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Abstract This chapter aims to provide an introduction to how engineering tools in
general and computational models in particular can contribute to advancing the
tissue engineering (TE) field. After a description of the current state of the art of
TE, the developmental engineering paradigm is briefly discussed. Subsequently an
overview is provided of different model categories that focus on different aspects
of TE. These categories consists of the models that focus on either the TE product,
the TE process or the in vivo results obtained after implantation. Generally, in all
these models the aim is firstly to understand the biological process at hand and
secondly to design strategies in silico to enhance the desired in vitro or in vivo
behaviour. Finally, the need for quantification and parameter determination is
discussed along with the computational tools and models that can be used to design
the thereto required experiments in the most intelligent way.

1 Introduction

The presence of the word engineering in ‘‘Tissue Engineering’’, the interdisciplinary
field combining biomedical and engineering sciences in the search for replacements of
diseased/non-functional organ (parts) by manufactured living implants that support
functional tissue regeneration [1], has not yet fulfilled its true potential. Ever since the
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official introduction of the field in 1987, the research focus has been predominantly on
the biology of the tissue construct and biomaterial development. Apart from the latter,
the engineering input has remained limited to technical aspects such as bioreactor and
biosensor development, and automation. Although these aspects are needed when
bringing the biological processes from bench to bed side, they cover only a small part of
what the engineering sciences have to offer the TE field.

One key issue the TE field in general is struggling with is the lack of quantity and
quality of the generated products [2, 3]. Protocols and procedures followed in the lab
are mainly established based on trial and error, requiring a huge amount of manual
interventions and without clear early time-point quality criteria to guide the process.
This also makes these processes very hard to scale up to industrial manufacturing levels
as can be appreciated from the limited number of companies that have survived the first
decade of TE [3]. Overall, there is a lack of intelligent process design in the current TE
field. Over the last few years, a number of leading labs [4–8] in the TE field have
realized that the trial and error approach is not a good way to obtain products that can
meet the quality standards of international regulatory bodies such as EMA or FDA. It
was proposed to return to an approach inspired by nature’s own regenerative and
developmental processes [4–8] called developmental engineering. Much the same as
aspired in any manufacturing process, developmental processes are robust, multistage,
observable, controllable, path-dependent and autonomous. A common engineering
approach when designing any kind of manufacturing process, from the food over the
chemical to the automotive industry, is to use in silico models of the product and/or the
manufacturing process, based on physical, mechanical or (bio)chemical laws/equa-
tions and/or experimental data, in order to minimize the variability, increase the quality
and optimize the overall process. In silico models can, amongst others, help to identify
key regulating parameters of the manufacturing process and extrapolate early time
point information to predict final product behaviour.

This chapter will briefly introduce a number of modelling techniques and
applications related to the design of TE products and processes. It will start by
introducing the novel paradigm of developmental engineering that has recently
emerged in the TE field. Subsequently various examples of how computational
tools can assist in the development of robust and reliable products and processes
are discussed, many of which will come back in the other chapters of this book.

2 Developmental Engineering: A New Paradigm
for Tissue Engineering

Over the last few years, several leading labs [4–8] in the TE field have proposed to
return to an approach inspired by nature’s own regenerative and developmental
processes [4–8] called developmental engineering as many of the characteristics of
developmental processes are desirable in process design. Firstly, the developing
embryo has the ability to cope with a wide variety of external perturbations, i.e. it
is a robust system. This robustness of developmental processes would allow the in
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vitro process to be impervious to a wide scale of external perturbations, which are
often unavoidable in an artificial environment. Additionally developmental pro-
cesses exhibit a multistage character, meaning cells will differentiate in charac-
teristic stages, with a distinct morphology and marker genes. Accordingly, the in
vitro process could be divided into a series of sequential subprocesses, each cor-
responding to a specific stage in developmental biology. This would make the
process highly observable, by for example determining expression of certain
marker genes, and highly controllable, since growth factors could be added when
the cells are at a stage where they are competent to respond to them. Another
concept advocating the use of in vitro developmental processes is path-depen-
dence, or the dependence of one developmental stage on the previous ones. This
means that the optimal conditions of the successive stage are provided by its
predecessors. These conditions consequently do not have to be incorporated in the
process design and will make the process more autonomous. An example of path-
dependence can be found in endochondral ossification, where first a cartilage
anlage is formed which creates optimal conditions for the invading ossification
front [9]. Furthermore, some intermediate tissue forms have a great robustness
thanks to intrinsic factors, allowing them to be treated as individual modules. The
regulative, self-controlled behaviour exhibited by these modules will likely lead to
a high product consistency. Several modular forms appear during development,
including cellular modules like cartilage condensations and multicellular modules
with a spatially extended and heterogeneous cell population like the growth plate.

The growth plate is a developmental centre that integrates many signalling
pathways in order to regulate the patterning and growth of the skeleton. As a cell
progresses throughout the growth plate, going from the long bone’s epiphysis
towards the diaphysis, its shape and function changes drastically [10]. At the
epiphysis, a pool of small round chondrocytes makes up the resting zone. These
cells differentiate into more rapidly proliferating flat chondrocytes, forming pro-
liferative columns. The resting and proliferating chondrocytes secrete structural
proteins, such as collagen type II, that form a hyaline cartilage matrix. Towards the
diaphysis, chondrocytes differentiate further into prehypertrophic, secreting Indian
Hedgehog (Ihh), and thereafter hypertrophic chondrocytes [11]. Hypertrophic
chondrocytes remodel the cartilage matrix into a calcifying matrix comprising
primarily collagen type X (Col-X). At terminal differentiation, the cells will induce
invasion and resorption of the hypertrophic cartilage as well as the start of vas-
cularisation by excreting proteins like Matrix Metallopeptidase 13 (MMP13) and
Vascular Endothelial Growth Factor (VEGF) [12]. The evolution the chondrocytes
undergo is reminiscent of the developmental process of endochondral ossification,
indicating these events can be recapitulated using adult stem cells [13–17]. Indeed,
implantation of articular chondrocytes (mixed with osteoblasts) in mice has been
shown to result in formation of a structure similar to that of the growth plate [18].

Lenas et al. [4–8] extensively discuss how the growth plate developmental
process can be used as a template for robust and reliable bone TE processes.
Proof-of-concept for the basic idea that aggregates or constructs stem cells of
(embryonal and postnatal bone marrow derived) after in vitro differentiation along
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the chondrogenic lineage (all the way up to hypertrophy) will result in bone
formation after implantation in vivo has been delivered by several groups [19–21].

3 Computational Tools for Product and Process Design
in Tissue Engineering

Engineered products will only be a viable and competitive alternative to upcoming
off-the-shelf innovations in regenerative medicine if they are manufactured with
reproducible properties, a prerequisite for consistent clinical outcomes. This
important target is mainly challenged by the intrinsic variability in the behaviour
of human cells from different batches or donors as well as by the sensitivity of
cells to perturbations in the culture environment [22].

Although research-oriented systems are generally too complex, user-unfriendly,
unsafe and expensive for direct use in clinical applications, their underlying
principles could nevertheless lay a solid foundation for more clinically compliant
manufacturing systems. This will require not only the optimization of the TE
product itself but also the identification of only the most essential processes,
culture parameters and construct parameters that must be monitored and controlled
to standardise production and provide meaningful quality and traceability data, at
the same time minimise risks, costs and user complexity [22].

Below we describe a number of computational tools are being used to optimize
the design of both TE products and processes as well as the in vivo result. These
tools use a variety of modelling techniques building on physical, mechanical or
(bio)chemical laws/equations and/or experimental data. The models can range from
mechanistic (hypothesis-driven, white box) to phenomenological (data-driven,
black box) and, depending on the specific application, range from the gene/protein
level over the cellular level up to the tissue/organ level. Figure 1 shows an overview
figure of different models that have been developed in the field of bone tissue
engineering by the research group of the author. The overview in this chapter is by
no means exhaustive but serves to illustrate different aspects of product and process
design. The reader is referred to the other chapters of this book that provide a more
in depth review on a number of the aspects mentioned here.

3.1 Computational Tools for Product Design

There are a number of aspects on the design of TE products where computational
models can make and already have made contributions, not only in the way the
carrier structure (when dealing with combination products or biomaterials only) is
designed but also the way cells are processed prior to implantation.

Obvious aspects of scaffold design include their structural, mass transport and
mechanical properties. Several chapters in this book describe the design and
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characterisation of hydrogels, frequently used as carrier structure in tissue engi-
neering, but each focusing on a different aspect. Israelowitz et al. [31] argue that in
order to define the correct position of e.g. collagen in the fibre network arrange-
ment of extracellular matrix, which is important to determine its tensile strength,
an optimized tertiary structure of the protein needs to be characterized. They
provide an introduction into the different methods that are currently used to
determine protein conformation in silico. On a higher length scale, Nekouzadeh
et al. [32] describe the development of a mechanical model to design and evaluate
engineered tissues and/or carrier structures (such as hydrogels) that serve a
mechanical role. An important component of such models is often viscoelasticity,
or the dependence of mechanical response on loading rate and loading history. In a
great number of biological and bio-artificial tissues the passive tissue force (or
stress) relates to changes in tissue length (or strain) in a nonlinear viscoelastic
manner. Choosing and fitting nonlinear viscoelastic models to data for a specific
tissue can be a computational challenge. Nekouzadeh et al. [32] describe the range
of such models (focusing in particular on adaptive quasi-linear viscoelastic
models), criteria for selecting amongst them, and computational and experimental
techniques needed to fit these to uniaxial data. Additional to structural mechanics,
mass transport is an important property of hydrogels which can influence the
behaviour of cells encompassed in these hydrogels in various ways. Lambrechts
et al. [33] provide a thorough overview of how consumption and production of
soluble medium components gives rise to gradients inside hydrogels and how mass
transport related phenomena can shape these gradients. The authors focus on the

Fig. 1 Overview of the different models developed in the research group of the author of this
chapter. Models can be classified according to the origin of their development (phenomenological
vs. mechanistic) or according to the length and time scales of the processes they describe (gene/
protein, cell, tissue/organ). a Roberts et al. [23]; b Kerkhofs et al. [24]; c Geris et al. [25];
d Peiffer et al. [26]; e Carlier et al. [27]; f Geris et al. [28]; g Geris et al. [29, 30]
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combined use of experiments and mathematical modelling and describe not only
how the simulation results play an important role in generating information that
can help in unravelling mechanisms that drive solute transport but also genuine
efforts that have been taken to translate this information into real TE set-ups.

Another type of carrier material that is often used, mainly in musculoskeletal
tissue engineering, is a (macro-) porous scaffold. Similar to the hydrogels discussed
above, these scaffolds allow supporting mechanical loading and mass transport.
Olivares and Lacroix [34] review the computational methods applied to characterize
scaffold morphology and simulate different biological processes in and around these
scaffolds. These processes include cell seeding, cell migration, cell proliferation, cell
differentiation, vascularisation, oxygen consumption, mass transport and/or scaffold
degradation. Song et al. [35] describe how using a combination of computational
fluid dynamics and finite element analysis allows to predict flow regimes within
scaffolds and to optimize flow rates to deliver mechanical cues during cell seeding
and subsequent cell behaviour. They furthermore demonstrate how computational
modelling can be used to optimize spatiotemporal mechanical cue delivery and
mechanically modulated biochemical gradients through optimization of scaffold
geometry, material behaviour and mechanical properties.

Besides the scaffold’s physical properties, also its chemical properties (e.g. its
release properties) can have a substantial influence on the overall behaviour of the TE
construct. Chemicals released form the scaffolds can either be dissolved components
of the scaffold material itself (e.g. the release of soluble calcium from calcium-
phosphate-collagen scaffolds) or substances that were added to the scaffold structure
for delivery in vivo and have a specific biological function (e.g. controlled release of
growth factors). Mathematical models have been developed describing these release
processes and have been applied to determine in silico optimal scaffolds for a variety
of biomedical problems, e.g. Carlier et al. [27] and many others.

For TE products that include (or are solely consisting of) a cellular component,
models have been developed to investigate aspects ranging from storage over pro-
liferation and selection to implantation strategies. Cincotti and Fadda [36] describe a
model of the cryopreservation process of cell suspensions, a critical step in tissue
engineering. The model is based on bio-physical properties and takes into account
size distribution of the cell population. After validation, the authors have used their
model to investigate the effect cell size distribution on system behaviour under
various operating conditions showing that under commonly used operating condi-
tions, intra-cellular ice formation may be lethal for the largest cells in the population.
In addition to cell size, cell populations are also heterogeneous in various other
functional and molecular aspects. Galle et al. [37] review the most recent results on
heterogeneity in mesenchymal stem cells (MSC) and introduce a mathematical
framework that approaches MSC heterogeneity on the single cell level. This
framework is capable of describing the impact of MSC heterogeneity on in vitro
expansion and differentiation and can be used to investigate MSC adaptation to
changing environments and the cell’s intrinsic control of state fluctuations. Prior to
implantation, the quality of the cells needs to be assessed in order to guarantee a safe
and effective therapy. As this quality check should preferably be non-invasive,
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complete (meaning all cells and not only a sample should be checked), real-time and
predictive of further clinical therapeutic effect, conventional cell biology techniques
are ruled out. Sasaki et al. [38] discuss the potential of image-based quality assess-
ment by implementing machine learning models to connect biological phenomena
with the measurements. After storage and quality assurance of the cell population,
the timely administration of the appropriate concentrations of cells in the correct
location is another crucial point where computational modelling can be an interesting
tool. Geris et al. [39] have investigated the administration of MSCs in and at the
fracture site of atrophic non-unions by means of a computational model and have
corroborated their simulation results through comparison with the results from a pilot
experiment (which was based on the in silico predictions).

3.2 Computational Tools for Process Design

Nature uses a very complex system of regulatory mechanisms compounded by a
huge amount of redundancy. Systems biology and bio-informatics are just
beginning to unlock the huge amount of information that is hidden within the
human genome. From this huge amount of info a limited number of functional
regulators (targets or markers) needs to be distilled that are indicative of the
progress of the biological process in vitro and can hence be used to control the TE
manufacturing process. These regulators are not necessarily restricted to biological
parameters but can also be properties of the carrier structure and culture envi-
ronment. These regulators are part of an intricate network that is too complex to be
interpreted without the help of in silico modelling.

An additional challenge when dealing with biological processes is how to extract
knowledge on these regulators from the relatively few process states that can be
measured on-line [40]. In this context, the monitoring and control of bioreactor
systems will be crucial at the research stage of product development, in order to
identify these key regulators and to establish standardised production methods [41].
A mathematical model of the process is a cornerstone for modern control approa-
ches such as model-based predictive controllers (MPC). Therefore, a complete
design of an automatic bioreactor system should include the development of a good
model, which should be complete enough to fully capture the process dynamics at
interest and should also be capable of allowing the predictions to be calculated but at
the same time, it should be intuitive and permit theoretic analysis [42].

Various types of models can be used as long as they allow accurate predictions of
the most important process output(s) and are compact enough to be implemented in
the bioreactor system. In many control applications black box models are used (e.g.
impulse response models, step response models, transfer function models, state space
models, neural networks, etc.) that describe the process under consideration based on
data of dynamic experiments (dynamic data-based models). They have the advantage
that they are compact, allow accurate predictions of the process behaviour and are
easy to implement in a model-based control framework. However, an important
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drawback of these models is that they are not based on knowledge of the system and
as such are difficult to interpret in a biological way. At the other end of the spectrum,
there are mechanistic models (white box) that are knowledge based and as a result
often (much) more complex than data-based models. A hybrid (grey box) approach
has been developed that combines the advantages of both the dynamic data-based
modelling approach and the mechanistic modelling approach into a so called data-
based mechanistic (DBM) modelling approach [43]. DBM models can be developed
in different ways, but one commonly used approach is to start from available
mechanistic models that then will be reduced in complexity by applying sensitivity
analysis and principal component approaches (e.g. [44, 45]). Parameters of the
reduced order model structure can be estimated in a time varying way by using e.g. a
recursive instrumental variable estimation method using data from dynamic exper-
iments with the bioreactor system to be controlled.

Mechanistic (white box) models of in vitro bioreactor processes have been
repeatedly proposed in the literature. O’Dea et al. [46] provide an overview of the
models that use continuum modelling techniques to investigate how the different
underlying processes interact to produce functional tissues for implantation in cell-
seeded porous scaffolds. They aim to demonstrate how a combination of mathematical
modelling, analysis and in silico computation, undertaken in collaboration with
experimental studies, may lead to significant advances in the understanding of the
fundamental processes regulating biological tissue growth and the optimal design of in
vitro methods for generating replacement tissues that are fully functional. Raimondi
et al. [47] discuss, also for cell-seeded porous scaffolds, the need for and the advances
in the use of multiphysics and multiscale mathematical models. They describe various
possible approaches to couple biomass growth, medium flow and mass transport in a
single model. Furthermore they discuss recent advances in scientific computing
techniques that are needed to implement these multiscale/multiphysics models as well
as new tools that can be used to experimentally validate the computational results.

Besides the control of the bioreactor process, the design of the bioreactor set-up
itself can play a major role obtaining the desired results. Bjork et al. [48] use
computational models focusing on the dissolved oxygen transport to design bio-
reactor set-ups for engineered vascular tissues that improve transport, particularly
by perfusion of medium through the interstitial space by transmural flow. Their
computational models, supported by empirical data, specifically investigated
designs that would eliminate nutrient gradients evident during static culture
methods, in order to develop more uniform engineered vascular tissues which
would lead to improved mechanical properties of the resulting construct.

3.3 Computational Tools for the Study of the In Vivo Process

Although according to the developmental engineering concept [4–8], the estab-
lishment of robust modular tissue intermediates in vitro should lead to the desired
high-quality outcome in vivo, the effect of the in vivo environment is an important
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unknown that requires thorough experimental investigation. From the obtained
experimental results mechanisms of actions can be proposed and subsequently
mathematical models can be used to translate these mechanisms of action into a
coherent set of mathematical equations. These equations form a quantitative
spatio-temporal framework of interrelated biological variables and sub-processes,
providing a dynamic and comprehensive overview of the entire repair process. As
such, the mathematical models can help in interpreting the in vivo data (by
establishing causal relations) on the one hand and generating new hypotheses on in
vivo outcome (by running in silico experiments) on the other hand, in this way
adding to the design and optimization of TE products and processes.

A myriad of models has been proposed in the literature describing various
pathologies and in vivo regenerative processes. Watton et al. [49] have developed
a fluid–solid-growth model to simulate the evolution of abdominal aortic aneu-
rysms. The model uses a realistic constitutive model of the arterial wall accounting
for a wide number of lower scale structures and processes. With the help of this
model they were able to predict e.g. the development of tortuosity that accom-
panies abdominal aortic aneurysm enlargement. Besides providing a basis for
further investigation and elucidation of the aetiology of aneurysm formation, the
computational framework can also be applied to aid the design and optimisation of
tissue engineered vascular constructs. In the field of bone regeneration Geris et al.
[50] have reviewed the existing models of fracture healing, dividing these models
into bioregulatory (fracture healing guided by biological stimuli), mechanoregu-
latory (fracture healing guided by mechanical stimuli) and mechanobioregulatory
models (fracture healing guided by mechanical and biological stimuli). Nagel and
Kelly [51] adapted a well-known mechanoregulatory model to explicitly account
for the influence of oxygen tension on tissue differentiation. They furthermore
discuss the effects of incorporating the tissue architecture during skeletal regen-
eration as well as the variability of the process. Reina-Romo et al. [52] discuss the
importance of angiogenesis on both bone regeneration and TE. They describe the
role of the vascular network in these processes as well as the most recent in silico
models simulating the vascular network within bone constructs. They analyse
discrete as well as continuum approaches from a computational perspective.

As mentioned above, simulation of the behaviour of a TE construct after
implantation is another crucial aspect in the optimisation of TE products and
processes. Lemon et al. [53] have developed a mathematical model of the
regeneration of a tissue-engineered trachea seeded with cells in situ, in order to
study the biological processes (e.g. stenosis) taking place after implantation for
various designs of the TE construct (different cell seeding strategies). They pro-
vide an in depth discussion on the obstacles that are encountered when trying to
formulate a faithful model of (any kind of) biological product or process.
Furthermore they investigate how a simplified mathematical model that omits
much detail of the biology can be of use for studying regeneration of a TE
construct, using their model of a tissue-engineered trachea as an example.
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4 Discussion

As shown above, computational tools have already investigated a wide variety of
products and processes in the tissue engineering field. Whereas in the early models
the distance between the computer and the bench was quite substantial, integration
of (biological) experiments and simulation efforts are increasing. It has become
evident that imaginative and refined experimental strategies based on genetics,
imaging, quantitative and biophysical approaches, combined with the exploration
of the fullest potential of mathematical modelling are necessary to understand
cellular and developmental biology. The increased attention for this integrative
approach can be appreciated from the initiatives that have been and are being taken
by large funding agencies to promote this research, e.g. the Quantissue network
[54] (funded by ESF-RNP) and the Physiome [55]/Virtual Physiological Human
initiatives [56] (funded by agencies worldwide). The potential of this integrative
research has already been demonstrated in a number of biomedical fields [57–62].
For example, Faratian et al. [57] successfully used a systems biology approach to
stratify patients for personalized therapy in cancer and provided further compelling
evidence that a particular biomarker, appropriately measured in the clinical setting,
could refine clinical decision making in patients treated with a specific therapy. In
developmental biology, Von Dassow and co-workers [59, 60] showed by means of
a computational model that the drosophila segment polarity genes constitute a
robust developmental module. The simulation results provided important insights
into the overall dynamics of the gene network and highlighted mechanistic details
that require further experimental research.

With the increasing demand for more quantitative models, there is also an
increasing attention for the determination of relevant parameter sets [63–65].
Precise measurements of the different parameter values is in almost all cases
impossible, either due to the fact that not all parameters represent physical pro-
cesses (even when dealing with mechanistic or white box models) or because the
physical property cannot be measured without altering the process. An example of
the latter is the use of in vitro experiments to determine properties of in vivo
processes. Classical system identification techniques, typically used in grey and
black box approaches, will determine the parameter values as to fit the model to
the system it is intended to describe. Depending on the system at hand and on the
available experimental information, estimation theory or neural networks are
commonly used concepts. Additionally, engineering concepts such as the design of
experiments and optimal experimental design are finding their way into the bio-
medical sciences to increase the amount of information that can be retrieved from
experiments while reducing the number of experimental runs required to obtain
this information. Alternatively, or better yet concomitantly, to finding appropriate
parameter values based on experimental results, many modellers apply techniques
to investigate the impact of the chosen parameter values on their simulation results
by means of sensitivity analyses. Sensitivity analyses appear under many different
forms. The most frequently used technique is the one-at-the-time (OAT) analysis
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where only one parameter is altered (e.g. [66] to give but one example). This
provides information on the main effects of this parameter but it does not provide
any information on the combined effects or the interactions between different
parameters. Design of experiment techniques have been successfully applied to
mathematical models to overcome the limitations of the OAT technique [27, 67].

In the above discussion on the optimal way to determine parameter values for
quantitative models, a completely different point of view is taken by a number of
researchers. Gutenkunst and co-workers argue against the focus on optimizing
experimental design to best constrain model parameters with collective fits as dis-
cussed above, particularly in cases when the understanding of a system is tentative and
incomplete. An important consideration underlying their point of view is the question
of how we should deal with uncertainties in the data [68], in the fitting of parameters,
and in resulting predictions. Brown et al. rigorously explored one source of uncertainty
in their model of growth-factor signalling in PC12 cells; their analysis considered not
just the set of parameters that best fit the data but a statistical sampling of all parameter
sets that fit the data [69, 70]. Like in many other systems [71], the space of parameter
sets that could fit the data was vast. Perhaps surprisingly, some predictions were still
very well constrained even in the face of this enormous parameter uncertainty. Brown
et al. found a striking ‘sloppy’ pattern in the sensitivity of their model to parameter
changes; when plotted on a logarithmic scale, the sensitivity eigenvalues were roughly
evenly spaced over many decades. This sloppy nature was then further investigated by
Gutenkunst and others [72–74]. Even though sloppiness is not unique to biological
systems, it is particularly relevant to biology [75] because the collective behaviour of
most biological systems is much easier to measure in vivo than the values of individual
parameters. Using sloppy parameter analysis, concrete predictions can be extracted
from models long before their parameters are even roughly known [70], and when a
system is not already well-understood, it can be more profitable to design experiments
to directly improve predictions of interesting system behaviour [76] rather than to
improve estimates of parameters.

5 Conclusion

In conclusion, this chapter has provided an overview of how computational modelling
could contribute to advancing the tissue engineering field. Regardless of whether the
models focus on the product, the process or the in vivo results, the aim is always to try to
understand the biological process and to design strategies in silico to enhance the
desired in vitro or in vivo behaviour. Finally, if models are to be applied in a quanti-
tative way, experiments need be designed as to feed the models in the most intelligent
way. Also here computational tools and models can play an important role.
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