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Abstract Type III secretion systems (T3SSs) are utilized by numerous
Gram-negative bacteria to efficiently interact with host cells and manipulate their
function. Appropriate expression of type III secretion genes is achieved through the
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integration of multiple control elements and regulatory pathways that ultimately
coordinate the activity of a central transcriptional activator usually belonging to the
AraC/XylS family. Although several regulatory elements are conserved between
different species and families, each pathogen uses a unique set of control factors and
mechanisms to adjust and optimize T3SS gene expression to the need and lifestyle
of the pathogen. This is reflected by the complex set of sensory systems and diverse
transcriptional, post-transcriptional and post-translational control strategies modu-
lating T3SS expression in response to environmental and intrinsic cues. Whereas
some pathways regulate solely the T3SS, others coordinately control expression of
one or multiple T3SSs together with other virulence factors and fitness traits on a
global scale. Over the past years, several common regulatory themes emerged, e.g.,
environmental control by two-component systems and carbon metabolism regula-
tors or coupling of T3SS induction with host cell contact/translocon-effector
secretion. One of the remaining challenges is to resolve the understudied
post-transcriptional regulation of T3SS and the dynamics of the control process.

1 Introduction

Type III secretion systems (T3SS) are complex nanomachines of Gram-negative
bacterial pathogens of plants, animals and humans that export proteins (called
effectors) from the bacterial cytoplasm across the cell envelope and inject them into
host cells during infection (Biittner 2012; Portaliou et al. 2016; Galan et al. 2014;
Deng et al. 2017; Hueck 1998). Depending on the individual pathogen, the injected
effectors act as toxins, adhesins or enzymes and can promote attachment and
invasion into host cells, intracellular survival and replication or prevent host
defenses. The T3SS is composed of 30—40 proteins that are assembled into a
needle-like injectisome structure where they are incorporated as single molecules or
in few or multiple copies (Galan et al. 2014; Deng et al. 2017; Diepold and Wagner
2014). Consequently, the synthesis of the T3SS proteins that form or utilize the
machinery follows a strict hierarchy (Galan et al. 2014; Diepold and Wagner 2014).
Moreover, synthesis, recruitment and unfolding as well as secretion and delivery of
the effector proteins into host cells are highly energy consuming processes. This is
particular evident by the fact that several pathogens stop growth and replication
when the T3SS is induced (Biittner 2012; Portaliou et al. 2016; Deng et al. 2017).
Thus, it is not surprising that the production of the T3SS in pathogens is tightly
controlled by a plethora of regulatory factors in response to numerous environ-
mental cues and the secretory activity of the injectisome. They act on the tran-
scriptional, post-transcriptional and post-translational level and form a complex
feedback-controlled network. In the following overview, we focus on the wealth of
T3SS control factors of important human pathogens and discuss current challenges
to examine their functions.
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2 T3SS Regulation on the Transcriptional Level

2.1 Control by Central Transcriptional Activators

The first central factors identified to regulate the expression of the T3SS compo-
nents were dimeric, transcriptional activators of the AraC/XylS family. This
family of activators includes LerF/VirF in human pathogenic yersiniae, HilD, HilC
and RtsA in Salmonella enterica, MxiE in Shigella flexneri and ExsA in
Pseudomonas aeruginosa (Francis et al. 2002). A common regulatory principle of
these key activators involves the coordinate control of all or of a large subset of
components and substrates of the T3SS in the respective pathogen. In several cases,
multiple binding sites have been identified upstream the target genes and operons
(Schwiesow et al. 2015).

In general, all transcriptional activators of this class are composed of an
N-terminal sensing domain for environmental signals and a C-terminal
helix-turn-helix (HTH) DNA-binding domain per subunit. DNA binding occurs
through the recognition helix in the HTH that binds to specific DNA residues within
the major groove (Bustos and Schleif 1993; Schleif 2010). Interestingly, some of
these master activators, such as LcrF/VirF of Yersinia and ExsA of P. aeruginosa,
are highly homologous and can complement each other. They were shown to
interact with common nucleotide sequence motifs that are often highly variable
regarding the distance to the transcriptional start sites, directionality and sequence
conservation (Schwiesow et al. 2015; King et al. 2013). Notably, despite the
resemblance of the DNA motifs, the oligomeric state of the LerF/VirF (dimer) and
ExsA (monomer) proteins is different when they are recruited to the binding sites.
This ultimately results in distinct binding affinities, promoter bending and different
kinetics of transcriptional activation (Schwiesow et al. 2015; King et al. 2013).
Some of the N-terminal domains were further shown to bind co-factors that induce
conformational changes and influence the ability of the protein to regulate tran-
scription. One recent study for example showed that the crucial regulator HilD of S.
enterica binds long-chain fatty acids such as oleate, which prevents binding of the
activator to its target sites (Golubeva et al. 2016) (for more details, see Sect. 4.2).

Additionally, many important bacterial pathogens, including S. enterica, possess
multiple T3SSs in which the key regulators of the systems are also implicated in the
control of the master regulator of the other T3SSs. For instance, HilD coordinates
the expression of two other type III secretion machineries of Salmonella, the
flagellar T3SS and the Salmonella pathogenicity island 2 (SPI-2) encoded injecti-
some required for host defenses (Ellermeier and Slauch 2007) (Fig. 1).
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Fig. 1 Regulation of the T3SSs of Salmonella enteric serovar Typhimurium. The regulatory
network of the flagellar and the two virulence-associated T3SSs (T3SS-1 and T3SS-2) encoded on
SPI-1 and SPI-2 is shown. The overview illustrates sensory and regulatory factors, which control
the T3SSs on the transcriptional and post-transcriptional level

2.2 Transcriptional Control of the Key T3SS Regulators

Appropriate expression of T3SS components is generally achieved through the
integration of several regulatory factors and pathways in the form of a highly
structured network that ultimately control the activity of the central AraC/XylS-type
transcription activator. This enables the bacteria to tightly control and adjust the
production of the T3SS in response to unique environmental cues encountered in
the respective host niches. In S. enterica, control of the T3SS-1 (encoded on the
Salmonella pathogenicity island 1 (SPI-1)) is mediated by the AraC/XylS proteins
HilC, HilD and RtsA (Erhardt and Dersch 2015) (Fig. 1). They regulate each other
and the transcription of their own gene and independently activate the promoter of
the OmpR/ToxR family activator HilA. HilA primarily induces transcription of the
structural components of the SPI-1 gene cluster, including prg/org and inv/spa
(Ellermeier et al. 2005). Most environmental signals that regulate SPI-1 gene
expression are sensed by two-component systems and integrated on the level of
HilD. The response to (i) osmolarity, desiccation and low temperature occurs
through the two-component systems OmpR/EnvZ and the RcsCD/RcsB, and
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(i) presence of certain metabolites is sensed through the BarA/SirA two-component
system (Erhardt and Dersch 2015). Hence, HilD constitutes the key activator of
Salmonella T3SS genes, whereas HilC and RtsA rather act as amplifiers of the
activating signal. Control of the key regulator LcrF/VirF of the Yersinia T3SS,
which is encoded on the Yersinia virulence plasmid (pYV), is similarly complex
(Fig. 2). Its expression is tightly controlled by nutrients, Mg** and pH, through the
BarA/SirA, PhoP/PhoQ-CsrABC cascade and the cyclic AMP receptor protein
(Crp). In addition, diverse cell stresses can be sensed through the two-component
systems RcsCD/RcsB and CpxA/CpxR (Schwiesow et al. 2015).

Expression of the T3SS master activators is often further influenced by the action
of specific transcriptional regulators that promote activator transcription only
under certain environmental conditions. Examples of important environmental
parameters in this context are the availability of oxygen and ferric/ferrous ions. In
this context, Ellermeier and Slauch and Teixido et al. (Ellermeier and Slauch 2008;
Teixido et al. 2011) found that the ferric uptake regulator Fur controls HilD
expression and more recent studies identified the iron—sulfur cluster coordinating
transcriptional regulator IscR as an important transcriptional repressor of the LcrF/
VirF and HilD master regulators of Yersinia and Salmonella (Miller et al. 2014;
Vergnes et al. 2017) (Figs. 1 and 2). It is assumed that iron limitation, oxidative
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Fig. 2 Regulation of the Ysc/Yop T3SS of Yersinia. The regulatory network controlling the
virulence plasmid-encoded Ysc/Yop T3SS in Y. pseudotuberculosis is illustrated. The most
important global and Yersinia-specific RNA and protein regulators influencing T3SS gene expression
at 25 °C (environment), 37 °C (host entry) and 37 °C upon host cell contact are indicated
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stress, as well as oxygen limitation as a result of Fe-S cluster damage, affect the
activity of IscR. Another common global regulatory protein is the LysR homologue
LrhA. While this regulator represses flagella T3SS expression in Escherichia coli
and Salmonella, it, on the contrary, induces the espA gene of the pathogenicity
island locus of enterocyte effacement (LEE) of enterohemorrhagic E. coli (EHEC)
and the r#sB regulator gene of SPI-1 genes in Salmonella (Erhardt and Dersch 2015;
Shimizu et al. 2015).

Another common feature is that expression of the master T3SS regulators is also
governed by global regulators. They are needed for metabolic adaptation and can
additionally coordinate expression of the T3SSs with available carbon sources.
Among these regulators is Crp. Crp primarily helps the pathogens to manage and
optimize their metabolism by checking and ranking uptake and utilization of
available and readily digestible carbon sources (Gorke and Stiilke 2008; Poncet
et al. 2009). In this context, Crp is also important to link the nutrient status and
carbon metabolism with the regulation of the T3SS either directly or via the control
of the post-transcriptional carbon storage regulator system (Csr), which affects the
expression of multiple master regulators in many pathogens (for details see
Sect. 3.1.2) (Kusmierek and Dersch 2017; Vakulskas et al. 2015).

2.3 Silencing and Activation of T3SS Master Regulator
Expression by Modulator Proteins

Under non-inducing conditions, e.g., outside the host, T3SS genes are often sub-
jected to silencing by ancestral nucleoid-structuring proteins of the H-NS and the
Hha/YmoA family. These global modulators of gene expression are implicated in
the xenogeneic repression of many virulence genes with a low GC-content that
were acquired by horizontal gene transfer (Navarre et al. 2006; Dorman 2007).
H-NS and HhA/YmoA preferentially bind to AT-rich bent promoter regions, and
their binding sites often overlap with binding sites of positive transcriptional acti-
vators that are able to alleviate transcriptional repression. This silencing and
anti-silencing mechanism was found for H-NS and Hha for all three AraC/
XylS-type transcriptional activators RtsA, HilC and HilD which control T3SS
genes in S. enterica (Olekhnovich and Kadner 2007) (Fig. 1). Similarly, Ler
(LEE-encoded regulator), a master regulator of the LEE operons of enteropatho-
genic E. coli (EPEC) and EHEC, is able to relieve H-NS mediated silencing of the
LEES promoter (Laaberki et al. 2006) (Fig. 3). The LEE-encoded T3SS promotes
the establishment of intimate attachment structures (intimin-mediated pedestals) of
EPEC/EHEC via translocated effectors leading to attaching and effacing (A/E)
lesions and severe damage of the intestinal villi (Katsowich et al. 2017; Bhatt et al.
2009). This is enabled by the significantly higher binding affinity (about 40-fold) of
the T3SS master activator Ler to the LEE target DNA sequences, in comparison to
H-NS (Choi et al. 2016).
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Fig. 3 Regulation of the LEE-encoded T3SS genes of EHEC. The locus of enterocyte
effacement (LEE) pathogenicity island of EHEC, including the operons LEEI-5, the bicistronic
operon grlRA and other monocistronic genes, is illustrated. The most important global and
EHEC-specific RNA and protein regulators influencing LEE gene expression are indicated

Interestingly, members of the H-NS and Hha/YmoA family are also able to form
heterodimers. How this interaction modulates expression of their target genes is not
clear yet, as the influence of both family members on gene expression varies signif-
icantly between the different pathogens. However, some evidence exists that het-
erodimer formation influences the binding affinity to their target sites and links control
of the affected genes to other environmental control systems (Madrid et al. 2002,
2007). One striking example is the formation of H-NS and YmoA complexes in
human pathogenic yersiniae. YmoA is important to block transcription of the T3SS
master regulator gene IcrF/virF in Yersinia to silence sequences downstream of the
lerF/virF promoter (Bohme et al. 2012) (Fig. 2). In contrasttoits E. coli homologue, it
is preferentially degraded by the Lon and Clp proteases at body temperature, leading
to derepression of lcrF/virF transcription upon infection (Jackson et al. 2004).

3 T3SS Regulation on the Post-transcriptional Level

3.1 Control of Translation

3.1.1 Sensory RNAs—RNA Thermometers

One of the first post-transcriptional control mechanisms of T3SS gene expression
was discovered in Yersinia. A comparison of the amount of the T3SS master
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regulator at different growth temperatures revealed that the efficiency of lcrF/virF
mRNA translation was strongly increased at mammalian body temperature (i.e.,
37 °C) (Hoe and Goguen 1993). Initial mRNA secondary structure predictions
suggested that the IcrF ribosome binding site (RBS) is incorporated into a
stem-loop. In a later study, the 5'-untranslated region (5’-UTR) of the lcrF/virF
mRNA was mapped, and structure probing identified a unique cis-acting RNA
element which forms a two stem-loop structure at moderate temperatures. The first
stem-loop stabilizes the second stem-loop which sequesters the IcrF/virF RBS by a
stretch of four uracils. Opening of this structure is favored at 37 °C and permits
ribosome binding at host body temperature (Béhme et al. 2012; Rhigetti et al. 2016)
(Fig. 2). The biological relevance of this RNA thermometer was verified in animal
models with two different Yersinia pseudotuberculosis strains expressing a stabi-
lized and a labile variant of the RNA thermometer. The stabilized variant was
strongly reduced in its ability to disseminate into the Peyer’s patches, liver and
spleen and had fully lost its lethality due to the lack of IcrF expression, whereas the
destabilized version of the thermosensor was attenuated or exhibited a similar, but
not a higher mortality (Bohme et al. 2012). This illustrated that the evolved RNA
thermometer provides just the appropriate amount of the T3SS master regulator at
the appropriate condition and time for an optimal infection efficiency of Yersinia.

3.1.2 Translational Control by CsrA/RsmA RNA-Binding Proteins

CsrA/RsmA-type RNA-binding proteins belong to a multicomponent,
post-transcriptional regulatory control system that adjusts expression of T3SS genes
in several Gram-negative pathogens. A key function of CsrA/RsmA protein family
members is the coordinate adaptation of virulence traits, metabolic functions and
physiological properties to optimize virulence and fitness of the pathogen during the
different stages of the infection (Kusmierek and Dersch 2017; Vakulskas et al.
2015). CsrA/RsmA proteins most commonly prevent the translation of their
numerous target mRNAs, including multiple T3SS gene transcripts. They usually
bind to GGA-containing sequences that are exposed in single-stranded loop regions
of two or more stem-loop structures residing in the 5°’-UTRs of the impacted
mRNAs, of which one includes the RBS. Simultaneous interaction of the dimeric
CsrA/RsmA proteins predominantly hinders ribosome access and translation, which
often also reduces the stability of the target RNA (Mercante et al. 2009; Lapouge
et al. 2013; Dubey et al. 2005). However, in several cases, CsrA/RsmA protein
binding prevents the formation of translation-blocking RNA structures or hinders
access of RNases leading to an increase of the total translational efficiency and
transcript stability (Ren et al. 2014; Yakhnin et al. 2013). CsrA/RsmA protein
activity can be immediately inhibited through sequestration of CsrA by certain
non-coding RNAs (e.g., CsrB and CsrC in Enterobacteriaceae), which harbor
multiple GGA-containing hairpins. Alternatively, CsrA can be inactivated by
binding to specific highly abundant GGA-rich mRNAs as well as by interacting
proteins (Kusmierek and Dersch 2017).
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CsrA/RsmA deficiency impairs synthesis and function of several T3SSs impli-
cated in motility, host colonization and host defense and strongly attenuates viru-
lence. For instance, CsrA induces the expression of the master regulator FIhDC of
the flagellar T3SS in E. coli (Yakhnin et al. 2013). CsrA activates flhDC expression
by protecting the flhDC mRNA from decay. mRNA degradation studies in E. coli
support a model in which CsrA binding activates flhDC expression by inhibiting the
5’ end-dependent RNase E cleavage pathway (Yakhnin et al. 2013). In addition, the
synthesis of the LEE-encoded T3SS for the formation of the intimate attachment
structures by EPEC/EHEC is regulated by CsrA on multiple levels (Fig. 3)
(Katsowich et al. 2017; Bhatt et al. 2009). First, CsrA directly activates expression
of the escD and the LEE4 genes and represses expression of several LEE operons
through the regulator Ler and GrlA (Bhatt et al. 2009). Moreover, CsrA was found
to interact with the T3SS effector chaperone CesT when it is released from its
effector under effector-secreting conditions. Sequestration of CsrA by CesT relieves
CsrA-mediated repression of nleA/espl effector mRNA translation, which enables
the bacteria to adjust T3SS gene expression in response to host cell contact
(Katsowich et al. 2017).

The CsrA equivalent RsmA protein of P. aeruginosa is also implicated in the
bacterial response to host cell contact, but the underlying molecular mechanism is
quite different. In this pathogen, RsmA controls the expression of the major T3SS
transcriptional activator ExsA. The activity of ExsA is controlled by a complex
‘partner-switching’ cascade involving ExsE, ExsC and ExsD, which is triggered
upon host cell contact and secretion of the ExsE effector (Fig. 4, for details see
Sect. 4.1) (Intile et al. 2014; Dasgupta et al. 2004; Urbanowski et al. 2005). RsmA
activity itself is regulated through the magnesium transporter MgtE and the GacAS
two-component system via activation of the Csr/Rsm-type RNAs RsmY and RsmZ
(Chakravarty et al. 2017).

CsrA has also a very strong impact on the expression of different
virulence-relevant T3SSs in Yersinia. Similar to E. coli, CsrA activates the FIhDC
master regulator of the flagellar T3SS and is thus required for Yersinia motility
(Heroven et al. 2008). Recent work further demonstrates that CsrA has a major
influence on the virulence plasmid-encoded T3SS (Ysc/Yop). Expression of the
CsrB and CsrC RNAs in Y. pseudotuberculosis is downregulated in the Peyer’s
patches during acute infection (Nuss et al. 2017), suggesting that more active CsrA
protein is required for virulence. In fact, a csrA-deficient mutant of Yersinia ente-
rocolitica was characterized by reduced secretion of the T3SS effectors YopE and
YopH, and a Y. pseudotuberculosis csrA mutant was unable to secrete all known
Yop effectors, which are usually injected into neutrophils and macrophages to
prevent their phagocytic attack (Nuss et al. 2017; Ozturk et al. 2017). In addition to
the virulence plasmid-encoded T3SS, Y. enterocolitica harbors a second chromo-
somally encoded T3SS (Ysa). This T3SS is only expressed under very special
environmental conditions in vitro and seems to promote intracellular virulence
(Bent et al. 2015). This Ysa T3SS system is also influenced by CsrA, but in contrast
to the Ysc/Yop T3SS effectors, Ysp effector proteins are over-secreted in the csrA
mutant (Ozturk et al. 2017).
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Fig. 4 Control network and partner switching regulating T3SS in P. aeruginosa. The
regulatory network controlling the T3SS of Pseudomonas and the partner switching upon host cell
contact is presented. The most important transcriptional and post-transcriptional regulators are
illustrated, and the partner-switching mechanisms is presented when the bacteria change from free
to the host cell bound stage

Similar to Yersinia, CsrA also controls the virulence-associated T3SS of
Salmonella typhimurium: the cell invasion-promoting T3SS-1, encoded on SPI-1,
and the T3SS-2 mediating Salmonella replication within macrophages (Fig. 1).
CsrA regulates the expression of the common regulator HilD by binding near the
ribosome binding site on the AilD transcript leading to a decrease of HilD translation
and a reduced stability of the hilD mRNA (Altier et al. 2000; Martinez et al. 2011).

3.2 Control of T3SS mRNA Structures and Stability—
Influence of Helicases and RNases

The overall efficiency of mRNA translation depends on the stability and the
structure of the transcript. Bacteria generally have several RNA helicases that
unfold intrinsic hairpin and other secondary RNA structures. Of special interest
here is a certain class of RNA-binding helicases, the DEAD-box helicases. They
are named after their conserved DEAD amino acid sequence in their catalytic
domain and can hydrolyze ATP to dissolve inhibitory duplex RNA structures. One
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of a set of seven DEAD-box helicases, the DeaD helicase, stimulates translation of
the T3SS master regulator ExsA in P. aeruginosa to promote expression of the
injectisome (Intile et al. 2015). DeaD seems to directly stimulate exsA mRNA
translation, as DeaD-dependent activation is specific to the exsA coding region and
the native RBS. The purified protein is able to promote ExsA synthesis using
in vitro translation assays (Intile et al. 2015). RNA secondary structure predictions
of the 5'-UTR of exsA and the proximal coding sequence revealed extensive base
pairing with the RBS, indicating that DeaD enhances ribosomal access. DeaD does
not alter T3SS expression through RsmA (Intile et al. 2015), but whether DeaD and
RsmA function independently or are dependent upon each other is currently
unknown.

Both T3SS regulators and structural components are also targeted by different
RNases. One important RNase implicated in T3SS regulation is the polynucleotide
phosphorylase (PNPase). PNPase belongs to the group of 3’-exoribonucleases. It
can act alone or it functions as part of the multicomponent degradosome complex
together with RNase E, the glycolytic enzyme enolase and helicase RhIB (Mohanty
and Kushner 2016). In Yersinia, optimal functioning of the virulence
plasmid-encoded T3SS was shown to require PNPase. While a pnp deletion mutant
of Y. pseudotuberculosis possessed enhanced levels of the T3SS-encoding tran-
scripts and proteins in contrast to wildtype, secretion of the Yop effectors was
strongly reduced (Rosenzweig et al. 2007). However, this is in contrast with initial
results of our laboratory in which both T3SS gene transcription and Yop secretion
was strongly increased in the absence of PNPase in Y. pseudotuberculosis
(Kusmierek et al., unpublished). The reason for this discrepancy is unclear, and we
are currently testing whether a different genetic background or differences in the
growth conditions may be responsible for this discrepancy. It was further found by
Rosenzweig et al. that normal T3SS activity was restored when a 70 amino acid
peptide (S1 domain) containing one of the RNA-binding domains of PNPase was
expressed in the pnp mutant. Notably, T3SS expression, but not T3SS activity, was
identical in Apnp strains expressing active or inactive S1 variants, indicating that
PNPase influence on T3SS may involve an RNA intermediate (Rosenzweig et al.
2005, 2007; Rosenzweig and Chopra 2013). Likewise, T3SS functioning is
impaired in Y. pseudotuberculosis with a reduced RNase E activity, and these
bacteria further resemble the pnp mutant, indicating that they act via a common
pathway, e.g., via the degradosome (Yang et al. 2008). In Yersinia, the
single-strand-specific RNase Y (YbeY) processing 3’-ends of the 16S RNA was
also found to control T3SS expression (Leskinen et al. 2015). The precise mech-
anism is unknown, but the CsrB and CstC RNAs are among its target, indicating
that the influence of YbeY on T3SS occurs through regulation of the Csr system.

S. typhimurium strains harboring a deletion of the 310 nt 3'-untranslated region
(3'-UTR) of hilD or lacking the RNase E gene rne or the PNPase gene pnp exhibit
increased hilD mRNA levels. This resulted in SPI-1 gene overexpression, impaired
Salmonella growth and uncontrolled invasion of epithelial cells, suggesting that the
hilD 3'-UTR is a target for degradation by the bacterial degradosome (Fig. 1)
(Lopez-Garrido et al. 2014). In contrast, the RNA chaperone Hfq interacts with the
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3'-UTR of the hilD mRNA and has a positive influence on its stability. Therefore, it
has been assumed that this effect occurs through competitive inhibition of the
degradosome (Lopez-Garrido et al. 2014; Sittka et al. 2007; Chao et al. 2012).

The degradosome is also implicated in the regulation of T3SS gene expression in
pathogenic E. coli. In EHEC, the espADB translocon genes are controlled by an
RNase E-dependent mechanism, in which a small six-codon mini-open reading
frame at the 5’-end of the common transcript is recognized and preferentially
degraded by RNase E (Fig. 3). However, translation of the mini-open reading frame
by ribosomes protects the mRNA and allows a more efficient production of the
translocon proteins (Lodato et al. 2012, 2017).

3.3 Regulatory RNAs

Over the past years, a plethora of regulatory RNAs have been identified in many
bacterial pathogens that are implicated in virulence regulation. Besides the Csr/
Rsm-type RNAs (see also Sect. 3.1.2), several others of them have also been found
to control T3SSs. For instance, the small non-coding RNA Spot42 regulates the
expression of the chaperone protein VP1682 of components of the T3SS-1 of
Vibrio parahaemolyticus by basepairing with the RBS and the initial codons of the
vpl1682 transcript (Tanabe et al. 2015). Another example constitutes the Yersinia-
specific non-coding RNA Ysrl41. In the absence of Ysr141, a selection of the T3SS
components and the effectors YpkA, YscF, YopE, YopK and YopJ and the regu-
lator LerF were 30-70% decreased (Schiano et al. 2014). Although the molecular
mechanism how Ysrl41 exerts this effect is largely unknown, initial experiments
demonstrated that Ysr141 interferes with yopJ mRNA translation. Schiano et al.
(Schiano et al. 2014) proposed that all observed changes could be based on the
dysregulation of YopJ production as Yersinia T3SS was shown to be sensitive to
changes in Yop protein levels. However, the observed regulatory influence on YopJ
translation was rather small suggesting that other mechanisms contribute to the
overall influence of Ysr141 on T3SS regulation. A recent study revealed that the
copy number of the Yersinia virulence plasmid pYV encoding the Ysc/Yop T3SS
increases during infection (Wang et al. 2016). This upregulation is caused by an
increased expression of the pYV replicase RepA. It was shown that levels of an
antisense RNA, CopA, overlapping with the upstream region of the repA gene are
strongly decreased under secretion conditions and during infection, leading to a
marked decrease of the CopA/repA mRNA ratio and an increase of the copy
number (Nuss et al. 2017; Wang et al. 2016). The precise regulatory mechanism
still needs to be elucidated, but first evidence exists that the secreted translocon
protein YopD is involved in this process (Wang et al. 2016). Finally, the unique
bacterial translational control system, including the small protein B (SmpB) and the
regulatory RNA SsrA/tmRNA, is required for efficient expression of Yop effectors
and the flagellar T3SS of Yersinia (Okan et al. 2006).
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A study by Gruber and Sperandio (2015) identified multiple non-coding
EHEC-specific RNAs of which sSRNA56, sSRNA103 and sSRNA350 activate T3SS
genes of the LEE pathogenicity island (Fig. 3). SRNA350, encoded in the 3'-UTR of
the cesF transcript, activates all LEE operons via its influence on the master regulator
gene ler, whereas sSRNA56 and sRNA103 target only the LEE4-encoded espA
mRNA. Besides these EHEC-specific non-coding RNAs, the well-characterized,
paralogous non-coding RNAs GImZ and GImY also influence expression of EHEC
T3SS genes (Fig. 3). Both RNAs destabilize the LEE4- and LEES-encoded mRNAs
and increase translation of the espF transcript (Gruber and Sperandio 2014). GImZ
interacts with the LEE4 mRNA and selectively destabilizes the downstream part of
the transcript encoding the translocon espADB genes, but not the upstream part
encoding sepL, which acts as regulatory switch by binding effectors until the T3SS is
formed (Gruber and Sperandio 2014). In addition, GImY also represses LEE4 on the
post-transcriptional level. However, this occurs by binding to and sequestering the
protein RapZ from GlmZ, which, when released from GlmZ, can destabilize the
LEE4 transcript (Gruber and Sperandio 2015). The antagonistic control of LEE4/
LEES and espF by both RNAs is not easy to interpret, as all targeted genes are
required for pedestal and A/E lesion formation. However, as suggested by the
authors, it is possible that GImY/GImZ limits overexpression of the LEE4/LEES
T3SS components and synchronizes their production with the non-LEE espF gene to
enable a precise ratio of the structure components and secreted effectors (Gruber and
Sperandio 2014). Moreover, a cis-encoded antisense RNA (Arl) located downstream
of the ler gene, covering the last codons and the 3'-UTR, controls T3SS gene
expression from the LEE pathogenicity island (Tobe et al. 2014). Interaction of Arl
with the ler transcript destabilizes the LEE1 mRNA and also hinders final elongation
of the Ler protein synthesis.

3.4 Feedback Control Mechanisms Through Secreted
Effectors or Anti-sigma Factors

T3SS gene expression in several pathogens is strongly induced upon host cell
contact and effector secretion. This includes the T3SS systems of Yersinia,
Salmonella, Shigella and Pseudomonas (Pettersson et al. 1996; Brutinel and Yahr
2008; Zierler and Galan 1995). In Yersinia, T3SS gene expression is coupled to
secretion via the translocon protein YopD, the YopD chaperone LcrH and the
effector LcrQ (YsecM1/YscM2 in Y. enterocolitica) (Anderson et al. 2002; Anderson
and Schneewind 1999). LcrQ and YopD are secreted upon host cell contact
reducing their concentration in the bacterial cytoplasm. The role of LcrQ is still
unclear, but it is assumed that it assists the YopD-LcrH complex (Cambronne and
Schneewind 2002; Li et al. 2014). In addition, to its translocon function, YopD is
able to interact with RNA (alone or in complex with the chaperone LcrH) by for
example binding to the 5-UTR of multiple yop transcripts and the lcrFF mRNA
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(Fig. 2) (Cambronne and Schneewind 2002; Chen and Anderson 2011). Absence of
the YopD protein under secretion conditions strongly decreases their degradation
and/or prevents their translation (Chen and Anderson 2011). The RNA-binding
mode of the protein is not known, but AU-rich regions in the proximity of the RBS
seem important for YopD-mediated repression of the targeted T3SS mRNAs.
Another important information shedding more light on the molecular mechanism of
cell contact-mediated induction of T3SS genes was obtained by an analysis of
Kopaskie et al. (2013). They report that the YopD protein is able to interact with the
30S particles of the bacterial ribosome in an LcrH-dependent manner and could
show that YopD in association with YscM1 and LcrH is able to repress YopQ
translation. However, how YopD-LcrH interaction with the 30S ribosomal particle
is mediated and how this influences the translation of other transcripts of the Ysc/
Yop T3SS is still unclear. Yet, it is likely that transient interaction perturbs the
formation of the 30S complex before the 50S ribosomal particle associate with the
transcript, as no binding of YopD to the assembled 70S ribosome could be detected
(Kopaskie et al. 2013).

Another sophisticated feedback control mechanism is promoted by secreted
anti-sigma factors and was found for the flagellar T3SS and virulence-associated
T3SSs, e.g., from Bordetella spp. (Chevance and Hughes 2017; Ahuja et al. 2016).
The flagellar master regulator FIhDC activates fliA, encoding the alternative sigma
factor ¢°®. This sigma factor promotes expression of the motor force generator and
the filament, and its function is inhibited when bound by an anti-o>8 factor (FlgM).
Upon formation of the hook basal body, the anti-sigma factor is secreted and ¢°° is
released to activate ¢”* target genes (Chevance and Hughes 2017). Similarly, the
secreted antagonist BtrA of the sigma factor BtrS establishes a feedback loop that
couples the activity of the T3SS with expression of the T3SS genes. BtrA differ-
entially controls nearly 300 genes, including many T3SS genes, which define six
distinct regulatory virulence modules in Bordetella (Ahuja et al. 2016).

4 T3SS Regulation on the Protein Level

4.1 Changing Binding Partners

Another mechanism promoting cell contact- and secretion-induced T3SS gene
expression is ‘partner-switching.” One important control step of this process is the
interaction of a T3SS chaperone with its T3SS substrate or a cytoplasmic regulatory
factor. Without host cell contact, the secreted T3SS effector remains bound to its
chaperone that keeps the substrate in a transport-competent stage and inhibits the
activating function of the chaperone (Schulmeyer and Yahr 2017). Upon host cell
contact, the chaperone is released from the secreted binding partner (effector or
translocon proteins) and interacts with transcriptional activators or suppressors of
the transcriptional activators (anti-repressor) to induce T3SS gene transcription.
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This changing of partner(s) can implicate multiple co-, anti- or anti-anti-activators
that form a complex feedback control cascade linking T3SS gene expression with
the secretory activity of the system (Dasgupta et al. 2004; Urbanowski et al. 2005).
This partner-switching mechanism was characterized in detail in P. aeruginosa by
the Yahr group and was shown to include four different proteins (Urbanowski et al.
2005; Schulmeyer and Yahr 2017; Vakulskas et al. 2009). In the absence of host
cell contact, the effector protein ExsE interacts with chaperone ExsC. The master
T3SS transcriptional activator ExsA is bound to ExsD. Upon cell contact, the
released ExsC chaperone, which has a higher affinity to ExsD than ExsA, sequesters
the ExsD protein, whereby the ExsA activator is liberated and can activate T3SS
gene transcription (Brutinel et al. 2010; Zheng et al. 2007; McCaw et al. 2002;
Rietsch et al. 2005; Dasgupta et al. 2006). Interestingly, Vibrio parahaemolyticus
and Vibrio cholerae appear to have functional orthologues of their Pseudomonas
counterparts to control the T3SS-1 (Zhou et al. 2010). A similar mechanism with a
very different set of partners has been identified in S. flexneri. In this pathogen, the
translocon proteins IpaB and IpaC are bound by the chaperone IpgC. The activator
MXxiE is inactivated through interaction with the anti-activator OspD1 and Spal5
protein, which acts as OspD1 chaperone under non-secretion conditions. IpaB, IpaC
and OspD1 translocation into host cell allows released MxiE and IpgC to interact
and activate T3SS gene expression (Parsot et al. 2005).

4.2 Modulation or Modification of T3SS Regulatory
Components

Besides interaction with other regulatory proteins, activity of T3SS master regu-
lators can be manipulated either by small compounds or through modification, such
as phosphorylation. An exciting recent work demonstrated that long-chain fatty
acids (e.g., oleate) prevent expression of the T3SS-1 genes in S. enterica. This
inhibition is independent of the long-chain fatty acid degradation pathway and
occurs solely through direct binding and inhibition of the DNA-binding activity of
the T3SS activator HilD (Golubeva et al. 2016). Long-chain fatty acids are present
in the intestinal tract and inhibit HilD-mediated T3SS gene expression until the
bacteria reach the distal ileum of the small intestine. There, the metabolites are
absorbed and the concentration falls below a critical threshold, which relieves the
blockage in order to activate T3SS gene expression.

Another mechanism used to change the activity of T3SS regulators is through
protein modification, i.e., tyrosine phosphorylation. However, only a few examples
are known, and how the modification influences the activity of the modified pro-
teins is often unclear. One example is Shigella, in which the second master regu-
lator VirB (besides MxiE) is unable to stimulate T3SS gene expression when
phosphorylated at residue 247 (Standish et al. 2016).
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5 Conclusions and Future Perspectives

The long list of transcriptional, post-transcriptional and post-translational control
mechanisms implicated in T3SS control in the different pathogens illustrates that
T3SS regulation is highly complex. A large intervening network has been evolved
that integrates various environmental signals, nutrient/ion availability and physio-
logical conditions to control regulators, structural components and secreted effec-
tors of the T3SS in a fine-tuned and concerted manner. This occurs through a
plethora of sensory and regulatory factors, which can be RNA or proteins that
modulate specifically or globally, and the players in the network can be modulated
on different regulatory levels.

It is evident, that common players, e.g., conserved AraC/XylS regulators and
transcriptional modulators, sensory and regulatory RNA elements, RNases, and
common two-component systems are part of the control circuit. However, their
interactions, targets and arrangements within the regulatory cascades and feedback
cycles can vary significantly between the different pathogens. Moreover, even very
small changes in the genetic information were found to provoke fundamental
changes of T3SS control. This set of possible variations defines the different T3SS
control variants, which adapt and optimize the expression of the secretion system to
the distinct needs and lifestyles of the different pathogens.

Ongoing discovery of new regulatory factors and different T3SS control variants
further illustrates that our understanding of T3SS regulation is still far from being
complete. There is a dire need to explore the molecular mechanisms and the role of
regulatory RNAs, controlled RNA degradation and translation changes under
non-inducing and secretion conditions during the infection. However, this is
challenging due to the complexity of the controlling signals and components. One
major difficulty in the analysis of T3SS expression is the identification of appro-
priate in vitro growth conditions mimicking the different steps of T3SS production
under infection conditions.

Another unsolved question is, how the detected molecular mechanisms of one
representative strain extend to other strains or members of the family or species. In
particular, post-transcriptional control elements such as sensory and regulatory
RNAs appear more malleable to intrinsic changes and regulatory rewiring than
transcriptional regulators. This promotes individual, strain-specific variations—a
trait that is particularly advantageous for the bacteria to adapt to frequently changing
host niches. Thus, it would be ill-advised to automatically extrapolate their role to
others. For instance, it is known that GlmY/GImZ promoted control of espF
expression, which is essential for EHEC to form pedestals, is not encoded in the
genome of closely related EPEC, and the DsrA RNA that activates transcription of ler
in EHEC does not affect LEE in EPEC (Bhatt et al. 2016). Moreover, Hfq has a very
strong influence on the Ysc/Yop T3SS in Yersinia pestis, but not in Y. enterocolitica,
suggesting that T3SS regulation relies on different post-transcriptional mechanisms
(Kakoschke et al. 2014, 2016; Schiano et al. 2010). Consequently, the function of
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these control elements must be experimentally investigated in additional members of
the species and family.

An additional future challenge is to unravel the dynamics of the multicomponent
and multilayered network of T3SS regulation during different phases of the process.
This includes the transition from the repressed stage (e.g., 25 °C, outside host), to
the preparing phase (host entry, 37 °C), and the different secretion phases upon host
cell contact that allows the bacteria to carefully balance nutrient and energy use to
maintain their biological fitness and competiveness.
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