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Abstract Blood vessels exhibit a remarkable ability to adapt in response to sus-
tained alterations in hemodynamic loads and diverse disease processes. Although
such adaptations typically manifest at the tissue level, underlying mechanisms exist
at cellular and molecular levels. Dramatic technological advances in recent years,
including sophisticated theoretical and computational modeling, have enabled
significantly increased understanding at tissue, cellular, and molecular levels, yet
there has been little attempt to integrate the associated models across these length
and time scales. In this chapter, we suggest a new paradigm for identifying
strengths and weaknesses of models at different scales and for establishing con-
gruent models that more completely predict vascular adaptations. Specifically, we
show the importance of linking intracellular with cellular models and cellular
models with tissue level models. In this way, we propose a new approach for
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incorporating events across these three levels, thus providing a means to predict
phenomena that can only emerge from a system of integrated interactions.

1 Introduction: Vascular Biology as a Complex System

Vascular development, adaptations to altered hemodynamics, the progression of
disease, and responses to injury or clinical treatment—in each of these cases, one
can identify tissue-level changes in geometry, structure, function, and properties
that result from altered cellular phenotypes, which in turn depend on changes in
intracellular signaling pathways. Indeed, our knowledge of the complex web of
signals that underpin vascular function, homeostasis, growth, and remodeling at
different levels of biological scale is growing exponentially as more sophisticated
experimental models, techniques for analysis, and tools for integrating data
become available. Recent technological developments in molecular biology and
bioinformatics have thus made high-throughput analyses commonplace and ‘‘–
omics’’ data widely accessible. The empirical tools we can use to manipulate and
measure vascular structure, function, and adaptation in vivo—ranging from
inducible genetic manipulations in mice to non-invasive intravital microscopy with
single-cell resolution—are more flexible and precise than ever before. Parallel
advances in systems biology, agent based modeling, continuum biomechanics, and
computational methods have enabled significantly increased understanding of
vascular biology at molecular, cellular, and tissue levels.

Despite all of these advances, critical questions in vascular mechanobiology—
that is, many of the big questions that impact the care of thousands of patients each
year—remain unanswered. For example, how do medial vascular smooth muscle
cells (SMC) transduce mechanical stimuli in a way that impacts their production
and secretion of proteases that degrade the extracellular matrix (ECM)? How, in
turn, does degradation of ECM liberate growth factors that impact the proliferation
of adventitial fibroblasts? What mechanical stimuli induce endothelial-to-mesen-
chymal transition and how does this perturb homeostasis? Similarly, many ques-
tions remain regarding interactions between wall mechanics and pharmacological
treatments. What impact, for example, would a calcium channel blocker have on
the stiffness of an arterial wall in the presence of a stiff atherosclerotic plaque that
occludes 50 % of the lumen? While it is no small task to study such questions in
isolation, the prospect of conceptualizing how these phenomena interact in space
and time to create an emergent response is even more daunting. Indeed, the dif-
ficulty in answering these questions arises not from our ignorance of the individual
components that are relevant in this complex system, but rather from the way in
which they integrate to produce emergent outcomes. Even when we understand
singular cause-and-effect relationships between two components, we face the
challenge of integrating sets of relationships across different spatiotemporal scales
in these complex systems. We submit that achieving a more holistic understanding
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of how blood vessels develop, maintain homeostasis, and respond to diseases
requires an approach that couples experiments with theoretical and computational
models and integrates processes across multiple length and time scales in a way
that ultimately captures the emergent behaviors of the complex system that we
know as a blood vessel.

This chapter will first provide an overview of vascular wall structure and many
of the well characterized molecular signals that underpin functional and dys-
functional cellular behaviors in vascular tissues. We will then briefly describe
some theoretical approaches, including continuum biomechanics, agent-based
modeling, and models of intracellular signaling, that have been applied at different
spatial scales to the study vascular function and adaptation. Examples from the
literature will be highlighted to depict how modeling has been fruitful in producing
new understanding at each level of spatial scale. We will then present our fun-
damental premise: that integration of processes across scales, as enabled by truly
integrated, multiscale computational models, can result in a new understanding of
emergent behaviors in vascular biology. This multiscale modeling approach, in
turn, is expected to reveal new categories of questions that can be posed—ques-
tions that embrace multi-dimensional cause-and-effect relationships. We have
developed the conceptual basis for such a multiscale model and begun integration
efforts for a combined tissue-level continuum mixture and multi-cell agent-based
model as well as for a combined agent-based and intracellular signaling model. We
will conclude with a summary of our goal to integrate models from continuum to
intracelluar scales and to highlight some of the opportunities and challenges posed
by integrative multiscale modeling of complex systems.

2 Background

2.1 Vascular Wall Structure

The microstructure of arteries and veins varies with species, age, disease, and
location along the vascular tree [30], yet the normal wall in maturity is charac-
terized by three primary layers—the intima, media, and adventitia (Fig. 1). The
intima, or inner layer, consists of a monolayer of endothelial cells (EC) and an
underlying basal lamina composed of mesh-like type IV collagen and adhesion
molecules such as laminin. In addition to being a smooth, nonthrombogenic
interface between the blood and contents of the wall, the endothelium is biolog-
ically active. In response to chemical and mechanical stimuli, ECs produce a host
of vasoactive molecules (which control vascular dilatation or constriction), growth
factors (which promote cell replication or synthesis of proteins), proteases (which
degrade proteins), and factors that regulate local immune responses and clotting
processes. The endothelium also modulates transport of substances into the wall
(e.g., white blood cells or lipids), and thereby plays important roles in diseases
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such as atherosclerosis. Realization that many functions of the endothelium cor-
relate with changes in hemodynamic loads provided important guidance for
treating many vascular disorders and renewed interest in the biomechanics even
though this layer contributes little to the overall structural integrity of the wall.
Flow induced wall shear stresses tend to be on the order of 1.5 Pa in arteries and
0.15 Pa in veins; the mean value of this stress can be estimated in vivo from
measurements of viscosity, volumetric flow-rate, and luminal radius.

The media, or middle layer, consists primarily of SMCs embedded in ECM
consisting of elastic fibers, various types of collagen (I, III, V, etc.), and proteo-
glycans (Fig. 1). In general, the closer these vessels are to the heart the more
elastin (the main constituent of elastic fibers), and the farther away the more
smooth muscle. Regardless, the mean circumferential wall stress tends to be on the
order of 100 kPa, which can be estimated in vivo via measurements of transmural
pressure, inner radius, and wall thickness. Whereas SMCs primarily synthesize
proteins of the ECM during development and disease, they endow the normal
mature wall with an ability to constrict or dilate and thereby regulate blood flow
locally. Smooth muscle contraction, hypertrophy (increase in size), hyperplasia

Fig. 1 Porcine aorta displaying the three arterial layers: thin intima, media, and thin adventitia.
The monolayer of endothelial cells is revealed by the blue lining (cell nuclei) in the large image.
The smooth muscle cells (SMC) are shown in red (alpha smooth muscle actin staining) and the
layered elastin in green, which separates each SMC layer. One vessel of the vasa vasorum is seen
in the upper left of the large image as a round collection of SMCs
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(increase in number), apoptosis (cell suicide), and migration (often from the media
to subintima) play essential roles in diseases such as aneurysms, atherosclerosis,
and hypertension. Loss of matrix proteins, particularly elastin, similarly plays key
roles in the formation of aneurysms or dissections.

The adventitia, or outer layer, often merges with the perivascular tissue. It
consists primarily of fibroblasts and axially oriented type I collagen, but may
include admixed elastic fibers, nerves, and its own small vasculature, the vasa
vasorum, when the thickness of the wall is too great to allow sufficient transmural
diffusion of oxygen directly from the blood. Fibroblasts are responsible primarily
for regulating the matrix, particularly collagen, but they can migrate, proliferate,
and differentiate. Indeed, there is growing evidence that migrating fibroblasts play
significant roles in many diseases. Nevertheless, the normal adventitia is thought to
serve, in large part, as a protective sheath that prevents over-distension of the
media; like all muscle, smooth muscle contracts maximally at a certain length,
above and below which the contractions are less forceful. Finally, the adventitia is
typically demarcated from the media by an external elastic lamina (except in
cerebral arteries); the media is similarly demarcated from the intima by an internal
elastic lamina, which is a fenestrated, cylindrical sheet of elastin.

Cross-linked elastin is one of the most stable proteins in the body; it endows
vessels with considerable elasticity over finite deformations (e.g., nearly linear
stress response over stretches of 150–200 %) and it helps control the phenotype of
the SMCs. Specifically, cross-linked elastin encourages a quiescent, contractile
phenotype characteristic of maturity. This is in contrast to effects of the elastin
precursor, tropoelastin, which is not cross-linked, contributes little to the structural
integrity, and encourages smooth muscle migration, proliferation, and synthesis of
extracellular matrix, particularly in development. The collagens are the primary
family of structural proteins in the body, with fibrillar types I and III endowing
tissues with significant tensile stiffness. Collagen fibers turn over continuously and
thereby play key roles in homeostasis and remodeling. They can be on the order of
microns in diameter and are often undulated slightly in the normal physiologic
state; they manifest their high stiffness when straightened. Proteoglycans represent
a large class of molecules having diverse functions. Structurally, they tend to be
most important in sequestering water within the tissue, which, as in cells, typically
accounts for *70 % of the total mass. To provide a better idea of relative dis-
tributions of these various constituents, the media of the thoracic aorta (cf. Fig. 1)
consists of, by dry weight, *37 % collagen, 33 % SMCs, 24 % elastin, and 6 %
other constituents whereas the adventitia consists of *78 % collagen, 9 %
fibroblasts, 2 % elastin, and 11 % other constituents. Nevertheless, each vessel has
different distributions of constituents within each layer and different relative
thicknesses of the media and adventitia; overall structural integrity is thus dif-
ferentially controlled by balances and imbalances in cell and matrix turnover
(Fig. 2). For more on vascular ECM and its relation to mechanics, see [62].

Vascular structure, function, and material properties are dictated by the three
primary cell types of the wall (endothelial, smooth muscle, and fibroblasts) and in
some cases cells from the blood stream (e.g., platelets, monocytes, progenitor
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cells). That ECs respond directly to changing mechanical loads was first
noted *35 years ago and is now a well-documented example of mechanotrans-
duction—that is, the sensing and converting of mechanical stimuli into a signal
that controls gene expression and hence cellular activities. For example, ECs
increase their production of vasodilators (e.g., nitric oxide (NO) and prostacyclin
(PGI2)) in response to increases in wall shear stress; this allows the vessel to dilate,
thereby decreasing the resistance to flow, and promotes endothelial proliferation to
cover the increased surface area of the dilated vessel. Conversely, ECs increase
production of vasoconstrictors (e.g., endothelin-1 (ET-1) and angiotensin-II
(ANG-II)) in response to decreases in flow or increases in pressure. Endothelial
cells also produce a host of growth regulatory molecules (including vascular
endothelial growth factor (VEGF), platelet derived growth factors (PDGF),
fibroblast growth factors (FGF)), adhesion molecules (including vascular cell
adhesion molecule (VCAM-1) and intercellular adhesion molecule (ICAM-1)),

Fig. 2 Illustrative arterial mechanics and molecular interactions. a The three layers of an artery
wall. The Intima is composed of endothelial cells and a basement membrane; the Media, smooth
muscle cells and primarily elastin and collagen; the Adventitia, fibroblasts and extracellular
matrix. Shear stress typically orients in the axial direction, while intramural stresses are
circumferential and axial in orientation. b Factors governed by shear stress and produced by
endothelial cells include NO, ET-1, and PDGF-AB. c Factors governed by circumferential stress
and produced by smooth muscle cells include PDGF-AB, TGF-b, and MMPs. Illustrative effects
of these growth factors and MMPs are shown to the right. PDGF-AB and TGF-b act through
complex intracellular pathways to promote collagen production and cell proliferation or
phenotypic switching, while MMPs degrade collagen, gelatin, and elastin
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cytokines and chemokines (e.g., interleukin-1, IL-1, and monocyte chemoattrac-
tant protein, MCP-1), and clotting factors (e.g., tPA)—all in response to changing
mechanical stimuli including local stresses or trauma. See Refs. [19, 28] for more
on endothelial mechanobiology.

The structure of smooth muscle differs from that of skeletal and cardiac muscle,
but its contractility also depends on a calcium dependent actin-myosin interaction.
Vascular smooth muscle can generate contractile forces comparable to those of
striated muscles while maintaining the contraction for longer periods and at a
lower expenditure of energy. This feature allows blood vessels to maintain a
‘‘basal tone’’ from which they can dilate or constrict further. Like ECs, SMCs
respond to changes in their mechanical environment; for example, SMCs alter
their synthesis of collagen in response to changes in mechanical loading.
Mechanical damage to elastin can also induce phenotypic changes in smooth
muscle that promote migration, proliferation, and apoptosis in addition to synthesis
of matrix. This causality appears to be fundamental to the response of the arterial
wall to clinical interventions such as balloon angioplasty and stenting and likewise
to the response of the venous wall to its clinical use as an arterial by-pass graft. See
Refs. [42, 68] for more on the mechanobiology of smooth muscle.

Fibroblasts are primarily responsible for regulating the extracellular matrix in
the adventitia, as, for example, via synthesis and degradation of collagen. Deg-
radation is accomplished via ingestion by cells (phagocytosis) or the release of
enzymes, including the matrix metalloproteinases (MMPs). Fibroblasts play an
important role in regulating the ECM in many soft tissues (from the eye to the skin
to heart tissue) and are easily studied in vitro. For these reasons, there is a con-
siderable literature on the mechanobiology of fibroblasts and myofibroblasts (e.g.,
[59]). Macrophages are scavenger cells; in response to a local injury, they enter the
vessel wall from the blood (actually blood borne monocytes adhere to the wall and
transform into macrophages while inside the wall) and act primarily via phago-
cytosis or the release of MMPs. They, too, are responsive to changes in mechanical
stimuli [64]. Platelets also circulate within the bloodstream; they play a key role in
coagulation, but also release growth factors (e.g., PDGF) and vasoconstrictors
(e.g., serotonin, 5-HT, and thromboxane, TXA2) that affect both ECs and SMCs.
Platelet derived vasoconstrictors play a particularly damaging role following the
rupture of intracranial aneurysms, causing nearby vessels to constrict and cause
distal strokes. More specifics of the molecular biology of blood borne cells can be
found in general textbooks.

2.2 Key Signaling Pathways in Vascular Adaptation

Myriad signaling pathways play important roles in vascular homeostasis and
adaptation in both large and small vessels. Many of these molecules are homol-
ogous across species and play important roles in mediating homeostasis and
growth in other organ systems. For example, VEGF is a highly conserved family
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of molecules present in zebrafish, mice, and humans, and is a pivotal regulator of
growth and patterning in both the circulatory and nervous systems.

The key signaling pathways in the vascular tree can be broadly lumped into
functional categories based on their ability to mediate vascular tone (vasoactive
molecules), activate cells (cytokines), induce growth (growth factors), form and
impact the extracellular milieu (ECM molecules and proteinases), and orchestrate
cell adhesion (Table 1). While a comprehensive review of all of these key sig-
naling pathways is beyond the scope of this chapter, we highlight some of the most
widely studied molecules that play a diverse set of context-specific roles in the
vasculature. We thus focus on a small sub-set of signaling pathways that are
particularly important in mediating vascular responses to physiological and
pathological alterations and those that are most relevant in our proposed multiscale
model of hypertension, which is discussed in subsequent sections.

NO is one of the most widely studied signaling molecules in the vasculature. It
exerts its effects at both systemic and cellular levels throughout the microcircu-
lation and in larger vessels throughout the body. This highly diffusible and short-
lived free radical gas is synthesized via nitric oxide synthases [35], a family of
enzymes that convert L-arginine to NO (for review of this process in ECs see [54]).
Impaired NO activity, due to decreased synthesis or increased degradation, is a
hallmark of endothelial dysfunction and has been observed in a host of conditions
and diseases ranging from aging to atherosclerosis, hypertension, and diabetes
[47]. NO is a potent vasodilator [12] and thus regulates vascular SMC tone. Both
exogenous NO [48, 72] and over-expression of endothelial nitric oxide synthase

Table 1 Some of the key
molecules produced and/or
expressed by vascular cells in
response to altered
hemodynamic loading,
disease, and injury

Vasoactive molecules Cytokines

Nitric oxide IL-1
Endothelin-1 IL-6
Angiotensin-II IL-8
Serotonin IL-10
Thromboxane SDF-1
Thrombin

Growth factors/receptors Proteinases
and modulators

PDGF-BB/PDGFR-alpha, beta MMP-2
VEGF/Flk-1, Flt-1, neuropilin MMP-9
TGF-b1/TGFBRI/II MMP-1
bFGF/FGF-R TIMP-1
EphrinB2/EphB4 TIMP-2

Cell–cell adhesion ECM proteins

P-selectin/PSGL-1 Type I collagen
E-selectin/PSGL-1 Type III collagen
CD-34/L-selectin Type IV collagen
VCAM-1/VLA-4 Elastin/Microfibrils
ICAM-1/LFA-1 & MAC-1 Laminin/Fibronectin
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(eNOS) promote angiogenesis [56]. Interestingly, NO and eNOS also upregulate
and are synergistic with pro-angiogenic growth factors, such as VEGF and An-
giopoietin-1 [10]. This relationship supports an intriguing mechanistic linkage
between hemodynamic alterations due to vasodilation and growth factor mediated
angiogenesis. NO also plays a role in mediating microvascular permeability (for
review see [22]) and inflammation by inhibiting platelet adhesion, aggregation,
and leukocyte adhesion [24].

NO production via eNOS has long been associated with the mechanical shear
stress experienced by the vascular endothelium of large vessels (e.g., during
sustained changes in blood flow) and is critical for blood flow-dependent adaptive
remodeling of the media [50], yet a direct molecular linkage between NO and
SMC remodeling (proliferation and apoptosis) was only recently discovered by Yu
et al. [69]. They demonstrated that abnormal flow-dependent remodeling in eNOS
knockout mice is associated with activation of the PDGF signaling pathway and
downstream inhibition of apoptosis. Moreover, they showed that NO negatively
regulates PDGF-induced cell proliferation in vascular SMCs. Hence, this signaling
module represents yet another example of the mechanistic linkages between
mechanical forces experienced by blood vessels, diffusible signals and morpho-
gens secreted by cells, and defined cellular behaviors that have important conse-
quences on long-term vascular tissue structure and function.

As mentioned above, PDGF is a family of growth factors synthesized and
secreted by vascular ECs and SMCs in homodimeric (e.g., PDGF-AA and PDGF-
BB) and heterodimeric (e.g., PDGF-AB) forms [20]. PDGF homodimers and
heterodimers bind to dimeric tyrosine kinase receptors, PDGFR-alpha and
PDGFR-beta, with different affinities. PDGF is a potent mitogen for SMCs and
fibroblasts, stimulating proliferation, migration, and preventing apoptosis [41]
(Fig. 2). Dysfunction of the PDGF signaling pathway has been implicated in a
number of diseases, including pulmonary hypertension [51], cancer [38], renal
disease [41], and diabetic retinopathy [66]. There is extensive evidence that
implicates PDGF in inhibiting SMC differentiation, and the extensive intracellular
machinery (e.g., gene promoters and repressors) that enact its ability to shift SMC
phenotypes from differentiated to synthetic/proliferative are well described [67];
for a review, see Ref. [36]. How the phenotypic states of a collection of SMCs
within the medial wall, in turn, impact the mechanical stiffness of that tissue,
which may further be influenced by regional NO levels, is less well understood and
requires the type of multiscale modeling that we will focus on in subsequent
sections of this chapter.

Thus far in this section, we have highlighted how small molecule signals (e.g.,
NO) and growth factors (e.g., PDGF) impact vascular adaptation, but we would be
remiss to leave out the impact that ECM and its modifiers have on vascular growth
and remodeling. While various extracellular proteins and glycoproteins (e.g.,
elastin, fibrillins, and fibulins: see Ref. [62]) provide a substrate for vascular cell
assembly and stability, proteolytic enzymes such as the MMPs critically impact
vessel homeostasis and adaptation by degrading the ECM (Fig. 2) and by medi-
ating intercellular signaling (for review see Ref. [46]). The MMP family includes
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collagenases, gelatinases, stromelysins, matrilysins, and membrane-type MMPs.
ProMMPs are cleaved into active forms, which degrade ECM proteins, and their
effects are balanced by tissue inhibitors of metalloproteinases (TIMPs) that prevent
excessive proteolytic ECM degradation.

As noted in subsequent sections, MMP-2 and MMP-9 (gelatinases A and B) are
upregulated during sustained hypertension and contribute to ECM reorganization,
SMC proliferation and migration, and vascular hypertrophy in large vessels.
Increased MMP-2 levels, in particular, have been associated with impaired NO-
mediated vasorelaxation, arterial wall hypertrophy, and excessive collagen and
elastin deposition. Therapeutic MMP inhibition with doxycycline has been pro-
posed as a pharmacological strategy to attenuate SMC proliferation and hyper-
trophy during hypertension (for review see Ref. [15]) as well as the treatment of
aneurysms. MMPs can also liberate and activate matrix-bound growth factors,
such as TGF-beta [13], which may have opposing influences on SMC differenti-
ation. Thus it is important to quantitatively assess these interactions with spatial
and temporal resolution in order to resolve issues of therapeutic dose and timing.

3 Modeling Foundations and Current Models

3.1 Continuum Biomechanics and Illustrative Vascular Models

Continuum biomechanics has proven to be an important contributor to our
understanding of physiology and pathophysiology as well as to the design of
medical devices, biomaterials, and tissue engineered constructs. It is fundamental,
for example, to many analyses of vascular biology and pathophysiology that are
based on clinically available information such as blood pressure, local blood flow,
and complex geometry [30]. Continuum biomechanics is founded upon five basic
postulates: balance of mass, linear momentum, and energy as well as balance of
angular momentum and the entropy inequality. Whereas the first three types of
relations provide partial differential equations of motion, the last two provide
important restrictions on the forms of the constitutive relations (i.e., descriptors of
individual material behaviors). An underlying assumption is that one can compute
at each macroscopic point (or location) and each instant a meaningful ‘‘continuum
average’’ of properties or physical quantities of interest; a general guideline is that
the continuum assumption is reasonable if the characteristic length scale of the
microstructure is much less than the characteristic length scale of the physical
problem. For example, continuum biomechanics can be equally applicable to
studying an arterial wall (wherein diameters of collagen and elastic fibers are on
the order of lm and overall vessel diameter is on the order of mm or cm) or an
isolated cell (wherein diameters of cytoskeletal filaments are on the order of nm
and overall cell dimensions are on the order of lm).
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To date, the two primary vascular applications of the continuum approach have
been to compute pressure and velocity fields in blood flow (i.e., hemodynamics)
and to compute stress and strain fields within the vascular wall (i.e., wall
mechanics), each of which requires explicit solution of mass and linear momentum
balance. Although cells cannot sense continuum metrics such as stress and strain,
these quantities have proven useful in correlating mechanobiological responses by
cells to diverse loads [31]. For example, simple parallel plate flow experiments
demonstrate that ECs are very responsive to changes in wall shear stress, which is
calculated using the continuum approach; simple organ culture experiments on
straight segments of arteries and arterioles demonstrate that SMCs are very
responsive to changes in pressure and extension, which induce intramural changes
in stress and strain. Given the complexity of the microstructure of cells and tissues
down to the level of molecular interactions, it is inconceivable that one would
attempt to use a purely molecular dynamics simulation to study problems that
manifest at a physiological or clinical scale. That is, continuum biomechanics is
much more appropriate to study problems involving, for example, changes in the
structural stiffness of the arterial wall in hypertension, the effects of evolving
vascular diseases such as atherosclerosis or aneurysms, or the design of novel
interventional devices such as intravascular stents, heart valves, or left ventricular
assist devices.

Notwithstanding past successes, until recently continuum biomechanics had
focused primarily on material behaviors at a particular time, not how they evolve.
Moreover, most studies had assumed that the tissue (or cell) is materially uniform.
Yet, all tissues are materially non-uniform, consisting of different types of cells
and matrix that turnover, and so too cells consist of different organelles and
cytoskeletal proteins that change over time. In an attempt to address these com-
plexities, Humphrey and Rajagopal [33] proposed a Constrained Mixture Model
(CMM) that allows one to track evolving changes in the properties, turnover rates,
and natural (i.e., stress-free) configurations of individual structural constituents
that comprise a tissue or cell. Computations have shown that this approach can
capture salient features of diverse vascular adaptations and disease processes (cf.
[6, 61]). Briefly, a CMM of arterial growth and remodeling consists of full mixture
equations for mass balance plus a single equation for overall linear momentum
balance that is solved for the net stress field. The associated two classes of con-
stituents are: structurally insignificant but soluble constituents, such as vasoactive
molecules, growth factors, cytokines, and proteases, and structurally significant
but insoluble constituents, such as elastin, collagen, and muscle. Linear momen-
tum balance is solved via a rule-of-mixtures constitutive relation for the struc-
turally significant constituents. The need for but a single linear momentum
equation stems from the assumption that negligible momentum exchanges exist
between structurally significant constituents, which appear to deform together with
the mixture. Because inertial loads are often negligible in the calculation of arterial
wall stresses, even during transient loading, we assume further that structurally
significant constituents experience quasi-static loading. The primary constitutive
relations thus reduce to equations for the production and removal of structurally
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insignificant and significant constituents (the former via classical reaction–diffu-
sion type relations) and stored-energy functions for the structurally significant
constituents. Each of these relations must be formulated based on appropriate
experimental data. For example, data reveal that NO not only causes vasodilatation
(thus affecting the stress–strain behavior), it also affects the synthesis of collagen
(production relation) and inhibits inflammation (which influences the removal
relation).

3.2 Agent Based Modeling and Illustrative
Vascular-Specific Models

Multi-cell biological phenomena, such as the assembly of cells into tissues in
response to environmental cues, can be modeled using either continuum or discrete
approaches. A primary focus of multi-cell modeling has been to quantify how
patterns emerge in tissues and whether they arise from diffusible biochemical
factors, mechanical forces, cell–cell interactions, cell–matrix interactions, or any
combinations thereof. While most continuum-based models approximate indi-
vidual cells as a series of similar units, discrete multi-cell models explicitly rep-
resent individual cells as distinct entities capable of exhibiting individual
behaviors, which provides increased generality. Amongst the different approaches
to discrete cell modeling, the most common are Agent-Based Models (ABMs),
Cellular Potts Models (CPMs) [25], and statistical models. CPMs generalize an
approach from statistical mechanics called the Ising model, and simulate biolog-
ical cells by mapping them to domains on a lattice. Cell behaviors are described by
effective energies and elastic constraints, and cellular dynamics, such as migration
and cell shape changes, are guided by principles of energy minimization [16, 17,
34, 40, 70]. Statistical approaches, such as Monte Carlo simulations, model bio-
logical cells as discrete objects, and their behaviors are dictated by purely prob-
abilistic rules [21].

3.2.1 Agent Based Modeling

ABMs represent a computational approach that has been used extensively in the
social sciences and ecology [27], but only recently has it been employed in bio-
medical research to study multi-cell phenomena such as tumorigenesis [71],
angiogenesis [44], inflammation [7], and arterial wall remodeling in hypertension
[58]. This technique rests on the idea that local interactions between members of a
population can result in complex higher-level emergent phenomena. The key
components of an ABM include the agents themselves, their behaviors within their
environment (i.e., simulation space), the rules that govern their behaviors, and the
simulation inputs and outputs.
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3.2.2 Agents

Agents are discrete entities that perform a defined set of behaviors according to a
set of rules. Agents representing cells, for example, are programmed to exhibit
biologically-relevant behaviors, including migration, proliferation, differentiation,
and apoptosis [3–5, 43, 44] as shown in Fig. 3. Rules governing an agent’s
decision to perform these behaviors may take into account, among other things, the
agent’s past state history and factors present in the local simulated tissue envi-
ronment; these rules can thus be stochastic or deterministic. Agents can detect
biochemical and biomechanical stimuli in their environment and respond by
exhibiting a particular behavior. Agents can also affect their environment by
secreting diffusible growth factors (e.g., PDGF-BB) or by producing ECM and its
modifiers, such as collagen or MMP-9. Finally, agents can interact with one
another. For example, neighboring agents with engaged cadherins can interact
physically much in the same way as neighboring cells in a tissue would interact—
by signaling directly to one another, transmitting a mechanical force, and so forth.
All of these actions and interactions will impact an agent’s state, and the ABM can
record the state histories of each agent at each time step, facilitating individual cell
lineage tracking. To simulate more complex phenomena, multiple cell types can be
represented using multiple types of agents. For example, an ABM modeling the
progression of an atherosclerotic plaque might contain agents that represent
individual ECs, SMCs, macrophages, foam cells, or fibroblasts. The aggregate of
agent behaviors and interactions over space and time produces emergent phe-
nomena that could not be predicted by modeling a single cell or using models
making a continuum assumption.

Fig. 3 Components of an agent-based model. The grid of squares represents the simulation
space, which can hold concentrations of extracellular factors, denoted here by colored squares.
Agents/cells reside at discrete points on the grid, and are colored to represent cell phenotype or
activity. Agents perform behaviors according to their rule set. For example, the yellow cell is
currently static, with no outside influences, while the green cell is following a rule instructing it to
migrate up a gradient of a chemokine (purple). A third cell (red) is affecting the phenotype of its
neighbors through paracrine secretion of a growth factor (blue)
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3.2.3 Rules

Agent-specific actions and interactions in an ABM are ultimately dictated by the
rule set. These rules can be theoretically or empirically based and can be deter-
ministic or stochastic. An example of a theoretically based rule is the use of Fick’s
second law to describe the diffusion of a growth factor that affects other cells [44].
An example of an empirically based rule is a dose–response curve describing the
speed of cellular migration as a function of chemokine (e.g., IL-8) concentration.
Stochastic rules rely on probability distributions and are important when an agent
state does not explicitly dictate a behavior, but affects the likelihood of such a
behavior. Rules are most often derived or estimated from the literature; the
organization and presentation of these rules is facilitated by a table or flow chart
accompanying the ABM (cf. [7]). Rule sets can vary from fewer than ten rules [26]
to as many as 200 [7]. The composition, content, and accuracy of a rule set have a
profound impact on the output of an ABM. Slight modifications to a single rule can
dramatically alter the output of even the simplest ABM. Therefore, in designing,
constructing, and implementing ABM rule sets, caution is urged to ensure that the
rules are accurate, non-redundant, and necessary.

The validity of a rule set can be checked by contrasting model outputs against
experimental data [39, 44, 55], and by performing a sensitivity analysis, where
rules are systematically removed or adjusted incrementally to determine their
contribution to the overall ABM output [26]. Because the outputs of an ABM are
highly dependent on empirical rules, it is necessary to couple models with
experiments at all stages of model development and to validate an ABM’s rule set
by performing iterative in silico and in vivo/in vitro experimentation. For a review
of the integration of experimental data with ABMs, see Ref. [57], and for a method
of assessing the quality of a model’s rule set, see Ref. [58].

3.2.4 Inputs and Outputs

Most biological ABMs simplify tissue geometry by simulating cell behaviors in a
quasi-two-dimensional simulation space that reduces model complexity and
speeds up simulations. For example, one can use a one-cell thick axial slice of
vessel to model arterial adaptations to hypertension [58]. This simplification
enabled measurement of vascular wall thickness and cellularity and was sufficient
to enable calculation of the concentration and diffusion of extracellular proteins as
well as to facilitate direct comparisons with experimental data. An ABM simu-
lation space can have closed [39], open [7], or periodic boundary conditions [53],
and the positioning and state assignments for the agents at the start of a simulation
are specified by initial conditions that are frequently derived from microscopic
images obtained at a starting time [7, 39]. Setting initial conditions in this way
enables direct comparisons with the experimental data at later time-points for
model validation. The initial agent states are assigned based on empirical obser-
vations (e.g., histology) that describe baseline conditions for agent states. The time
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steps of biological ABMs can span a range of scales, from milliseconds to hours
[14, 44], and simulation times can span years [1].

Outputs of ABMs include the spatial arrangements of agents within their
simulation space, their internal state, and the state of the environment. Spatial
patterns of agent organization may emerge during the simulation, and these can be
analyzed quantitatively. For example, in an ABM simulating angiogenesis, the
pattern of new microvessel growth can be assessed by measuring the new vascular
length, counting branch points of vessel trees, and quantifying the number of new
capillary sprouts that have developed over the course of the simulation time
window. Analyzing agent patterns using metrics that are also used to quantify
biological phenomena experimentally facilitates direct comparison of ABM pre-
dictions to experimental data, which enables rigorous model validation. Because
ABMs generalize intracellular processes, but are more fine-grained (discrete) than
is suitable for continuum analysis, they are uniquely suited to bridging disparate
biological scales.

3.3 Signaling Pathways and Illustrative
Vascular-Specific Models

Intracellular signaling pathways govern basic cell functions and allow cells to
adapt to their microenvironments. These signaling pathways consist of a complex
network of interacting molecules that give rise to a diverse range of cell functions
such as proliferation and differentiation. Often, an extracellular ligand binds to a
cell-surface receptor and triggers a cascade of intracellular interactions between
signaling molecules and second messengers that ultimately results in a change in
transcriptional activity, metabolism, or other regulatory function.

Because network elements of signaling pathways often overlap, the causal
relationship between input and output is not always explained by a linear series of
events. Furthermore, network motifs, such as positive and negative feedback
loops, make it difficult to deduce the relationships between the network elements
solely by intuition [2]. To better study and understand intracellular signaling
pathways and networks, a combination of experimental and mathematical
approaches have been used to disentangle the functions of the highly intercon-
nected components. Mathematical and computational Intracellular Signaling
Models (ISM) are used to contextualize experimental data and predict possible
emergent behaviors that are difficult to realize by experimentation alone. Through
cycles of model refinement and experimental validation, one can begin to
understand and probe the complexities of the signaling network and make pre-
dictions about how specific cellular functions arise.

These computational models predict dynamic behaviors of biochemical reac-
tions by using mathematical relations to describe the underlying molecular inter-
actions. Traditionally, ordinary differential equations (ODEs) are used to model
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the concentration profiles of the different signaling molecules over time in
response to a stimulus. Mass action and Michaelis–Menten kinetics are common
ways to represent the reaction kinetics. These approaches have been used to
demonstrate how even relatively small and focused modules can exhibit emergent
behavior through feedback mechanisms [11]. If information about the spatial
distributions of the molecules is desired, partial differential equations (PDEs) are
used. ODEs and PDEs can then be implemented deterministically or stochastically.
Deterministic systems have no element of randomness while stochastic systems
incorporate probabilities in the evolution of the system output over time. The
choice of how the model is formulated depends upon how the modeler views the
system and the biological question being answered.

While modeling of intracellular signaling networks pertaining to blood vessels
is still a relatively young field, an increasing number of computational models are
being developed to study vascular function. To date, a few aspects of vascular
intracellular signaling have been prominently modeled. Proliferation of ECs and
the formation of vessels is one such area. For example, several intracellular sig-
naling network models have been developed to study vessel formation in the
context of vasculogenesis during embryonic development and angiogenesis in both
physiologic and pathophysiological cases [37, 45, 52]. In terms of particular sig-
naling pathways, those involving NO and calcium have received much attention in
recent computational models [60, 65]. We will summarize some of the published
models of vascular signaling networks in the following paragraphs and highlight
the new understanding they produced.

As noted above, among other functions, NO is a key signaling molecule that
regulates tissue-level vasodilation by affecting cell-level (SMC) contraction. One
group modeled the NO/cGMP signaling pathway in vascular SMCs and repro-
duced NO/cGMP-induced smooth muscle relaxation effects, such as intracellular
Ca2+ concentration reduction and Ca2+ desensitization of myosin phosphorylation
and force generation [65]. The authors of this model proposed a cGMP feedback-
controlled soluble guanylate cyclase (sGC) decay from its activated to its basal
form and predicted that the intermediate form of sGC is the dominant steady-state
form of sGC under physiological NO stimulation. This model thus suggested that
the sGC desensitization by cGMP feedback may limit cGMP production over a
wide range of NO concentration, which may contribute to the robustness of the
response of vascular SMCs to small perturbations in NO. The different mathe-
matical models used to investigate the role of NO in microcirculatory physiology
have been reviewed in [60], and one of the overarching themes is that intracellular
signaling models can provide valuable insights into roles of NO in physiology,
especially because experimentally measuring tracer amounts and signaling events
of NO in biological tissue with the appropriate spatial and temporal resolutions is
difficult.

Calcium signaling is largely coupled to NO signaling. In the arterioles, SMCs
and ECs are coupled via the exchange of Ca2+ along with other ions and the
paracrine diffusion of NO. The vascular response to the nonlinear interactions of
subcellular components and processes including Ca2+ signaling have been studied
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in rat mesenteric arterioles via mathematical modeling [35]. This ODE model
predicted that in the rat mesenteric arterioles, ECs exert a stabilizing effect on
intracellular vascular SMC Ca2+ oscillations, which synchronize with oscillations
in vessel tone to cause vasomotion. This stabilization allows Ca2+ oscillations to be
maintained over a wider range of agonist concentrations. Models related to
intracellular signaling include those that simulate the dynamics of ionic flows
across the membrane. One group modeled the dynamics of the Na+/Ca2+

exchanger (NCX) in vascular SMCs; this exchanger regulates the reloading of the
sarcoplasmic reticulum and the maintenance of Ca2+ oscillations in activated
SMCs [23]. Although this model is not of an actual signaling network, it gives
insights into the mechanism of the coupling between Na+ entry via TRPC6 (a non-
specific cation channel) and the NCX. This implicates the concentration of Ca2+ in
the vascular SMC, which affects the signaling pathways involving Ca2+. The
model incorporates a stochastic element to simulate the movement of single Na+

ions in the nanospace between the plasma membrane and the sarcoplasmic retic-
ulum. This model predicted that in order to have a Na+ concentration transiently
elevated in the plasma membrane/sarcoplasmic reticulum nanospace, there must
be physical obstructions to Na+ motion, which form a relatively impermeable
barrier around the TRPC6 channel. NCX must also be localized near TRPC6
within such barrier in order to sense the high Na+ concentration, reverse, and allow
Ca2+ into the sarcoplasmic reticulum. As the details of individual intracellular
signaling pathways become better understood, models can be evolved to incor-
porate additional pathways such that they combine to form an interconnected
signaling network that increasingly describes the physiological system with more
accuracy.

3.4 Limitations of Singular Modeling Approaches

3.4.1 CMM Limitations

Continuum models have proved very useful in vascular research, including helping
to reveal the existence of residual stresses and their effects on the transmural
distribution of stress that led to a fundamental mechanobiological hypothesis [32].
Continuum models also continue to be very successful in explaining and predicting
a wide variety of nontrivial aspects of vascular physiology and pathophysiology,
including the adaptation of arteries to sustained changes in blood pressure or flow
as well as the rupture of aneurysms. Nevertheless, limitations remain. For exam-
ple, the continuum approach assumes material is distributed continuously over
particular length scales, which can mask specific mechanisms of mechanotrans-
duction that result from cell–matrix interactions at discrete sites (e.g., focal
adhesions) but otherwise help to drive overall tissue-level adaptations. Current
models also do not account for the details of particular matrix–matrix interactions,
including interactions between collagen fibers and proteoglycans. Perhaps most
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importantly, however, CMMs cannot exploit directly the growing knowledge-base
of molecular vascular biology.

3.4.2 ABM Limitations

Agent-based models can explicitly include complex cell–cell interactions, but are
limited when it comes to modeling multiscale phenomena. For example, current
ABMs do not satisfy some of the important constraints on vascular behavior that
stem from classical physics (e.g., conservation of linear momentum). Simulating
whole tissues would also require an extremely large number of individual agents,
which quickly becomes prohibitive computationally, particularly for complex rule-
sets that may include stochastic rules. While stochastic rules can produce a pop-
ulation of results that more closely resembles actual experimental data, including
stochasticity necessitates an even larger number of model runs to converge on an
average output. Finally, single-scale, cell-level ABMs treat the agent as a black
box; intracellular interactions are often included implicitly when rules are derived
from cell-level experiments. When intracellular processes are simple, this is less of
a problem, but as intracellular interactions grow more complex, experimental
approaches to rule development can become intractable. Of course, as with any
model, the ABM rule-set is only as good as the data from which it is derived. Often
the kind of data needed to develop rules for cellular behaviors with complex
multifactorial inputs are not available in the literature.

3.4.3 ISM Limitations

Models of intracellular signaling networks are useful tools in predicting the effects
of signal transduction in a cell in response to a stimulus. These predictions are
made at the cellular level, and may require coupling with higher level models to
infer tissue or organ level function. For example, Ca2+ signaling in vascular
smooth muscle cells is studied to make predictions about vasomotion in blood
vessels. Vasomotion requires the synchronization of oscillations in the concen-
tration of Ca2+ in a large group of vascular smooth muscle cells, and gap junctions
are believed to play an important role in this process [18]. Hence, elements of cell–
cell interactions often need to be coupled to an ISM to convincingly bridge the gap
between single cell and tissue level predictions. Lastly, as with the other types of
mathematical models, determination of the scope and complexity of an ISM during
the developmental stages is not a trivial task. In some cases, the paucity and
confidence of relevant experimental data to be used as model parameters can
directly limit the scope and usefulness of an ISM.
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4 Linking Intracellular, Cellular, and Tissue Level Models

4.1 An Integrative Approach

Single-scale models of the types described above all have their own unique
advantages but also limitations. In vivo changes in vascular wall structure depend
critically on interactions at all scale levels, from intracellular signaling to whole
vessel biomechanics. A more complete understanding of the responses of blood
vessels to changes in hemodynamics requires detail at the cellular level that
CMMs alone cannot provide, while many of the functions of SMCs (such as
proliferation and collagen production) result from the integration of so many
signals that experiments to develop rules for a single-scale, cellular level ABM,
are not feasible. Such an integration of signals could be carried out by an ISM,
however. A multiscale, multi-model approach is thus in order, which promises to
build on the strengths of each type of model while compensating for limitations by
offloading them to another model better suited for those specific types of tasks.

Coupling models at different spatial and temporal scales brings forth a whole
new set of challenges, however. In the next two sections, we focus on challenges
unique to each coupling (intracellular to cellular-level, and cellular-level to tissue-
level). We suggest ideas to consider when attempting this approach, and provide
examples from the literature where these techniques have been successful.

4.2 Coupling Intracellular Signaling Models with Agent
Based Models

Rather than building ABMs whose rules treat the cell as a black box, which
provides specific outputs and behaviors given certain combinations of inputs, it is
possible (experimental data permitting) to couple an ABM with an ISM. In this
case, each agent monitors concentrations of extracellular signaling molecules and
runs its own ISM to decide on a particular behavior, including amounts of proteins
to produce. Such a coupling could thereby enable more fine-grained simulations
that more closely replicate in vivo intracellular processes.

One of the areas where cellular-level ABMs can break down is in the combi-
nation of multiple influences on a single output. For example, both TGF-b and
PDGF-AB influence collagen production by SMCs [58]. Each biomolecule’s
influences can be tested experimentally by varying concentrations applied in
culture, but mapping out responses by SMCs to combinations of growth factors
increases the complexity of the experiment exponentially. Indeed, addition of a
third or fourth growth factor could make the experiment intractable. Hence, these
kinds of experiments are rarely performed in vitro even though they are exactly the
kind needed to inform a cell-level ABM that treats the cell as a black box. For
example, development of a rule for the combined influences of growth factors on
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collagen production currently requires extrapolation from a few data points or
parameterization of the ABM [58]. Conversely, if the appropriate intracellular
signaling pathways were well understood, experimentally inferred rules could be
improved by coupling the determination of collagen production to an ISM
resulting in more physiological model output.

The scenario described above, however, would require each agent to run its
own ISM or to query a single ISM running separately at every timestep. As the
number of agents increases, this could become computationally expensive.
Therefore, it is advisable to carefully select which rules or outputs should receive
this treatment. A thorough sensitivity analysis of the ABM assists in this process
by determining which cellular outputs are most important to model predictions. In
contrast, another way to approach this coupling would be to pre-calculate outputs
of the ISM within physiological ranges of the input parameters and then store
results in a look-up table to be accessed by agents during the ABM simulation.

Other things to consider when determining how to couple cell-level with
intracellular models is that temporal and spatial scales may differ by orders of
magnitude. While the ideal time-step for an ABM may be on the order of minutes
to days (e.g., depending on whether one is simulating cell migration or prolifer-
ation), intracellular protein interactions may occur on the order of nanoseconds to
seconds. The majority of vascular models using some form of ABM-ISM inte-
gration to date have been in the field of angiogenesis. For example, Bauer et al. [8]
developed a model of tumor induced angiogenesis using a cellular Potts model. In
order to understand contributions of cadherins and ECM binding integrins to
VEGF signaling, and the associated decision of a cell to migrate, proliferate, or
apoptose, the authors went on to develop a Boolean network model incorporating
the crosstalk between these three intracellular signaling pathways [9]. This model
could potentially be used in conjunction with the CPM to dictate cellular behavior
during angiogenesis. Likewise, Scianna [52] developed a hybrid approach cou-
pling a CPM of vasculogenesis with an ISM using reaction–diffusion equations to
couple VEGF signaling, arachidonic acid, and NO with calcium entry into the cell.
These reactions occur with ten diffusion time steps per main time step.

The issue of very small time-scales for the ISM is much more easily addressed
than the converse: when the signaling pathway being modeled contains tran-
scription and translation, critical functions may occur over multiple ABM time-
steps. In this case, the ISM might need to be capable of integrating changes in
growth factor concentrations as a cell migrates, which may influence protein
outputs 30 or more ABM time-steps later. While this has been addressed in pre-
vious ABMs by assuming that changes in protein levels happen instantaneously, or
within one time-step [7], this may not always be possible when predicting sensitive
outputs that require sufficient physiological detail. To our knowledge, this problem
has not yet been satisfactorily solved and is something that needs to be seriously
considered in the design phase of any integrated model.
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4.3 Coupling Agent Based Models with Constrained
Mixture Models

In this section we focus on coupling an ABM with a CMM, but the overall
procedure can be applied to the coupling of many types of models. Any model is
only as good as the data upon which it is built. Hence, we suggest that the first step
in a multistep process of coupling different models should be to substantiate the
goodness of the published data used to build both models. This can be done, in
part, by evaluating the credibility of each data set based on four categories: (1)
agreement with other published findings, (2) physiological conditions (e.g., in vitro
versus in vivo), (3) appropriateness to the computational model (this metric
assesses how well the data match the particular situation, that is, same cell type,
organ system, species, environmental condition, and so forth) and (4) data preci-
sion (e.g., data measured directly and quantified numerically are better than
extrapolated or theoretical); please see Ref. [58] for more details. After performing
this data assessment one can then use the highest scored findings to update or
create a data-driven computational model with more confidence.

The second step involves further model verification through stability and
parameter sensitivity analyses. After the governing equations, parameters, and
outputs have been defined for each model, one should confirm that the model is
stable over known situations. For example, constituents within the vascular wall
are synthesized and turned over at different rates; collagen may be secreted by the
cell in less than an hour and has a half-life of *30–70 days, whereas elastin is
primarily produced during the perinatal period and remains for the majority of
one’s lifetime. Despite these changes, the average geometry of a healthy, mature
artery remains fairly constant over long periods. Therefore, it is expected that,
under homeostatic conditions, the ABM and CMM should predict no net change in
geometry, microstructure, mechanical properties, or biological response over such
periods. Moreover, one should confirm that the model can capture acute reactions
to transient perturbations. For example, a 10 % increase in pressure over a few
hours can lead to transient spikes in growth factor production and yet no net
changes in collagen or SMC content. In order to assess the sensitivity of each
model to parameters that influence production and removal rates, it is important to
conduct a one-dimensional, and if possible, a two-dimensional sensitivity analysis.
A one-dimensional analysis will reveal to what degree a single parameter can be
increased or decreased before outputs diverge from what is physiologically
expected. For example, in a recently reported ABM, the production of new SMCs
depended in part on a gain-type parameter multiplied by the concentration of
PDGF; if this parameter increased, then SMC content increased and so too wall
thickness, which could decrease the circumferential stress (Fig. 4). Yet, PDGF
production is a function of circumferential stress, thus less PDGF should be
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produced as the wall thickens (Fig. 4). Ensuring proper responses to simple per-
turbations, as illustrated by this example, can help identify appropriate bounds to
place on free parameters.

Finally, note that multi-cell ABM rules are often based on cell level in vitro
experiments, which can be well controlled but do not always have direct physi-
ologic relevance. CMMs are typically based on either in vitro or in vivo tissue-
level experiments, which can have considerable physiological relevance but often
little control of the inputs sensed by the cells (e.g., humoral in addition to
hemodynamic). Because each data set will be inherently limited, some advantage
can be gained by ensuring that models of the same processes based on very
different data should yield the same result [29]. The third step, therefore, is to
enforce congruency across two (or potentially more) scales through parameter

Fig. 4 Sensitivity of the number of smooth muscle cells (SMC), value of hoop stress and
concentration of PDGF to changes of the m parameter in the chance of SMC proliferation
function. Note the interdependency between PDGF, hoop stress and number of SMC. Outputs are
able to obtain a new equilibrium to small changes of the m parameter

230 H. N. Hayenga et al.



refinement. This process allows one to refine the objectively bounded model
parameters in an attempt to minimize the error between common metrics between
both models for simple situations. This step is imperative to synchronize both
models across scales and to yield predictions that are closer to in vivo observa-
tions. This is accomplished not by compromising the strengths of either model, but
by tuning each model so that it is influenced by the strengths of the other. For
example, the ABM and CMM both have the ability to predict the amounts of
collagen and smooth muscle under simple situations; therefore by instituting a
genetic algorithm, or any preferred error minimization technique, the difference
between these common metrics, at each time point, can be minimized by varying
the set of parameters after each full simulation.

5 Future Directions

5.1 Potential Mulitscale Model

A compelling goal in developing multiscale models is to extend the models to both
higher and lower levels of scale, with the motivation being that with every added
level of scale, one gains even greater flexibility with regards to hypothesis testing,
achieving biological relevance, and incorporation of disparate data sets. Starting
with the multiscale CMM-ABM, a natural extension is to conjoin an intracellular
signaling model (ISM) that can simulate events on a much shorter timescale and
account for phenomena within the cell that ultimately impact cell behaviors and
outcomes at the tissue level. We have begun to conceptualize a three-tiered
multiscale model (ISM-ABM-CMM) of vascular growth and remodeling in the
arterial wall (Fig. 5), and this section will briefly summarize some of the enabling
components.

The relevant biology of vascular growth and remodeling during human disease
occurs over years; however, biological phenomena contributing to disease pro-
gression over this timeframe occur across incremental time steps that range from
seconds to weeks, depending on the spatial scale. Specifically, signaling events in
the ISM have a timeframe on the order of seconds to minutes, multi-cell phe-
nomena in the ABM have a timeframe of minutes to hours, and tissue-level
continuum phenomena in the CMM have a timeframe of hours to days or months.
Therefore, in the construction of the multiscale model we envision a temporal
decomposition strategy to couple across scales (Box 1).
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Box 1. Temporal decomposition strategy for a three-tiered multiscale
model
Intracellular to multicellular time interfacing: Each time step of the ABM
will represent 1 h, and multi-cell level behaviors will occur on this time-
scale. For example, SMCs will proliferate over 8–24 h [44] or 8–24 time
steps in the ABM, while growth factor production will occur over 12–24 h
(or time steps) [44]. When the ABM calls the ISM (every 24 h for 120
simulated days), where biological events will be simulated on the order of
minutes, we will institute a time-delay, or essentially ‘‘pause’’ the ABM,
while the intracellular events are computed by the ISM.
Multicellular to tissue-level time interfacing: Each time step of the CMM
will represent 1 week, and tissue-level behaviors will occur on this time-
scale. For example, the strain state of the artery wall will change over the
course of 1–2 weeks (depending on vessel geometry and composition
alterations during this time window). Therefore, to account for these changes
on a time window that is biologically realistic, the ABM will call the CMM
every week (i.e., every CMM time step) in order to recompute and update
tissue-level changes that occurred during this window. Thus, in the ABM,
every 7 days (or 168 time steps in the ABM), the ABM module will be
‘‘paused’’ in order to run the CMM, whose output (computation of the
mechanical state of the media) will be imported back into the ABM.

Another hurdle to achieving a unified three-tiered multiscale model is defining
an appropriate level of resolution and abstraction for the relevant spatial scales
such that information at one level can be mapped to higher and/or lower levels of
biological scale. We have previously devised a method for coupling spatial scales
between an ABM and ISM [49]. In that ABM module, we simulated individual
biological cells using nine coupled agents that represented different cytoplasmic
and membrane compartments within each simulated cell. In this way, we could
simulate the differential behaviors of the leading versus trailing edge of a cell as it
migrated across a two-dimensional substrate. Intracellular signaling events were
simulated in the ISM and distributed equally to the nine agents comprising each
cell, but one could envision partitioning or compartmentalizing certain reactions
within spatially confined intracellular regions that would map directly to the dis-
cretized, multi-agent cells within the ABM. We have similarly devised a method
for comparing spatial scales between an ABM and CMM [29]. In this case, the
ABM consisted of layers of cells whereas the CMM consisted of a homogenized
structural wall. Data from the ABM could thus be averaged radially and applied to
the CMM at each time of interest.

We envision that a three-tiered, multiscale ISM-ABM-CMM will be united by
an umbrella program implemented in JavaTM. This program will run the ISM,
ABM, and CMM modules in parallel, while transferring information between each
pair of modules. The CMM and ISM are implemented in Matlab

�
, and the ABM is

implemented in Netlogo [63]. We have opted to use these modeling software
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programs because they are well established, readily available, and easy to learn,
which, importantly, will facilitate the sharing of our multiscale model. Matlab is a
general-purpose simulation tool, and Netlogo, written in JavaTM, is freely down-
loadable from http://ccl.northwestern.edu/netlogo/ and is the most widely used
agent-based modeling software [63]. Our group has previously published a mul-
tiscale model that unites ISM with ABM using a JavaTM-based umbrella program
to run an ISM and an ABM in parallel [49], for the study of tissue morphogenesis
during embryonic development. The umbrella program will interface the ISM,
ABM, and CMM through the use of text files that can be imported and exported by
both Matlab

�
and Netlogo, which will store inputs and outputs of each module and

be used to communicate predictions from one level of scale to the next. Netlogo
extensions are capable of running JavaTM code, and the JavaTM code will open and
run Matlab.

Model validation is an important check to confirm the model is accurate and
stable. Box 2 describes a possible strategy for validating a three-tiered multiscale
model.

Fig. 5 Illustration of a possible approach to couple intracellular signaling models (ISM), agent
based models (ABM), and constrained mixture models (CMM) to enhance computations of
vascular behaviors
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Box 2. Validation Strategy ISM-ABM-CMM
The multiscale model can be validated by first validating each of the mod-
ules (ISM, ABM, and CMM) individually (Steps 1 and 2), and then vali-
dating the integrity of the unified multiscale model (Step 3):
Step 1: Disconnect each of the modules (ISM, ABM, and CMM) from one
another and compare outputs from each module to independent experimental
data collected (or reported in the literature) at that level of scale. For
example, to validate the ISM, one can perform a set of simulations to acquire
an in silico dose–response curve relating SMC proliferation rates to PDGF-
BB concentration. Then compare this predicted dose–response curve to
experimentally measured proliferation rates from PDGF-BB dose–response
studies. This will ensure that the internal structure of the ISM accurately
reproduces SMC proliferation in response to PDGF-BB.
Step 2: Disconnect each of the modules (ISM, ABM, and CMM) from one
another and compare those outputs that each module has in common with
one another. This will ensure that the modules are internally consistent with
one another. For example, both the CMM and the ABM will predict the
thickness of an atherosclerotic plaque, but it is important to check that the
predictions from both modules are congruent (and minimize the residual
differences between ABM and CMM predictions), given that the parameters
and ‘‘rules’’ governing the ABM and CMM will be derived from different
sources (Fig. 5).
Step 3: Validate the unified multiscale model by comparing its outputs (i.e.,
outputs generated by the integrated ISM, ABM, and CMM) to independent
experimental data. Quantitative predictions of the multiscale model at time
t [ t0 can be compared with identical outcome metrics collected from the
quantitative analyses of hypertensive patients or ApoE -/- plaques. Agree-
ment between prediction and experiment will suggest that the multiscale
model is valid for that range of parameters

The hope in pursuing this type of multiscale modeling is that one day we will be
able to confidently theorize about new drug or knock-out treatments and cause-
effect relationships. For example, if the angiotensin II (ANG-II) receptor type II
(AT-2) is blocked, ANG-II binds to the type I receptor (AT-1) of ECs. Binding of
AT-1 activates the tyrosine kinase and downstream proteins (mitogen-activated
protein kinase (MAPK), Janus kinase (JNK), and signal transducer and activator of
transcription (STAT)) leading to increased intracellular calcium, activation of the
L-type calcium channel, and consequently arterial constriction. Activation of
MAPK also stimulates fibroblast and SMC migration and proliferation via syn-
thesis of platelet derived growth factor and tissue growth factor-b. These growth
factors as well as increased aldosterone all serve to facilitate extracellular matrix
production in a particular collagen, which leads to increased wall stiffening or
pulse wave velocity. Stiffened arteries not only require a larger pressure to distend;
flow propagation is impaired due to inadequate elastic recoil. Thus over time the
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increased load on the heart causes left ventricle hypertrophy and left ventricle
failure. Alternatively, we can theorize about ‘‘top-down’’ effects. For example,
how does mechanical shear force experienced by the ECs impact NO signaling and
PDGF expression, which in turn affect SMCs and overall wall mechanics? Cre-
ating models to predict these types of outcomes will save time, money, and
potentially lives.

Of course, the aspiration to unite ISM-ABM-CMM is met with considerable
challenges, not the least of which is the requirement for additional computing
power. Assuming the technical challenges can be overcome by advances in
computing (e.g., parallelization, grid computing, and cloud computing), one must
address the conceptual challenges in multiscale model design. The final section of
this chapter will delve deeper into these challenges and suggest opportunities for
innovation in multiscale modeling.

5.2 Challenges

As noted by the 1998 Bioengineering Consortium (BECON) Report of the U.S.
National Institutes of Health,

The success of reductionist and molecular approaches in modern medical science has led
to an explosion of information, but progress in integrating information has lagged …
Mathematical models provide a rational approach for integrating this ocean of data, as
well as providing deep insight into biological processes.

Whereas the need remains to develop more robust and faithful models at all
scales (macro, micro, nano), we submit that there is a pressing need to develop
approaches that integrate such models across diverse scales. Indeed, anticipating
the challenges of multiscale modeling should influence the development of models
at each scale for they will need to interface with the other models. Toward this end,
we suggest here the following particular challenges that deserve our immediate
attention.

There are several computational languages used to run numerical analysis (e.g.,
Matlab, Maple, Mathematica, Java Virtual Machine, FORTRAN, and C++,). Thus,
a logistical challenge may arise when models, at different scales, are programmed
with different languages. We proposed herein using text files as inputs/output
because all our modeling platforms can read and write text files, however this
process is time consuming and cumbersome. Therefore finding patches or proper
interfaces between multiple numerical analysis software remains a challenge. In
addition, iterative simulations may take days to complete and require considerable
memory on a personal computer. Consequently large-capacity databases and fast
processors/parallel systems may be required to render the computational process
tractable. After a multiscale program is completed, finding ways to distill and
partition model findings into digestible chunks that is are easy to disseminate and
publish may be a challenge.
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In addition to computational challenges, there are also many conceptual chal-
lenges. For example, events at the tissue level may depend on past events and take
hours to days to occur, while at the intracellular level processes may occur in a
fraction of a second. In addition to integrating across temporal scales, integrating
across spatial scales (i.e., 2D versus 3D) may require further dispensation. One of
the major challenges remains in simplifying the complex system due to gaps in our
understanding or in an attempt to not over constrain the model. Where should one
start, and how is each decision justified? Another challenge of integrating multiple
discrete models is deciding what information to pass back and forth. Each model
may have interdependency within itself, thus passing a concentration or stress
value negates any feedback mechanisms the model had related to these parameters.
Therefore, integrating models that rely on values from one another is a challenge.

Biological adaptation and variability are difficult to capture in a universal
mathematical model. How biological systems change in time is what the models
presented herein try to account for, but some adaptations are unpredictable. For
example, natural effects (due to ageing, hormonal life cycles, ones genetic
makeup, even what division cycle cells in the body are on) and external effects
(due to accidents, smoking, exercise, eating habits, radiation, etc.) may alter how
the general process works. Therefore, if the response of one patient or system
could be very different than another, are the models unique to the patient? How
general should the models be? Of course we are currently limited by our tech-
nology to measure and characterize the interactions of phenomenon of biological
systems. Generally speaking, like the Heisenberg uncertainty principle, to augment
our knowledge of, say, the rate of growth factor production may come at the cost
of compromising physiological conditions.

Nevertheless, we feel that complex system modeling in biology is the key to
developing new drugs and therapies over the next 50 years; as such there are
educational needs that should be met. Having more undergraduate courses that
deal with complex systems analysis in biology will equip more students with the
fundamental skills. More graduate courses on the theory of modeling vascular
adaptation, and biological adaptation in general, will allow for specialization and
additional improvements. Having more graduate programs and/or cross-degree or
dual-degree Ph.D. programs that are designed to treat high-throughput data in the
context of in vivo function and quantitative modeling is needed. In addition,
continued changes in academic culture that recognize the value of collaboration
and teamwork on large complex systems will facilitate more advanced models. We
are encouraged to hear that in April 2012, NSF and NIH jointly launched a ‘‘Core
Techniques and Technologies for Advancing Big Data Science and Engineering
(BIGDATA)’’ initiative. The need for a means to manage, analyze, visualize, and
extract data from diverse, distributed data sets has been recognized. If successful,
having this wealth of ordered data at our fingertips will only help to update and
improve the rules and relations of multiscale modeling.
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