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Abstract Can basic science improve the art of vaccinology? Here, we review
efforts to understand immune responses with the aim to improve vaccine design
and, eventually, to predict the efficacy of human vaccine candidates using the tools
of transformed B cells and targeted transgenic mice carrying B cells with antigen
receptors specific for microbes of interest.

1 Introduction

Vaccinology is, and has always been, a crucial field for public health and for basic
research. Early vaccine studies led to the discovery of antibodies, which were iden-
tified by their ability to neutralize microbial toxins upon passive transfer to naive
animals. While some well-known vaccines are capable of eradicating important
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human pathogens, we lack adequate vaccines for many, perhaps most, human
pathogens. For these challenging pathogens, the classical empirical approach to
vaccinology fails, necessitating better knowledge of the microbes and the basic sci-
ence of successful immune responses.

When a vaccine does not work, it is often difficult to determine the reason. Basic
studies in B cell biology can have an impact on finding a way forward. One facet of
this approach is in the discovery of good vaccine targets. The isolation of neu-
tralizing antibodies derived from the B cells of infected patients through the use of
methodologies such as phage display, hybridoma technology, and single-cell
antibody gene cloning has identified crucial epitopes toward which one can focus
vaccine responses. As described in the accompanying chapter by Dennis Burton
and colleagues, this approach has been fruitful in the identification of neutralizing
epitopes to pathogens with high diversity such as HIV, which require broadly
neutralizing antibodies (bnAbs) that neutralize many substrains.

2 Recurrent Clonotypes

Besides their value in identifying epitopes of vulnerability, bnAb sequences provide
information about the reproducibility of desired antibody responses. In many cases
where antibody responses to defined epitopes have been studied in detail, certain
VH or VL genes and often VH/VL pairs are recurrently selected (Nisonoff and Ju
1976; Crews et al. 1981; Wysocki et al. 1985; Kaartinen et al. 1983; Gearhart et al.
1981). This is most apparent in inbred animals, where the appearance of recurrent
“clonotypes” was apparent many years ago from isoelectric focusing and idiotype
studies (Sigal et al. 1977; Sher and Cohn 1972; Lieberman et al. 1974). In early
studies in mice, certain responses were useful in mapping VH gene alleles that
conferred specificity, for example, to microbial cell wall components such as
phosphorylcholine (Lieberman et al. 1974). A particular VL gene was also asso-
ciated with the anti-influenza A response of mice (Clarke et al. 1990). It was
appreciated that recurrent responses were associated with high precursor frequency
(Sigal et al. 1977) and sometimes microbial resistance (Mi et al. 2000). In the
lightly mutated human antibody responses to bacteria, recurrent responses have
been identified for the capsular polysaccharides of Streptococcus pneumoniae 23F
(Zhou et al. 2002) and Haemophilus influenzae (Lucas and Reason 1999). In the
case of Hib, lack of a particular VK gene has been linked to disease susceptibility
(Feeney et al. 1996; Nadel et al. 1998). Human neutralizing antibodies to the
cytomegalovirus AD-2S1 epitope appear to use lightly mutated versions of a single
VH/VL pair and make contacts largely with non-mutated residues (Thomson et al.
2008). Remarkably, the recurrent use of particular VH or VL genes also occurs in
certain classes of heavily mutated human bnAbs to highly diverse microbes,
including the CD4 binding site of HIV (Zhou et al. 2013; Wu et al. 2011;
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Bonsignori et al. 2012; Zhou et al. 2010) and the stem region of influenza
hemagglutinin (Sui et al. 2009; Ekiert et al. 2011; Wrammert et al. 2011; Whittle
et al. 2011; Dreyfus et al. 2012; Lingwood et al. 2012; Kashyap et al. 2008;
Throsby et al. 2008; Whittle et al. 2014). Identification of V-gene recurrence likely
requires analysis of well-defined epitopes. A recent deep sequencing study of
dengue-exposed donors failed to find VH or VL dominance in the population as a
whole but could identify CDRH3 motifs shared between independent infected
donors, suggesting a convergent evolution in this case (Parameswaran et al. 2013).

2.1 From BnAb Sequences to “Germline” BnAb B Cells

The identification of reproducible bnAbs from humans also defines the receptor of
the B cell making this desirable response. Although the typical bnAb sequence is
mutated by activation-induced cytidine deaminase (AID)-catalyzed diversification,
it is usually possible to infer the antibody sequence prior to mutation using
sequence analysis programs (Gaeta et al. 2007; Alamyar et al. 2012; Ye et al. 2013;
Russ et al. 2015). This so-called germline (gl)-bnAb in turn defines the B cell
receptor (BCR) carried by the naive B cell giving rise to that bnAb. In a real sense,
vaccines must target gl-bnAb BCRs and further promote and select their appro-
priate mutants, the bnAbs. Although these bnAbs can differ widely, as discussed
above, reproducible responses are of particular interest for responses that are dif-
ficult to elicit. Accordingly, in vitro models of B cells carrying bnAbs and gl-bnAbs
as BCRs have proven to be useful tools in vaccine research (Lingwood et al. 2012;
Ota et al. 2012; Jardine et al. 2013, 2015; Hoot et al. 2013; McGuire et al. 2014a,
b). Unlike free antibody, BCRs on the B cell surface are topologically constrained
by the plasma membrane and associated with other cell surface molecules. An
additional constraint in naive B cells is that IgM lacks the hinge region present in
IgG antibodies. Activation by antigen of B cells carrying bnAb or gl-bnAb BCRs
provides a stringent test for the ability of vaccine candidates or other antigens to
stimulate B cells. B cells carrying bnAbs and gl-bnAbs as BCRs thus provide
in vitro models to evaluate and design vaccine biologically active immunogens.

One way such models are generated experimentally is by the transfection of B
cell tumor lines with the desired antibody genes carrying the membrane form of the
H-chain. These cells have many similarities to the B cells found in vivo in their
biochemical triggering through the BCR. Owing to polar residues in its trans-
membrane domain, the membrane form of antibody does not normally come to the
cell surface unless associated with the signal transducer complex Ig-a/b (CD79a/
CD79b) (Venkitaraman et al. 1991). In fact, B cell transfection experiments were
critical in the discovery of Ig-a/b (Hombach et al. 1990). Ig-a and Ig-b are B
cell-restricted transmembrane proteins carrying in their cytoplasmic domains the
so-called ITAM (immunoreceptor tyrosine activation motif: YxxL/Ix(6–8)YxxL/I)
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common to many activating receptors in leukocyte biology, including the CD3
components of the T cell receptor (Reth 1989). These tyrosines become phos-
phorylated by src family kinases upon activation, leading to a cascade of events
including recruitment of the tyrosine kinase Syk and the activation of additional
enzymes and second messengers (Reth 1992). PLCc in particular is responsible for
initiating Ca++ mobilization, which is a convenient early readout. Later steps in
activation in primary B cells include the upregulation of surface markers such as
CD69 and CD86 (Cambier and Monroe 1984; Hara et al. 1986; Lenschow et al.
1994), which promote T cell interactions and whose upregulation is often also
mimicked in transduced B cell lines stimulated by ligands that ligate the BCR.

3 B Cell Tumor Models for the Candidate Vaccine
Antigen Response

A number of laboratories have used B cell lines transfected with vectors encoding
HIV bnAbs BCRs to evaluate candidate vaccine antigens for bioactivity and to
assess novel ligands for HIV gl-bnAb BCRs (Ota et al. 2012; Jardine et al. 2013;
Jardine et al. 2015; Hoot et al. 2013; McGuire et al. 2014, 2013; Doores et al.
2013). These studies reinforced the finding for soluble IgG bnAbs that reversion of
these mutated antibodies to the inferred germline sequence eliminates binding by
demonstrating the lack of effective bioactivity. One surprise in these studies was
that HIV virions were poorly stimulatory even to B cells carrying bnAb receptors
(Ota et al. 2012) a result that was subsequently supported by studies in b12
transgenic mice (Ota et al. 2013). Less surprising is the fact that highly multimeric
forms of antigen such as nanoparticles carrying repeating subunits, conjugates on
virus-like particles, or liposome mounted antigens were most effective in vitro (Ota
et al. 2012; Doores et al. 2013) (Ingale et al. in press). McGuire, Stamatatos, and
colleagues have carried out extensive studies using gl-bnAb-expressing B cell lines
to investigate the role of carbohydrate associated with HIV Env in limiting the
functional access to bnAb and gl-bnAb BCRs on the B cell surface (Hoot et al.
2013; McGuire et al. 2014, 2013). An important conclusion from these studies was
that certain wild-type envelopes could be recognized by gl-bnAb BCRs provided
that one or more key N-glycosylation sites flanking the site of vulnerability were
eliminated. Studies on cells carrying membrane-bound anti-influenza hemagglutinin
antibodies have also been carried out (Lingwood et al. 2012; Weaver et al. 2016).
Interestingly, these investigators were able to express membrane IgG bnAbs and
gl-bnAbs on 293 cells, a non-lymphoid cell line that is easy to transfect and lacks
Ig-a/b. It is unclear why the BCR is able to come to the plasma membrane in this
context, and the cells cannot signal as in a B cell activation assay. Nonetheless, the
system has been useful in assessing some aspects of BCR/antigen interactions
(Lingwood et al. 2012; Weaver et al. 2016).
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4 Immunoglobulin Transgenic and Knock-in Mice
for Vaccine Research

Rearranged immunoglobulin genes were among the first genes to be used in the
generation and study of transgenic mice (Brinster et al. 1983; Storb et al. 1986;
Storb 1987). Technically, this is carried out using microinjection into the male
pronucleus of a recently fertilized egg (zygote). These first-generation transgenics
inserted the microinjected DNA randomly into the genome, usually in multicopy
arrays, which led to varied and often nonphysiological expression patterns.
Researchers quickly realized that the technology requires careful transgene design
to include appropriate regulatory elements in cis and careful selection of transgenic
lines with appropriate expression. The early studies, along with related knockout
studies, supported a model of feedback suppression of antibody gene expression:
expression in developing B cells of an active, pre-rearranged transgenic
immunoglobulin gene would tend to suppress or prevent endogenous antibody gene
rearrangement (Ritchie et al. 1984; Weaver et al. 1985; Nussenzweig et al. 1987;
Kitamura and Rajewsky 1992; Rusconi and Kohler 1985; Hagman et al. 1989; Betz
et al. 1993). Transgenes expressing antibody H/L pairs not only could lead to
expression of predefined antibody to an antigen of interest, but also suppressed
other specificities by promoting B cell development and blocking endogenous
rearrangements (Rusconi and Kohler 1985), leading in some instances to mice with
virtually monoclonal B cell populations (Goodnow et al. 1988; Nemazee and Burki
1989; Russell et al. 1991). These “conventional” antibody transgenic mice have
proven to be very useful in the study of B cell development and self-tolerance
(Goodnow et al. 1988; Nemazee and Burki 1989; Russell et al. 1991; Erikson et al.
1991; Arnold et al. 1994; Borrero and Clarke 2002; Carsetti et al. 1995; Kenny
et al. 1991; Brink et al. 1992; Gay et al. 1993; Tiegs et al. 1993; Fulcher and Basten
1994; Hayakawa et al. 1999; Chumley et al. 2000; Hayakawa et al. 2003; Foster
et al. 1997; Shlomchik et al. 1993) and in the response to microbial antigens such as
LCMV, VSV, and influenza (Seiler et al. 1998; Martin et al. 2001; Carmack et al.
1991, 1990). However, these models had limitations for the analysis of immunity,
such as an inability to undergo H-chain class switching (owing to a lack of
downstream H-chain genes), and their multicopy nature, which made analysis of
aspects such as somatic mutation difficult (Betz et al. 1993; O’Brien et al. 1987).
The usefulness of these conventional Ig transgenic models for vaccine design has
been mainly in aiding research into the T cell-independent immune response, in
facilitating visualization of the responding cells, and in the analysis of bystander
activation (Seiler et al. 1998; Senn et al. 2003).
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4.1 Knock-in Mice

More recently, antibody gene “knock-in” mice was developed, in which the anti-
body transgenes of interest are targeted to the physiological locus (Chen et al. 1995;
Taki et al. 1993; Luning Prak and Weigert 1995; Pelanda et al. 1997; Cascalho et al.
1996; Sonoda et al. 1997; Pewzner-Jung et al. 1998; Litzenburger et al. 2000; Phan
et al. 2003; Hangartner et al. 2003; Berland et al. 2006; Hangartner et al. 2006).
Targeting to the immunoglobulin locus provides more physiological genetic con-
trol, allowing such key features such as robust somatic mutation and class
switching. However, despite this fairly good physiological control, the antibody
genes introduced by targeting can be eliminated in developing B cells by physio-
logical receptor editing and in preB cells by VH replacement (Chen et al. 1995;
Luning Prak and Weigert 1995; Pelanda et al. 1996; Casellas et al. 2001) or by the
nonphysiological use of the targeted VH element as an acceptor of DH invasion
(Taki et al. 1993; Cascalho et al. 1996; Golub et al. 2001; Koralov et al. 2006).
These latter phenomena involve the recombination by upstream VH or DH ele-
ments to a conserved heptamer signal sequence site within the knock-in coding
region (TACTGTG), which is present in many germline VH regions of mouse and
human. Such rearrangements are typically destructive, leading to expression of the
alternate IgH allele (Chen et al. 1995; Luning Prak and Weigert 1995; Casellas et al.
2001; Taki et al. 1995). An upshot of these recombinations is that B cells in
knock-in mice are rarely monoclonal, and in some extreme cases the
transgene-encoded specificity is barely expressed (Pelanda et al. 1997; Chen et al.
1997). When the B cells are autoreactive, negative selection can occur by several
mechanisms, including apoptosis, anergy, or receptor editing in the bone marrow
(reviewed in) Nemazee 2006; Cambier et al. 2007; Shlomchik 2008; Goodnow
et al. 2005. Receptor editing typically results in ongoing L-chain gene recombi-
nation, which can displace a functional L-chain gene or inactivate it, leading to its
functional replacement.

Among the strengths of the knock-in technology is that it allows one to identify
BCRs that fail to support B cell development. Developmental failure can occur if
the BCR is sufficiently autoreactive or if the antibody chain in question has other
structural defects that prevent proper folding or association with the partner chain.
The effects of autoreactivity on B cell development have been extensively studied
in models designed for the purpose (reviewed in) Nemazee 2006; however,
increasing evidence suggests that some desirable, even broadly neutralizing, anti-
body specificities to HIV may be negatively selected (Verkoczy and Diaz 2014;
Haynes et al. 2005; Verkoczy et al. 2011; Doyle-Cooper et al. 2013; Chen et al.
2013; Finton et al. 2013; Yang et al. 2013). Given the high safety standards for
human vaccines, epitopes that require such negatively selected specificities might
be undesirable. In the case of the well-known anti-HIV gp41 broadly neutralizing
antibodies 2F5 and 4E10, it has been proposed that specific intracellular self-ligands
promote negative selection (Finton et al. 2013; Yang et al. 2013). Definitive testing
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of this hypothesis should be possible by assessing the phenotype of 2F5 and 4E10
knock-in mice in which the cognate epitopes are eliminated, in which negative
selection is predicted to be relieved.

Knock-in antibody mice have been useful in studies of microbial resistance, viral
evasion, and vaccinology. Ig H-only or H/L knock-in models have been generated
using antibodies specific for Streptococcus pneumoniae (Taki et al. 1995; Hu et al.
2002), VSV (Hangartner et al. 2003), LCMV (Hangartner et al. 2003; Hangartner
et al. 2006), and HIV (Jardine et al. 2015; Ota et al. 2013; Verkoczy et al. 2011;
Doyle-Cooper et al. 2013; Chen et al. 2013; Finton et al. 2013; Verkoczy et al.
2010; Verkoczy et al. 2013; Dosenovic et al. 2015; Zhang et al. 2016). Several of
these studies involved the analysis of mice carrying antibody H-chains from neu-
tralizing antibodies (usually mutated) paired with random mouse L-chains (Jardine
et al. 2015; Ota et al. 2013; Hangartner et al. 2003; Hangartner et al. 2006; Finton
et al. 2013; Hu et al. 2002; Dosenovic et al. 2015). Other studies involved knock-in
mice expressing both H- and L-chains derived from neutralizing Abs (Ota et al.
2013; Verkoczy et al. 2011; Doyle-Cooper et al. 2013; Chen et al. 2013). More
recently, mice have been generated to express H or H + L genes encoding the
inferred non-mutated precursors of HIV broadly neutralizing antibodies (Jardine
et al. 2015; Dosenovic et al. 2015; Zhang et al. 2016). These last allow one to assess
the ability of experimental vaccination to mature the response appropriately,
starting with a defined gene of known potential. These recent studies have indicated
the outlines of a priming and possible booster vaccination pathway to elicit anti-
bodies to the CD4 binding site on HIV Env (Jardine et al. 2015; Dosenovic et al.
2015). What makes these studies unique is that the priming immunogen used was
targeted to a specific human gene VH1-2*02 and a particular length and sequence
in the CDRL3 loop of L-chain. Testing such vaccines that are intended for human
vaccination in small animals was not possible without a knock-in or comparable
approach.

It is important to keep in mind some of the limitations of these knock-in models
for vaccine research. A high precursor frequency of B cells expressing the BCR of a
neutralizing antibody facilitates many analyses, but also provides B cells at
super-physiological copy number. Moreover, in many models, some of the trans-
genic Ig is spontaneously secreted, which could affect certain analyses, such as by
providing preimmune resistance to infection (Hangartner et al. 2006). Fortunately,
these deficiencies can be readily overcome by transfer of limiting B cell numbers to
adoptive recipients prior to vaccination (Ota et al. 2013; Hangartner et al. 2006).

4.2 Nuclear Transfer Mice

A more recent way to generate mouse models carrying defined receptors is to clone
mice from the nuclei of lymphocytes (Hochedlinger and Jaenisch 2002; Kirak et al.
2010). This feat has been achieved many times by a small number of laboratories.
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When the lymphocytes come from immunized individuals, the approach permits the
isolation of antigen-specific cells (Kirak et al. 2010; Dougan et al. 2012). For
example, Kirak et al. generated transnuclear mice with T cells specific for
Toxoplasma gondii. The resulting mice have predefined receptors, though for B
lymphocytes these are often “pre-switched” to downstream H-chain isotypes
(Dougan et al. 2012; Kumar et al. 2015), and the receptors can still be modified by
receptor editing (Gerdes and Wabl 2004) or VH replacement at the proB cell stage
(Kumar et al. 2015). Although remarkably useful for a range of basic studies, the
nuclear transfer approach is somewhat laborious and does not allow the type of
precise pre-engineering of antibody sequence that is feasible in the knock-in
approach.

5 Hu/SCID Mice in Vaccine Research

A final aspect of contemporary vaccine research concerns the increasing “human-
ization” of mouse models. One approach is to reconstitute immunodeficient mice
with human hematopoietic cells. However, the humoral immune responses of such
chimeras are so far suboptimal, which limits the use of these models to study the
immune response to vaccination (Villaudy et al. 2014; Karpel et al. 2015). On the
other hand, such models have proved to be useful in the analysis of passive anti-
body immunity and the mutational escape of microbes such as HIV (Karpel et al.
2015; Hur et al. 2012; Klein et al. 2012).

5.1 Mice and Rats Carrying the Full Complement
of Human Ig Genes

An alternative approach that has proved fruitful in making humanized antibodies is
the use of mice with inactivated endogenous antibody genes engineered to carry
large transgenes encoding human immunoglobulin loci that are composed of many
or all gene segments (reviewed in) Bruggemann et al. 2015. Immune responses in
these animals seem to work most efficiently if the human H-chain VDJ elements are
placed upstream of constant regions of the host (Pruzina et al. 2011; Osborn et al.
2013; Green 2014; Ma et al. 2013), presumably because the Fc portions of the
antibodies interact properly with the mouse FcRs and complement. These models
would be ideal for many human vaccine studies in which particular V genes are
targeted for priming, as discussed above. As a practical matter, however, the mice
in question are not easily accessible through normal scientific exchange, owing to
their remarkable commercial value for the generation of monoclonal antibodies.
And so these models have sadly had little impact so far in the basic science of
vaccinology.
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