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Abstract Enteroaggregative Escherichia coli (EAEC, formerly known as
“EAggEC”) cause acute or persistent watery diarrhoea (with or without mucus) in
children, predominantly in low-income countries, and are associated with travellers’
diarrhoea in children and adults in middle and high income countries. The diverse
nature of EAEC is such that not all strains cause disease. Conversely, certain strains
of EAEC possess additional virulence determinants associated with the ability to
cause severe diarrhoea and other symptoms, which might be life-threatening in
vulnerable patients. The EAEC virulence factors described to date are either
encoded on the large virulence plasmid of EAEC (plasmid of aggregative adher-
ence) or on pathogenicity islands on the chromosome. Testing of food and faecal
samples involves the detection of EAEC-associated traits in the matrix followed by
isolation of the organism and confirmation of the presence of EAEC-associated
genes using PCR. The variability of the plasmid structure and virulence gene
sequences and the possibility that this mobile genetic element may be lost has
necessitated the inclusion of chromosomal markers in the molecular screening
assays. There is evidence in the literature of foodborne transmission of EAEC, but
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currently no evidence of a zoonotic reservoir. Fimbriae-mediated adhesion and
biofilm formation are likely to be involved in both clinical manifestations of
infection and attachment to foodstuffs. Multidrug resistance appears to be common
in EAEC and geographically widespread. Whole-genome sequencing has revealed
the mosaic genomic structure of EAEC and provided evidence that horizontal gene
transfer and recombination are the driving force for acquisition of novel genome
features and potentially novel pathogenic mechanisms. This has significant public
health implications in terms of the diversity and pathogenesis of EAEC and its
ability to colonise and cause disease in the human host.

1 Introduction

Enteroaggregative Escherichia coli (EAEC, formerly known as “EAggEC”) cause
acute or persistent watery diarrhoea (with or without mucus) in children, pre-
dominantly in low-income countries (Okeke and Nataro 2001), and are associated
with travellers’ diarrhoea in children and adults in middle- and high-income
countries (Wilson et al. 2001). Other symptoms include nausea and vomiting,
anorexia, borborygmi and tenesmus (Huang et al. 2006). In low-income countries,
the propensity of EAEC to cause persistent diarrhoea for more than two weeks is
associated with significant morbidity.

The diverse nature of EAEC is such that not all strains cause disease.
Conversely, certain strains of EAEC possess additional virulence determinants
associated with the ability to cause severe diarrhoea and other symptoms, which
might be life-threatening in vulnerable patients. EAEC were first described by
Nataro et al. in 1987 and were identified by their ability to aggregately adhere to
tissue culture cells in a distinct stacked-brick pattern (Fig. 1). The ability to
aggregate in this way is mediated by aggregative adherence fimbriae (AAF),
of which there are at least five variants (I, II, III, IV and V). Expression of AAF is
mediated by the plasmid-encoded transcriptional activator AggR (Dudley et al.
2006). More recent studies use the term “typical” EAEC to refer to strains of EAEC
harbouring aggR, and strains without EAEC are referred to as “atypical”.

A study of infectious intestinal disease (IID) in the UK in 1993–96 showed that
EAEC were the most commonly isolated diarrhoeagenic E. coli in patients with
symptoms of gastroenteritis presenting to a doctor (5.1%) (Wilson et al. 2001).
There is evidence in the literature of foodborne transmission of EAEC, mostly
through documented outbreaks and case-control studies. However, relatively little is
known about the burden of EAEC in IID or about the reservoir(s) and transmission
pathways.

This chapter presents an overview of EAEC with respect to clinical presentation,
the pathogenicity mechanisms associated with this group and interrelationships with
other E. coli pathotypes and provides an update of the methods for the detection,
identification and characterisation of EAEC. The public health risk of EAEC
infections arising from the presence of EAEC in the food chain and antimicrobial
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resistance is assessed, and recent insights into this emerging gastrointestinal
pathogen from the analysis of whole-genome sequencing data are summarised.

2 Pathogenicity Mechanisms

Pathogenesis of EAEC is complex as strains are heterogeneous. Case-control
studies have documented the prevalence of putative virulence genes but, for the
most part, have been unable to correlate the presence of specific genes to disease.
The current model of EAEC pathogenesis comprises three steps (Fig. 2):

• Adherence to the intestinal mucosa via aggregative adherence fimbriae,
• Increased mucus production leading to extensive biofilm formation on the

surface of the enterocytes, and
• Secretion of toxins and induction of the inflammatory response.

The EAEC virulence factors described to date are either encoded on the large viru-
lence plasmid of EAEC, designated plasmid of aggregative adherence (pAA) or on
pathogenicity islands on the chromosome (Table 1). The key virulence regulator of
EAEC is AggR, a member of the AraC/XylS family of bacterial transcriptional
regulators, and the defining factor for typical EAEC strains. aggR is located on the
pAA plasmid and controls a number of genes encoding putative virulence factors
located on the pAA and additional factors located on the chromosome. Expression of
the aggregative adherence fimbriae (AAF), dispersin, the dispersin translocator Aat,
and the Aai type VI secretion system, is all regulated by AggR (Morin et al. 2013).

Initial attachment of EAEC to the intestinal mucosa is mediated by AAFs. AAFs
are regarded as the principle adhesin of EAEC and are found exclusively in this
pathotype (Jønsson et al. 2015). AAFs were first described with respect to their role
in the formation of the characteristic stacked-brick aggregative pattern on HEp-2

Fig. 1 EAEC were first
identified by their ability to
aggregately adhere to tissue
culture cells in a distinct
stacked-brick pattern
(Courtesy of Marie
Chattaway, Gastrointestinal
Bacterial Reference Unit,
Public Health England,
London, UK)
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cells (Nataro et al. 1987). Following adhesion to the epithelial surface, the AAFs
have also been associated with epithelial inflammation in vitro, such as interleukin
secretion, disruption of epithelial junctions and triggering migration of polymor-
phonuclear leucocytes (Harrington et al. 2005; Boll et al. 2012). Currently, five
different AAF variants have been identified (AAF I–V), all showing a high level of
conservation of their accessory genes, despite low level of amino acid identity
among the pilin subunits (Jønsson et al. 2015).

The AAFs are members of the chaperone–usher fimbrial group, common to
many Gram-negative bacteria. The operon consists of four proteins: the usher, the
chaperone, the micro-pilin subunit and major pilin subunit. AAFs have a high
isoelectric point (pI 8.9–9.4) relative to other adhesins of the chaperone–usher
family. In the gut, where the pH ranges from 6 to 7.4, the AAFs carry a high
positive charge, which may play a role in binding (Jønsson Ph.D. Thesis, 2017).

The gene encoding dispersin (aap) is located on the pAA lying immediately
upstream of the AggR transcriptional activator and is under AggR control
(Sheikh et al. 2002). Dispersin is a positively charged small protein that binds

Fig. 2 Current model of EAEC pathogenesis (Adapted from a figure by Erik Juncker Boll,
Department of Microbiological infection and Control, Statens Serum Institute, Copenhagen,
Denmark)
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non-covalently to the lipopolysaccharide of the outer membrane of EAEC. It par-
ticipates in formation of a surface coat that acts to disperse the bacteria, partially
counteracting aggregation mediated by aggregative adherence fimbriae permitting
the AAFs to extend from the surface of the bacterium (Jønsson Ph.D. Thesis, 2017).

In addition to the virulence genes on the pAA, a number of pathogenicity islands
(PAIs) have been identified on the chromosome of EAEC. One of these islands
consists of 25 contiguous genes (aaiA-Y), activated by AggR and located on a
117 kb PAI inserted at pheU in EAEC (Dudley et al. 2006). Many of these genes
have homologues in other Gram-negative bacteria and were recently proposed to
constitute a type VI secretion system (T6SS). Distribution studies indicated that
aaiA and aaiC are commonly found in EAEC isolates worldwide, particularly in
strains defined as typical EAEC. These data support the hypothesis that AggR is a

Table 1 Genes and toxins often found in the EAEC pathotype

Common
EAEC factor

Description Location

aggR Master regulator for EAEC plasmid virulence genes,
including aggregative adherence factors, fimbriae AAF/
I-AAF/V, and a large cluster of chromosomal genes
inserted on a pathogenicity island at the PheU locus

pAA

aatA-P Encodes proteins responsible for transporting the dispersin
protein out of the outer membrane of EAEC

pAA

aap Encodes a 10 kDa secreted protein named dispersin and is
responsible for “dispersing” EAEC across the intestinal
mucosa

pAA

aggA Encodes AAF/I mediates adherence to colonic mucosa and
haemagglutination of erythrocytes

pAA

aafA Encodes AAF/II, mediates adherence to colonic mucosa
and haemagglutination of erythrocytes

pAA

agg3A Encodes AAF/III haemagglutination of erythrocytes pAA

agg4A Encodes AAF/IV mediates adherence to colonic mucosa
and haemagglutination of erythrocytes

pAA

agg5A Encodes AAF/V mediates adherence to colonic mucosa and
haemagglutination of erythrocytes

pAA

aaiA-Y PAI encoding a type VI secretion system (T6SS) chromosome

pet A 108 kDa autotransporter protein that functions as a
heat-labile enterotoxin and cytotoxin

pAA

sigA IgA protease-like homologue, enterotoxin and cytotoxin Chromosome

pic Mucinase, immunomodulation, colonisation, lectin-like
haemagglutinin

Chromosome

sepA Shigella extracellular enterotoxin pAA

sat Secreted autotransporter toxin. Enterotoxin and cytotoxin,
impairment of tight junctions, autophagy

pAA

astA astA encodes the enteroaggregative heat-stable toxin
(EAST-1), which has physical and mechanistic similarities
to E. coli STa enterotoxin

pAA
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global regulator of EAEC virulence determinants on both the chromosome and the
plasmid, and builds on the hypothesis that T6SS is an important mediator of
pathogenesis (Dudley et al. 2006).

Another PAI is designated SHE (also found in Shigella flexneri) and encodes the
Serine Protease Autotransporter Pic and ShET1 enterotoxins (Jønsson Ph.D. Thesis,
2017). Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) are a
family of extracellular proteases thought to play a role in EAEC pathogenesis. The
SPATEs are named for their serine protease motif that confers proteolytic capability
and are secreted via a type V secretion system. SPATEs are implicated in immune
evasion, mucosal damage and colonisation. The most commonly found SPATEs in
EAEC include: plasmid-encoded toxin (Pet), protein involved in intestinal coloni-
sation (Pic), secreted autotransporter toxin (Sat), Shigella IgA-like protease
homology (SigA) and E. coli-secreted protein (EspP) (Boisen et al. 2009). All
SPATEs found in EAEC are located on the chromosome, except for Pet which is
located on the pAA.

EAEC strains often produce an enteroaggregative heat-stable toxin (EAST1)
encoded by the plasmid-encoded astA genes and haemolysin E (HlyE), but like
ShET1, these toxins are not specific to EAEC (Harrington et al. 2006).

3 Interrelationships with Other E. Coli Pathotypes

EAEC are one of the six diarrhoeagenic E. coli (DEC) pathotypes defined by their
pathogenicity gene profiles (Tozzoli and Scheutz 2014). These are enteropathogenic
E. coli (EPEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC),
diffusely adherent E. coli (DAEC), Shiga toxin-producing E. coli (STEC), and
EAEC. E. coli can also cause extra-intestinal (ExPEC) infections in humans, pri-
marily urinary tract (caused by uropathogenic E. coli) and sepsis/meningitis (caused
by neonatal meningitis E. coli).

In recent years, the more widespread use of molecular techniques has revealed
that many strains of E. coli harbour virulence genes associated with more than one
pathogenic group. Most of the E. coli virulence factors are encoded by genes carried
on mobile genetic elements (e.g. plasmids, phages and pathogenicity islands), and
the horizontal gene transfer of such elements is the driver for the continuous
emergence of new pathotypes (Tozzoli et al. 2014).

The Stx-producing EAEC O104:H4 strain that caused the large outbreak of HUS
in Germany in 2011 outbreak carried the EAEC genes aggR, aggA, set1, pic and aap
as well as a prophage encoding the stx2 gene (Bielaszewska et al. 2011). This out-
break highlighted the threat to public health associated with strains of E. coli com-
prising more than one single pathotype; however, strains of E. coli comprising
multiple pathotypes had been described previously. Such strains were first reported as
the causative agent of a small HUS outbreak that occurred in France at the beginning
of the 1990s (Morabito et al. 1998), where patients were infected with an E. coli
O111:H2 strain showing the ability to adhere to cultured cells with the stacked-brick
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adhesion mechanism (Nataro and Kaper 1998) and able to produce Stx2 (Morabito
et al. 1998). Furthermore, sporadic cases of infection with Stx-producing EAEC
strains of serotype O104:H4 were retrospectively described in the time period 2000–
2010 soon after the German outbreak (King et al. 2012). Subsequently, a sporadic
HUS case caused by a Stx-producing EAEC O111:H21 and a small outbreak of
infection with a Stx-producing EAECO127:H4 occurred in Northern Ireland in 2012
(Dallman et al. 2012) and in Italy in 2013 (Tozzoli et al. 2014), respectively.

The observation that the genomic backbone of Stx-producing EAEC is similar to
that of non-Stx-producing EAEC, indicates that these strains may emerge following
the acquisition of an Stx-carrying phage from a ruminant reservoir by strains of
EAEC from human sewage (Tozzoli et al. 2014). Countries where EAEC infections
are endemic and treatment of human sewage is limited may represent a source for
the emergence of the Stx-producing EAEC pathotype. It has been proposed that the
occurrence of the EAEC/STEC pathotype E. coli may be an ongoing,
low-frequency event. The occurrence of outbreaks probably relates primarily to
epidemiological opportunities for propagation and dissemination of the organisms
in food or infected carriers.

Other combinations of EAEC pathotypes have been detected, such as those
present in isolates possessing EAEC-associated genes together with
ExPEC-associated traits as described in the E. coli serotypeO78:H10 responsible
for causing an outbreak of UTI in Denmark (Olesen et al. 2012). The outbreak
strain carried a range of virulence genes including fimH (type I fimbriae; ubiquitous
in E. coli); fyuA, traT and iutA (associated with extra-intestinal pathogenic E. coli);
and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap and ORF3 (associated with
EAEC). In a study of ESBL-producing E. coli, eight multidrug-resistant
ESBL-producing EAEC were isolated from urine specimens and one from a
blood culture (Chattaway et al. 2014a, b). The multidrug-resistant EAEC isolates
belonged to sequence type (ST) 38, predominantly associated with urinary tract
infections. It is clear that the spectrum of pathogenic E. coli types is continuous
rather than a rigid list of separated groups.

4 Methods for the Detection, Identification
and Characterisation

Testing of food and faecal samples involves the detection of EAEC-associated traits
in the matrix or in enrichment culture from these matrices, followed by isolation of
the organism and confirmation of the presence of EAEC-associated genes using
PCR. Following the outbreak of Stx-producing EAEC O104:H4 in 2011, the STEC
European Union Reference Laboratory (EU-RL) developed a molecular method-
ology to screen food samples and faecal specimens for the presence of EAEC by the
detection of aggR and aaiC (http://www.iss.it/vtec/index.php?lang=2&anno=2017
&tipo=3).
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In the 1980s, EAEC were described as exhibiting a characteristic “stacked-brick”
pattern on adhesion to HEp-2 cells monolayers (Nataro et al. 1987). Since then the
HEp-2 adhesion assay has been considered the gold standard for the identification
of the EAEC. Although regarded as a sensitive and specific assay for the identifi-
cation of this E. coli pathogroup, this approach is cumbersome and requires
experienced personnel, specialised facilities making it an unsuitable assay for a
routine testing. Molecular methods have largely replaced the phenotypic adhesion
assay for the identification and characterisation of EAEC. A number of different
PCR protocols are available, targeting a wide variety of genes. Given the recog-
nised heterogeneity of EAEC, the different PCR assays produce variable results
when compared to the phenotypic adhesions assay.

Early studies established evidence that the aggregative adhesion properties of
EAEC were associated with the pAA plasmid, and the design of molecular
screening tools was directed towards the use of sequences from this plasmid (Vial
et al. 1988). Baudry et al. developed a DNA probe, CVD432, which showed a high
degree of correlation with the phenotypic assay (Baudry et al. 1990), although a
number of subsequent studies conducted using the CVD432 probe for screening
EAEC strains isolated from cases of diarrhoea in different geographic locations
showed more variable results (Okeke and Nataro 2001).

In 1995, the first PCR tool was developed based on the sequence of the EcoRI/
PstI fragment of pCVD432 plasmid, later found to correspond to a gene encoding
the aggregative autotransporter, aat (Schmidt et al. 1995). A number of subsequent
studies showed limited correlation between the molecular hybridisation and PCR
assays suggesting that, in spite of the initial strong association of the presence of the
plasmid with the ability to induce the stacked-brick pattern of adhesion, there was a
certain degree of variability in the plasmid structure (Dutta et al. 1999; Tsai et al. 2003).
More recent studies have been aimed at a more complete characterisation of the
plasmid itself, and assays based on the detection of more than one marker have been
deployed (Czeczulin et al. 1999; Cerna et al. 2003; Jenkins et al. 2006; Scheutz
et al. 2014).

The variability of the plasmid structure and sequence, and the possibility that this
mobile genetic element may be lost, has led to the conclusion that chromosomal
markers should be included in the molecular screening assays (Jenkins et al. 2006;
Scheutz et al. 2014). Following extensive genotyping of EAEC in different studies
(Jenkins et al. 2006; Boisen et al. 2012), it was recognised that, similarly to the
plasmid-associated genes, no chromosomal markers are present in 100% of EAEC.
Some markers have been identified as being significantly associated with EAEC
isolated from symptomatic cases, such as the SPATE toxin SepA (Boisen et al.
2012). As described above, the STEC EU-RL PCR assay for screening food
samples and faecal specimens targets the pAA-encoded aggR and aaiC which is
located on the chromosome. This assay is recommended for clinical diagnostic use.

An increasing number of diagnostic microbiology laboratories are implementing
a multiplex gastrointestinal (GI) PCR approach for the detection of GI pathogens in
clinical cases and foods, including target for EAEC. These assays provide a rapid,
standardised, cost-effective pan-pathogen approach for the detection of bacteria
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associated with GI infection and, moving forward, will improve the surveillance of
EAEC disease.

5 Clinical Symptoms and Burden of Disease

EAEC are commonly associated with acute and chronic diarrhoeal illness among
children in both developing and developed and/or industrialised regions and travellers
with diarrhoea. The incubation period of diarrhoeagenic EAEC is typically between 8
and 18 h (Harrington et al. 2006). Infection with EAEC usually presents clinically as
watery diarrhoea, often with mucus, nausea and vomiting, with or without fever
(Huang et al. 2003). Other less common symptoms include anorexia, borborygmi and
tenesmus. Additionally, there is evidence to suggest that the odds of developing
post-infectious irritable bowel syndrome (IBS) are dramatically increased after acute
infectious gastroenteritis with EAEC has been discussed (Sobieszczańska et al. 2007).
A predominant feature of EAEC infection in low-income countries is the propensity
to cause persistent diarrhoea for more than 2 weeks, making these bacteria a sig-
nificant cause of mortality (Huang et al. 2006). The most significant public health
concern stemming from EAEC infections in children in low-income countries is
malnourishment, as persistent EAEC infections lead to chronic inflammation, which
damages the intestinal epithelium and reduces its ability to absorb nutrients.

Studies suggest EAEC are a major cause of diarrhoeal disease, and it has been
estimated that between 2 and 68% of patients with diarrhoea are infected with
EAEC (Nataro et al. 1998; Wilson et al. 2001; Kahali et al. 2004). In the UK IID
study in 1993–96, EAEC were the most commonly isolated enterovirulent E. coli in
patients with symptoms of gastroenteritis presenting to a doctor (5.1%) (Wilson
et al. 2001). In the second IID study in 2008–09, EAEC were isolated from more
than 1.9% of cases in the population and 1.4% of cases presenting to a doctor (Tam
et al. 2012). Data from the IID studies confirmed previous conclusions that con-
cluded that the current definition of EAEC by plasmid gene detection includes true
pathogens and non-pathogenic variants (Chattaway et al. 2013).

6 The Zoonotic Potential of EAEC and Contamination
of the Environment

Reports of animals being a reservoir of EAEC are often based on the presence of
genes that are not specific for EAEC, such as astA, in specimens from both healthy
and sick animals. Most reports originate from parts of the world where pollution by
human faecal waste is common (Table 2). Studies using EAEC-specific targets
have found no evidence of EAEC in animals (Cassar et al. 2004).
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Following the outbreak of Stx-producing EAEC O104:H4 in Germany in 2011,
2000 colonies from faecal samples of 100 cattle from 34 different farms, all located
in the HUS outbreak region of Northern Germany, were screened for genes asso-
ciated with the O104:H4 HUS outbreak strain (terD, rfb(O104), fliC(H4)), STEC
(stx1, stx2, escV), EAEC (pAA, aggR, astA) and ESBL production (bla(CTX-M),
bla(TEM), bla(SHV)) (Wieler et al. 2011). No EAEC were detected. In a similar
study undertaken in France after the 2011 outbreak, 1468 cattle were analysed for
faecal carriage of the Stx-producing E. coli O104:H4 outbreak strain by PCR assays
targeting stx2, wzxO104, fliCH4 and aggR genetic markers. None of the faecal
samples contained the four markers simultaneously, indicating that cattle in France
were not likely to be a reservoir of O104:H4, but results of the test for aggR were
not reported (Auvray et al. 2012). In a recent study in Japan, no EAEC isolates, as
assessed by the presence of aggR, were detected (Akiyama et al. 2015). To date,
there is no evidence that EAEC have a zoonotic reservoir.

Contamination of the environment by EAEC, particularly watercourses, can
occur in parts of the world where human sanitary systems are insufficient, and there
is a high incidence of EAEC in people (Table 2). Prolonged survival of EAEC for
at least several weeks in wet and dry substrates appears to be possible, and envi-
ronmental contamination may also be a pathway for EAEC on salads and other
vegetable produce (Table 2).

7 Foodborne Transmission

There is evidence in the literature of foodborne transmission of EAEC, mostly
through documented outbreaks and case-control studies (Table 3). In Japan, a major
outbreak caused by EAEC O untypeable:H10 in 1993 involving up to 2500 cases
mainly in schoolchildren was associated with school lunches (Itoh et al. 1997). In the
UK in the 1990s, four EAEC outbreaks associated with restaurants, a charity
Christmas dinner and a conference were reported but no specific food vehicle was
identified in any of these outbreaks (Smith et al. 1997). The 2011 German outbreak of
EAEC O104:H4 was epidemiologically linked to contaminated fenugreek seeds
(Frank et al. 2011). In June 2013, a foodborne outbreak was caused by EAEC isolated
from kippered trotters mixed with vegetables, 22 cases and four asymptomatic food
handlers, who probably contaminated the food (Shin et al. 2015) (Table 3).

In two further foodborne outbreaks of gastroenteritis that occurred 10 days apart
among individuals who had meals at the restaurant of a farm holiday resort in Italy
in 2007, an EAEC strain of serotype O92:H33 was isolated from six participants
and one member of staff. A retrospective cohort study indicated a pecorino cheese
made with unpasteurised sheep milk as a possible source of infection (Scavia et al.
2008), but since the outbreak EAEC strain was only isolated from food handlers,
cross-contamination of the food product cannot be excluded, nor can contamination
of food by asymptomatic excretors.
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Table 3 Outbreaks of EAEC and the AMR profile of the outbreak strain

Outbreak Resistance profile Comments Reference

Urinary tract
infection of
multiresistant E. coli
O78:H10, Denmark,
1991

Ampicillin,
chloramphenicol,
streptomycin,
sulphonamides,
tetracyclines and
trimethoprim

Olesen et al.
(2012)

Shiga toxin (Stx)-
producing EAEC
O104:H4 outbreak,
EU, USA and
Canada, 2011

Ampicillin,
amoxicillin/
clavulanic acid,
piperacillin/
sulbactam,
piperacillin/
tazobactam,
cefuroxime,
cefotaxime,
cefpirome and
ceftazidime, and also
was resistant to
streptomycin,
nalidixic acid,
tetracyclines and
trimethoprim and the
sulphonamides but
was susceptible to
the carbapenems

The strain contained
an 88.5-kb
IncI1-ST31 plasmid
—pESBL-EA11—
that encoded
bla-CTX-M-15 and
bla-TEM. Although
not considered
important in
treatment of affected
persons in this
outbreak, the
presence of
resistance genes may
have contributed to
the development and
spread of the
causative organism

Bielaszewska
et al. (2011),
Rasko et al.
(2011), Scheutz
et al. (2014),
EFSA (2011)

Multipathogen
foodborne outbreak,
UK, 2013

Of 20 EAEC isolates
characterised, a
range of resistance
profiles were
identified, ranging
from nalidixic acid
alone through to
ampicillin,
sulphonamides,
streptomycin,
nalidixic acid,
ceftazidime,
cefataxime, ceftiofur
and cefpirome

Ten EAEC serotypes
were identified in
faecal samples
recovered from
patients in the large
and complex
multipathogen
foodborne outbreak
in the UK in
February/March
2013

Dallman et al.
(2014)

Outbreak of E. coli
O untypeable: H10
in Japan in 1993
associated with
school lunches, in
which over 2600
children were
affected

All isolates were
susceptible to
nalidixic acid,
chloramphenicol,
streptomycin,
kanamycin and
cephalothin but were
resistant to
ampicillin

Itoh et al. (1997)
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In an outbreak of gastrointestinal foodborne illness associated with a Street Spice
festival in the UK in 2011 and involving over 400 persons, 29 cases of Salmonella
infection were confirmed. As most cases had reported symptoms characteristic of
EAEC infection, such as abdominal cramps and persistent diarrhoea, further inves-
tigations were carried out retrospectively using a GI PCR assay. A high proportion of
specimens were positive for the aggR target, and EAEC were cultured from 20 cases
(Dallman et al. 2014). Risk factors associated with illness included eating foods from
one particular vendor and eating a food item containing uncooked curry leaves.
Although the E. coli count in colony forming unit (cfu) per ml from the curry leaves
associated with the outbreak was high (>1000 cfu/ml), the testing algorithm at that
time did not include tests specific for EAEC and EAEC were not cultured from the
food samples. Strains of EAECwere detected in the food handlers, and contamination
of the food by the food handlers was thought to be the most likely source (Table 3).

The infection status of food handlers, including asymptomatic carriage of EAEC,
and hygienic conditions applied during the handling and processing of foodstuffs in
some countries appears to be an important factor in contamination of foods at retail,
catering or household level (Oundo et al. 2008). Multiple EAEC adherence factors are
involved in the interaction of EAEC with leaves, and similar colonisation factors are
used to bind such to the gut mucosa and leaf surfaces (Berger et al. 2009). It is thought
that prolonged survival of organisms on dry fenugreek seeds may have been involved
in the Stx-producing EAEC O104:H4 outbreak (EFSA BIOHAZ Panel 2011).

8 Biofilm Formation

Bacterial biofilms are structured communities of bacterial cells enclosed in a
self-produced polymer matrix (consisting of proteins, exopolysaccharide and
nucleic acid) attached to biological and non-biological surfaces. Biofilms allow
bacteria to survive and thrive in hostile environments as well as being associated
with chronic or persistent infections. Bacteria within biofilms can withstand host
immune responses and are less susceptible to antimicrobials and disinfectants.

EAEC form thick biofilms on the intestinal mucosa, and most EAEC strains
form a biofilm on glass or plastic surfaces when grown in cell culture medium with
high sugar and osmolarity. AAFs bind extracellular matrix proteins and show
species specificity in terms of erythrocyte agglutination, suggesting that this binding
specificity could impact on the efficiency and selectivity of biofilm formation.
Transposon mutagenesis confirmed the involvement of genes known to be required
for AAF/II expression, as well as the E. coli chromosomal fis gene, a DNA-binding
protein that is involved in growth phase-dependent regulation, in biofilm formation
(Sheikh et al. 2001). The incompatibility group (Inc) I1 plasmid of EAEC C1096
encodes a type IV pilus that contributes to plasmid conjugation, epithelial cell
adherence and adherence to abiotic surfaces, including via biofilm formation
(Dudley et al. 2006).
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When subjected to low iron conditions, an EAEC strain (042) showed a decrease
in biofilm formation. Conversely, an increase in biofilm formation was observed for
clinical EAEC strains cultured in restricted iron conditions, but the reduction of iron
concentration inhibited the aggregative adherence to HEp-2 cells of all EAEC
strains tested. Low iron availability may therefore modulate biofilm formation and
adhesive properties of EAEC as a result of redox stress (Alves et al. 2010).

AAF-mediated adhesion and biofilm formation are likely to be involved in both
clinical manifestations of infection and attachment to foodstuffs, such as lettuce after
irrigation or washing using water that has become contaminated with human faecal
waste (Berger et al. 2009; Castro-Rosas et al. 2012). Uropathogenic strains in par-
ticular may make use of biofilm formation to persist on epithelial surfaces and
canulae (Boll et al. 2013). A high proportion of EAEC strains associated with
travellers’ diarrhoea produce biofilms, as well as being highly antimicrobial-resistant
(Mohamed et al. 2007; Mendez Arancibia et al. 2009).

9 Antimicrobial Resistance

Although gastrointestinal symptoms associated with EAEC may persist for weeks,
infection is usually self-limiting and the standard recommended treatment is oral
rehydration therapy. However, the symptoms can be debilitating and have a high
socio-economic impact, especially in low-income settings, and treatment may be
sought if the diarrhoea and abdominal pain are severe and/or prolonged. Multidrug
resistance appears to be common in EAEC and geographically widespread.

Isolates of EAEC exhibiting high incidence of resistance to co-trimoxazole,
ampicillin and tetracyclines were detected in studies carried out in Africa and Asia
(Oundo et al. 2008; Chen et al. 2014). During a study in India between 2006 and
2007, an increase in isolates with resistance to quinolones was observed (Raju and
Ballal 2009). Resistance to ampicillin, cefotaxime (encoded by a CTX-M-15
b-lactamase), gentamicin, co-trimoxazole, nalidixic acid and ciprofloxacin has been
reported in EAEC isolates from travellers from India returning to Spain (Vila et al.
2001; Guiral et al. 2011). In studies in Central and South America from 2006 to
2007, the most common E. coli pathogens in cases of diarrhoea were EAEC (14%),
of which greater than 90% of isolates were resistant to antimicrobials (Ochoa et al.
2009).

In Europe, of 160 strains of E. coli identified as EAEC isolated from patients in
the UK with infectious intestinal disease or gastroenteritis between 1993 and 1996,
over 50% were resistant to one or more of eight antimicrobials, and 30 (19%) were
resistant to four or more drugs with one strain being resistant to eight antimicrobials
(Wilson et al. 2001). Multidrug-resistant isolates of EAEC have been described
elsewhere in Europe, notably in Poland and Spain (Sobieszczańska et al. 2003;
Mendez Arancibia et al. 2009)

The most frequently used first-line antimicrobials which have traditionally been
used for the treatment of travellers’ diarrhoea are ampicillin, co-trimoxazole,
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tetracyclines (doxycycline) and quinolones, due to their ready availability and
inexpensive cost (Kong et al. 2015). As EAEC have become increasingly resistant
to various antibiotics, selection of an appropriate antibiotic should take into account
the region of the world where the infection was acquired, as there are different
antimicrobial susceptibility patterns for each geographical region. EAEC infections
have been successfully treated with ciprofloxacin and other fluoroquinolones,
although this group of antimicrobials is not in general regarded as suitable for use in
children. The emergence of multiple antimicrobial-resistant strains often coupled
with resistance to quinolones and third-generation cephalosporins has compromised
treatment in some regions (Kong et al. 2015). The use of antimicrobials to eliminate
carriage of Stx-producing strains from patients or food handlers is still considered a
controversial treatment because of the risk of promoting the development of HUS
by stimulating Stx production (Siefert and Tarr 2012).

Of note for EAEC is the high occurrence of resistance to antimicrobials in
comparison with other E. coli pathotypes associated with food production animals,
specifically STEC. Although AMR has been identified in STEC from both human
infections (Day et al. 2017) and from cattle and beef products (Ennis et al. 2012),
resistance does appear to be less common than in EAEC isolates from cases of
human infection. Possible explanations for this anomaly may be related to either
differences in the innate propensity of STEC and EAEC strains to acquire and
maintain plasmids encoding for AMR, or to antimicrobial selective pressure, with
patients with EAEC infections more likely to have been exposed to antimicrobials
than cattle, the major reservoir of STEC.

10 Whole-Genome Sequencing

Whole-genome sequencing analysis has provided further evidence that EAEC are a
heterogeneous group of pathogens with respect to their genotypic characteristics.
This high level of genetic diversity is apparent at every level from the population
structure, to the genomic architecture of the pAA plasmid, and the presence and
absence of putative virulence genes and their variants on the plasmid and the
chromosome (Jenkins et al. 2005; Rasko et al. 2008; Dallman et al. 2014).

MLST and WGS data provide evidence that prevailing “successful” EAEC
lineages have evolved independently many times and are dispersed throughout the
entire E. coli population (Fig. 3). Pupo et al. (2000) suggested that strains of E. coli
act as genetic repositories with the ability to acquire DNA from multiple sources
and the ability to act as donors. The successful lineages, as defined by MLST
complex, appear to be globally distributed. There is some evidence that certain
lineages may be more pathogenic than others (Chattaway et al. 2014a, b).
ClonalFrame analysis showed that EAEC mutation and recombination rates vary
across the lineages and that both events play an important part in the evolution of
EAEC. Although the dataset was limited, Chattaway et al. (2014a, b) showed that
recombination rate was higher in the STs associated with disease. Analysis of WGS

42 C. Jenkins



data indicates that prophage and phage elements play a significant role in the
evolution of certain E. coli pathovars (Rasko et al. 2008).

The pAA is regarded as a defining feature of EAEC, but recent WGS analysis
has shown the pAA is associated with a wide range of plasmid replicon types and
that it has a diverse genomic architecture (Dallman et al. 2014). WGS data can also
be used to determine the presence or absence of all the major putative EAEC
virulence genes, including aggR, aat, aap, sepA, sigA, pic, aggregative adherence
fimbrial (AAF) types I–V and, more recently, a putative isopentenyl isomerise
(IDI) enzyme (Rasko et al. 2011). WGS data have also been used to determine the
integrity of the chromosomally encoded AAI operon and to provide information on
antibiotic resistance (Dallman et al. 2014).

As yet, WGS is not used routinely for the detection of EAEC either from human
faecal samples or from foods; however, the technology is progressing rapidly and
there is potential of WGS to be used for such purposes (Loman et al. 2013).
Multilocus sequence typing (MLST) and whole-genome sequencing (WGS) data
have made a significant contribution to our understanding of the evolution and
pathogenic potential of enteroaggregative E. coli (EAEC). The mosaic genomic
structure of EAEC facilitates horizontal gene transfer, and recombination is the
driving force for acquisition of novel genome features and potentially novel
pathogenic mechanisms. The EAEC pan-genome is considered open and is still
evolving by gene acquisition and diversification. This has significant public health
implications in terms of the diversity and pathogenesis of EAEC and its ability to
colonise and cause disease in the human host.

Fig. 3 Minimum spanning tree illustrating that EAEC lineages (highlighted in red) has evolved
independently many times and is dispersed throughout the E. coli population (Courtesy of Marie
Chattaway, Gastrointestinal Bacterial Reference Unit, Public Health England, London, UK)
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11 Summary

1. EAEC are a heterogeneous group of pathogens with respect to both phenotypic
and genotypic characteristics. The current model of EAEC pathogenesis
involves the initial adherence to the intestinal mucosa via aggregative adherence
fimbriae under the control of the transcriptional regulator, AggR, biofilm for-
mation on the surface of the enterocytes, secretion of toxins and induction of the
inflammatory response. Key virulence factors are encoded on the pAA or PAI
located on the chromosome.

2. Testing of food and faecal samples involves the detection of EAEC-associated
traits in the matrix or in enrichment culture from these matrices, followed by
isolation of the organism and confirmation of the presence of EAEC-associated
genes using PCR. The STEC EU-RL PCR assay for screening food samples and
faecal specimens targets the pAA-encoded aggR and aaiC which is located on
the chromosome, and is recommended for clinical diagnostic use.

3. EAEC are commonly associated with acute and chronic diarrhoeal illness
among children in both developing and developed and/or industrialised regions
and travellers with diarrhoea. Studies suggest EAEC are a major cause of
diarrhoeal disease. Increasing number of diagnostic microbiology laboratories
are implementing a PCR approach for the detection of EAEC in clinical cases
and foods, and this will improve the surveillance of EAEC disease.

4. There is no evidence that EAEC have a zoonotic reservoir but contamination of
the environment can occur in parts of the world where human sanitary systems
are insufficient and there is a high incidence of EAEC.

5. There is evidence in the literature of foodborne transmission of EAEC, and the
infection status of food handlers, including asymptomatic carriage of EAEC, and
hygienic conditions applied during the handling and processing of foodstuffs in
some countries may be an important factor in contamination of foods at retail,
catering or household level.

6. The ability to form biofilms is linked to the severity of human disease and is
likely to be involved in environmental survival.

7. Multidrug resistance appears to be common in EAEC and geographically
widespread. The emergence of multiple antimicrobial-resistant strains often
coupled with resistance to quinolones and third-generation cephalosporins has
compromised treatment in some regions.

8. Whole-genome sequencing analysis has provided evidence that EAEC exhibit a
high level of genetic diversity and that prevailing “successful” EAEC lineages
have evolved independently many times and are dispersed throughout the entire
E. coli population.

9. The mosaic genomic structure of EAEC facilitates horizontal gene transfer, and
recombination is the driving force for acquisition of novel genome features and
potentially novel pathogenic mechanisms. The emergence of mixed EAEC/
STEC pathotype E. coli is likely to be an ongoing low-frequency event and has
significant public health implications.
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