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Abstract During the last 50 years the nanotechnology is established as one of
the advanced technologies manipulating matter on an atomic and molecular
scale. By this approach new materials, devices or other structures possessing at
least one dimension sized from 1 to 100 nm are developed. The question arises
how structures composed of nanomaterials should be modeled. Two approaches
are suggested—theories which take into account quantum mechanical effects
since they are important at the quantum-realm scale or theories which are based
on the classical continuum mechanics adapted to nanoscale problems. Here the
second approach will be discussed in detail. It will be shown that the classical
continuum mechanics (kinematics, stress states analysis, balances and constitu-
tive equations) with some improvements is enough for a sufficient description of
the mechanical behavior of nanomaterials and -structures in many situations.
After a brief recall of the basics of Continuum Mechanics a theory with surface
effects will be discussed.
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1 Introduction

Nanotechnology is related to materials, devices and other structures with at least
one dimension sized from 1 to 100 nm. With respect to several applications
resulting, for example, in new material properties the questions arise:

• how to model such nanostructures,
• how to design nanodevices, and
• how to predict the new properties.

As usual if the size decreases some effects (for example, surface stresses) are
more significant in comparison with effects of materials and devices of conventional
size. Such effects are statistical mechanical and quantum mechanical effects among
others. They results in significant changes of the properties in comparison with the
properties of the bulk material (see [14, 17, 25, 34] among others). This is experi-
mentally established also for the inelastic properties, see, for example, [22, 60].

In recent publications various approaches of modeling are presented. Many
contributions are coming from physics and yields in equations which are not
similar to the usual equations in the engineering analysis of structures or engi-
neering simulations of the material behavior. By this way we get results describing
qualitatively and quantitatively correct the effects related to the nanosize. Since
nanoeffects are connected with the size of atoms and molecules molecular mod-
eling codes are used in numerical simulations. The disadvantage of this approach
is that the engineering analysis of real nanostructures taking into account the three-
dimensional behavior is not trivial.

In contrast to the aforementioned approach in various applications Continuum
Mechanics based theories are applied. It can be shown that the classical Contin-
uum Mechanics is unable to simulate the properties of nanostructures in a correct
manner [24, 28, 67]. Several improved theories for the analysis of nanostructures
are developed, for example,

• Cosserat or micropolar theories,
• Continuum Mechanics theories taking into account surface effects, and
• gradient theories.

It should be noted that these theories can be combined with the classical
structural analysis introducing models like beam, rod, plate, shell, etc. as basic
one- or two-dimensional models. Now there are developed several theories like,
for example, the mechanics of nanocomposites which is widely discussed in the
literature (cp. the review [31]). Alternatively, the behavior of the crystal lattice is
modeled based on Continuum Mechanics, for example, in [2, 36].

Below we present the basic features of the classical Continuum Mechanics and
discuss one possible improvement (the account of surface effects) which is helpful
in nanomechanics. Gradient and Cosserat theories will be not discussed. They are
presented in [1, 11–13, 15, 37, 40, 65] among others. In the final part there are
given briefly some references to applications.
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2 Basic Equations in Classical Continuum Mechanics

The classical Continuum Mechanics is based on the continuum assumption. How
realistic is this assumption? Up to now there are a lot of discussions. They are
based on mathematics (continuous distribution of the field variables and, in
addition, of their derivatives) or physics. Continuum Mechanics is the branch of
mechanics that deals with the analysis of the behavior of materials and structures
modeled as continuous distributed mass (infinite number of material points)
instead of discrete particles (presented, for example, by molecular modeling
methods). The founder of continuum mechanics was the French mathematician
Augustin Louis Cauchy who formulate first relevant models in the 19th century.
These models were further generalized by the Cosserat brothers [16], Lord Kelvin,
Duhem and Helmholtz among others. However, the classical or the generalized
continua are modeled as objects assuming that they completely fill the occupied
space. Modeling objects in this way ignores the fact that matter is made of atoms,
and so is not continuous. But on length scales much greater than that of inter-
atomic distances, such models are highly accurate. Fundamental physical laws
such as the balance of mass, the balance of momentum, and the balance of energy
may be applied to these models to derive integral or differential equations
describing their behavior. The information about the particular material properties
is added through the constitutive and, may be, evolution equations.

Continuum Mechanics deals with physical properties of solids and fluids which
are independent of any particular coordinate system in which they are observed.
These physical properties are then represented by tensors of different rank, which
are mathematical objects that have the required property of being independent of
the coordinate system. These tensors can be expressed in specific coordinate
systems for computational convenience.

In this section we briefly present the basics of Continuum Mechanics. Further
information are given in [6, 32] among others. The direct tensor calculus in the
sense of [41] is mostly used this chapter.

2.1 Kinematical Equations

A body B is an assemblage of material points, which is bounded by the boundary
points, that means the surface of B. Material bodies are introduced in Continuum
Mechanics with the help of the method of sections. By this method the body B can
be separated from the surrounding. The introduction of the surface and the body is
arbitrary, which is helpful for the formulation of the balance equations.

The movement of material bodies can be presented by the motion of their
material points which should be identified. If the material points are related to
points in the Euclidean space IR3 and if one point 0 is fixed in this space, then the
position of the material points is determined by the position-vector xðtÞ at arbitrary
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time t. To distinguish the material points of the body B each of them get a label: at
the time t ¼ t0 the material point is characterized by the position-vector xðt0Þ � X.
t0 is the natural initial state, which changes should be computed. In many cases
t0 ¼ 0 is assumed.

In Cartesian coordinates with the origin O and the basis vectors eiði ¼ 1; 2; 3Þ
the movement of the material point X can be presented as it follows

x ¼ Xiei; X ¼ Xiei; xðX; t0Þ ¼ x0 � X; ð1Þ

In Fig. 1 is shown the movement of a material point P: The coordinates xi are
Lagrangian coordinates, xi - Eulerian coordinates. The description of the behavior
of the continuum can be related to both the Lagrangian and the Eulerian config-
urations. For many applications this is sufficient. Sometimes it is necessary to
present the continuum in so-called intermediate configurations. Details are given,
for example, in [50, 64].

2.1.1 Deformation Gradient and Strain Tensors

The deformation of the continuum can be presented with the help of the equation
of motion

x ¼ xðX; tÞ

Let us introduce the material deformation gradient

F � ½rXxðX; tÞ�T ð2Þ

describing the transform of a material line element dX in the reference configu-
ration into a material line element dx of the actual configuration

F � dX ¼ dx

ð. . .ÞT denotes the transpose of a tensor.

(a) (b)

Fig. 1 Movement of a material point: a position-vector, b Cartesian coordinates
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The vice versa transform is given by

dX ¼ F�1 � dx

with

F�1 ¼ rxXðx; tÞ½ �T: ð3Þ

ð. . .Þ�1 denotes the inverse of a tensor. Note that the motion consist of the motion
of the continuum as a rigid body (translation and rotation) and the strains (relative
position changes of the material points).

Let us introduce the Green-Lagrange strain tensor which has in the reference
configuration for pure rigid body motion the value zero

GðX; tÞ ¼ 1
2
ðFT � F� IÞ: ð4Þ

G is a symmetric tensor. In addition, a second strain tensor (Almansi-Hamel strain
tensor) related to the actual configuration can be defined as it follows

A ¼ FT
� ��1�G � F�1

2.1.2 Displacements, Displacement Gradient, Linearizations

For both configurations we can introduce the displacement vector

uðx; tÞ ¼ xðX; tÞ � X; uðX; tÞ ¼ x� Xðx; tÞ ð5Þ

The displacement gradient can be also computed in both configurations

½rXuðX; tÞ�T � J; ½rxuðx; tÞ�T � K

It is easy to show that

J ¼ F� I; K ¼ I� F�1; ð6Þ

and the strain tensors can be obtained as it follows

G ¼ 1
2
ðJþ JT þ J � JTÞ; A ¼ 1

2
ðKþKT �KT �KÞ ð7Þ

Finally, the strain tensors can be computed

G ¼ 1
2
ðrXuÞT þ ðrXuÞ þ ðrXuÞ � ðrXuÞT
h i

;

A ¼ 1
2
ðrxuÞT þ ðrxuÞ � ðrxuÞ � ðrxuÞT
h i ð8Þ
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Both strain tensors contain quadratic terms. They describe the
geometrical-nonlinear behavior of the continuum. Ignoring quadratic terms we get
similar expressions as in Strength of Materials (Cauchy strain tensor). The
mathematical consistent linearization of the kinematical relations is presented, for
example, in [32].

2.2 Stress State

The external actions on the continuum can by classified as volume or surface
actions. They can be pure mechanical, thermal, electromagnetic, etc. Here we
focus our attention on mechanical actions, which can split as known from the
General Mechanics (Statics) into forces and moments. Then we can introduce:

• mass or volume forces and moments and
• surface forces and moments.

In general the actions are continuously distributed in the volume or on the
surface functions. They are introduced as models since they cannot observed
directly (only the response of the actions can be measured). It is easy to show that
line and concentrated single actions are limit cases of the volume and surface
actions. These limit cases are the result of the different order of the three spatial
dimensions or of the two dimensions of the surface.

Any material body is characterized by a continuous mass density distribution
qðxÞ. The mass or volume actions are also continuous functions applied to any
material point of the body. Examples of volume forces are the gravitational force,
the force of inertia, the Coriolis force among others. The sources of these forces
are out of the body, that means they are external (far-distance) forces. By analogy
one can introduce sources for volume moments.

Volume forces are related to volume or mass. By kV the volume force density
and by km � k the mass force density are denoted (in what is following k is used
instead of km). It holds

qðx; tÞkðx; tÞ ¼ kV ð9Þ

In the case of volume moments the analogous equation is valid

qðx; tÞlmðx; tÞ ¼ qðx; tÞlðx; tÞ ¼ lV ð10Þ

with lmðx; tÞ as the mass moment density and lVðx; tÞ as the volume moment
density.

External surface loads are acting on surfaces. Such loads are named contact
loads. The surface can be the surface of a material body with a volume AðVÞ, but
also common interfaces between the parts of the body or between two different
bodies. External surface loads are existing also between solids and fluids, for
example, the hydrostatic pressure of the fluid on a solid surrounded by the fluid.
The surface loads can be split again into surface forces and surface moments. The
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surface forces are related to the surface and result in the force stress vector t, the
surface moments by analogy result in the moment stress vectors l. The following
limits are valid [5, 27]

t ¼ lim
MA!0

Mf

MA
; l ¼ lim

MA!0

Mm

MA
ð11Þ

Mf and Mm are the resulting force vector and the resulting moment vector applied
on the surface element MA. It should be mentioned that MA is oriented MA ¼ nMA

with n as the unit normal vector. This results later in the necessity to introduce
stress tensors.

The resulting force fR acting on the continuum can be computed by integration
of the volume and surface forces

fR ¼
Z

V

qk dVþ
Z

A

t dA ð12Þ

The resulting moment with respect to the coordinate origin 0 can be estimated
by analogy

mR
0 ¼

Z

V

qðlm þ x� kÞdVþ
Z

A

ðlþ x� tÞdA ð13Þ

In the classical Continuum Mechanics the volume moment densities and the
moment stress vectors are ignored. In this case the last one equation can be
rewritten

mR
0 ¼

Z

V

qðx� kÞdVþ
Z

A

ðx� tÞdA ð14Þ

2.2.1 Cauchy’s Stress Vector and Tensor

As the result of the action of outer forces on the continuum one gets a stress state
in the continuum. It can be estimated with the help of the cutting principle and the
static equilibrium statement. If Df is the resulting force vector on the surface
element DA (both are presented in the actual configuration), the following defi-
nition is valid

lim
DA!0

Df

DA
� tðx; n; tÞ

All stress vectors t in the point P define the stress state. In material testing one
has to distinguish two different stress definitions. The first one relates the force to
the surface in the reference configuration (engineering stress), the second one to
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the surface in the actual configuration (true stress). In Continuum Mechanics we
have more possibilities: the force can be given in both configurations and the
surface can be presented in both configurations. In addition, one can introduce
intermediate configurations.

Let us define at first the Cauchy stress tensor: if the force is given in the actual
configuration and the surface element too, we have the so-called true stress vector t.
In this case the Cauchy stress tensor is given by (Cauchy’s theorem)

tðx; n; tÞ ¼ n � Tðx; tÞ ð15Þ

Based on this definition the first equilibrium Eq. (12) can be transformed into
Z

V

qk dVþ
Z

A

n � Tðx; tÞ dA ¼ 0: ð16Þ

Applying the Gauss-Ostrogradsky theorem (divergence theorem)
Z

A

t dA ¼
Z

A

n � T dA ¼
Z

V

rx � T dV; ð17Þ

finally one gets
Z

V

ðqkþrx � TÞdV ¼ 0: ð18Þ

and in the case of smooth fields the differential equilibrium equation

rx � Tþ qk ¼ 0 ð19Þ

Adding the inertial term �€xdM ¼ �€xqdV in the sense of Newton/d’Alembert
to the integral equilibrium, after similar manipulations the following local equation
is valid

q€x ¼ rx � Tþ qk: ð20Þ

This is the first Cauchy-Euler equation of motion.
In the classical Continuum Mechanics from the moment equilibrium it follows

that the stress tensor must be a symmetric tensor

T ¼ TT

2.2.2 Stress Vectors and Tensors After Piola-Kirchhoff

The first Piola-Kirchhoff stress tensor can be defined on the base of the following
stress vector. If we relate the actual force vector Df to the surface element DA0 in
the reference configuration we get the first Piola-Kirchhoff stress vector
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lim
DA0!0

Df

DA0
¼ It

From this definition it follows

It ¼ n0 � IP ð21Þ

The Cauchy stress tensor and the first Piola-Kirchhoff stress tensor are inter-
linked by the following equations

T ¼ ðdet FÞ�1F � IP; IP ¼ ðdet FÞF�1 � T ð22Þ

The first Piola-Kirchhoff stress tensor is in the general case no more a sym-
metric tensor. The differential equations of motion for the forces and the moments
with respect to the first Piola-Kirchhoff tensor can be formulated

q0€x ¼ rX � IPþ q0k; IP � FT ¼ F �IPT: ð23Þ

The unsymmetric tensor IP is not convenient, if we want to combine the
stresses with the strains which are presented by a symmetric tensor. Let us
introduce a ‘‘fictive’’ force vector

df0 ¼ F�1 � df: ð24Þ

With the help of this vector by analogue the second Piola-Kirchhoff tensor,
which is a symmetric tensor, can be defined. The following relation between the
first and the second Piola-Kirchhoff tensor is valid

IIP ¼ IP � F�1
� �T

2.3 Balance Equations

The balance equation are fundamental equation in the Continuum Mechanics.
They are valid for all materials, etc. that means they do not contain any specific
information on the properties of the continuum. The following balances are
detailed presented, for example, in [32, 49, 58, 63].

2.3.1 General Global and Local Equations in the Case
of Smooth Fields

The actual state of the continuum is given by volume integrals of densities of the
mechanical state variables. The external action should be presented by volume and
surface integrals of the volume and surface action densities. This holds true for
both configurations.
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The general form of the balance equation can be introduced as it follows.
Wðx; tÞ and W0ðX; tÞ are densities of a scalar mechanical variable with respect to
the volume elements dV and dV0 in the actual and the reference configurations.
The integration over the volume results in an additive (extensive) variable YðtÞ

YðtÞ ¼
Z

V

Wðx; tÞdV ¼
Z

V0

W0ðX; tÞdV0 ð25Þ

The material time derivative of YðtÞ is the rate of changes of W0ðx; tÞ. The
changes have the origins in the action of the surrounding on the continuum. In the
actual configuration we assume

D

Dt
YðtÞ ¼ D

Dt

Z

V

Wðx; tÞdV ¼
Z

A

Uðx; tÞdAþ
Z

V

Nðx; tÞdV ð26Þ

and in the reference configuration

D
Dt

YðtÞ ¼ D
Dt

Z

V0

W0ðX; tÞdV0¼
Z

A0

U0ðX; tÞdA0þ
Z

V0

N0ðX; tÞdV0 ð27Þ

U and U0 are scalar surface densities of the external actions in both configu-
rations, N and N0 are the volume densities, D=Dt denotes the material derivative.
This basic idea can be applied also to tensor fields. Let us introduce the general
balance equation in the actual configuration

D
Dt

Z

V

ðnÞWðx; tÞdV ¼
Z

A

nðx; tÞ �ðnþ1Þ Uðx; tÞdAþ
Z

V

ðnÞNðx; tÞdV ð28Þ

ðnÞWðx; tÞ is the balance variable (tensor of rank n), ðnþ1ÞUðx; tÞ is the flux term
(tensor of rank nþ 1) and ðnÞNðx; tÞ is the source/drain term (tensor of rank n). For
the reference configuration similar balance equation can be formulated

D
Dt

Z

V0

ðnÞW0ðX; tÞdV0�
o

ot

Z

V0

ðnÞW0ðX; tÞdV0

¼
Z

A0

n0ðX; tÞ � ðnþ1ÞU0ðX; tÞdA0þ
Z

V0

ðnÞN0ðX; tÞdV0

ð29Þ

Note that instead of the mass densities the volume densities can be used.
If the smoothness requirements are fulfilled the local general balance equation

can be given for the actual configuration

D
Dt
½Wðx; tÞq� ¼ rx �Uðx; tÞ þ Nðx; tÞq ð30Þ
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and for the reference configuration

o

ot
½W0ðX; tÞq0� ¼ rX �U0ðX; tÞ þ NðX; tÞq0 ð31Þ

2.3.2 Mechanical Balance Equations

In the literature as usual 4 or 5 balances are presented (some authors do not accept
the entropy balance and discuss the second law of thermodynamics separately).
Here we present the 5 balances (mass, momentum, moment of momentum, energy
and entropy) in an unique form.

Mass Balance

The mass is a characteristic property of the continuum and can be computed by a
volume integral over the density in both configurations

m ¼
Z

V

qðx; tÞdV ¼
Z

V0

q0ðXÞdV0 ð32Þ

If there is no mass flux and source/drain term in the general balance equation
the mass is constant for any time t (mass conversation). The mass conservation as
usual is accepted for solids.

qdV and q0dV0 are the mass of a material point in the actual and the reference
configuration. If they are the same it follows

qdet F ¼ q0 )
q0

q
¼ det F;

If q0 ¼ q the value det F ¼ 1 (incompressibility condition).

Balance of Momentum

Let us introduce the momentum vector p

pðx; tÞ ¼
Z

m

vðx; tÞdm ¼
Z

V

vðx; tÞqðx; tÞdV ð33Þ

with the velocity in the actual configuration vðx; tÞ. The balance of momentum is
defined
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D
Dt

Z

V

vðx; tÞqðx; tÞdV ¼
Z

A

tðx; n; tÞdAþ
Z

V

kðx; tÞqðx; tÞdV ð34Þ

In the reference configuration the following equation holds

o

ot

Z

V0

vðX; tÞq0ðXÞdV0 ¼
Z

A0

ItðX; n0; tÞdA0þ
Z

V0

kðX; tÞq0ðXÞdV0 ð35Þ

Assuming the smoothness of all fields the local balances of momentum can be
derived

rx � Tðx; tÞ þ qðx; tÞkðx; tÞ ¼ qðx; tÞDvðx; tÞ
Dt

; ð36Þ

rX � IPðX; tÞ þ q0ðXÞkðX; tÞ ¼ q0ðXÞ
ovðX; tÞ

ot
ð37Þ

These are again the so-called first Eulerian equations of motion.

Balance of Moment of Momentum

Let us define the global moment of momentum vector with respect to the origin O

lOðx; tÞ ¼
Z

V

x� qðx; tÞvðx; tÞdV

The balance of moment of momentum

D
Dt

Z

V

½x� qðx; tÞvðx; tÞ�dV ¼
Z

V

½x� qðx; tÞkðx; tÞ�dVþ
Z

A

½x� tðx; n; tÞ�dA

After some manipulations the symmetry of the Cauchy stress tensor T ¼ TT

can be established. Performing similar manipulations for the reference configu-

ration IP � FT ¼ F
T �I P is the consequence of the balance of moment of

momentum.

Balance of Energy

With the kinetic energy K and the inner energy U
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K ¼ 1
2

Z

V

v � vqdV; U ¼
Z

V

uqdV ð38Þ

and the power of the external forces

Pa ¼
Z

A

t � vdAþ
Z

V

k � vqdV ð39Þ

one gets the following balance of energy

D
Dt

Z

V

1
2

v � vþ u

� �
qdV ¼

Z

A

t � vdAþ
Z

V

k � vqdV ð40Þ

Taking into account the local balance of momentum after some manipulations
the energy balance can be presented as

D
Dt

Z

V

uqdV ¼
Z

V

T � �ðrxvÞTdV ð41Þ

or in the local form

_uq ¼ T � �ðrxvÞT ¼ T � �D ð42Þ

with D as the symmetric part of the velocity gradient tensor. The similar
expression for the reference configuration relates the second Piola-Kirchhoff tensor
to the rate of the Green-Lagrange strain tensor

q0 _u ¼ IIP � � _G ð43Þ

Balance of Entropy

Let us assume pure mechanical behavior. The entropy balance results in usual
conclusions. For the further statements we do not need these conclusion and we
pass on the detailed analysis of the entropy balance.

2.4 Constitutive Modeling: Elastic Material

Let us assume elastic material behavior. In this case the constitutive equations are
functions of the stress and strain tensors. Considering the material objectivity
principle the following equation holds
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IIPðX; tÞ ¼ gðG;X; tÞ

That is adequate to the case of simple materials since the deformation state is
defined only by the deformation gradient FðX; tÞ.

For any isotropic tensor function fðAÞ the relations

Q � fðAÞ �QT ¼ fðQ � A �QTÞ

are valid for the orthogonal tensor Q and the representation holds

fðAÞ ¼ /0Iþ /1Aþ /2A2

That means for the isotropic elastic material the constitutive equation can
suggested as it follows

IIP ¼ w0Iþ w1Gþ w2G2

The wi are functions of the invariants of G.

3 Additional Equations Taking into Account
Surface Effects

Let us assume purely elastic behavior for the bulk material and the surface. The
theory of elasticity with surface stresses is presented, for example, in the review
[18]. This theory is based on the assumption that together with the stress tensor
determined in the bulk material and on its surface additional surface stresses act on
the surface or on the part of the surface. The surface stress tensor is a general-
ization of the scalar surface tension in fluid mechanics [38] to deformable solids.
The introduction of surface stresses permits an adequate modeling of size effects
observed in tests of nanomaterials [18, 19].

First mathematical studies of surface stresses were performed by Laplace [39],
Young [66], Gibbs [23] among others (see the surveys [21, 48, 53, 55, 56]). The
mechanics of deformable solids with surface stresses is developed, for example, in
[29, 30, 46, 52–54, 59]. The model proposed in [30] is equivalent to a deformable
body with an fixed elastic membrane on the surface. The surface stress tensor acts
in this membrane. This model is extended in [59] considering surface flexural
stiffness and it can be regarded in the simplest case as a Kirchhoff-Love type shell
on the body surface. In [33, 61, 62] surface effects are analyzed applying an
approach in analogue to the classical Continuum Mechanics. Another theory for
nano-scaled films developed in [43, 44] is based on the classical thin plate theory
assuming the Kirchhoff hypothesis or its generalization, but the surface layers are
modeled by a continuum theory of surface elasticity. Surface effects are analyzed
also on the base of Cosserat-type or micropolar theories [17, 20, 35, 45, 51, 53].
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3.1 Kinematical Equations

The simplest continuum model in the case that the properties of the bulk material
and surface effects are taken into account can be formulated as it follows. The
continuum occupies the domain V 2 IR3 bounded by the surface A. The surface A
consist of two parts: on A1 prescribed the displacements u, on A2 the tractions. If
the continuum is fixed the equation

ujA1
¼ 0

is valid. On the rest the traction vector and maybe surface stresses are acting.
For the sake of simplicity we restrict ourself to the geometrical-linear theory. In

this case it is not necessary to distinguish between the actual and the reference
configuration:

X � x; rX � rx � r

The displacement vector u can serve as the fundamental quantity in the strain
estimation. The strain tensors Eq. (8) are reduced to

G � A � e � 1

2
ruþ ðruÞT
h i

ð44Þ

In addition, for the modeling of surface effects we assume that surface effects
are related also to the geometrical-linear theory. Then the following strain tensor
can be suggested

� � 1
2
eru � eI þ eI � ð eruÞT

h i
ð45Þ

Here er denotes the nabla operator defined on the surface only

er ¼ r� nn � r

and eI is the two-dimensional unit tensor: eI ¼ I� nn.
The presented theory can be extended to the case of geometrical-nonlinear

kinematical relations. That means the fundamental quantity for both the bulk and
the surface behavior is the deformation gradient. Details of such theory are given,
for example, in [9].

3.2 Stress state

The stress state in the continuum is defined by the stress tensor. With respect to the
assumptions of the previous subsection it is not necessary to distinguish between
the Cauchy and the Piola-Kirchhoff stress tensors. The stress tensor for the bulk
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behavior is denoted by r. In addition, on the surface A3 the stress tensor s is acting.
Note that A ¼ A1 [ A2 [ A3 with A2 as part of the surface on which only the
tractions are acting and A3 as part of the surface on which, in addition, the surface
stresses are acting.

By analogy to the classical continuum the following equilibrium equation can
be introduced

r � rþ qk ¼ 0 8X 2 V ð46Þ

In addition, on the surface A3 (the following equilibrium is assumed

ðn � r� er � sÞjA3
¼ t ð47Þ

t is the surface load vector. The other boundary conditions are

ujA1
¼ u0; n � rjA2

¼ t ð48Þ

3.3 Constitutive Equations

For the bulk material the standard constitutive equations can be assumed

r ¼ ou
oe

ð49Þ

By analogy the surface stress tensor can be introduce as

s ¼ oeu
o�

ð50Þ

The inner (strain) energy density u is a function of e and the surface strain
energy density eu is a function of �. The main problem is to make a constitutive
assumptions for both energy densities.

In the simplest case, assuming isotropic linear-elastic material behavior, one
gets for the bulk material

u ¼ 1
2
ktr2eþ le � �e ð51Þ

and for the surface

eu ¼ 1
2
ektr2�þ el� � ��: ð52Þ

k and l are the Lamé parameters for the bulk material, ek and el are the Lamé
parameters for the surface. It is easy to show that r and s can be computed as it
follows
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r ¼ kItreþ 2le; s ¼ ekeItr�þ 2el�: ð53Þ

Other constitutive equations are discussed in the literature. For example, in [8]
linear isotropic viscoelastic behavior is introduced. In [9] nonlinear isotropic
elastic material behavior is assumed. In both cases the constitutive equations are
established similar to the aforementioned approach.

4 Applications

The presented here theory can be applied to the analysis of nanostructures. In
many cases theses structures can be modeled as plate- or shell-like structures. Such
modeling results in a simplified analysis in comparison to the 3D applications
because instead of three spatial coordinates describing the problem we have now
only two.

The establishment of two-dimensional plate and shell equations can be per-
forming using

• engineering hypothesis,
• mathematical techniques and
• the direct approach.

These three approaches are discussed briefly in [3, 4, 10, 26, 47]. The appli-
cations discussed in this section are based on the through-the-thickness integration
introduced, for example, in [42].

In [7] the through-the-thickness integration is applied to the case of linear
isotropic elastic behavior for the bulk material and on the surface. An additional
term is introduced to consider residual surface stresses. The full set of governing
palte/shell equations is deduced in the local form:

• kinematical relations based on an independent translation vector and an inde-
pendent rotations vector and which consist of the in-plane strain tensor, the out-
of-plane strain tensor and the transverse shear strain vector,

• equilibrium equations for the forces and moments (stress resultants) which are
similar to the Reissner-Mindlin type theories, but taking into account surface
effects, and

• two-dimensional constitutive equations for the stress resultants added by the
terms related to to surface effects.

The plate equations are observed neglecting the influence of the shell curvature
radii in the governing equations. In addition, the theory presented in [7] can be
classified as a 5-parameter-theory. The surface stress influence is clearly seen in
the effective stiffness expressions, which are expresses by the bulk and the surface
properties. The improved stiffness parameters consist of material properties and
the thickness. For the classical case (no surface effects) if the thickness tends to
zero the stiffness tends to zero too. In the case if we take surface stresses into
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account the stiffness parameter can increase or decrease. This tendency is signif-
icant for the prediction of the stiffness of nanostructures.

The previous theory is extended in [8] to linear viscoelastic material behavior
using the Laplace transform and correspondence principle. As in the elastic case
the transverse shear stiffness plays a specific role and must be computed carefully.
It is established that the surface behavior is not affected by the transverse shear
behavior with respect to the thinness of the influence zone.

5 Outlook

It was shown that the Continuum Mechanics allows the description of the
mechanical behavior of nanomaterials, -structures or -devices. For this purpose it
is necessary to extend slightly the classical theory by

• introducing nonclassical continuum models (for example, the micropolar),
• introducing instead of the simple material assumption higher gradients and
• introducing additional terms describing surface effects.

On the advantages of the first and second items is reported widely in the
literature. Here the last item was discussed briefly.

Further investigations should be focused on

• the extension of the experimental data base which is necessary for the estimation
of the constitutive parameters,

• the comparison of various approaches for a better understanding of the advan-
tages, disadvantages of each approach and

• the consistent Continuum Mechanics formulation (balance equation, constitutive
equations) and

• the extension of other types of inelastic material behavior.
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