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Abstract Recombinant protein- and peptide-based vaccines can deliver large
amounts of specific antigens for tailored immune responses. One class of these are
protein and peptide nanoclusters (PNCs), which are made entirely from the cross-
linked antigen. PNCs leverage the inherent immunogenicity of nanoparticulate
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antigens while minimizing the use of excipients normally used to create them. In this
chapter, we discuss PNC fabrication methods, immunostimulatory properties of
nanoclusters observed in vitro and in vivo, and protective benefits of PNC vaccines
against influenza and cancer mouse models. We conclude with an outlook on future
studies of PNCs and PNC design strategies, as well as their use in future vaccine
formulations.

1 Introduction

Generating a successful immune response involves not only delivering antigen to
the immune system but presenting that antigen in an immunostimulatory context.
To accomplish this, the subunit vaccine nanoparticle design generally follows two
strategies: (i) internal encapsulation of antigen and/or (ii) native antigen display on
a particle surface. In the first strategy, the antigen is blended into the nanoparticulate
polymer matrix. Interaction of the nanoparticle with the immune cells, together with
the controlled release of the antigen from the nanoparticle, result in a stronger
stimulation of the immune system compared to the soluble antigen (Gregory et al.
2013; Singh 2007; Liu et al. 2016). In the second strategy, the antigen is attached to
the nanoparticle surface instead of being blended into the polymer matrix. This
enables interaction of the particle with immune cells in a manner that leads to a
superior immune response. For example, virus-like particles display multimeric
epitopes in native conformations, enhancing the quality and quantity of the humoral
immune response (Jegerlehner et al. 2002; Roldão et al. 2010). Protein and peptide
nanocluster (PNC) vaccines capture the advantages of both these strategies. PNCs
are composed almost entirely of antigen protein or peptide. These nanoclusters
deliver large quantities of the antigen to antigen-presenting cells (APCs) and also
display epitopes on their surface, which results in a better immune response. Unlike
other vaccine nanoparticles, PNCs are made entirely of biodegradable, crosslinked
antigen, minimizing the possibility of off-target immune responses. Furthermore,
the peptide degradation products of protein nanoclusters are capable of contributing
to an immune response, through their presentation on the major histocompatibility
(MHC) proteins (Tsoras and Champion 2018). The lack of a lipid bilayer membrane
in PNCs, such as that found in VLP-based vaccines, reduces manufacturing com-
plexity and also enhances the resilience of PNCs to osmotic stresses brought on by
cold chain-independent storage, a desirable property for vaccine transportation to
the developing world (Chang et al. 2018).

Similar protein-based nanoparticle vaccines have been developed that use
self-assembly motifs to create geometrically well-defined repeats of antigen.
Kanekiyo et al. fused influenza hemagglutinin (HA) to a 24-mer self-assembling
ferritin core, which resulted in 20 nm nanoparticles that could protect against an
influenza challenge (Kanekiyo et al. 2013). The self-assembling protein nanoparti-
cles (SAPNs) developed by the Burkhard group also display between 20 and 60
copies of fused protein antigens (Karch et al. 2018). One concern with these designs
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is the immunogenicity of the self-assembly tags. Kanekiyo et al. showed that
immunization with HA-ferritin nanoparticles did not induce an immune response to
endogenous host ferritin, but antibodies against the core ferritin were generated.
Immune responses against the self-assembly motif in these particles could preclude
strong antigen-specific responses because of original antigenic sin. This phe-
nomenon, in which the immune system preferentially generates antibodies to epi-
topes previously encountered instead of new ones, needs to be addressed specifically
in the case of immunizations requiring multiple boosts (Murphy et al. 2012).

Since PNC vaccines can direct nanoparticle formation without the use of an extra
self-assembly tag on the antigen, PNC vaccines possess reduced chances of stim-
ulating an off-target immune response (Willett et al. 2004). However, a robust and
high-yield method for nanocluster formation must be established in the absence of
engineered self-assembly. Our lab has found that desolvation is a simple, yet effi-
cient method for generating protein and PNC. Based on an assortment of results
obtained from the use of model and disease-specific proteins and peptides as
antigens, PNCs have proven to be effective vaccines, inducing robust humoral and
cellular responses in mice and protecting against lethal viral challenges.

2 Nanoclusters by Desolvation

Desolvated PNCs are formed entirely from protein or peptide by the
solvent-directed assembly (Weber et al. 2000). In desolvation, an unfavorable
solvent is introduced into a protein solution to increase solute-solute interactions,
causing proteins or peptides in solution to coalesce into nanoparticles (Fig. 1).

Both proteins and small peptides can be desolvated into PNCs, depending on the
specific antigens of interest. In some instances, immune responses to only particular
domains of a protein are desired. In the case of the influenza hemagglutinin
(HA) protein, the variable head region is immunodominant, while the conserved
stalk region is harder to raise antibodies (Zhang et al. 2019). Antibodies against the
HA stalk are cross-protective against multiple influenza strains (Kallewaard et al.
2016; Krammer and Palese 2013), and vaccine nanoparticles containing only the
stalk region of HA are one strategy for eliciting those antibodies specifically (Deng
et al. 2018a, b). In cancer vaccines, the antigen is usually of host origin and contains
many non-immunogenic epitopes. In these cases, designing an immunogenic
antigen requires enriching for the immunodominant epitopes (Li et al. 2014).
Combined with the fact that T cell responses to cancer vaccines are essential,
minimal peptide epitopes are an ideal antigen for cancer PNC vaccines (Tsoras and
Champion 2018). In general, MHC I-restricted presentation of peptides to T cells
requires least eight amino acids in length, while MHC II-restricted presentation
requires peptides of at least 13 amino acids (Murphy et al. 2012). Peptides smaller
than this length are not recommended as antigens.

Following antigen identification, a solvent must be selected. For large protein
antigens, this is typically phosphate-buffered saline (PBS), as the goal is to keep the
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protein folded and soluble in the solvent and, ultimately, preserve folding during the
nanocluster formation process. The solvent pH should avoid the isoelectric point of
the protein, as this could cause premature aggregation. Solution pH is also
important for antigens that undergo conformational changes in the endosome. Many
viral coat proteins responsible for facilitating endosomal escape undergo drastic,
pH-dependent conformational changes (Russell et al. 2018; Kirchdoerfer et al.
2018). As a result, low pH can produce conformational antigens not normally found
on extracellular viruses, reducing the quality of the induced immune response. For
small peptide antigens, there are more choices for solvent as peptide solubility
varies widely based on the sequence and often peptide antigens have little or no
secondary structure. Hexafluoroisopropanol (HFIP) is most commonly used for
peptides as it is used in solid-state peptide synthesis due to its ability to solubilize
most peptides, regardless of sequence. This solvent is quite dangerous to work with,
however, and extreme care must be taken.

The soluble protein or peptide antigen is then desolvated into nanoclusters by the
slow addition of desolvent to antigen under stirring. The thermodynamically unfa-
vorable interaction between the desolvent and the proteins or peptides forces them to
cluster together into nanoaggregates of hundreds of nanometers in size (Fig. 2a). The
desolvent needs to be miscible with the solvent to allow solvent–desolvent inter-
actions to overcome solvent-protein interactions (Fig. 2b). A similar principle
underlies “salting out” of proteins in protein purification, and sodium chloride was

Fig. 1 Scanning electron micrographs of ovalbumin protein nanoclusters (Chang et al. 2016)
Reproduced from Chang et al. (2016) with permission from the Royal Society of Chemistry
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also used as an early desolvent (Kreuter 1991). For large protein antigens, ethanol is
typically used as the desolvent for PBS, while diethyl ether is used with HFIP for
peptide antigens. Other desolvents for proteins in PBS include acetone (Langer et al.
2003), acetonitrile (Mohammad-Beigi et al. 2016), methanol (Mohammad-Beigi
et al. 2016; Doan and Ghosh 2019), and ethanol/methanol blends (Storp et al. 2012).
Desolvent choice has a significant effect on protein nanocluster size
(Mohammad-Beigi et al. 2016; Storp et al. 2012). While proteins generally undergo
desolvation to a final concentration of 80% ethanol by volume, peptides require a
much higher ratio of desolvent to solvent (Tsoras and Champion 2018), possibly
owing to their higher solvent accessibility.

Following desolvation, a crosslinker is added to covalently stabilize the nascent
nanoparticles and prevent aggregation or disintegration. Glutaraldehyde is a com-
monly used crosslinker to link primary amines, such as those found in lysines and
the N termini of proteins and peptides. While glutaraldehyde has been used in the
past to crosslink protein nanoparticles (Estrada et al. 2014; Wang et al. 2014), our
work also uses the crosslinker 3,3′-dithiobis[sulfosuccinimidylpropionate], or
DTSSP. DTSSP is also an amine-reactive crosslinker but contains a central disul-
fide bond that has the potential to be reduced once the particle is inside the cell.
DTSSP crosslinking of PNCs in the presence of desolvent or pure solvent modestly
affects PNC size (Chang et al. 2016), while glutaraldehyde concentration and
crosslinking time strongly influence PNC size (Baseer et al. 2019). Though
bifunctional crosslinkers are sufficient for stabilizing protein nanoclusters, trifunc-
tional crosslinkers are needed for PNC. This is likely due to the much smaller size
and number of reactive groups in peptides compared to larger proteins. Similar to
bifunctional crosslinkers, both non-reducible and reducible trifunctional
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Solvated Protein 
(Soluble) 

Desolvated Protein 
(Nanoparticulate) 
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C 

Fig. 2 Desolvation of protein into nanoclusters involves the addition of ethanol, or another
water-miscible solvent, to a protein solution. Nanocluster formation relies in part on (a) stabilizing
protein-protein interactions induced by unfavorable protein-desolvent interactions, and (b) solvent
sequestration or “salting out” by the desolvent. The desolvent can also stabilize hydrophobic
protein domains (c), which can lead to the denaturation of surface-exposed epitopes. Figure created
with Biorender.com
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crosslinkers are available that react with amine or thiols in the peptides. Genipin, a
compound derived from the Genipa americana fruit, has also been used to crosslink
PNCs (Dong et al. 2019). To couple carboxyl groups to amines, EDC/NHS
(1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide) can also
be used to crosslink PNCs. However, the unstable reaction intermediate and
incompatibility with phosphate-based buffers, combined with the instability of
some proteins at the optimal pH 6 for this reaction make this a less attractive option.

The delivery of properly folded protein antigen is especially desirable in protein
nanocluster vaccine design. Desolvation of proteins can lead to denaturation of
protein on the surface of the nanocluster (Fig. 2c), which could diminish antigen
recognition. In addition to less efficient antigen presentation, exposure of denatured
epitopes can alter the protein corona or layer of host proteins that coat the surface of
any nanoparticle administered in vivo (Lindman et al. 2007; Fleischer and Payne
2014; Ezzat et al. 2019). To avoid a sub-optimal immune response, we have found
that coating protein nanoclusters with an additional layer of protein, either antigen
(Wang et al. 2017) or adjuvant (Chang et al. 2017), enhances the immune response.
While coating may not be necessary for vaccine nanoclusters made of small anti-
gens or peptides (Tsoras and Champion 2018; Wang et al. 2014), it is useful for
presenting conformational antigens to the humoral immune system (Bergtold et al.
2005). Surface antigen display on vaccines is emerging as a trend in other vaccine
designs (Gregory et al. 2013; Xiang et al. 2013), as opposed to viewing particulates
as mere antigen depots. This shift has been driven by two insights: (1) an
immunological understanding that surface receptor engagement on
antigen-presenting cells (APC) is essential for optimal interfacing with the innate
and adaptive immune systems (Zhao et al. 2014), and (2) the discovery that APC
engagement with nanoparticles themselves triggers inflammatory responses (Li
et al. 2008; Hornung et al. 2008; Sharp et al. 2009).

Protein nanoclusters have been made from abundant proteins such as human and
bovine serum albumin and gelatin since as early as the 1970s (Kreuter 1991; Marty
et al. 1978). Even today, desolvated protein nanoclusters are made from albumin
(Weber et al. 2000; Langer et al. 2003; Amighi et al. 2020) and gelatin (Subara
et al. 2017; Jahanshahi 2008), have the most extensively characterized synthesis
parameters of any protein nanoclusters. However, our lab has demonstrated that
protein nanoclusters can also deliver active therapeutic enzymes to cells (Estrada
et al. 2014; Herrera Estrada et al. 2017). Because of albumin’s high affinity for
hydrophobic small molecules (Al-Husseini et al. 2019), and its low antigenicity,
albumin nanoclusters are an attractive drug delivery vehicle for enhancing small
molecule half-life and biodistribution (Keuth et al. 2020; Luebbert et al. 2017).
These nanoclusters are readily taken up by macrophages (Langer et al. 2003) and
this can be used to target small molecule drugs to these cells in particular
(Markovsky et al. 2007).

The same properties that make desolvated protein nanoclusters attractive to
macrophages make them ideal vehicles for vaccine delivery. Nanoparticulate
antigen is more immunogenic than soluble antigen (Gregory et al. 2013; Singh
2007; Wang et al. 2014), and targeting it to phagocytic APCs enhances

112 T. Z. Chang and J. A. Champion



immunogenicity. In our studies of protein nanocluster vaccines, we demonstrate
robust in vitro dendritic cell responses to PNCs, enhanced retention in draining
lymphatic organs, and successful immunization with a variety of protein and
peptide antigens.

3 Functional Benefits of Protein Nanocluster Vaccines

The particulate formulation of protein nanoclusters provides distinct advantages over
soluble antigens, as summarized in Fig. 3. Some of these advantages are general to
all nanoparticle vaccines and some are specific to crosslinked protein nanoclusters.

3.1 Delivery

All nanoparticles, including nanoclusters, benefit from improved delivery due to
their relatively large size compared to soluble antigen. Upon intradermal (i.d.) or
intramuscular (i.m.) administration, nanoclusters are retained at the injection site
significantly longer than soluble antigen (Tsoras and Champion 2018; Deng et al.

Enhanced protein 
antigen uptake by 
antigen presenting 
cells 

Immunostimulatory 
presentation of antigen 
peptides to the adaptive 
immune system 

Prolonged antigen retention 
at injection site, draining 
lymph nodes, and spleen  

Inflammasome activation 

Enhanced germinal 
center B cell proliferation 
and antibody production 

Reduced antigen 
acidification 

Robust T cell responses 
in draining lymph nodes 
and spleen 

Fig. 3 Summary of benefits of protein and PNC vaccines observed at cellular and physiological
levels. Figure created with Biorender.com
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2018b). The presence of nanoclusters for longer than 2 and 5 days for i.d. and i.m.
injection, respectively, indicates that immune cells in the tissue are persistently
exposed to antigen and increases the likelihood of antigen uptake. Nanoclusters also
exhibit different trafficking and biodistribution compared to soluble antigen.
When PNC was administered i.d., the antigen was detected in draining lymph nodes
for 4–24 h after injection, which can increase the likelihood of presentation to T
cells and activation (Tsoras et al. 2020). Nanocluster peptide antigen was not
detected in the spleen, and soluble peptide antigen was detected in the spleen only
transiently. The route of administration is important for antigen trafficking, as
protein nanoclusters administered i.m. exhibited antigen trafficking to both the
draining lymph nodes and spleen that was detectable more than a week after
injection (Deng et al. 2018a, b). Antigen accumulation in the spleen was signifi-
cantly higher for protein nanoclusters than soluble protein antigen, though levels in
the draining lymph nodes were similar. The diameter of most antigen nanoclusters
is in the range of 200 nm, which is the upper limit seen for nanoparticles that traffic
directly in the lymphatic system (Reddy et al. 2007; Manolova et al. 2008). Likely,
most nanoclusters are taken up by APCs at the injection site and are actively
trafficked through the lymphoid system whereas soluble antigens would diffuse
directly.

3.2 Antigen Presentation

Given the importance of antigen uptake by APCs for both trafficking and presen-
tation, enhanced uptake of nanoclusters by dendritic cells (DCs) also contributes to
their overall function. Nanoclusters made from large protein antigens show sig-
nificant increases in uptake by DCs in vitro, regardless of the size of the nan-
oclusters (Chang et al. 2016). This is consistent with other types of vaccine
nanoparticles (Snapper 2018). However, nanoclusters made from small peptide
antigens (minimal epitopes) did not show any advantage in uptake relative to
soluble small peptides, with both exhibiting high uptake by DCs in vitro (Tsoras
and Champion 2018). Once internalized, nanoclusters appeared to traffic differently
than soluble antigen in cells, as the intracellular pH experienced by soluble antigen
was significantly lower than that experienced by nanoclusters. Reduced acidifica-
tion can decrease antigen degradation, which may lead to improved
cross-presentation, and could indicate endosomal escape (Tran and Shen 2009;
Accapezzato et al. 2005).

While uptake by APCs is a critical first step, ultimately, antigen processing and
presentation are needed to activate antigen-specific T cells (Murphy et al. 2012).
For MHC I peptide antigens for which presentation can be measured, it was
observed that DCs exposed to nanoclusters demonstrated greater levels of pre-
sentation than those exposed to soluble antigen both in vitro and in draining lymph
nodes following i.d. administration in vivo (Tsoras and Champion 2018; Tsoras
et al. 2020). Concurrently, nanoclusters induced increased DC display of maturation
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factors CD80 and CD86 compared to soluble antigen when incubated with DCs
in vitro (Tsoras and Champion 2018; Chang et al. 2016). This data demonstrates
that even when there is little or no enhancement in antigen uptake via nanoclusters,
the subsequent steps of presentation and maturation are more productive for nan-
oclusters than soluble antigen.

Similar to maturation markers, in vitro DC secretion of inflammatory cytokine
IL-1b was increased for nanoclusters containing either ovalbumin (OVA) or
influenza antigens matrix protein 2 ectodomain (M2e) or M2e and HA (Chang et al.
2016; Deng et al. 2017). IL-1b is a product of inflammasome activation and induces
rapid cleavage of pro-inflammatory cytokines into their active form, triggering a
local, innate immune response (Murphy et al. 2012). Not all vaccine nanoparticles
are capable of triggering inflammasome activation (Neumann et al. 2014; Gross
et al. 2011). Interestingly, in vitro DC secretion of inflammatory cytokine TNF-a
was lower for OVA nanoclusters than soluble OVA and higher for HA or M2e
nanoclusters compared to soluble antigen (Chang et al. 2016; Deng et al. 2017,
2018a, b), though the role of TNF-a in vaccine responses is not clear (Murphy et al.
2012).

In vivo maturation of DCs in response to SIINFEKL nanoclusters mirrored that
seen in vitro. SIINFEKL is an MHC I minimal peptide epitope from OVA protein.
Upon i.d. vaccination, higher levels of double-positive, antigen-presenting, and
CD86 positive, DCs were observed in the draining lymph nodes for SIINFEKL
nanoclusters than for soluble antigen (Tsoras et al. 2020). Unexpectedly, this was
only true for nanoclusters that were crosslinked with a non-reducible crosslinker
that formed amide bonds between antigens, which is incidentally the same bond
cleaved by proteases (Kisselev et al. 2000; Hedstrom 2002). Nanoclusters cross-
linked with a reducible crosslinker, or a crosslinker that was non-reducible and also
not cleavable by proteases did not induce significant increases in DC antigen
presentation and CD86 expression. We speculate that proteolytic cleavage of the
nanoclusters might have enhanced presentation and maturation. Large proteins are
required to be proteolytically processed by APCs, whether or not they are in
nanoclusters, to extract epitopes for MHC presentation. Antigens in nanoclusters
must be similarly extracted by the cellular machinery for MHC presentation. By
providing crosslinks between antigens that can be readily degraded by the natural
protein-degradation machinery of the cells, nanoclusters may promote antigen
extraction and MHC presentation. Importantly, in vivo DC maturation was
antigen-specific as the increase in CD86 positive DCs was only seen for those DCs
presenting antigen, and, the increases in the fraction of DCs presenting antigen were
only seen for CD86 positive DCs (Tsoras et al. 2020). This was true of all nan-
oclusters, regardless of the crosslinker type. Administration of soluble antigen with
poly (I:C), a synthetic double-stranded RNA adjuvant, upregulated CD86 in DCs
that did not present antigen, demonstrating non-specific activation that is not nec-
essarily productive to the adaptive immune response and may be responsible for
side effects.
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3.3 Cellular Responses

Following successful antigen presentation, CD4 and CD8 T cells are activated. This
activation depends on the type of antigen and MHC used for presentation (Murphy
et al. 2012). Protein and PNC have demonstrated antigen-specific T cell activation
with several different antigens and in different tissues, depending on the route of
administration. M2e nanoclusters induced a strong systemic and mucosal cellular
response upon intranasal (i.n.) vaccination, as cells collected from both the spleen
and lungs secreted IFN-c and IL-4 in response to M2e restimulation (Wang et al.
2014). Influenza nucleoprotein (NP) nanoclusters and nanoclusters made from
peptides derived from NP were coated with M2e and administered i.m. The coated
nanoclusters, but not soluble mixtures of the proteins, elicited antigen-specific
responses to both M2e and NP. Upon restimulation, splenocytes from mice
administered nanoclusters secreted IFN-c, IL-4, and IL-2 at much higher levels than
those from animals administered soluble protein (Deng et al. 2018b). Similarly,
HA-coated M2e nanoclusters also induced specific cellular responses, as demon-
strated by high IFN-c secretion following restimulation.

The responses described above were for nanoclusters without added adjuvant,
where the nanocluster itself served as the delivery vehicle and “self-adjuvant”. We
have also investigated the effect of adjuvants co-delivered with nanoclusters, as
coatings, incorporated within the nanoclusters, or as simple mixtures. Incorporation
of CpG oligonucleotide, a toll-like receptor 9 agonists, within M2e nanoclusters did
not have any effect on cellular or antibody responses (Wang et al. 2014). M2e and
the H2 domain of HA have also been incorporated as fusion proteins within the
variable domain of bacterial adjuvant flagellin (flic) (Deng et al. 2017). Flic is a
toll-like receptor 5 agonist and has been demonstrated to boost anti-influenza
immune responses (Kim et al. 2015; Oh et al. 2014). Flic-M2e nanoclusters and
flic-H2HA coated flic-M2e nanoclusters were formed by crosslinking without
desolvation and administered to mice i.n.. All nanoclusters induced high levels of
M2e-specific cellular responses, measured by IL-2 secretion upon restimulation
ex vivo. Though not typically considered as adjuvants, immunoglobulins from the
host can serve this purpose. Anti-OVA IgM coated on the surface of OVA nan-
oclusters induced the formation of more central memory T cells relative to
OVA-coated OVA nanoclusters (Chang et al. 2017).

Using PNCs made from SIINFEKL, a CD8 T cell antigen, we have more deeply
investigated the T cell response following i.d. administration. Relative to soluble
SIINFEKL, PNCs showed increased expression of CD69, an early marker of T cell
activation, on CD8 T cells from draining lymph nodes, corresponding to the pre-
viously described evidence of DC presentation in those nodes (Tsoras et al. 2020).
Adjuvanting soluble SIINFEKL with poly(I:C) resulted in increased CD69
expression in CD8 and CD4 T cells in both the draining lymph nodes and spleen,
indicating non-specific activation. Only nanoclusters crosslinked with amide bonds,
those which showed enhanced DC presentation and maturation, induced high
secretion of IFN-c upon restimulation of lymph node CD8 T cells, equivalent to
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poly(I:C) adjuvanted peptide. This connection between nanocluster processing,
presentation, and T cell activation is encouraging and will motivate future work on
the role of antigen crosslinking and cleavage in nanoclusters. Altogether, across a
wide combination of antigens, nanoclusters reliably induce a strong cellular
immune response that is, importantly, antigen-specific.

3.4 Humoral Responses

In addition to cellular responses, PNCs are capable of stimulating robust humoral
responses. Nanoclusters of a variety of designs presenting B cell epitopes from M2e
and HA induced significant antibody production. The repetitive, multi-valent pre-
sentation of antigens on the surface of nanoclusters is likely beneficial for recog-
nition by B cell receptors (Wang et al. 2012; Schellekens and Jiskoot 2013; Kim
et al. 2006). M2e nanoclusters induced a strong humoral response upon i.n. vac-
cination, including serum antibody subtypes IgG1, IgG2a, and IgG2b indicative of
balanced Th1 and Th2 responses (Wang et al. 2014). Further, mucosal antibody
response was seen as lung and nasal washes revealed the production of both IgG
and IgA. When M2e was coated on the surface of NP nanoclusters and administered
i.m., a similar strong serum M2e-specific antibody response was seen (Deng et al.
2018a, b). No NP-specific antibodies were detected. However, when nanoclusters
made from M2e were coated with HA, M2e-specific antibodies were still produced
at high levels (Deng et al. 2018b). There was a small, but statistically significant,
decrease in M2e antibody titers for HA-coated nanoclusters compared to uncoated
nanoclusters. Whether immunological differences between M2e and NP antigens
are responsible, or if the HA coating did not completely obscure M2e on the surface
of the particle, is not clear. For HA specifically, a crosslinked coating of HA was
required on the surface of nanoclusters to induce antibody production. This is likely
due to the sensitive nature of the structure of trimeric HA, which was disrupted in
the desolvation process. HA-coated HA nanoclusters exhibited high titers of IgG,
including IgG1, IgG2a, and IgG2b, though the response was biased toward Th2
(Wang et al. 2017). The antibodies were shown to be neutralizing and inhibit
hemagglutination. Serum antibody titers were dependent on the dose and route of
administration, with 2 i.m. doses inducing far higher levels than 1 i.m., 1 i.n., or 2 i.
n. doses. Despite the large difference in antibody response, 2 doses given either i.m.
or i.n. both protected fully from weight loss and death upon H7N9 viral challenge.
Similarly, when M2e nanoclusters were coated with trimeric HA, HA-specific
antibody responses were strong (Deng et al. 2018a, b).

The humoral responses described above were all the result of nanocluster
delivery of antigen with no external adjuvant provided. In the case of flic-M2e
fusion protein nanoclusters and flic-H2HA fusion coated flic-M2e nanoclusters,
strong antibody responses were induced that were specific to both M2e and HA
(Deng et al. 2017). Interestingly, incorporation of the flic-HA coating improved
Me2-specific serum IgG titers. In a different configuration, we found that
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flagellin-coated OVA nanoclusters and soluble flagellin mixed with OVA nan-
oclusters induced similar levels of antibodies upon i.m. immunization. However,
flagellin-coated nanoclusters induced significant affinity maturation of antibodies,
while flagellin-admixed nanoclusters did not (Chang et al. 2017). Anti-OVA IgM
coated on the surface of OVA nanoclusters increased IgG1 and IgG2a serum titers
relative to OVA-coated OVA nanoclusters (Chang et al. 2017). Interestingly, the
IgM coating prevented affinity maturation despite its induction of class switching.
Affinity maturation was also observed for OVA-coated nanoclusters, which is
consistent with our data showing splenic germinal center B cell proliferation upon
immunization with HA-coated HA nanoclusters (Chang 2017). The reason for
adjuvant-dependent differences in affinity maturation is not clear. Affinity matura-
tion has not been studied for non-model antigens, such as influenza proteins.

3.5 Storage and Stability

There are many challenges for global vaccination campaigns. One significant
challenge is the need for cold chain storage of vaccines, especially in developing
countries with unreliable electricity and transportation infrastructure as well as hot
climates. We assessed the ability of HA-coated HA nanoclusters to maintain their
potency over storage time, as measured by hemagglutination activity in vitro, and
antibody titers and hemagglutination inhibition titers following i.m. vaccination.
Nanoclusters aged in solution (PBS) for 3 months at 25 °C retained their full
immunogenicity, relative to fresh nanoclusters (Chang et al. 2018). M2e coated NP
nanoclusters retained full activity after 2 months storage at 4 °C and had a small,
but statistically significant, loss after 2 months storage at 25 °C, as measured by
endpoint antibody titers (Deng et al. 2018b). Stability may depend on the exact
antigen used and is also likely to be affected by the amount of crosslinking, protein
concentrations, and any formulation stabilizers. These factors will be important to
investigate thoroughly in future work.

4 Application of Protein Nanoclusters as Protective
Vaccines

4.1 Broadly Protecting Influenza Vaccines

Seasonal influenza vaccines provide limited protection, which is better is some
years and worse in others, based, in part, on how well the strains included in the
vaccine match the circulating strains in the community (CDC CDC Seasonal Flu
Vaccine Effectiveness Studies 2020). Additionally, zoonotic influenza strains, such
as the recent avian strains, do infect humans occasionally and are serious health
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threats (Lai et al. 2016; Gao et al. 2013; Wu et al. 2016). A universal influenza
vaccine is needed that can protect populations against seasonal and pandemic
influenza strains, including future strains that have not yet evolved. One challenge
of universal influenza vaccines is the high mutation rate of influenza, specifically in
the immunodominant antigens, hemagglutinin, specifically the head domain, and
neuraminidase (Altman et al. 2018). The highly conserved ectodomain of matrix
protein 2 is a promising antigen for a universal influenza vaccine (Lamb et al.
1985), however, its immunogenicity is low. Though M2e specific antibodies can
reduce viral load, they are rarely detected after natural infection or seasonal vac-
cination (Hughey et al. 1995; Treanor et al. 1990; Black et al. 1993; Feng et al.
2006). The first application of PNCs sought to improve the immunogenicity of M2e
and evaluate the breadth of protection. We selected the M2e consensus sequence
from human influenza A viruses as the antigen, as shown in Table 1.

To recapitulate the native tetrameric state of M2e, the GCN4 tetramerization
motif, modified from a leucine zipper region of a yeast transcription factor (De
Filette et al. 2008), was fused to M2e and expressed in insect cells (Wang et al.
2014). Nanoclusters were fabricated by desolvating the tetrameric M2e complex
and crosslinking with non-reducible glutaraldehyde. Mice were vaccinated i.n. with
10 µg of M2e each in a prime and two boost doses. The M2e specific humoral and
cellular responses generated by vaccination with nanoclusters protected mice from
lethal challenge. Antibodies generated recognized not only the M2e consensus
peptide but mutated M2e sequences from different viral strains. While no mice
immunized with soluble tetrameric M2e survived, all mice vaccinated with tetra-
meric M2e nanoclusters did survive. This protective effect was broad, as mice
survived both challenged by an influenza strain with the same M2e consensus
sequence (A/Philippines/82 H3N2: Phi/82 H3N2) as the nanoclusters, and chal-
lenged by a divergent strain with four mutated residues out of 21 (A/California/04/
09 H1N1: CA/09 H1N1). While survival was promising, the mice did lose weight,
up to 10 and 20% for similar and divergent strains, respectively, indicating the need
to further enhance the vaccine to improve the quality and breadth of protection.
Passive transfer of immune sera from nanocluster-immunized mice to naïve mice
protected most animals, but not all, demonstrating the importance of the cellular
response in protection against influenza. There is evidence that M2e antibodies are

Table 1 M2e sequences from different human influenza A strains and the consensus sequence
(Wang et al. 2014)

Viral strains Subtype M2e amino acid sequence

M2e in nanoclusters N/Aa MSLLTEVETP IRNEWGCRCN D

A/Philippines/2/82 H3N2 MSLLTEVETP IRNEWGCRCN D

A/Puerto Rico/8/34 H1N1 MSLLTEVETP IRNEWGCRCN G
A/California/04/09 H1N1 MSLLTEVETPTRSEWECRCSD
A/Vietnam/1230/04 H5N1 MSLLTEVETPTRNEWECRCSD
Reproduced from Wang et al. (2014)
aM2e consensus of human influenza A viruses
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not neutralizing but rather mediate effector cell functions (Jegerlehner et al. 2004;
El Bakkouri et al. 2011; Mozdzanowska et al. 2005; Tompkins et al. 2007).

In an effort to improve the efficacy and breadth of protection, the antigen content
of nanoclusters was expanded. Instead of a single M2e consensus sequence from
human influenza A, a chimeric antigen was created that linked M2e consensus
sequences from human, swine, avian, and fowl influenza A strain into a single chain
fused to GCN4 to induce tetramerization (Fig. 4a). The goal of this modification
was to improve protection against zoonotic strains. The stalk domain of HA was
also used, as it is also relatively conserved, compared to the HA head domain
(Ekiert et al. 2011; Mallajosyula et al. 2014) and provides additional immune
epitopes. Engineered trimeric HA stalk was created from both H1 and H3 virus
(Fig. 4b). Desolvation was used to create chimeric M2e nanoclusters, which were
coated with H1, H3, or a mixture of H1 and H3 trimeric stalk domains and
crosslinked (Deng et al. 2018a) (Fig. 4c). Upon i.m. vaccination, mice maintained
early antibody titers until at least 4 months post-vaccination. The immune
responses extended beyond the nanocluster-specific humoral and cellular responses
seen for the antigens in the nanoclusters. Vaccination induced antibodies capable of
binding not only the antigens present in the nanoclusters, but also H2 and H5
subtypes if H1 was present in the coating, and H7 and H10 subtypes if H3 was
present in the coating. Broad protection was ultimately demonstrated by viral
challenge with a panel of six influenza viruses: A/Puerto Rico/8/34 H1N1 (PR8
H1N1) and A/Aichi/2/1968 H3N2 (Aic H3N2), from which the H1 and H3 stalks
were derived, A/California/7/2009 H1N1pdm (p09 H1N1), reassorted A/Vietnam/
1203/2004 (Vtn H5N1) virus, A/Philippines/2/1982 (Phi H3N2), and reassorted A/
Shanghai/2/2013 (SH H7N9) virus. The respective reassorted viruses contained HA
and NA from the parent strain (Vtn or SH) but the internal genes and M2e from
PR8 H1N1. In all cases, nanoclusters containing both the chimeric M2e core and
the coating of either both H1 and H3 stalk or coating of the HA stalk variant most
closely related to the challenge virus (H1 for H5N1 virus and H3 for H7N9 virus)
fully protected mice from lethal challenge. Vaccination with only the M2e nan-
ocluster core protected most mice, but not all. These results demonstrate high
potential for a broadly protecting influenza vaccine and the benefit of combining
multiple conserved antigenic domains.

To further explore the value of other conserved influenza antigens, we fabricated
nanoclusters from NP and known NP peptide antigens (Deng et al. 2018b). NP is an
internal influenza protein that is highly conserved and has been shown to induce
cross-protection against a challenge from diverse influenza A viruses (Zheng et al.
2014). Nanoclusters were desolvated both from full-length NP and from an engi-
neered peptide containing three linear repeats each of the NP147 and NP55 short
peptide epitopes. Following desolvation, nanoclusters were coated with the chi-
meric M2e tetramer used previously (Fig. 4a) and crosslinked. Mice vaccinated i.m.
with both types of M2e coated NP nanoclusters were protected from lethal chal-
lenge with the reassortant H5N1 virus. Animals did lose *10% body weight and
the coated nanoclusters containing NP peptide recovered faster than those
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containing NP protein. We also investigated whether nanoclusters could benefit
from codelivery with inactivated (PR8 H1N1) influenza vaccine, as previous work
had shown that codelivery of soluble flic-M2e fusion proteins and inactivated
vaccines broadened the protection (Zhu et al. 2017). Using both i.m. and micro-
needle delivery routes, mice co-vaccinated with M2e coated NP PNC and inacti-
vated PR8 were protected against both PR8 challenge and Phi H3N2 challenge.
Mice vaccinated only with inactivated PR8 were only protected from PR8 chal-
lenge. Again, the value of antigen combination in nanoclusters is evident and there
is potential for further combination with existing vaccines to boost immunogenicity.

A universal influenza vaccine would ideally protect against all potential influ-
enza strains. However, strain-specific vaccines could be useful for enhancing
responses against specific antigenic sequences in the case of an emerging outbreak.
Additionally, in the case of a recombinant influenza virus engineered to evade a
broadly protective vaccine, an antigen-matched formulation may be the only means
of generating protective immunity. We have demonstrated that PNCs made with
hemagglutinin H1 and H3 stalk domains inserted into the flic protein can trigger
subtype-specific protective immunity (Deng et al. 2017). Overall, PNCs made from
a variety of influenza A antigens can elicit strong, protective immune responses
against homo- and heterosubtypic challenges.

Fig. 4 Antigen design of (a) chimeric M2e tetramers and (b) stabilized HA1 stalk antigen. Coated
PNCs containing both antigens were made by the method described in Sect. 2 (c) (Deng et al.
2018a). Figure adapted from Deng et al. (2018a) under the Creative Commons license
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4.2 Progress Towards Cancer Vaccines

Protein nanoclusters have also been recently explored as therapeutic cancer vac-
cines. In particular, the E.G7-OVA mouse T cell lymphoma cell line generates
tumors when injected subcutaneously and can be used as a measure of OVA
nanocluster efficacy. OVA nanocluster-immunized mice had drastically lower
tumor volumes and growth rates compared to mice immunized with soluble OVA,
which had almost no effect on tumor volume (Dong et al. 2019). CpG-coated
nanoclusters also slightly, but significantly, reduced tumor volumes as compared to
unadjuvanted OVA nanoclusters. Another study demonstrated the protective effects
of OVA nanoclusters crosslinked with indocyanine green. This crosslinker has the
bonus of generating reactive oxygen species (ROS) upon near-infrared irradiation,
which was shown to be essential for endosomal escape and therapeutic effect (Cao
et al. 2018).

Given the high specificity needed for cancer vaccines, many antigens are min-
imal peptide epitopes. We have fabricated PNCs from oncofetal antigen
(OFA) peptide epitopes (Tsoras and Champion 2018). OFA is a highly conserved
protein antigen expressed in many types of cancer cells including breast, head/neck,
and hematologic malignancies, but it is not detectably expressed in healthy cells
(Siegel et al. 2003; Barsoum and Schwarzenberger 2014). The lack of reactive
groups for sufficient crosslinking required the addition of a terminal cysteine to
enable stabilization of the nanoclusters using a tri-thiol crosslinker. Evaluation of
human cancer antigens in humanized mice or clinical trials is needed to determine
efficacy, likely in combination with checkpoint inhibitors, given the highly
immunosuppressive environment of many tumors (Sharma et al. 2017).

5 Conclusion and Future Outlook

PNCs are designed to present specific antigens and epitopes in the context of
enhanced immunogenicity conferred by particulate matter. Our work has demon-
strated successful immunization with PNCs, yet opportunities still remain for
enhancing their immunogenicity. The immunomodulatory effects of nanoparticles
have been shown to be a function of many factors, including nanoparticle size
(Xiang et al. 2006; Stano et al. 2012; Mottram et al. 2007), shape (Kumar et al.
2015; Vaine et al. 2013), charge (Neumann et al. 2014), surface chemistry (Huang
et al. 2013), and administration route (Zolnik et al. 2010). HSA protein nanocluster
density has recently been shown to affect delivery to cells of the immune system
in vitro and in vivo (Roh et al. 2019). Future vaccine nanocluster work should
examine whether nanocluster density is an intrinsic property of the antigen, or if
synthesis conditions can tune nanocluster density and the resulting immune
response. Non-desolvated protein nanoclusters may better preserve the native
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structure of certain antigens and are also being explored for cancer (Dong et al.
2019; Cao et al. 2018) and influenza (Deng et al. 2017) vaccines.

We have also demonstrated the importance of the outer coat layer on protein
nanoclusters for effective immune responses. The outer layer of protein nanoclus-
ters is especially important for cell- and tissue-specific targeting. Recent studies of
non-vaccine HSA nanocluster drug carriers have used small molecules (Akbarian
et al. 2020), nucleic acid aptamers, and antibodies (Keuth et al. 2020) to target
nanocluster delivery. The protein corona on the respiratory syncytial virus
(RSV) and herpes simplex virus type 1 (HSV-I), has been shown to affect immune
cell activation and viral pathogenesis (Ezzat et al. 2019). The corona of protein
nanoparticle vaccines, including PNCs, has not been studied yet, though is very
likely to impact biodistribution, cellular uptake, and/or immunogenicity.

The use of antibodies and other proteins of the immune system for targeting is
especially relevant for vaccine nanoclusters, given that the Fc receptor is a key
mediator of antigen presentation to B cells (Bergtold et al. 2005). We have tested
flagellin and immunoglobulin as adjuvants to nanoclusters (Chang et al. 2017), yet
other protein types should be explored. In particular, the complement protein C3d
can bridge the innate and adaptive immune response by flagging particulate anti-
gens as targets for humoral immune responses (Del Nagro et al. 2005).

In addition to humoral immune responses, viral vaccines need to induce robust
cell-mediated immunity, which is a much more difficult challenge. Protein nan-
oclusters deliver large quantities of antigen per particle to antigen-presenting cells,
increasing the chances of successful T cell epitope antigen presentation. In mice,
PNCs show enhanced antigen retention in lymph nodes and the spleen (Deng et al.
2018b; Tsoras et al. 2020), important organs for antigen presentation. However, the
presentation of antigen alone is not sufficient for stimulating cell-mediated immu-
nity. T cell differentiation and polarization are mediated by cytokine transfer from
the APC to the cognate T cell (Murphy et al. 2012; Munoz-Wolf and Lavelle 2018).
Exogenous cytokine administration can be dangerous if not appropriately targeted
(Tisoncik et al. 2012), and protein nanoclusters could provide a means of such
targeting. Pathogenic pattern recognition receptor activation also leads to specific
inflammatory cytokine production, and engagement of these receptors by adjuvants
has been shown to be critical to successful T cell responses (Kumar et al. 2019).
Whether engaging cytokine receptors directly or inducing pro-inflammatory cyto-
kine production pathways in APCs, adjuvant-coated protein nanoclusters should be
explored as a means of inducing specific cell-mediated immune phenotypes.

Though a significant benefit of PNCs is the lack of external adjuvants, PNC
vaccines of the future may contain both molecular adjuvants and particulate anti-
gens, especially as we learn more about how different host- and pathogen-derived
components trigger specific aspects of the immune system. Future research should
address how different adjuvant combinations, as well as antigen nanoparticle
properties, can optimize immune responses to combat viral, bacterial, and/or
oncological threats.
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