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Abstract Infections caused by opportunistic human fungal pathogens are a source
of increasing medical concern, due to their growing incidence, the emergence of
novel pathogenic species, and the lack of effective diagnostics tools. Fungal
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pathogens are phylogenetically diverse, and their virulence mechanisms can differ
widely across species. Despite extensive efforts, the molecular bases of virulence in
pathogenic fungi and their interactions with the human host remain poorly under-
stood for most species. In this context, next-generation sequencing approaches hold
the promise of helping to close this knowledge gap. In particular, high-throughput
transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile
of both host and microbes to elucidate their interactions and discover molecular
mechanisms of virulence and host defense. Here, we provide an overview of
transcriptome sequencing techniques and approaches, and survey their application
in studying the interplay between humans and fungal pathogens. Finally, we discuss
novel RNA-Seq approaches in studying host–pathogen interactions and their
potential role in advancing the clinical diagnostics of fungal infections.

1 Introduction

Over the last two decades, the incidence of fungal infections (also known as
mycoses) has increased dramatically (Bitar et al. 2014; Pfaller and Diekema 2007;
Oren and Paul 2014), particularly in hospital-associated (nosocomial) conditions
(Turner and Butler 2014; Chapman et al. 2017). Fungal infections range from
superficial skin lesions to life-threatening invasive infections, including fungemia.
Superficial skin or mucosal infections affect around 25% of the global population
(Havlickova et al. 2008), and although they are relatively easy to manage, they
collectively constitute a high burden. Invasive mycoses are life-threatening and can
be associated to high mortality rates of up to 38–63%, depending on several factors
such as the health status of the patient and the infecting strain (Klingspor et al.
2015; Flevari et al. 2013). It has been estimated that invasive fungal infections kill
around 1.5 million people worldwide every year (Brown et al. 2012).

The phylogenetic diversity of pathogenic fungal species is high—from estimated
2.2–3.8 million fungal species, nearly 300 can cause human infections, which is
likely to be an underestimation (Nature Microbiology Editorial 2017; O’Brien et al.
2005; Hawksworth and Lücking 2017; Blackwell 2011). Although most common
fungal pathogens belong to several major clades, such as Candida (Pfaller and
Diekema 2007, 2010), Aspergillus (Dagenais and Keller 2009), and Cryptococcus
(May et al. 2016), each of these groups can comprise numerous distinct pathogenic
lineages. For example, Candida species, which are considered to be the most
frequent and invasive opportunistic fungal pathogens (Guinea 2014), are spread
across the Saccharomycotina phylogenetic tree (Gabaldón et al. 2016). C. glabrata,
which is usually the second most abundant Candida pathogen, after C. abicans
(Guinea 2014), is phylogenetically much closer to the biotechnology workhorse
Saccharomyces cerevisiae than to other pathogenic Candidas (Gabaldón and
Carreté 2016). Similarly, pathogenic members of the so-called CTG clade, such as
C. albicans, (Kim and Sudbery 2011), C. parapsislosis, and others, have numerous
non-pathogenic sister species and clades. This phylogenetic dispersion points out
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that the ability to infect humans has emerged multiple times independently in
genetically distinct backgrounds (Gabaldón et al. 2016). Due to the high diversity
and the difficulties to classify these pathogens from their physiological or mor-
phological traits, the phylogenetic relationships between these fungi have been
poorly resolved. Only the recent advent of molecular and genomic sequencing
technologies has enabled accurate resolution of phylogenetic relationships and, as
consequence, the taxonomic nomenclature of these species is still undergoing major
revisions (Brandt and Lockhart 2012).

Novel pathogenic species are identified regularly, and the increase of incidence
of previously rare species has been documented multiple times (Papon et al. 2013;
Rhodes et al. 2017; Short et al. 2014). It is as yet unclear what factors drive the
emergence of novel pathogens. Changes in the use of chemical products in industry
or clinical care, or movement of products related to international commerce, can
favor the global spread of certain species. In addition, biological factors resulting
from evolutionary adaptation of microbes to novel niches can trigger the emergence
of novel pathogens. One of the proposed mechanisms of emergence of novel
pathogenic species in fungi is hybridization (Mixão and Gabaldón 2017), which has
been related to the formation of pathogenic lineages such as Cryptococcus neo-
formans x Cryptococcus gatii (D’Souza et al. 2011), Malassezia furfur (Wu et al.
2015), C. metapsilosis (Pryszcz et al. 2015) and C. orthopsilosis (Pryszcz et al.
2014; Schröder et al. 2016).

Another major challenge posed by fungal pathogens is the increasing rate at
which drug and multidrug resistance (MDR) is reported (Pfaller et al. 2009), which
is often caused by the ability of fungi to evolve resistance phenotypes (Sanglard
2016). The problem of resistance to one or several drugs is worsened by the limited
number of available antimycotic agents, which is currently restricted to few
chemical families (Kathiravan et al. 2012). For example, the incidence of C.
glabrata invasive infections has increased from 18% (in 1992–2001) to 25% (in
2001–2007), with concomitant fluconazole resistance rates increasing from 9% to
14%, respectively, in the USA (Pfaller et al. 2009). Candida auris is another
striking example of MDR pathogenic yeast, which exhibits resistance to the main
classes of antifungals (Sarma and Upadhyay 2017). Being first described in 2009 in
Japan (Satoh et al. 2009), C. auris rapidly became a notorious pathogen causing
outbreaks in hospitals throughout the world (Chowdhary et al. 2017). While the
concern of research and medical community toward this pathogen is high, we still
lack sufficient knowledge and effective approaches for controlling C. auris infec-
tions, highlighting the importance for public health of the emergence of antimycotic
resistance.

As a consequence of high diversity, emergence of new pathogens, and increasing
drug resistance, the diagnostic arsenal for the detection of the causative agent and
the determination of the best treatment is limited (reviewed in Kozel and Wickes
2014; Griffin and Hanson 2014). Classical diagnostics methods have serious lim-
itations. Culture-based methods using blood samples can take several days and do
not provide high specificity and sensitivity, missing, for example, over 50% of the
cases of documented candidiasis (Berenguer et al. 1993). Moreover, some fungal
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species are non-culturable in conventionally used media. To overcome these issues,
recently novel molecular-based diagnostic tools have been developed mainly
including those based on polymerase chain reaction (Khot and Fredricks 2009) or
mass spectrometry (Chalupová et al. 2014). More recently, with the rapid devel-
opment of nucleic acid sequencing technologies, next-generation sequencing
(NGS) might become a promising tool for microbial diagnostics (Smeekens et al.
2016; Zoll et al. 2016). Nevertheless, all of the aforementioned methods have their
limitations from both clinical and economical perspectives (described in Kozel and
Wickes 2014; Griffin and Hanson 2014).

Considering all these factors, it is evident that investigation of host–fungus
interactions is crucial for overcoming the threats that pathogenic fungi currently
impose. Firstly, knowing the specific host-evasion and virulence mechanisms used
by diverse fungal pathogens may pave the way for the discovery of novel drug
targets or the design of new treatment approaches. Secondly, many fungal patho-
gens are also commensal species that are part of the normal human microbiota.
Hence, there is a need to understand what triggers may turn a commensal behavior
into an invasive and virulent one. In addition, response from host cells and tissues
toward different fungal pathogens may also provide important clues toward more
efficient ways to avoid and control infection. Finally, understanding host–pathogen
interactions may open new avenues for diagnostic approaches that are able to
differentiate between commensal or infective behavior by detecting specific
biomarkers. Although several studies have advanced our understanding of host–
pathogen interactions for some of the more common species, the interplay between
humans and fungal pathogens is, overall, still poorly understood.

NGS techniques, which allows obtaining sequence data on unprecedented scales
and low costs, have represented a revolution in biological research (Goodwin et al.
2016), and the investigation of host–pathogen interaction is no exception (Hu et al.
2011; Westermann et al. 2012, 2017). In particular, whole transcriptome analysis by
means of RNA-Seq has opened a new window to understanding gene regulation
and how it changes as a result of interactions between the host and the pathogen,
which potentially can shed light on the mechanisms of pathogenicity, host defense,
and their interplay in various conditions (Wolf et al. 2018). In this review, we focus
on the application of whole transcriptome sequencing in addressing host–fungus
interactions during infection. We will first discuss the methodological concepts and
peculiarities of RNA-Seq in the context of host–microbe interaction studies, then
survey past studies of human–fungus interactions based on transcriptome
sequencing. Finally, future perspectives in the field including the potential of
emerging technologies for the study or diagnosis of fungal infections will be
discussed.
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2 Whole Transcriptome Analysis Methods

RNA plays a key role in the majority of cellular processes. Hence, investigation of
the identity, function, and abundance of transcribed RNA molecules (i.e., tran-
scripts) is crucial for understanding cellular behavior. Advances in the field of RNA
biology were mainly driven by the development of novel technologies and methods
allowing researchers to study different aspects of transcripts in an increasingly
efficient way. A brief chronological overview of those techniques is discussed
below, and a more in-depth comparison is provided in Table 1.

Table 1 Comparison of different transcriptomics technologies

EST/SAGE Microarray RNA-Seq

First description Sutcliffe et al.
(1982), Velculescu
et al. (1995)

Lockhart et al.
(1996), Schena et al.
(1995)

Bainbridge et al. (2006),
Wang et al. (2009)

Major
technology

Sanger-based
sequencing of short
random fragments
(*500 bp)

Hybridization to
complementary
probes

Next-generation sequencing

Period in active
usage Lowe
et al. (2017)

1999–2004 2000–2014 2009–present

Popularity
Lowe et al.
(2017)

Almost obsolete Decreasing Increasing

Throughput Low/middle High High

Major
applications

Gene expression
profiling

Gene expression
profiling

Gene expression profiling,
discovery of novel
transcripts/isoforms of any
length, gene fusion, variant
detection

Discovery and
quantification of
novel transcripts

Yes No Yes

Dynamic range Up to 3 � 105

Morrissy et al.
(2009)

103–104 Black et al.
(2014)

>105 Black et al. (2014)

Reproducibility
(R2)

0.96 Dinel et al.
(2005)

0.99 Chen et al.
(2007), SEQC/
MAQC-III
Consortium (2014)

0.99 Marioni et al. (2008),
SEQC/MAQC-III
Consortium (2014)

Complexity of
data analysis

Middle Middle, includes
image processing and
differential
expression analysis

High (mainly command line),
includes multiple steps
depending on specific goal

Complexity of
laboratory
procedures

High Low High
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Initial studies of RNA molecules were performed using methods such as northern
blotting (Alwine et al. 1977), reverse transcriptase qPCR (Rappolee et al. 1988), and
expressed sequence tags (ESTs) (Adams et al. 1991), which enabled to investigate
individual molecules or small sets of transcripts. The first studies of transcriptomes,
i.e., the whole set of RNA transcripts in a cell (or bulk of cells) at a given time point,
begun in themid 1990s, with the development of the serial analysis of gene expression
(SAGE) method (Velculescu et al. 1995), based on Sanger sequencing technology
(Sanger et al. 1977). SAGE and its derivatives (e.g., LongSAGE, RL-SAGE,
SuperSAGE) in the beginning of 2000s were largely replaced by fluorescent
hybridization-based RNA microarray technologies (Schena et al. 1995), which
proved to bemore cost-effective, as compared to previousmethods. Finally, in the late
2000s, the advent of NGS superseded microarrays by RNA-Seq which provided
unprecedented levels of resolution in a high throughput, unbiased, and relatively
cheapmanner (Bainbridge et al. 2006;Wang et al. 2009). In addition to considerations
of throughput and cost, RNA-Seq presented the advantage over microarrays in that it
did not require the design of probes and could explore the entire transcriptome in an
unbiased manner, enabling the discovery of novel transcripts, even in the absence of a
reference genome. In the last decade, RNA-Seq has been further developed, incor-
porating longer sequencing reads as well as increasing its versatility by being coupled
to other approaches such as, for instance, target-enrichment (Amorim-vaz et al. 2015)
or structure-specific digestion (Wan et al. 2013; Saus et al. 2018). Today, RNA-Seq is
the major method used in transcriptomics studies.

As many other NGS-based techniques, RNA-Seq comprises two major steps:
The first includes the study design and sequencing of the samples, whereas the
second includes all downstream bioinformatics analysis. With current technologies,
the particularities of each of the two stages can vary significantly depending on the
main goal of the study. Hence, there is no universal procedure for addressing all
possible biological questions that can be addressed with a transcriptomics approach
(Conesa et al. 2016). Nevertheless, some generalities can be drawn. In the following
sections, we will focus on the main principles of each of the two steps, under-
scoring, when applicable, the peculiarities that are most relevant for host–fungus
interaction studies. We will first discuss steps usually performed for the dominating
sequencing-by-synthesis NGS technology, implemented by Illumina, while other
emerging approaches, such as nanopore and PacBio sequencing, will be discussed
later in our review.

2.1 Study Design

Study design refers to the initial setup of the project, which is a crucial prerequisite
for any RNA-Seq study. The project has to be planned carefully according to its
main goals and taking into account the peculiarities of the addressed biological
problem. Formally, the study design can be divided into experimental design and
sequencing design.
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2.1.1 Experimental Design

Experimental design refers to the overall type of the study (“control-vs-treatment,”
timecourse, observational study, and different combinations of these types) and how
it is planned and performed from both logical and technical perspectives. A poorly
planned experimental design can possibly result in spurious and/or misleading
results. For instance, in a “control-vs-treatment” in vivo study of the influence of
antimycotic drug on the gene expression of the fungus, “control” and “treatment”
cases need to be selected. If “control” samples were obtained only from young
people whereas the “treatment” samples came from significantly older people, then
the age of the donors could be a potential confounding factor, preventing from
distinguishing whether the observed gene expression changes in fungus were due to
the antimycotic agent or the age of the host. To avoid such kind of confounding
effects, study donors for both control and treatment group have to be as similar as
possible from various perspectives, controlling for factors such as age, sex, diet, or
the presence of concomitant diseases. Another example illustrating poorly planned
experimental design could be a time series study of a fungal pathogen interacting
with host cells in vitro. Without performing time-matched controls for the fungus, it
might not be possible to differentiate between the effect of the host–microbe
interactions from the potential effect of time or growth of the fungus in the given
medium. For instance, some nutrients in the medium may be exhausted, triggering
physiological changes in the fungal cells, which may be wrongly interpreted as a
consequence of interaction with the host. To overcome this limitation, ideally host
cell-free controls have to be made at the corresponding time points of the experi-
ment (Fig. 1).

Thus, as illustrated by the examples above, a well-planned experimental design
is a crucial first step for a meaningful RNA-Seq-based study. Critically assessing
previous studies investigating similar questions (perhaps on other pathogens or
hosts) and extensive discussions between all project partners (e.g., clinical doctors
treating the patients, personnel collecting the samples, personnel responsible for the
statistical comparisons) can help to achieve a good planning and avoid potential
design flaws.

2.1.2 Sequencing Design

The design of the sequencing approach itself refers to the main factors to consider
for sample collection, storage, preparation, and sequencing per se. While sample
collection and storage methods heavily depend on a particular project, a general
recommendation is to perform these two steps in the same way for all samples
within a project to avoid possible confounding effects. For further sequencing, the
important aspects to consider are RNA extraction protocol, library preparation
protocol, read type and length, number of replicates, sequencing depth, random-
ization of samples and sequencing runs. The combination of the aforementioned
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parameters entirely depends on the specific goal of the project, and some general
recommendations are given in Table 2 and are discussed in more details in the text.

For fungi, several commercial kits are available for high-quality and high-yield
RNA extraction. An important factor to consider on this step is whether rRNA
depletion or poly-(A) selection is required, since usually transcriptome studies are
focused on mRNAs, while ribosomal RNA can constitute the vast majority of RNA
in a cell (i.e., up to 60% in an exponentially growing Saccharomyces cerevisiae cell
(Warner 1999), and its removal will provide higher resolution for the mRNAs
(Zhao et al. 2014; O’Neil et al. 2013). Moreover, different strategies to enrich
specific mRNA molecules have been recently developed, which will be discussed in
more detail in the following section of our review.

The specific sequencing library preparation protocol is yet another factor to
consider, especially with regards to its ability to generate strand-specific data. Early
library preparation protocols were not capable of preserving information about the
strand of DNA from which a transcript originated, thus biasing, for example, gene
expression analysis by anti-sense transcription (Zhao et al. 2015). Today several
so-called strand-specific (or stranded) protocols are available, such as dUTP
(Borodina et al. 2011; Parkhomchuk et al. 2009), RNA-ligation (Lister et al. 2008),

Fig. 1 A graphical representation of a time series experimental design of interaction between
human cell line and a pathogenic fungus. Left-most sample represents a zero time-point control,
from left to right samples—5-, 10-, and 25-h time points are the host–fungus interacting samples
(above) and time-matched host cell-free fungal controls (below). Bar plots represent the expression
levels of four fungal genes A, B, C, and D. The overall scheme illustrates the importance of
time-matched fungal controls in the experimental design: In case of their absence, gene A at time
point 5, 10, 15 h and gene B at time points 10 and 15 h could be spuriously interpreted as up- and
down-regulated, respectively, as a consequence of host–fungus interaction. Controls samples allow
to distinguish the effect of media and time from the effect of host–pathogen interaction, showing
that only gene C is specifically up-regulated at 15 h as a consequence of interaction
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SMART (Zhu et al. 2001) for retaining strand information of transcripts.
A comprehensive benchmark of these protocols is given in Levin et al. (2010).

The length of the reads (short stretches of cDNA that are actually sequenced) is
one of the major parameters of the sequencing design. The read length of
Illumina-based sequencing varies from 25 to 300 bases depending on the model of
sequencing machine (Kwon-Chung et al. 2011). As an additional option to increase
the capabilities of obtained data, one can perform paired-end (PE) sequencing
instead of single-end (SE). In the former case, the cDNA fragment is sequenced
from both ends, hence doubling the amount of the information obtained from it. As
a general rule, longer reads coupled with paired-end long-insert size sequencing
provide higher mapping rates to reference genomes, more accurate transcript dis-
covery, the ability to detect larger indels, among other advantages. However, PE
sequencing and longer reads come with higher price, which may compromise the
number of replicates if budget is limited. Moreover, some particular goals could be
sensitively achieved even with short SE reads (Chhangawala et al. 2015). For
example, considering that in Candida albicans introns are not abundant in the
genome and their length is usually short (Mitrovich et al. 2007), long PE reads are
not critical for most of the typical downstream analysis.

In the context of typical RNA-Seq applications, such as differential gene
expression (DGE), replicates and sequencing depth are two crucial and intercon-
nected parameters. When choosing the number of biological replicates one has to
consider the intrinsic biological variability of the studied system, the technical
variability of the experimental procedures, and the desired statistical power of the
experiment. As a general rule, the number of biological replicates included in the
study should be at least 3, while the recommended number ranges from 6 to 12
biological replicates (based on S. cerevisiae data) depending on the specific goals of
the study (Schurch et al. 2016). Several approaches and calculators have been
implemented to perform RNA-Seq power analysis to help deciding the number of
replicates in an RNA-Seq design (Hart et al. 2013; Yu et al. 2017; Guo et al. 2014).

Sequencing depth (or library size) denotes the total number of reads for each
sample to be sequenced. Higher sequencing depth allows more precise transcript
detection and expression quantification, but also might suffer from transcriptional
noise and false-positive calls of DGE (Tarazona et al. 2011). Thus, once again the
optimal sequencing depth depends on the addressed question and the system under
study.

As mentioned above, replication and library size are interconnected parameters
and for a particular sequencing design one can wonder whether for a fixed budget it
is more advisable to add more replicates to the study or to perform deeper
sequencing. Liu et al. (2014b) have evaluated the impact of both factors on DGE
analysis. The study revealed that, in the case of human transcriptomic data,
increasing the sequencing depth over 10 million reads has diminishing incremental
effects for power of detection of differentially expressed (DE) genes, whereas an
increase in the number of biological replicates significantly enhances the power of
detection. Authors of the study also suggest a metric of cost-effectiveness of
RNA-Seq design as a trade-off between number of replicates and sequencing depth.
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The last but not least step in experimental design in the case of projects considering
a high number of samples is to randomize the distribution of samples on different
sequencing lanes or runs. This step is meant to avoid possible confounding factors
such as different instrumental biases (lane effects, PCR duplicates, etc.) as well as
difficult to control human factors.

2.2 Bioinformatics Data Analysis

As any high-throughput sequencing technology, RNA-Seq generates massive
amounts of data (i.e., a typical DGE RNA-Seq analysis of yeast with two conditions
and three replicates yields at least 100–150 million reads) which have to be thor-
oughly analyzed using bioinformatics approaches. Considering that RNA-Seq has
numerous applications, the complete pipeline for bioinformatics analysis varies
depending on the specific goals of the project. With regards to host–pathogen
interaction studies, one of the most frequent RNA-Seq applications is the analysis
of differential gene/transcript expression (Westermann et al. 2017). Here, we will
briefly describe the main steps of this bioinformatics approach (Fig. 2).

The general initial step for any NGS-based data analysis is quality control
(QC) of the raw data produced by the sequencing machine. As a general rule, raw
reads are stored in the standard fastq format (Cock et al. 2009), which provides
associated per base quality scores. For basic QC, several software solutions can be
used, such as FastQC (Andrews 2010), HTQC (Yang et al. 2013), or NGS QC
(Patel and Jain 2012). The main parameters to assess include, among others, per
base sequence quality, GC content, or the presence of overrepresented sequences
and/or those corresponding to the library adapters. When some quality parameters
are not satisfactory, one can perform several actions including read trimming to cut
out low-quality reads or bases, or removing adapter sequences coming from the
library preparation step. Popular software to perform read trimming are
Trimmomatic (Bolger et al. 2014), Skewer (Jiang et al. 2014), among others.
However, in the case of DGE analysis trimming has to be performed gently since
the harsh trimming can affect the results of read mapping and differential expression
calls (Williams et al. 2016). For this reason, if the quality of the data is still
unsatisfactory after trimming, it is advisable to resequence the sample or the library.

After ensuring the high quality of the sequencing data, downstream analysis
depends on the presence or absence of a reference genome or transcriptome of the
studied organism. In the case of human fungal pathogens, most common species
like those belonging to Candida, Aspergillus, or Cryptococcus groups have avail-
able reference genomes in both specialized and generic public databases such as
Candida Genome Database (Binkley et al. 2014), Aspergillus Genome Database
(Cerqueira et al. 2014), FungiDB (Stajich et al. 2012), or RefSeq (Pruitt et al. 2007).
Alternatively, in the case of absence of reference, the transcriptome can be
reconstructed de novo, using, for example, the Trinity package (Haas et al. 2013) or
SOAPdenovo-Trans (Xie et al. 2014).
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When a reference genome or transcriptome is available, downstream bioinfor-
matics analysis implies mapping of reads to this reference. This computationally
demanding task can be achieved by splice-aware read mappers (despite the fact that
splicing is not as common in yeasts as in more complex eukaryotes). Numerous
RNA-Seq mappers exist today, and choosing one might not be a trivial task. In fact,
many researchers have addressed this question by performing benchmarks com-
paring different mappers, sometimes reaching contradicting conclusions (Otto et al.
2014; Kim et al. 2013; Dobin and Gingeras 2013; Baruzzo et al. 2017).
Nevertheless, the most popular mappers include STAR (Dobin et al. 2013),
TopHat2 (Kim et al. 2013), HISAT2 (Kim et al. 2015). After reads are mapped to
the reference, quality control of the overall mapping is required. Most software
tools provide basic mapping statistics, which include, among others, overall map-
ping rate, unique mapping rate, rate of multimappers (reads that map equally well to
different locations in the reference), number of identified splices. Unique mapping
rate is one of the crucial parameters and usually with high-quality raw data and a
good enough reference genome the optimal values range from 85% to 95% of
uniquely mapped reads. If the value is significantly lower, it might indicate low

Fig. 2 General representation of RNA-Seq differential expression analysis pipeline. The numbers
correspond to different steps of the analysis: 1—quality control of raw data; 2—read trimming (if
necessary), 3a—read mapping to a reference genome, 3b—de novo assembly of transcripts 3c—
pseudomapping strategy (requires reference transcriptome), 4a—read summarization, 4b—
reference-guided transcriptome assembly (used for transcript identification), 4c—transcript
quantification, 5—transcript-level quantifications can be converted to gene-level count, which
improves gene-level inferences, 6a—differential gene/transcript/exon/feature analysis based on
read counts, 6b—differential gene/transcript/exon/feature analysis based on relative expression
values. Shades indicate different major strategies of the analysis: blue—general step of raw data
quality control and read trimming; pink—downstream analysis when the reference genome is
available, mainly includes gene-level inferences, green—when the reference genome is not
available and includes transcript-level inferences
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quality of reads, poor quality of reference genome assembly or the nature of ref-
erence genome itself—for instance, genomes with large amount of repeats might
result in increased numbers of multimapped reads. The next step after read mapping
is read summarization, which involves the calculation of the number of reads that
overlap particular genes, which is proportional to the expression levels. This pro-
cedure relies on gene annotations (gff or gtf files) and popular software to
accomplish this task are htseq-count (Anders et al. 2015) and featureCounts (Liao
et al. 2014), with the latter being more flexible in dealing with multimapped reads.

The two previous steps described gene-level analysis to obtain the information
about expression values based on genome alignments. However, today several
so-called pseudo-alignment algorithms are available that allow the assessment of
expression levels of individual transcripts, rather than of genes. Examples of such
algorithmic implementations include Salmon (Patro et al. 2017) and kallisto (Bray
et al. 2016). For organisms with high rates of alternatively spliced transcripts, it has
been recently demonstrated that transcript-level estimates could improve gene-level
inferences (Soneson et al. 2015). The final step of DGE bioinformatics analysis is
the assessment of DGE between groups of samples. Many studies have been per-
formed to evaluate the most effective models and corresponding software for
assessing differential expression (Schurch et al. 2016; Soneson and Delorenzi 2013;
Bullard et al. 2010; Seyednasrollah et al. 2015; Rapaport et al. 2013). Readers are
referred to (Conesa et al. 2016) for more details on this matter. When sufficient
number of biological replicates (three or more) are available, software tools such as
DESeq2 (Love et al. 2014), edgeR (Robinson et al. 2010), and limma (Ritchie et al.
2015) generally perform well in most of circumstances. To choose the genes that
are differentially expressed, one has to set a cutoff for both fold change of gene
expression between conditions and p value of statistical significance of this change,
and usually, these thresholds are arbitrary and depend on the desired level of
stringency.

Since overall RNA-Seq analysis consists of many wet-lab and data analysis
steps, it is advisable to confirm a subset of the obtained results with an alternative
approach. For instance, one can perform quantitative PCR on a subset of DE genes
to ensure the reliability of the obtained results. Once the DE genes have been
identified, researchers can proceed with further in-depth analysis, which, among
others, usually includes gene ontology (GO, The Gene Ontology Consortium 2017)
or gene set enrichment analysis (GSEA, Subramanian et al. 2005), pathway analysis
(Emmert-Streib and Glazko 2011) and gene co-expression and network analysis
(Schulze et al. 2016). GO and GSEA are two different approaches addressing a
similar question—whether DE set or subset of genes is enriched in a specific
biological function, process or cellular location. For instance, when differential
expression analysis reveals hundreds of DE genes, these methods help to get an
overall insight which biological functions are altered in a given condition.
Similarly, pathway analysis allows to identify specific molecular pathways which
are dysregulated in the studied system. As in GO and GSEA, pathway analysis is
performed based on statistical test of enrichment between sets of gene lists.
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Gene co-expression and network analysis on the other hand allows to quantita-
tively assess genes which are changing the expression levels systematically in a
similar manner, revealing gene-gene interactions. Especially this kind of analysis is
relevant when a time series dual RNA-Seq data is available, which enables to detect
the interacting co-expressed genes of the host and the pathogen (Schulze et al. 2015).

For a more detailed discussion about the best practices of RNA-Seq-related
analysis, including both study design and bioinformatics data analysis, readers are
referred to the recent review by Conesa et al. (2016).

2.3 Dual RNA Sequencing

Dual RNA sequencing (dual RNA-Seq) is a relatively new methodology
(Westermann et al. 2012) of simultaneous sequencing of RNA that originates from
two (or more) organisms. Originally dual RNA-Seq was developed in the context of
host–pathogen interaction studies, allowing to profile the gene expression of both
counterparts at the same time, but in principle can be used to study the interactions
between any cohabiting organisms. The main idea behind this method is to
sequence the mixture of RNA that contains transcripts from two or more organisms.
The mixture of RNA could be obtained by direct extraction of RNA from both
species (e.g., when studying interaction between co-cultured bacterial species) or it
can be extracted separately for each species and then mixed into one sample. The
latter approach is more suitable for host–fungus interaction studies, since RNA
extraction protocols for fungi include a cell wall disruption step, which can degrade
the RNA content of the host cells. After sequencing a mixed sample, the reads from
both species are separated bioinformatically by mapping the mixture of reads to
both reference genomes simultaneously. When the reads are successfully separated,
the data analysis is largely the same as in the case of standard RNA-Seq. Hence, the
above-mentioned recommendations of experimental and sequencing design for
common RNA-Seq are also applicable in dual RNA-Seq.

Despite the fact dual RNA-Seq methods are in their infancy, they have already
been proven to be an efficient tool for dissecting the interplay between hosts and
pathogens (Bruno et al. 2015; Aprianto et al. 2016; Dutton et al. 2016; Nuss et al.
2017; Thänert et al. 2017). Nevertheless, this approach has some technical limi-
tations that need to be overcome. Firstly, for in vivo studies, particularly those
involving fungi, the amount of microbial cells and its corresponding RNA is
extremely low, as compared to the host side. The RNA-Seq of the sample, heavily
shifted toward the host, yields a negligible amount of fungal reads, precluding
detailed analysis of fungal transcriptome. To date, the most efficient way to over-
come this problem is by using targeted enrichment of fungal transcripts
(Amorim-vaz et al. 2015), which we discuss later. Second, since the dual RNA-Seq
method is new, specific software and data analysis pipelines still do not exist. The
major bioinformatics problem that can arise in dual RNA-Seq experiments is
cross-mapping of reads to the wrong reference genome, since the mixture of reads is
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mapped to both references simultaneously, biasing downstream analysis. Thus,
specific data analysis pipelines should be implemented in order to remove that kind
of reads. Despite these difficulties, dual RNA-Seq holds a great potential in
resolving interactions between species on a transcriptome-wide manner.

3 RNA-Seq-Based Studies to Understand Human–Fungus
Interactions in Candida, Aspergillus and Cryptococcus
Clades

RNA-Seq has emerged as a versatile tool for studying host–pathogen interactions at
the transcriptomic level. The majority of transcriptomic studies for elucidating
pathogenic mechanisms in fungi so far has been performed in vitro by exposing the
pathogen to different experimental conditions that try to mimic stress factors
encountered in the host. These include, among many others, low pH, oxidative
stress, or different temperatures (Cottier et al. 2015; Yang et al. 2016; Brown et al.
2016; Lin et al. 2013; Cheon et al. 2017). However, a limited number of tran-
scriptomic studies have been performed in vivo, readily characterizing transcrip-
tome responses of the pathogen, host, or both during their direct contact as it takes
place during a real infection. Although this approach faces numerous challenges, it
is still crucial for disentangling genuine human–fungal interactions. Here, we
provide an overview of significant insights gained from transcriptomic studies. For
simplicity, we will focus on the three major clades of fungal pathogens, namely
Candida, Cryptococcus, and Aspergillus, as research on other fungal pathogens
generally lag behind. A schematic summary of surveyed studies is given in Fig. 3.

3.1 Candida

The most well-studied opportunistic pathogen from Candida species is Candida
albicans, and its virulence mechanisms and host–fungus interactions have been
extensively reviewed in Wilson and Hube (2014). Briefly, primary pathogenic
mechanisms of C. albicans explored to date include hyphae formation (Sudbery
et al. 2004) alongside with the expression of virulence factors, such as candidalysin
(Moyes et al. 2016), adhesins (e.g., HWP1, HGT2) (Nobile et al. 2006; Martin et al.
2013), invasins (e.g., ALS3) (Liu and Filler 2011), and secreted proteases (e.g.,
SAP4-6) (Naglik et al. 2003). Hyphae formation and the expression of virulence
factors promote initial adherence to the host tissue followed by invasion (either
induced endocytosis or active penetrations) and damage. In turn, host defense
against infecting Candida is mainly presented by the action of macrophages and
neutrophiles (reviewed in Moyes et al. 2014; Wilson and Hube 2014). After
phagocytosing the fungal cell, neutrophils expose a variety of factors to block
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hyphae formation and eventually kill the fungus, including nutrient starvation,
production of antimicrobial peptides and enzymes (e.g., defensins, lactoferrin,
ellastase), oxidative burst, formation of neutrophil extracellular traps (NETs).

As mentioned above, quantities of yeast cells in an infected patient sample are
generally very small, which poses many challenges for the analyses (Rosenbach
et al. 2010; Bruno et al. 2015). As a consequence, many previous studies have been
performed using animal or tissue culture models, where higher loads of the
pathogen can be present and larger quantities of tissue are available. One of the first
studies using RNA-Seq to decipher host–pathogen interactions of C. albicans was
carried out by Tierney et al. (2012). In this study, the authors performed an in vitro
timecourse model experiment of interaction between C. albicans and M. musculus
bone marrow-derived dendritic cells (BMDCs) with further RNA sequencing and
network analysis to identify and predict interspecific interactions. With the

Fig. 3 Host–pathogen interactions transcriptomic studies of Candida, Aspergillus, and
Cryptococuss species in different experimental models
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aforementioned techniques, the authors predicted and subsequently experimentally
verified a mechanism by which C. albicans escapes host immune response medi-
ated by a reorganization of its cell wall, which in turn is triggered by the release of
complement-activating and opsonin protein PTX3 from dendritic cells.

In a more recent study, Bruno et al. (2015) used a murine model of vulvovaginal
candidiasis (VVC) coupled with RNA-Seq to study the transcriptome and its
alterations in mice and C. albicans. This study demonstrated that expression of the
NLRP3 inflammasome, which triggers caspases and the maturation of proinflam-
matory cytokine interleukin 1 beta—the hallmark of VVC immunopathogenesis,
was elevated in infected mice. Moreover, Nlrp3 −/− infected mice showed sig-
nificantly lowered levels of polymorphonuclear leukocytes (PMNs), alarmins, and
inflammatory cytokines. These findings suggested an important role of NLRP3
inflammasome in response to C. albicans in VVC. On the other hand, the authors
have also attempted to analyze C. albicans response to host; however, the in-depth
analysis of C. albicans transcriptome was precluded by a very low amount of fungal
reads obtained from infected vaginal samples (on average *80 thousand reads of
C. albicans compared to *103 million mouse-derived reads). Nevertheless, the
analysis of highly expressed C. albicans genes revealed a robust expression of
hypha-associated SAP 4, 5, and 6, while mutants of these genes were inducing
significantly lower inflammatory response.

Another comprehensive RNA-Seq-based study of C. albicans and host inter-
action was done by Liu et al. (2015). Here, the authors analyzed host–pathogen
interactions in both in vitro and in vivo conditions. In the former case, two human
cell cultures were used, namely human endothelial and oral epithelial cell cultures,
while in vivo investigation was carried out in both murine model and using real
clinical samples from patients. The time series analysis using not only infected
samples but also controling on each corresponding time point (non-infected human
samples and C. albicans cells in the growth media) allowed the researchers to reveal
that, surprisingly, C. albicans showed a minimal transcriptional response to host
cells, which was indicated by a low number of DE genes compared to the control
samples. This result points out that most of the C. albicans genes involved in host
interaction with the studied cell types are also similarly expressed in the growth
medium (M199 and DMEM media). Nevertheless, this fact does not lessen the
importance of these genes in host–pathogen interaction, but rather once again
demonstrates the relevance of careful study design. Thereafter, focusing mainly on
the host side the authors demonstrated a distinct transcriptional response of different
cell lines to C. albicans. To identify molecular pathways governing host response,
the authors used network analysis and identified numerous previously reported
up-regulated pathways like MAPK1/3, TLR7, EGF, and novel pathways such as
PDGF and NEDD9. Further, in-depth wet-lab analysis has shown that the last two
pathways play a crucial role in endocytosis of C. albicans cells in a
cadherin-independent manner in cell cultures. Moreover, it was demonstrated that
both pathways are also implicated in pathogen interaction in disseminated mouse
infection model, while in case of in vivo human infection NEDD9 was intact.
Overall, this study is an excellent example where a combination of carefully
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planned RNA-Seq design and thorough bioinformatical and follow-up wet-lab
analysis can successfully reveal novel mechanisms of host–fungal interaction.

A recent study by Niemiec et al. (2017) has evaluated the interaction between C.
albicans and human neutrophils by means of RNA-Seq. The authors assessed the
transcriptome of neutrophils exposed to the fungus in either yeast or hyphal mor-
photypes, as well as the transcriptomic response of those morphotypes to intact
neutrophils and NETs. The analysis revealed that the core response of neutrophils is
largely similar for the two C. albicans morphotypes, with only 11% of DE genes
being specific to the interaction with the hyphal morphotype. The core response to
fungi included inflammasome induction and release of numerous cytokines, which
shows that despite their short life span neutrophils are also orchestrating complex
immune response to C. albicans. On the other hand, C. albicans response was also
mainly morphotype-independent, while the reaction to either intact neutrophils or
NETs was markedly distinct. Overall, fungal response was primarily dominated by
metabolic genes, controlled by the regulators of transcription as Tup1p, Cap1p,
Hap43p, with the latter being the major regulator in C. albicans of evasion from
neutrophils.

As highlighted previously, one of the major limitations of investigating mutual
host–fungus interaction (especially in vivo studies) is a very low proportion of
fungal cells as compared to host cells (Rosenbach et al. 2010; Bruno et al. 2015).
This problem refers not only to RNA-Seq, but to any other high-throughput NGS
technique. Subsequent analysis of such kind of a “host-biased” sample generally
does not yield enough fungal data for a comprehensive description of the fungal
transcriptome. Previous attempts to solve this issue had serious limitations—some
of them were altering true gene expression levels (Andes et al. 2005; Thewes et al.
2007), while the others did not provide transcriptome-wide resolution (Geiss et al.
2008). To overcome this issue, Amorim-Vaz et al. (2015) used, for the first time,
RNA-Seq coupled with SureSelect targeted RNA enrichment technology. This
technology is based on the use of biotinylated oligonucleotide baits directed to
target RNA molecules of interest, which are then enriched by probe hybridization
and subsequent pool down. Importantly, this enrichment procedure has been shown
to not interfere or change the transcriptional profile of the sample. The authors used
two animal models of C. albicans infection—murine model of kidney infection and
a Galleria mellonella larvae model—and investigated host–pathogen interplay at
early and late stages of infection. Consistent with previous studies, the RNA-Seq
analysis of the bulk sample showed that barely 0.1–1% of the reads belonged to the
pathogen. However, after applying the enrichment approach, the number of reads
aligned to C. albicans dramatically increased up to 1670-fold, while biasing the
expression levels only for 3% of genes. DGE analysis of C. albicans genes showed
consistent results with previously published studies including up-regulation of
genes involved in cell host adhesion, hypha formation, and iron acquisition.
Moreover, the analyses revealed new, previously uncharacterized targets in both C.
albicans and hosts for further exploration. Overall, this study demonstrated that
targeted enrichment can be successfully applied for in vivo host–pathogen studies
to describe both counterparts in a transcriptome-wide manner.
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3.1.1 Non-albicans Candida Species

Other Candida species are less frequently reported than C. albicans in infection
cases, but nevertheless they collectively account for *50% of the cases. After C.
albicans, the most widespread species in infections are C. glabrata, C. parapsilosis,
and C. tropicalis, generally in this order (Guinea 2014). Despite the importance of
these species in fungal infection epidemiology, their virulence mechanisms and host
interactions are significantly less studied than those of C. albicans. So far, only a
handful of studies have been performed for transcriptional profiling of these species
in the context of host–pathogen interactions, and none of them was deeply focused
on both counterparts.

Candida glabrata is the second most widespread Candida species that causes
human infections. Phylogenetically, this yeast is much closer to S. cerevisiae than
to C. albicans, and it does not form true hyphae and has high intrinsic resistance to
azole class of antifungal drugs (Gabaldón and Carreté 2016). Rasheed et al. (2018)
investigated the role of yapsins (CgYps)—cell surface-associated aspartile proteases
of C. glabrata—in the interaction with human THP-1 macrophages and in systemic
murine infection. First, to clarify the role of yapsins in fungal homeostasis on gene
expression level, the authors performed RNA-Seq of mutant strain Cgyps1–11D,
which lacks all 11 yapsins, and compared it to the wild-type (WT). Downstream
analysis uncovered 35 down- and 89 up-regulated genes in the mutant, with enri-
ched GO categories of “ion transport,” “oxidation-reduction process” and “sterol
import,” and “carbohydrate metabolic process,” “fungal-type cell wall organiza-
tion” and “tricarboxylic acid cycle,” respectively. Using biochemical staining
assays, the authors further demonstrated the altered cell wall composition of the
Cgyps1–11D mutant in b-glucan, chitin, and mannan content, largely caused by the
deletion of CgYps1 and CgYps7 yapsins. While the application of RNA-Seq was
restricted to the above-mentioned analysis in this study, the authors additionally
used microarray technology to describe human THP-1 macrophages response to C.
glabrata WT and the forementioned mutant. Broadly, the microarray profiling
showed that THP-1 cell line responds differently to WT and mutant C. glabrata
strains: In the former case, human DE genes were involved in inflammatory
response, chemotaxis, and chemokine-mediated signaling pathways, while in the
latter case the cells expressed genes involved in viral response. In addition, the
authors elucidated the role of IL-1b in C. glabrata interaction, showing that its
production is likely to be deleterious for fungal survival in macrophages and that
yapsins play a pivotal role in suppressing the production of host’s IL-1b.

To clarify the role of yapsins in vivo, BALB/c mice were infected with WT and
Cgyps1–11D mutant. Overall, WT C. glabrata colonized and disseminated in
numerous mouse organs, while the mutant strain had a significantly lower survival,
demonstrating that yapsins are required for colonization and dissemination of the
fungus. Finally, to uncover the roles of each of the yapsins in infection and fungal
survival, the authors performed murine infection models with different combina-
tions of single, double, and triple mutants of yapsin genes. Altogether,
organ-specific survival effects of different yapsins were identified.
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Another recent study (Whaley et al. 2018) focused on C. glabrata addressed the
susceptibility mechanisms of the fungus to fluconazole, identifying the gene which
negatively regulates the resistance levels. By screening a large collection of single
gene mutants, the authors found that the strain with deleted JJJ1 gene
(GL0J07370g), increased the minimum inhibitory concentration (MIC) to
fluconazole 16-fold as compared to WT. This finding was further supported by
deleting this gene in a C. glabrata clinical strain. Since the main mechanism of C.
glabrata resistance to azoles is defined by over-expression of the transcription
factor PDR1, which directly activates efflux-pump genes such as CDR1, PDH1, and
SNQ2, the authors demonstrated that deletion of JJJ1 increased the resistance
through Pdr1-dependent up-regulation of CDR1. To further investigate the effect of
JJJ1 deletion on the overall transcriptome of C. glabrata, the authors have per-
formed RNA-Seq using Ion Torrent technology. The analysis identified 119 and
149 up and down-regulated genes, respectively, many of which had been previously
identified by microarray analysis.

Candida parapsilosis is a member of CTG clade alongside with C. albicans and
C. tropicalis. It is considered to be the third most frequent opportunistic Candida
pathogen. As for C. glabrata, a restricted number of studies have been performed to
clarify host–pathogen mechanisms on transcription level. To our knowledge, the
only RNA-Seq-based host–pathogen interaction study with C. parapsilosis was
performed recently by Toth et al. (2018), focusing mainly on the fungal side. The
authors employed a timecourse in vitro infection model of C. parapsilosis with
human THP-1 monocytes with further RNA-Seq of fungal transcriptome to identify
potential molecular targets for future antimycotic agents. RNA-Seq analysis
revealed 19 highly up-regulated C. parapsilosis genes, which were selected for
further investigation. By constructing deletion mutant strains of each of those genes
and performing the screening of the mutants for different properties, the authors
narrowed the search of virulence factors to three transcriptional regulator genes
CPAR2_100540, CPAR2_200390, and CPAR2_303700. Further in-depth analysis
demonstrated that these three genes play an important role in nutrient acquisition
and alternative carbon source utilization, hyphae and biofilm formation, and sen-
sitivity to low temperatures, respectively.

As for C. tropicalis, two studies have been performed that used RNA-Seq to
understand yeast–hyphal transition. Wu et al. (2016) performed RNA sequencing of
three C. tropicalis clinical isolates in yeast and filamentous forms. Differential gene
expression analysis showed up-regulation of several genes, including SAP2, SAP3,
ALS3, LIP1, which have been previously reported to be involved in hyphal tran-
sition in C. albicans.

Jiang et al. (2016) have studied 52 clinical isolates of C. tropicalis by estimating
different parameters of pathogenicity, such as biofilm formation, hyphal morphol-
ogy, and hemolytic activities. Based on the ability to form hyphae, two groups of
strains (three highly and three lowly hyphae-producing strains) were further
selected for performing in vivo murine infection model with subsequent RNA
sequencing of C. tropicalis. RNA-Seq analysis between two groups has shown 206
DE genes in highly hyphae-producing strains, enriched in aspartic-type
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endopeptidase activity, metal homeostasis, and oxidative response. On the other
hand, several uncharacterized DE genes were revealed, which might also have an
impact on C. tropicalis pathogenicity.

3.2 Aspergillus

Aspergillus is a genus within the Ascomycota phylum that comprises over 300
species (Samson et al. 2014). Aspergillus species have a high and diverse economic
and social impact, since they massively spoil food products (Dijksterhuis et al.
2013), serve for various biotechnology productions (Pel et al. 2007), and some are
human pathogens (Kwon-Chung and Sugui 2013). From the latter perspective, the
most frequent human pathogen is the soil-associated fungus Aspergillus fumigatus,
accounting for 90% of Aspergillus-caused infections, which as in the case of
Candida affects mainly immunocompromised individuals (Perfect et al. 2001;
Paterson and Lima 2017). A. fumigatus produces hydrophobic microscopic spores
known as conidia, which are ubiquitous in the environment and are the main cause
of infections (Latgé 1999). After being inhaled by immunocompromised individ-
uals, conidia can reach pulmonary alveoli and start germinating, forming hyphae
and mycelia. This causes a wide range of nosologies collectively called
aspergillosis, with invasive forms reaching 50–95% mortality rates (Abad et al.
2010).

Numerous studies involving transcriptome profiling have been performed to
study pathogenic mechanisms of A. fumigatus. Most of them have been carried out
in vitro by exposing the fungus to different environments resembling the interaction
with the host or to different stresses (Losada et al. 2014; O’Keeffe et al. 2014;
Gibbons et al. 2012; Wang et al. 2015b). However, only few recent studies
addressed host–pathogen interactions based on RNA-Seq of more realistic in vivo
models focusing either on host, pathogen, or both simultaneously.

Using RNA-Seq, Irmer et al. (2015) investigated the response of A. fumigatus
exposed to human blood in vitro, mimicking the host environment encountered by
the fungus when it germinates and penetrates to blood vessels. The authors took
samples at two time points of 30 and 180 min after incubating with either human
blood or with minimal medium, as a control. The experiment was performed in
duplicate, and all samples were compared to pre-cultured A. fumigatus mycelia.
Differential gene expression analysis between pre-cultured fungus and
blood-exposed samples revealed 410 up-regulated and 367 down-regulated genes
after 30 min of exposure to blood, and 266 up-regulated and 318 down-regulated
genes after 180 min. Those numbers of genes were obtained after subtracting the
DE genes from the comparison between control samples and fungi grown on
minimal media. After differential expression analysis, the authors performed
comprehensive GO enrichment analysis. Briefly, four categories of genes were
analyzed—early up-regulated genes, early up-regulated and then down-regulated
genes, solely late down-regulated genes and late up-regulated genes. Functional
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analysis of early up-regulated genes showed enrichment in metabolism, cell-rescue,
transport, virulence- and protein synthesis-related genes. Genes that were
up-regulated after 30 min but down-regulated after 180 min were largely similar to
the ones only up-regulated at 30 min or only down-regulated after 180 min, and
thus, their functional enrichments were also similar. After 180 min, enrichment
categories remained largely the same compared to early up-regulation, but, obvi-
ously, were depressed, indicating slow-down of overall fungal metabolism.
A modest number of enriched categories was found in late up-regulated genes,
including iron starvation, detoxification, and stress. Overall, the gene expression
patterns and functional analysis suggested that human blood is not a hostile envi-
ronment for A. fumigatus, which first senses the environment and then shuts down
several important pathways of energy-consuming metabolism after the first hours
and thus can not effectively grow in blood.

Kale et al. (2017) performed a time series dual RNA-Seq analysis of two
immunosuppressed mice models (one treated with chemotherapy and another one
with corticosteroid) challenged with a particular A. fumigatus strain (Cea10) to
assess how do host-pathogen interactions vary between two distinct immunocom-
promised states in pulmonary aspergillosis. Dual RNA-Seq yielded 16-29 mln
reads, depending on the sample, from which 98% mapped to the mouse genome
and the rest to the fungal counterpart. Further differential expression analysis of the
host side revealed that the two immunocompromised models showed distinct pat-
terns of gene expression response to the pathogen, showing that host response to A.
fumigatus depends on the type of immunosuppression. Functional enrichment
analysis of DE genes showed enrichment in numerous immunological processes
related to cytokines, chemokines, and their receptors in the chemotherapeutic
model, whereas for the corticosteroid model a limited number of cytokine-related
genes were DE. More highlighted differences in functionally enriched categories
between the two models were found with regard to metabolic processes—the
chemotherapeutic model was enriched with urea cycle, pentose phosphate meta-
bolism, nucleotide and vitamin metabolism, while corticosteroid-treated model in
inositol phosphate metabolism, fatty acid oxidation, terpenoid biosynthesis, thi-
amine biosynthesis, etc. Additionally, the authors identified novel genes from
pathogen-sensing gene families of Tlrs, Clecs, and Nlrs, which had not been pre-
viously described in pulmonary aspergillosis.

On the fungal side, the comparison of gene expression profiles of A. fumigatus in
different mice models has shown a large proportion of similar DE genes (n = 3345),
with a restricted number of model- and time-point-specific DE genes (n = 128–
204). Nevertheless, the analysis of fungal secreted proteins, which are important for
fungal pathogenesis, showed that A. fumigatus has a temporal and model-specific
activation of these proteins. However, it has to be noted that the analysis of a large
proportion of fungal genes (5175, *60% of total genes) was precluded due to very
low expression values, which once again demonstrates the problem of low con-
centration of fungal genetic material for in vivo dual RNA-Seq experiments.

Previously, it has been demonstrated that virulence varies among different
A. fumigatus strains (Fuller et al. 2016; Kowalski et al. 2016) and moreover that the
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host immune response against different strains is also distinct (Rizzetto et al. 2013).
Thus, opposite to Kale et al., Watkins et al. (Watkins et al. 2018) have recently
made RNA-Seq gene expression profiling of two A. fumigatus strains Cea10 and
Af293 interacting with human airways cell line A549 to elucidate the differences
and commonalities between the virulence mechanisms of aforementioned strains.
The experiment comprised two time points (6- and 16-h post-infection) of infected
human cells with two fungal strains and time-matched controls for fungal samples
(i.e., fungi without host cells). The study focused only on the fungal side, thus the
authors did not perform controls for the host counterpart. Since the ratio of fungal
and human cells in the infection models was close to 1:1, the RNA-Seq successfully
recovered enough amount of fungal reads (53±29.3 million reads per sample) for
robust downstream analysis. Differential expression analysis revealed 7888 genes
across conditions, and PCA and hierarchical clustering with those genes showed
that samples clustered largely according to time points and by strain (on 16-h time
point) and that controls were positioned close to infected samples. Taken together,
the patterns of sample distribution and clustering highlighted that changes of fungal
transcriptional profiles are largely due to growth and metabolism dynamics, rather
than to a response to the lung epithelial cells. To dissect the genes that are
specifically involved in the infection process, the authors compared transcriptional
profiles of time-matched infection and control samples. In this case, a modest
response to human cells was found (n = 128–619 DE genes) with 70% of them
being strain-specific, indicating the virtual lack of strong conservative response of
A. fumigatus strains at least in the analyzed conditions. Nevertheless, a small
proportion of genes (n = 47) that were similarly expressed in both strains was
found, and the mutants of seven of these genes were shown to have attenuated
virulence.

Chen et al. (2015) investigated the interactions of A549 epithelial cell line with
A. fumigatus, but unlike in Watkins et al., this study focused on the host side. Here,
the authors infected cell cultures with A. fumigatus B5233 for 8 h and performed
fungal-free control at similar conditions, with further RNA isolation and sequencing
of the host cells. Differential expression analysis between infected and intact cells
revealed in total 302 up- and 157 down-regulated genes. GO enrichment analysis
showed that down-regulated genes were enriched in ion transport, skeletal system
developments, and vascular development. On the other hand, similar to other
studies, up-regulated genes were functionally enriched in numerous
immune-associated processes such as chemotaxis, inflammatory response, response
to bacterium, and also in cytoskeleton remodeling, which also has been reported
earlier (Jia et al. 2014). To further investigate the role of specific host genes in
fungal response, the authors chose two genes—ARC and EGR1—involved in
cytoskeleton rearrangements, since it is known that A. fumigatus conidia are able to
internalize in the host cells. Western blotting indicated that corresponding proteins
of that genes were up-regulated during the course of infection. Moreover, inhibition
of expression of ARC and EGR1 genes by RNAi decreased the internalization rates
of conidia by 20 and 40%, respectively.
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Another in vivo murine infection model of host–aspergillus interactions was
made by Shankar et al. (2018). Here, unlike in the above-mentioned study by Kale
et al. (2017), the authors investigated invasive aspergillosis in immunocompetent
mice and focused on kidney infection. The study comprised a timecourse infection
model at five different time points up to eight days after infection. At all time points
and for control animals, infected kidneys were homogenized and subjected to
RNA-Seq. Initially, the authors aimed for resolving host–pathogen interaction of
both counterparts; however, as usual for in vivo studies, fungal side did not yield
interpretable amount of data. Thus, further analysis was focused only on the host
transcriptome. Overall, differential expression analysis revealed more than 14,000
DE genes throughout the course of infection in mice. Although notable
up-regulation was observable from the first day after infection, functional enrich-
ment was only observed after five days post-infection. Enriched terms included
leukocyte aggregation, acute inflammatory responses, positive regulation of
chemokines, and other immune response processes. A more in-depth investigation
of up-regulated genes showed the activation of several genes such as Ccr5, Cxcr3,
Ccr2, or Cxcr4, which are directly involved in activation and recruitment of Th-1
and Th-17 T-helper cells. In turn, after activation of Th cells, the up-regulation of
different proinflammatory cytokines such as IFN-c, IL-27, IL-18, IL-24 was
detected. Conversely, down-regulated genes were associated with iron and heme
binding, electron carrier activity, and aromatase activity. However, in the case of
iron-regulation associated genes, the pattern of down-regulation was explained by
suppression of P450 related genes, since many other key components of iron
homeostasis like Nos1, Nos2, Ltf were systematically up-regulated.

3.3 Cryptococcus

Unlike Candida and Aspergillus, the Cryptococcus genus belongs to the phylum
Basidiomycota (http://www.asmscience.org/content/book/10.1128/
9781555816858.ch01). There are two main pathogenic Cryptococcus species, Cr.
neoformans and Cr. gattii, which are environmental non-host-specific pathogens
infecting a wide range of hosts including insects, plants, and mammals. In the case
of humans, Cr. neoformans is mainly an opportunistic pathogen, while Cr. gatii can
infect immunocompetent individuals [reviewed in (Kwon-Chung et al. 2015)]. In
recent decades, the incidence on cryptococcosis has increased drastically which is
mainly associated with an emergence of HIV and increasing numbers of organ
transplant recipients. The main types cryptococcal infections are cutaneous cryp-
tococcosis, pulmonary cryptococcosis, and cryptococcal meningitis, with the latter
being fatal if not treated on initial stages. In the developing part of the world, it has
been estimated that these two species cause around one million infections with
mortality rates reaching 70% and causing 650,000 deaths per year (Brown et al.
2012; Park et al. 2009). As it is the case of Aspergillus conidia, cryptococcal spores
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or dried yeast cells enter the host organism through inhalation or through direct
interaction in the case of skin-related infections.

As for Candida and Aspergillus, the pathogenicity mechanisms of Cryptococcus
species have been more extensively studied in vitro by exposing them to different
environmental conditions (O’Meara et al. 2013; Brandão et al. 2018; Zhang et al.
2014). However, in vivo or ex vivo transcriptomic studies of Cryptococcus-host
interaction are limited to several recent studies. Moreover, some studies using
RNA-Seq were performed for refining the genome and transcriptome annotations of
Cryptococcus species (Janbon et al. 2014; Gonzalez-Hilarion et al. 2016; Ferrareze
et al. 2017), which are not covered by our review.

The first study investigating transcriptome of Cr. neoformans cells interacting
with the host environment was carried out in 2014 by Chen et al. (2014b). The
authors performed RNA-Seq of two Cr. neoformans var. grubii strains, G0 and
HC1, taken directly from the cerebrospinal fluid (CSF) of two patients with cryp-
tococcal meningitis. Additionally, the same fungal cells were grown in two con-
ditions—ex vivo CSF and YPD, followed by RNA sequencing and comparison
with in vivo obtained fungi. Initial analysis showed that gene expression profiles of
both strains in each condition were very similar; thus, the strains at the given
conditions were considered as biological replicates. Differential gene expression
analysis between pairs of conditions identified 129, 45, 256 DE genes when
comparing ex vivo versus YPD, in vivo versus YPD, and in vivo versus ex vivo,
respectively. This shows that transcriptomes from in vivo and YPD samples are
more similar than in ex vivo CSF samples. Compared to ex vivo cells, in vivo
samples were enriched with cellular biosynthetic GO terms, indicating that Cr.
neoformans cells within the host are transcriptionally more active, which might be
explained by interaction with the immune system. On the other hand, as expected,
samples exposed to CSF (in both cases) comparing with those with YPD had
multiple DE genes previously reported to be important for Cr. neoformans viru-
lence, such as CFO1 (Jung et al. 2009), ENA1 (Idnurm et al. 2009), and RIM101
(O’Meara et al. 2010). The authors also identified 100 strain-specific differentially
expressed genes, which were enriched in transporter genes. Additionally, the high
sequencing depth allowed the authors to perform variant calling of sequenced
strains and compare their genotypes with the reference. Variant calling showed a
substantial genomic variation between the analyzed strains and the reference gen-
ome—50,155 and 156,880 SNVs were identified in G0 and HC1, respectively,
which demonstrates that diverse Cr. neoformans strains have largely similar tran-
scriptomic responses to the host environment. Taking advantage of the high depth
and quality of the sequencing data, the authors performed de novo assembly of the
transcriptomes of strains identifying novel genes related to transport, localization,
and membrane constitution. Taken together, this work was the first study addressing
the question of virulence mechanisms of phylogenetically diverse strains of Cr.
neoformans obtained directly from host using RNA-Seq and thorough methods of
bioinformatics data analysis.

In another study Liu et al. (2014a) compared the transcriptomic profiles of brain
tissues in mice, infected by WT Cr. neoformans and double knock-out mutant for
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the genes of inositol transporters Itr1a and Itr3c, which were previously shown to be
involved in fungal virulence through their role in uptaking inositol from the host.
Gene expression profiles obtained by RNA-Seq were generated for control mice
and were compared in a pairwise manner with those from mice infected by the two
fungal strains. Differential expression analysis identified 1133 up- and 1600
down-regulated genes in WT-infected mice, while itr1aD itr3cD mutant strain
showed altered expression of 552 up-regulated and 278 down-regulated genes.
Three hundred and seventy-one genes were shared between mice infected by each
of the two strains. GO enrichment analysis showed that many enriched functional
terms are shared across the two different infections, including cellular death and
survival, cell-to-cell interaction, involvement in neurological disease. However,
mice infected by the mutant strain extensively activated immune-related responses,
such as inflammation, humoral immune response, free radical scavenging. In stark
contrast, none of the immune response pathways was significantly enriched in
WT-infected mice. Moreover, terms related to cell death and necrosis were enriched
only in WT-infected mice. To assess changes in the pathogen that were resulting in
different host responses, the authors measured the size of fungal capsule and the
secretion of glucuronoxylomannan (GXM)—two important factors for Cr. neo-
formans virulence. While the capsule size was similar in the two strains, the
secretion of GXM was significantly reduced in the itr1aD itr3cD mutant. This result
was also confirmed by immunohistologic staining of GXM in mouse brain tissue,
showing that animals affected with mutant had less GXM around brain lessons.
Overall, this study demonstrated the role of inositol transporters in host–pathogen
interactions, linking their function with the secretion of GXM and altered com-
position of the fungal capsule, which in turn elicits a highlighted host immune
response.

Hu et al. (2014) investigated the ability of environmental Cryptococcus neo-
formans strains to undergo microevolutionary changes promoting the increase of
virulence during serial host passages. The authors used nine haploid serotype A Cr.
neoformans strains isolated mainly from soil. Each strain was inoculated into mice
sequentially four times over four months. Each following passage to a new mouse
was performed using fungal colonies isolated from brains of the precedent mouse.
Two strains were revealed with prominent increase of virulence, which in both
cases reduced the time of mice death of the first and the last passages by 4-fold
(*25 h in the first infected mouse and * 6 h in the fourth infected mouse). To
disentangle the transcriptomic changes of highly adapted strains compares to their
environmental predecessors, the authors performed RNA-Seq of aforementioned
two strains and one control strain that did not show virulence changes across the
passages. RNA-Seq analysis revealed four genes with significantly higher expres-
sion in evolved strains compared to predecessors. One of them, Fre3
(CNAG_06524), was shared between two species. Using RNA interference, the
authors identified that Fre3 functions as an iron reductase without copper reductase
activity. To confirm the role of the gene in pathogenicity, they over-expressed Fre3
in WT background, which recapitulated the increased adaptive virulence
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phenotype. Overall, the study shows how RNA-Seq can be used to address the
important process of environment-to-mammal transition of Cr. neoformans, iden-
tifying the role of iron reductase Fre3 in the adaptation to the host.

4 Emerging Technologies in RNA-Seq

4.1 Single-Cell RNA-Seq

The term RNA-Seq is generally referred to sequencing of RNA, which was isolated
from the population of cells (bulk RNA-Seq). Thus, the results obtained from bulk
RNA-Seq constitute an averaged signal from the sum of individual cells, while each
cell (or a sub-population of cells) might have its own transcriptomic patterns. The
limitation of sequencing the bulk RNA was overcome by two major technological
advances: efficient cell sorting with single-cell isolation and the availability of
efficient protocols for the amplification of minute amounts of RNA from these
single cells (Kolodziejczyk et al. 2015). Today, these two methods and their
derivatives allow performing single-cell RNA sequencing (scRNA-Seq), disen-
tangling transcriptional profiles of thousands (even hundred of thousands) indi-
vidual cells (Fan et al. 2015; Zheng et al. 2017; Rosenberg et al. 2018). Despite
challenges related to cost, technology, and data analysis (Weinreb et al. 2018;
Kolodziejczyk et al. 2015; Stegle et al.2015), scRNA-Seq is now one of the most
precise methods in transcriptomics studies. However, as compared to studies on
mammals, it has not been used much to study microbial cells (Rosenthal et al. 2017;
Kolisko et al. 2014; Wang et al. 2015a) and host-pathogen interaction studies
(Avraham et al. 2015; Saliba et al. 2016). One recent advancement in this field was
reported in Avital et al. 2017, where the authors developed a method for single-cell
dual RNA-Seq for mouse macrophages and Salmonella typhimurium cells during
infection, revealing three distinct stages of macrophage response to the pathogen.
On the other hand, to our knowledge there are no studies addressing human–fungal
interaction on the single-cell level. This technology holds a great potential to
unravel specific expression patterns governing the switches between fungal mor-
photypes, quorum sensing, switches from commensalism to pathogenicity and
switches between the stages of infection. Moreover, single-cell transcriptomics
approaches can decipher how the host senses and reacts to the pathogen at different
infection stages and deconvolve the expression patterns of different cell types,
especially in context of in vivo studies.

4.2 Long-Read Sequencing

Today, the dominating sequencing technology “sequencing-by-synthesis” of
Illumina, also known as second-generation sequencing, generates relatively short
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reads (25–300 bp) with a very high throughput and high accuracy. Despite the great
advantage of the last two features, short reads are often problematic in some specific
tasks, such as assembly of complex and repetitive genomes or accurate recon-
struction of transcript isoforms. To overcome this problem, Illumina has recently
implemented so-called TruSeq synthetic long-read technology, previously known
as Moleculo (McCoy et al. 2014). This experimental and data analysis approach
splits the molecule into smaller pieces and uses barcodes to tag the adjacent
sequences. Further sequencing and bioinformatics data analysis reassembles the
initial sequence, thus allowing to obtain synthetic long reads.

Moreover, in the last decade, the advent of third-generation sequencing has
opened new avenues in biomedical research, allowing to sequence much longer
reads [up to several hundred kbs (Jain et al. 2018)]. Moreover, their single molecule
sequencing technology is PCR free, which eliminates potential PCR amplification
biases. However, today long-read sequencing comes with two major disadvantages,
which are low throughput and high error rates as compared to
sequencing-by-synthesis technology. The two major technologies for long-read
sequencing are operated by Oxford Nanopore (ON) and Pacific Biosciences. The
details of each technology are reviewed in (Lu et al. 2016) and (Rhoads and Au
2015), respectively. Although long-read sequencing was initially used in genomics
field to assemble more contiguous and resolved genomes, today the technologies
have also been validated in transcriptomics applications, mainly in transcript dis-
covery (Sharon et al. 2013; Chen et al. 2017; Garalde et al. 2018) and at lesser
extent in gene/transcript expression profiling (Byrne et al. 2017). To fill the gap of
low throughput of long-read technologies and thus allow reliable expression
evaluation, so-called hybrid sequencing can be used, which utilizes both short and
long-read sequencing data (Ning et al. 2017; Wang et al. 2018). The
third-generation sequencing has already advanced our knowledge about the tran-
scriptomes of even well-studied organisms, identifying numerous previously
uncharacterized transcripts and splicing events (Chen et al. 2014a; Byrne et al.
2017; Chen et al. 2017; Sharon et al. 2013; Au et al. 2013). Moreover, it already has
been reported that ON can be effectively used in microbial diagnostics (Quick et al.
2015; Mitsuhashi et al. 2017; Schmidt et al. 2017), providing the potential of
identifying the pathogen in 2–4 h.

Overall, long-read sequencing technology can dramatically further our knowl-
edge of transcriptomes of poorly studied organisms, as is the case of most of human
fungal pathogens. In this case, novel-species-specific transcripts can become
promising biomarkers for fungal diagnostics and discovery. On the other hand,
when applied to host–pathogen interaction studies, it might allow the precise
reconstruction of novel pathogen-specific transcripts, like lncRNAs, in the host
side, which have been already shown as immune response regulators (Heward and
Lindsay 2014; Ouyang et al. 2016; Jiang et al. 2018).

Nevertheless, the third-generation sequencing is still in its infancy, and further
improvements and validations of the technology are necessary in order to make it
more versatile and popular in biomedical research.
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4.3 Potential Applications of RNA-Seq in Fungal
Diagnostics

Next-generation sequencing methods have become increasingly popular in the
clinics, especially in the context of diagnosis of cancers (Luthra et al. 2015) and
Mendelian diseases (Jamuar and Tan 2015). Moreover, today these techniques have
already penetrated to microbiology labs, allowing to achieve high precision of
microorganism detection (Turabelidze et al. 2013; Shaw et al. 2016), identify drug
resistance (Stoesser et al. 2013; Wain and Mavrogiorgou 2013), control outbreaks
(Reuter et al. 2013; Sherry et al. 2013), and study microorganisms that are difficult
to grow using conventional culturing methods (Berenguer et al. 1993). However,
despite the fact that the incidence of fungal infection is steadily increasing, so far
the efforts in applying NGS in microbial diagnostics have been mainly focused on
bacteria and viruses. Fungal pathogens possess features that make them difficult for
management under the paradigm of traditional microbiology diagnostic methods,
such as rapid emergence of antimycotic drug resistance, emergence of new
pathogenic species, high biodiversity. Thus, the necessity of novel analytical tools
such as NGS in fungal diagnostics becomes inevitable. On the other hand, a dis-
tinction of different NGS tools in their applicability for diagnostic purposes has to
be done. While DNA sequencing plays a major role for species detection, identi-
fication, and characterization, RNA-Seq holds a great potential in identifying
biomarkers (in form of novel transcripts) and gene/transcript expression-level sig-
natures specific to different species or for different stages of infection. Nevertheless,
to achieve this kind of diagnostics, additional research efforts have to be performed.
Precisely, here is where the emerging technologies can immensely further the
potential for RNA-Seq diagnostics. For instance, inherent problems such as the low
amount of fungal RNA in patient samples can be effectively solved using probe
enrichment, while the further identification of novel transcripts is addressable by
long-read or hybrid sequencing. Moreover, single-cell RNA-Seq approach could be
applied to decipher transcriptomic differences between cell populations, increasing
the potential resolution of diagnostics. On the other hand, prices and turn-around
time of these technologies are yet to achieve levels that make them suitable for the
clinical settings. However, with current trends of diminishing prices, smaller and
easier to handle machines, and faster turn-around times. the future of
RNAseq-based diagnostics may be approaching. Taken together, RNA-Seq and
related methods open promising avenues for fungal diagnostics, but nevertheless
still a considerable research and technical developments have to be carried out to
truly uncover this potential.
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5 Concluding Remarks

In the recent decade, the advent of transcriptome sequencing technologies has
opened exciting possibilities for exploring gene regulation and how it varies in
different contexts at a level of detail and throughput that surpasses the most opti-
mistic expectations of the previous decade. Many biological disciplines are taking
advantage of this new era in transcriptomics, and host-pathogen interaction studies
are no exception. As a result, our knowledge about the molecular mechanisms of
the interplay between various microbes and their hosts has greatly advanced in this
time frame. While the application of RNA-Seq for unraveling human–fungal
interactions is just gaining momentum, it is already clear that the use of this
technology and its derivatives will be the main trajectory in the field for the coming
years. Despite its versatility, today RNA-Seq faces several natural and technical
barriers, specifically in human–fungal interaction studies. While in vivo studies are
complicated by extremely low amount of pathogen cells, infection models do not
entirely reconstitute the whole complexity and peculiarities of human–fungal
interactions. On the other hand, RNA-Seq is still relatively expensive and requires
specific expertise in study planning, bioinformatics data analysis, and interpretation
of results. Moreover, current mainstream technologies are limited in several tech-
nical aspects. Nevertheless, the technological advancements in the field are
occurring at a fast pace, and they are already partially overcoming most of the
aforementioned limitations. We anticipate that dual host–pathogen RNA-Seq
analyses in both in vivo models and patients will multiply in the coming years, as
current limitations are overcome, and will constitute the basis of key advancements
in our understanding of host–pathogen interactions during commensalism and
infection. Finally, although there are still many technical and practical impediments
for the use of RNA-Seq for diagnostic purposes, we foresee a great potential that
may be realized as key biomarker genes of the process of infection are discovered
and technical developments enable bringing fast, accurate, and affordable
RNA-Seq-based technologies to the clinics.
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