097-0290(19971120)56:4<
398::AID-BIT6>3.0.CO;2-J

25. Kremling A (2013) Systems biology: mathe-
matical modeling and model analysis. CRC/
Taylor & Francis, Boca Raton

26. Hyduke DR, Lewis NE, Palsson BØ (2013)
Analysis of omics data with genome-scale mod-
els of metabolism. Mol Biosyst 9:167–174.
doi:10.1039/c2mb25453k

27. KimMK, Lun DS (2014) Methods for integra-
tion of transcriptomic data in genome-scale
metabolic models. Comput Struct Biotechnol
J 11:59–65. doi:10.1016/j.csbj.2014.08.009

28. Carrera J, Estrela R, Luo J et al (2014) An
integrative, multi-scale, genome-wide model
reveals the phenotypic landscape of Escherichia
coli. Mol Syst Biol 10:735–735. doi:10.
15252/msb.20145108

29. Murphy TA, Young JD (2013) ETA: robust
software for determination of cell specific rates
from extracellular time courses. Biotechnol
Bioeng 110:1748–1758. doi:10.1002/bit.
24836

30. Schellenberger J, Que R, Fleming RMT et al
(2011) Quantitative prediction of cellular
metabolism with constraint-based models: the
COBRA Toolbox v2.0. Nat Protoc
6:1290–1307. doi:10.1038/nprot.2011.308

31. Ebrahim A, Lerman JA, Palsson BO, Hyduke
DR (2013) COBRApy: COnstraints-based
reconstruction and analysis for python. BMC
Syst Biol 7:74. doi:10.1186/1752-0509-7-74

32. Klamt S, Saez-Rodriguez J, Gilles E (2007)
Structural and functional analysis of cellular
networks with Cell NetAnalyzer. BMC Syst
Biol 1:2. doi:10.1186/1752-0509-1-2

33. Urbanczik R (2006) SNA – a toolbox for the
stoichiometric analysis of metabolic networks.
BMC Bioinformatics 7:129. doi:10.1186/
1471-2105-7-129

34. Schwarz R, Musch P, von Kamp A et al (2005)
YANA – a software tool for analyzing flux
modes, gene-expression and enzyme activities.
BMC Bioinformatics 6:135. doi:10.1186/
1471-2105-6-135

35. Thiele I, Fleming RMT, Que R et al (2012)
Multiscale modeling of metabolism and mac-
romolecular synthesis in E. coli and its applica-
tion to the evolution of codon usage. PLoS
One 7:e45635. doi:10.1371/journal.pone.
0045635

36. O’Brien EJ, Lerman JA, Chang RL et al (2013)
Genome-scale models of metabolism and gene
expression extend and refine growth phenotype
prediction. Mol Syst Biol 9:693. doi:10.1038/
msb.2013.52

37. Liu JK, O’Brien EJ, Lerman JA et al (2014)
Reconstruction and modeling protein translo-
cation and compartmentalization in Escherichia
coli at the genome-scale. BMC Syst Biol 8:110.
doi:10.1186/s12918-014-0110-6

38. Kremling A (2007) Comment onmathematical
models which describe transcription and calcu-
late the relationship between mRNA and pro-
tein expression ratio. Biotechnol Bioeng
96:815–819. doi:10.1002/bit.21065

39. Carta A (2014) Modelling, analysis and control
for systems biology: application to bacterial
growth models. Dissertation, University of
Nice-Sophia Antipolis

40. Shen CR, Liao JC (2013) Synergy as design
principle for metabolic engineering of 1-
propanol production in Escherichia coli.
Metab Eng 17:12–22. doi:10.1016/j.ymben.
2013.01.008

Computer-Guided Metabolic Engineering 183

http://dx.doi.org/10.1038/msb.2011.65
http://dx.doi.org/10.1002/bit.10849
http://dx.doi.org/10.1016/j.bpj.2013.06.011
http://dx.doi.org/10.1016/j.bpj.2013.06.011
http://dx.doi.org/10.1073/pnas.0609845104
http://dx.doi.org/10.1006/jtbi.2001.2405
http://dx.doi.org/10.1038/84379
http://dx.doi.org/10.1038/84379
http://dx.doi.org/10.1002/(SICI)1097-0290(19971120)56:4%3C398::AID-BIT6%3E3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0290(19971120)56:4%3C398::AID-BIT6%3E3.0.CO;2-J
http://dx.doi.org/10.1002/(SICI)1097-0290(19971120)56:4%3C398::AID-BIT6%3E3.0.CO;2-J
http://dx.doi.org/10.1039/c2mb25453k
http://dx.doi.org/10.1016/j.csbj.2014.08.009
http://dx.doi.org/10.15252/msb.20145108
http://dx.doi.org/10.15252/msb.20145108
http://dx.doi.org/10.1002/bit.24836
http://dx.doi.org/10.1002/bit.24836
http://dx.doi.org/10.1038/nprot.2011.308
http://dx.doi.org/10.1186/1752-0509-7-74
http://dx.doi.org/10.1186/1752-0509-1-2
http://dx.doi.org/10.1186/1471-2105-7-129
http://dx.doi.org/10.1186/1471-2105-7-129
http://dx.doi.org/10.1186/1471-2105-6-135
http://dx.doi.org/10.1186/1471-2105-6-135
http://dx.doi.org/10.1371/journal.pone.0045635
http://dx.doi.org/10.1371/journal.pone.0045635
http://dx.doi.org/10.1038/msb.2013.52
http://dx.doi.org/10.1038/msb.2013.52
http://dx.doi.org/10.1186/s12918-014-0110-6
http://dx.doi.org/10.1002/bit.21065
http://dx.doi.org/10.1016/j.ymben.2013.01.008
http://dx.doi.org/10.1016/j.ymben.2013.01.008


41. Sánchez AM, Bennett GN, San K-Y (2005)
Novel pathway engineering design of the
anaerobic central metabolic pathway in Escher-
ichia coli to increase succinate yield and pro-
ductivity. Metab Eng 7:229–239. doi:10.
1016/j.ymben.2005.03.001

42. Jantama K, Haupt MJ, Svoronos SA et al
(2008) Combining metabolic engineering and
metabolic evolution to develop nonrecombi-
nant strains of C that produce succinate and
malate. Biotechnol Bioeng 99:1140–1153.
doi:10.1002/bit.21694

43. Zhang X, Jantama K, Moore JC et al (2009)
Metabolic evolution of energy-conserving
pathways for succinate production in Escheri-
chia coli. Proc Natl Acad Sci 106:
20180–20185. doi:10.1073/pnas.0905396
106

44. Yang L, Cluett WR, Mahadevan R (2011)
EMILiO: a fast algorithm for genome-scale
strain design. Metab Eng 13:272–281.
doi:10.1016/j.ymben.2011.03.002

45. Lin H, Bennett GN, San K-Y (2005) Genetic
reconstruction of the aerobic central metabo-
lism in Escherichia coli for the absolute aerobic
production of succinate. Biotechnol Bioeng
89:148–156. doi:10.1002/bit.20298

46. Hoefel T, Faust G, Reinecke L et al (2012)
Comparative reaction engineering studies for
succinic acid production from sucrose by met-
abolically engineered Escherichia coli in fed-
batch-operated stirred tank bioreactors. Bio-
technol J 7:1277–1287. doi:10.1002/biot.
201200046

47. Sánchez AM, Bennett GN, San K-Y (2006)
Batch culture characterization and metabolic
flux analysis of succinate-producing Escherichia
coli strains. Metab Eng 8:209–226. doi:10.
1016/j.ymben.2005.11.004

48. Wang W, Li Z, Xie J, Ye Q (2009) Production
of succinate by a pflB ldhA double mutant of
Escherichia coli overexpressing malate dehydro-
genase. Bioprocess Biosyst Eng 32:737–745.
doi:10.1007/s00449-009-0298-9

49. Burgard AP, Pharkya P, Maranas CD (2003)
Optknock: a bilevel programming framework
for identifying gene knockout strategies for
microbial strain optimization. Biotechnol
Bioeng 84:647–657. doi:10.1002/bit.10803

50. Tepper N, Shlomi T (2010) Predicting meta-
bolic engineering knockout strategies for
chemical production: accounting for

competing pathways. Bioinformatics
26:536–543. doi:10.1093/bioinformatics/
btp704

51. Patil KR, Rocha I, Förster J, Nielsen J (2005)
Evolutionary programming as a platform for in
silico metabolic engineering. BMC Bioinfor-
matics 6:308. doi:10.1186/1471-2105-6-308

52. Lun DS, Rockwell G, Guido NJ et al (2009)
Large-scale identification of genetic design
strategies using local search. Mol Syst Biol
5:296. doi:10.1038/msb.2009.57

53. Ranganathan S, Suthers PF, Maranas CD
(2010) OptForce: an optimization procedure
for identifying all genetic manipulations lead-
ing to targeted overproductions. PLoS Com-
put Biol 6, e1000744. doi:10.1371/journal.
pcbi.1000744

54. Schuetz R, Kuepfer L, Sauer U (2007) System-
atic evaluation of objective functions for pre-
dicting intracellular fluxes in Escherichia coli.
Mol Syst Biol 3:119. doi:10.1038/
msb4100162

55. Schellenberger J, Park JO, Conrad TM, Pals-
son BØ (2010) BiGG: a Biochemical Genetic
and Genomic knowledgebase of large scale
metabolic reconstructions. BMC Bioinformat-
ics 11:213. doi:10.1186/1471-2105-11-213
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