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Abstract Effective recapitulation of extracellular matrix properties into a Tissue
Engineering strategy is strongly involved with the need for a proper transport
environment. Consumption and production of soluble medium components gives
rise to gradients which influence cell behavior in various ways. Understanding how
transport related phenomena can shape these gradients is targeted in this chapter
by the combined use of experiments and mathematical modeling. An overview of
different models is given that describe solute transport and its relation to specific
cell behavior. From the simulation results important information can be extracted
which help to unravel mechanisms that drive solute transport. Finally we describe
the genuine efforts that have been taken to translate this information into real tissue
engineering setups (e.g., optimization of culture conditions and controlled-release
of growth factors).
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1 Introduction

The functionality of extracellular matrix (ECM) in organ tissues is much broader
than just structural support for cells that reside within. Cells are able to interact
with ECM, both biochemically and biophysically, from structural remodeling
induced by cell proteolytic activity [72] to stem cell lineage specification via
straining of linked proteins [30]. The ECM also provides an important storage
space for signaling molecules, a feature which appeared to be crucial in tissue
morphogenesis [61, 121]. Morphogenesis is mainly driven by the gradients in
signaling molecules (i.e. morphogens) which can arise from differences in mor-
phogen diffusivity [79, 127] or from interstitial fluid flow-induced asymmetry in
morphogen distribution upon enzymatic release from the matrix [50]. Under-
standing the mass transport principles which underlie the formation and mainte-
nance of morphogen gradients is therefore fundamental to understand how these
gradients will direct tissue patterning.

It should be clear that recapitulating fundamental ECM properties in a tissue
engineering (TE) context relates closely to the aim of establishing a proper mass
transport environment. From basic nutrients to signaling molecules, concentration
gradients might exist for any soluble medium component that is consumed or
produced by the cells [42]. The effects they can elicit on cell behavior are
numerous and have proven to be a function of absolute concentrations, the range of
operation and slope [46]. To measure such gradients, the use of biosensors [1] and
tracer molecules [127] has been previously reported. Experimental quantification
is however not always straightforward and can even become too challenging for
more complex (in vivo-like) setups. A powerful tool that makes quantification
easier and can predict gradient magnitudes for the even most complex situations
[86], lies in the combined use of experiments and mathematical modeling [24].

Mathematical models help in establishing relations and insights between
evolving solute profiles and specific cell behavior [80]. Such models have proven
their applicability in unraveling important mechanisms and dynamics of experi-
mental observations [25, 37]. Their usability ranges from the establishment of
numerical interactions between influencing parameters [130] to optimization of
culture conditions for nutrient transport [111] and modeling-based TE carrier
design [16].

In light of the design of biomaterial carriers, special attention should be
attributed to the environmental remodeling abilities of a cell. Triggered by their
proteolytic activity cells can break down ECM components for migration or
modify tissue architecture in response to biophysical or biochemical forces [97].
These changes have however important consequences on the transport and activity
of autocrine and paracrine signaling molecules, both directly and indirectly [115].
Implementation of structural biomaterial remodeling in mathematical models has
contributed to a better comprehension of its active role in cell signaling [120].
Translating these remodeling principles in a TE strategy has led to the develop-
ment of biomaterials crosslinked by enzyme-degradable peptide sequences which
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allows for a spatiotemporal control of their degradation properties [71, 100].
Models of in vivo regeneration processes (e.g. fracture healing [40]) will thereby
give crucial information on the timing and location of remodeling and hence also
proteolytic events. This information can be effectively implemented in treatment
strategies aiming to provide continuous mechanical support to the fracture, by
matching scaffold degradation with new tissue generation [105], and allows the
cells to re-establish a properly working signaling environment.

In this book chapter we aim to elucidate how the key actors that govern mass
transport in a TE carrier (i.e., biomaterial, cells, culture environment and solutes)
can influence the overall functioning of this carrier. This will be described in terms
of specific cell behavior that is provoked under defined concentrations and gra-
dients of soluble factors. The influence of the carrier components will be captured
in a series of continuum parameters that are used to formulate the mass transport
problem in a mathematical landscape. Finally for each component illustrations are
given on how to exploit this information in the optimization of culture conditions
and the rational design of setups used for TE applications.

2 General Mass Transport in Carriers

Solute transport in biomaterial carriers (e.g., hydrogels and macro- or microporous
scaffolds) used for TE applications is generally governed by passive diffusion.
Diffusive transport as a primary transport mechanism in carriers can however put
major constraints on the remodeling capabilities of cells that reside within this
material [42] and hence also on new tissue formation. Since in this setting of
dynamic tissue architecture and composition the transport of solutes with large
molecular weight is most strongly affected [9], important modulations in cell
signaling can be expected [120]. However also the transport of small molecules,
such as oxygen, can be impeded as cells grow and new tissue is produced which
gives rise to an imbalance between solute uptake and supply [25].

For this reason bioreactor systems have been developed which try to overcome
fundamental limitations that are associated with diffusive mass transport. A wide
variability in bioreactor configurations exists that enhance mass transport in and to
the carrier, either by direct perfusion/compression or indirect perfusion/mixing
[82]. Since movement and exercise are important driving forces for the body’s
interstitial fluid flow [120], special attention will be given here to the influence of
mechanical carrier loading on solute transport.

Based on the previous discussion we introduce the general equation for mass
conservation,

oCi x; y; z; tð Þ
ot

¼ �r �~Ci x; y; z; tð Þ þ Ri x; y; z; tð Þ
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where Ci is the concentration of the solute of interest; ~Ci is the mass flux; Ri is a
reaction term which accounts for consumption, production, degradation, or binding
of solute i to the matrix; and t is time. The mass flux due to molecular diffusion is

proportional to the gradient in solute concentration (~Ci = –DijrCi), while con-

vective transport is driven by the velocity field ~v (~Ci = Ci~v) [6]. Substitution of
both terms into the previous equation gives (in the case of an incompressible
medium),

oCi x; y; z; tð Þ
ot

¼ Dij x; y; z; tð Þr2Ci x; y; z; tð Þ �~v x; y; z; tð Þ � rCi x; y; z; tð Þ
þ Ri x; y; z; tð Þ

where~v is the solute velocity vector; Dij is the diffusion coefficient of the solute in
solvent j; and r2 is the Laplacian operator. This general equation applies for most
biomaterial setups used in tissue engineering and its constitutive transport parame-
ters can be determined either from experiments or from theoretical formulations.

2.1 Diffusion

Experimental quantification of solute diffusion rates through a carrier have been
performed in well-controlled release kinetics experiments and by fitting analytical
solutions to Fick’s diffusion law [16, 25]. Also well established are fluorescence
techniques to measure dispersal of fluorescently labeled target molecules, such as
Fluorescence Recovery After Photobleaching (FRAP) [11], photoactivation [99],
photoconversion [47] or photoswitching [3] of these fluorescent molecules. Major
advantage of the latter methods is that they are less time-consuming as compared
to release kinetics [11] and also have the ability to record local differences in
solute diffusivity, which have been shown to result from structural matrix heter-
ogeneities [118].

Alternatively, solute diffusion rates for a specific carrier matrix can be esti-
mated from existing literature values. Reported values are obtained either for
diffusion in free solution or for a given solute carrier combination. Based on
microscale structural differences, several authors have formulated relationships
which try to explain discrepancies in diffusion coefficients between often seem-
ingly equal matrices [55, 57, 62, 95]. These models take into account the steric
interactions of solutes diffusing through the matrix. The interplay between struc-
tural matrix features and effective solute diffusivity can also be described in terms
of the hydrodynamic obstructions of diffusing solute. Correlations have resulted
from this approach using techniques of volume averaging, which requires the use
of periodic structural models [128, 129], the effective-medium approximation,
which does not impose any restrictions on the structural model but is at the cost of
a reduced validity and reliability of the predictions [18, 103] or by using a random
walk approach [118].
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2.2 Convection

Convective mass transport through a porous medium can be described using the
averaged equations as formulated by Darcy or Brinkman [27]. These equations
express a relation between medium velocity and the applied pressure gradient
which is governed by the permeability, a factor that characterizes the influencing
matrix properties. Experimental setups are described in literature that can measure
different carrier permeabilities, either by applying a constant pressure or a constant
flow [69, 91].

Several models are available that provide a link between structural carrier
properties and permeability [49, 53]. Their application range is however con-
strained to approximations at the macroscopic scale since they depend on physical
and geometric idealizations of the microporous carrier [120]. From the theory of
mixtures and based on experimental results, it was found that the effects of induced
fluid flows (which are rather low) on solute transport in the carrier are most
significant for solutes with large molecular weight [35, 111].

2.3 Compression-Induced Mass Transport

Dynamic compression of a carrier combines matrix compaction with interstitial
fluid transport [33]. Augmented solute transport associated with this convective
fluid transport will therefore at the same time be restricted resulting from a
decrease in matrix diffusivity. This compression-induced loss in diffusivity can
either be measured experimentally with FRAP [38, 66] or estimated from struc-
tural diffusivity relations such as in Mackie and Meares [73, 74, 92], which
assumes a high dependency of matrix diffusivity on fluid volume fraction. An
interesting alternative would be the coupling of diffusive transport with structural
deformation at the microscale level [117].

The effect of unconfined compression on enhanced solute transport has previ-
ously been formulated in mathematical terms using the theory of incompressible
mixtures [5, 89]. In agreement with experimental observations, it was established
that compression frequency and solute molecular weight are both decisive factors
for the extent of compression-enhanced solute transport [32, 83]. As a major
conclusion from these studies it was shown that mechanical carrier stimulation can
significantly improve the transport of larger molecules (from glucose to large
signaling molecules). The mechanism which underlies this phenomenon is found
in the dual action of small convective flows and the increased peripheral solute
gradient during dynamic loading [83].

In the next sections we will give an overview on how solute molecules with
different molecular weight can influence specific cell behavior and how the
transport of these molecules is influenced by the cellular carrier components.
Solutes of interest range from small molecules (e.g., oxygen and glucose) to large
molecules (e.g., growth factors).
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3 Oxygen

The main mechanism by which cells acquire their energy is through oxidative
phosphorylation [2]. In this process oxygen serves as an oxidizing agent that
facilitates the flux of electrons through progressively lower energy states, which
allows for a large extraction of free energy used to synthesize adenosine tri-
phosphate (ATP) molecules. Apart from energy production, oxygen has proven to
be a potent modulator of cell behavior that can change cellular phenotype [56],
stimulate matrix production by the cells [94] or induce angiogenesis by the release
of angiogenic factors [26]. Molecular oxygen however has a low solubility in
culture medium and is rapidly consumed by the cells in order to meet their con-
tinuous energy demands. These factors make soluble oxygen very prone to become
depleted during culture [42].

To what extent in time and space oxygen might become depleted within a
carrier is not only regulated by the intrinsic mass transport properties of the carrier
alone. A major influence comes from the cells themselves. This includes the
cellular demand for dissolved oxygen, expressed by the cellular oxygen uptake
rate (OUR), which is known to be controlled by many factors.

Firstly, cells harvested from distinct tissue types in the body can have signifi-
cant differences in OUR [109]. Secondly, the availability of oxygen to the cells is a
strong determinant of mitochondrial respiration. When cells are exposed to oxygen
tensions below a critical value, the redox state of cytochrome oxidase or the
respiration rate itself is partially limited [12]. This effect can be captured by a
Michaelis–Menten kinetic [34],

Q x; y; z; tð Þ ¼ Qmax

cO2 x; y; z; tð Þ
Kq þ cO2 x; y; z; tð Þ

where Q is the oxygen uptake rate (mol cell-1 h-1); Qmax is the maximal OUR
(mol cell-1 h-1); and Kq the oxygen tension at half of the maximal consumption
rate (mol m-3). Both kinetic parameters were furthermore shown to be dependent
upon specific cell-material interactions [45, 80]. This relation could have important
consequences related to biomaterial choice and cell remodeling behavior.

Underlying the total drop in oxygen tension inside the carrier is the effective
number of metabolically active cells. Cell growth inside a biomaterial carrier can
be modeled in many ways. This ranges from simple linear or piece-wise linear
relationships with available nutrient concentrations [84] to more detailed models
such as the modified Contois equation,

PC x; y; z; tð Þ ¼ ccell
Acellcn

O2
x; y; z; tð Þ

KCccellken
cell þ cn

O2
x; y; z; tð Þ � d x; y; z; tð Þ

" #

where Pi denotes the cell growth kinetic function (cell m-3 day-1); ccell is the cell
density (cell m-3); Acell is the homogeneous growth rate (day-1); KC is the
modified Contois saturation constant; ecell is the cell volume fraction (Vcell/V); Vcell
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is the averaging volume of the cell phase (m3); V is the averaging volume (m3); k
is a cell conversion factor (mol cell-1); d is the death rate (day-1); and n is a semi-
empirical parameter. This equation inhibits cell growth in case of an overpopu-
lation of available carrier space [19]. The Moser equation restricts cell growth in a
direct relation to the available oxygen concentration [88, 104],

PMr x; y; z; tð Þ ¼ ccell
Acellcn

O2
x; y; z; tð Þ

Kqen
cell þ cn

O2
x; y; z; tð Þ � d x; y; z; tð Þ

" #

The Moser equation reduces to the Monod equation for n equal to one. This
equation couples the OUR directly to the cell growth rate as,

PMd x; y; z; tð Þ ¼ ccell
Acell;max

YCO2

þ mcell

� �
cO2 x; y; z; tð Þ

Kqecell þ cO2 x; y; z; tð Þ � d x; y; z; tð Þ
� �

where Acell,max is the maximal specific cell growth rate (day-1); YCO2 is the yield of
cells per unit oxygen (cells mol-1); mcell is the maintenance coefficient (mol cell-1

day-1), the minimum oxygen consumption required to keep the cells alive.
The main difference between linear and non-linear systems is that the former will

produce a significant region of uniform proliferation, a phenomenon that is rarely
observed in practice [70]. This heterogeneity can also implicitly be implemented
using a custom-defined function derived from experimental data [25, 36].

Finally new matrix production and carrier remodeling can also directly alter
oxygen delivery to the cells, though this effect is more pronounced for larger
solutes [9, 13, 94].

In the following paragraphs we will give a brief overview on how these oxygen
models can be efficiently applied to tackle some specific problems a tissue engi-
neer could encounter. Static in vitro culture of tissue substitutes generally gives
rise to heterogeneous cell growth, especially when substitute dimensions exceed a
critical size [25, 80]. Enhanced proliferation of cells in the peripheral regions and
coupled increases in oxygen uptake, have thereby been speculated as factors
determining the incidence and severity of tissue hypoxia and associated cell death
[10]. To test this hypothesis and gain improved understanding of the mechanisms
which underlie these observations, mathematical models have been developed
describing the interactions between oxygen tension and cell density. Effectively
applying this strategy Demol et al. presented a model to describe in vitro behavior
of human periosteum derived cells cultured inside a fibrin hydrogel construct
(Fig. 2) [25].

Necessary model input parameters were derived from dedicated in vitro
experiments that allowed to assess cell proliferation, the influence of oxygen
tension on cell death and proliferation, and the diffusivity of oxygen in fibrin. As
the constructs were cultivated over a period of 14 days, a significant region of dead
cells in the construct center could be detected which progressively expanded
outwards with longer cultivation times (Fig. 3a). The observation was accompa-
nied by the formation of a multilayered cell sheet which had an average thickness
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of about 40 lm and was present at the construct periphery (Fig. 3b). To account
for this in the model a heterogeneous proliferation rate was implemented, with fast
cell proliferation at the construct surface-its value being determined by means of a
dedicated experiment-and slow proliferation inside the construct.

The model predicted the highest cell density in the outer layer (i.e., multilay-
ered cell sheet), which was about 30 times higher than the maximum density in the
rest of the gel (Fig. 4a). This led to the highest volumetric oxygen consumption
rate and the highest gradient in oxygen tension in this outer layer. (Fig. 4b).
However, this was not the primary cause of hypoxic regions detected within the
hydrogel center, as the surface region only accounted for 2.3 % of the total
decrease in oxygen tension compared to a decrease of 16.5 % in the rest of the
hydrogel. This finding was further confirmed in a model parameter sensitivity
analysis in which (reasonable) changes in cell sheet thickness did not have a
significant influence on the occurrence of tissue hypoxia. On the contrary, varia-
tions in cellular oxygen consumption and oxygen diffusivity in the hydrogel region
had a major effect on total construct hypoxia, making both governing factors for
design and upscaling of static in vitro cultured hydrogel-based constructs.

As a second application we consider the development of TE pancreatic sub-
stitutes. In this field the use of mouse insulinoma bTC3 cells has since long been
investigated for the long-term treatment of insulin dependent diabetes mellitus
(IDDM) [28]. Reports on the insulin secretory capacities of these cells have
indicated a strong reduction in secretion as the available oxygen tension drops
below 10 lM [98]. This observation has therefore strong implications for the
functioning of the substitute in vitro and in vivo, a problem that has been assessed
using diffusion–reaction models for oxygen transport in the carrier [44]. By
combining experimental measurements with the steady-state solutions of a

Fig. 1 Fibrous matrix remodeling is triggered by cell proteolytic activity. Transport of various
solutes drives specific cell behavior during the different stages of new tissue formation (e.g.,
differentiation and apoptosis) and is strongly influenced by changes in carrier components (e.g.,
new matrix production by differentiated cells or release of matrix-bound soluble factors). Adapted
from [50]
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mathematical model, these authors aimed at providing a methodology for rapid
evaluation of the substitute performance. Experimental input data was obtained
from 19F nuclear magnetic resonance imaging on a dissolved perfluorocarbon
emulsion inside the carrier. This gave a single averaged read-out of dissolved
oxygen tension which showed a unique relation with the number of viable cells
within the carrier, for a given environmental oxygen tension. Spatiotemporal
evolution of both oxygen and viable cell density were estimated from the math-
ematical model using the average oxygen tension as a fitting parameter. Appli-
cation of this approach therefore allowed for quick measurements on substitute
functioning. Design and optimization of experimental configurations for tissue
substitute cultivation and remodeling is a third important application where
mathematical modeling can be of great value. Starting from this principle com-
parative numerical studies of bioreactor setups for in vitro tissue construct culti-
vation have led to an improvement of cultivation regimes and construct designs
[111, 130]. These studies have indicated that reaching a critical cell mass inside
the construct in vitro would require the use of a perfusion culture setup. Enhancing
the transport of small molecules (such as oxygen) in perfusion systems would
however require relatively high perfusion speeds. This regime demands a change
in carrier geometry or biomaterial properties (e.g., stiffer matrix) in order to avoid
permanent damage to the carrier. In this optimization process special attention
should however be attributed to the presence of multiple soluble components,
since changing the transport properties of a given solute might have important
consequences for other solute transport [14, 85]. Such altered solute transport

Fig. 2 a Schematic representation of cells cultured in a fibrin hydrogel. b Geometry of
axisymmetric model (half of vertical cross-section) which consists of three distinct regions: cells
encapsulated in the hydrogel (black), cells on the hydrogel surface (grey, not shown
proportionally) and culture medium (white). Figure reprinted from [25]
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could originate from differences in molecular size as described in previous sec-
tions, but could also be attributed to differences in cellular response, which will be
described in the next sections.

Another strategy aiming to overcome these limitations of inadequate solute
mass transport is to induce de novo synthesis of a vascular network or sprouting of
existing vessels using the body as an in vivo bioreactor system [116]. The use of
mathematical models has been proposed in this context as a tool for the intelligent
design of scaffold structures and implantation techniques [22]. The experimental in
vivo model investigated by these authors consisted of hepatocyte-seeded PLGA

Fig. 3 a LIVE/DEAD viability images of human periosteum derived cells cultured for 14 days
in fibrin hydrogels (bar = 1 mm). b H & E staining on histological sections of a fibrin construct
cultured for 21 days (bar is 1 mm for the left image and 100 lm in the two images at higher
magnification). Figure reprinted from [25]
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foam scaffolds with an integrated arteriovenous loop [15]. Based on the results of a
computational model describing tissue growth and oxygen diffusion in the scaf-
fold, they argued the need for a heterogeneous seeding pattern in which a small
tissue biopsy of the desired tissue would be placed close to the blood vessel loop.
This system would better tune angiogenesis and cell outgrowth, reducing the
incidence of deficient oxygen transport to the cells and hence improve tissue
functionality.

4 Nutrients and Metabolites

Cellular energy metabolism is not only dependent on the presence of a single
solute, but on the entire environment of nutrients and metabolites [7, 110, 113].
Reported mechanisms of this interdependent behavior include the stimulation of
OUR of cells exposed to low glucose conditions, known as the Crabtree effect [20,
51, 52, 96]. This relationship can be expressed in mathematical terms using an
exponential decay function [130],

OUR ¼ a1 þ a2e�cglc=a3

Fig. 4 Cell density (a) and oxygen tension (b) inside cell-seeded fibrin hydrogels as predicted by
the mathematical model. Cell density is expressed in 106 cells/ml and oxygen tension in
percentage. Figure reprinted from [25]
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where cglc is the glucose concentration (mol m-3); and ai are parameters deter-
mined by curve fitting. A similar equation can also be applied to describe the
increase in glycolysis (defined by the glucose uptake rate) for cells exposed to
hypoxic conditions, known as the Pasteur effect [81, 93, 108]. In contrast to these
studies other authors have reported a decrease in glycolysis under hypoxia, which
would be mainly mediated by differences in medium components (e.g., presence of
oxidants) [43, 67, 68, 130]. These effects should receive special attention in
modeling avascular tissues, and hence also TE substitutes, since nutrient depletion
could readily occur here.

It follows that solute interactions have important consequences in terms of the
model predictive behavior of nutrient and metabolite gradients as well as for the
optimization of experimental configurations. To illustrate this we give an example
of a combined experimental and numerical study of the coupled kinetics for
chondrocytes in an engineered cartilage construct [130]. In this study the rela-
tionships of oxygen and glucose uptake rates of chondrocytes exposed to different
oxygen tensions, glucose concentrations and pH levels was investigated as well as
the influence of lactate concentration on pH level. It was found that the predicted
cell viability in the construct center was generally enhanced upon implementation
of these relations in the numerical model, an observation that was most significant
at high cell densities [130]. This interesting cell behavior predicted in silico could
hence be indicative of a cellular rescue mechanism.

5 Signaling Molecules

Growth factors serve important roles as signaling molecules during development
[46, 90, 119] and regeneration [17, 123]. Most of these signaling molecules need to
travel through the surrounding extracellular environment either locally (autocrine
signaling) or to more distant locations (paracrine and endocrine signaling) in order
to exert their influence on cell behavior [112]. In the following paragraphs we will
show how a cell is able to interfere with this transport process and direct this
signaling reaction to provoke its intended effect. More specifically the example of
cellular signaling in the growth plate will be discussed.

Bone elongation occurs through the action of endochondral ossification, which
is driven primarily by the differentiation rate of proliferating chondrocytes into
hypertrophic chondrocytes within the growth plate [64]. At a molecular level this
process is strongly controlled by two paracrine signaling factors, Indian hedgehog
(Ihh) and parathyroid hormone-related protein (PTHrP) [65, 126]. While Ihh
coordinates chondrocyte proliferation, differentiation and osteoblast differentia-
tion, PTHrP mainly keeps the proliferating chondrocytes in a proliferative phase
[65, 124, 126]. Heparan sulphate (HS) complexes associated with proteoglycans in
the ECM of the growth plate serve important roles in morphogenesis by providing
binding sites for specific signaling molecules [8, 48]. This specificity depends on
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the sulfation pattern of the heparan sulphate chains and allows for interactions with
several members of the Hedgehog, transforming growth factor-b (TGFb), bone
morphogenetic protein (BMP), Wingless (Wnt/Wg), and fibroblast growth factor
(FGF) families [31, 48].

Simple mathematical models have been developed expressing the total width
between the early hypertrophic zone and the perichondrium using coupling
equations of PTHrP and Ihh concentrations [125]. As concentrations of both
signaling molecules can be modulated by various transport-related factors (e.g.
mechanical compression, solute binding, changes in diffusivity due to matrix
degradation) the relative importance of these factors on rates of proliferation and
hypertrophy can be rapidly assessed using this model.

In a second model bone growth and morphogenesis is described by differences
in spatial distribution and proliferation rates of proliferative and hypertrophied
chondrocytes [37]. Underlying this growth process were the regulatory capacities
of the Ihh and PTHrP spatial concentration distributions, that were modeled by a
set of reaction–diffusion equations [21, 75, 78]. In order to obtain a physiological
growth pattern the ratio of diffusion coefficients for both signaling molecules was
bound to certain criteria. The influences of these morphogen diffusion rates on
characteristics of the growth plate were acknowledged already earlier in studies of
the skeletal disorder Exostosin (EXT1) [54, 63]. There it was shown that in EXT1
mutations, expressing reduced amounts of HS, the range of Ihh signaling within
the growth plate was increased giving rise to an extended proliferative zone.

Calcification of the matrix surrounding the hypertrophic chondrocytes in the
growth plate triggers the invasion of blood vessels from the metaphyseal bone
[58]. This capillary invasion is mediated by the expression of vascular endothelial
growth factor (VEGF) in hypertrophic chondrocytes [39]. Binding of VEGF to
ECM components has thereby been implicated as a possible requisite for cellular
autocrine signaling, giving rise to amplified VEGF gradients that are able to direct
capillary morphogenesis [50, 76]. The mechanism underpinning this gradient
amplification results from the combined action of a small interstitial fluid flow,
biasing the secreted protease distribution, and the distribution of liberated VEGF
molecules, influenced by both protease distribution and convective flows [35].

The use of growth factors (such as VEGF) in controlled-release systems has
been widely proposed for TE strategies aiming at the regeneration of damaged or
diseased tissues [29, 101, 102]. Given the short half-life and residence of free
growth factors in solution, controlled-release strategies hold great promise pro-
viding a means to protect these factors from degradation and internalization [77,
105]. Though such systems can deliver signaling molecules in a time- and space-
controlled manner, the lack of detailed knowledge on in vivo growth factor con-
centrations and possible interfering behavior of administered compounds com-
plicates rational decisions on the required growth factor concentrations [60]. For
such applications we can however greatly take advantage of the use of numerical
models. In this way a modeling-based design approach was proposed for the
controlled delivery of VEGF in a mouse model of hindlimb ischemia [16]. Using a
reaction diffusion model to predict VEGF distribution in vivo, a layered scaffold
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design was proposed to deliver VEGF in a spatial concentration gradient where it
is able to both initiate and spatially control angiogenesis. Regulating spatial VEGF
presentation increased hindlimb blood flow which was reflected in a reduced
incidence of limb necrosis.

Other more detailed numerical models of in vivo regeneration processes could
equally well be applied for the rational design of controlled delivery systems [40].
Such models have the added advantage of testing the efficacy of a certain treatment
strategy (such as controlled-delivery systems) in silico, hence helping researchers
to identify the most promising strategies and having the potential to significantly
reduce experimental costs [41].

6 Discussion and Conclusions

Proper functionalizaton of carriers used for TE applications, requires a profound
understanding of the mechanisms that drive solute transport to and from the active
cell units. These solutes can be as small as oxygen, essential for cellular nutrition,
or as large as protein complexes, which allow cells to communicate with each
other or probe their environment [122]. The cellular actions they can elicit range
from basic cell survival and division to the organized patterning of cells into
tissues (i.e., morphogenesis).

Mimicking the normal in vivo solute transport environment of a cell and
optimization of culture conditions is complicated by the various mechanisms
which underlie these transport processes. We have shown that this variability can
be induced by differences in molecular size between solutes, differences in syn-
thesis and uptake of solutes by the cell, interactions at a cell level between various
nutrients and metabolites (but also signaling molecules [4, 106]), solute interac-
tions with the surrounding matrix and many others. Systems that involve such high
degrees of complexity can however greatly benefit from mathematical modeling,
as we have shown in this chapter.

Choosing an optimal model and setting an appropriate level of detail is strongly
determined by the extent of construct remodeling that is taking place, the avail-
ability and type of experimental data, and spatial resolution [107]. Focus in this
chapter has been mainly set on single scale (continuum) models which is ascribed
to their abundant availability and their low computational costs. If we however
want to recreate interactions at multiple levels of organization with respect to
space and time, more attention should be attributed to the integrative properties of
the model [114], a strategy that has been defined in literature as multiscale
modeling. Crucial to the success of a multiscale modeling framework, is to provide
a consistent cross-scale linkage interface between the models at each biological
level [23]. We have shown the importance of such an interface in the context of
diffusive transport within TE carriers, by providing a means to correlate micro-
structural matrix properties to solute diffusion rates using for example a volume
averaging technique [129].
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Finally it should be mentioned that diffusion–reaction mechanisms are not only
prominent for solute transport inside the carrier, also inside a cell these mecha-
nisms are important for proper cell functioning (for example in signal propagation
[59]). Information generation by the use of solute gradients is accordingly a widely
conserved mechanism in biology, operating at multiple scales of organization [87].
This scale-invariant principle holds great promise by extending the applicability of
both models and imaging techniques that were described within this chapter.
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