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Abstract Twin-arginine protein translocation systems (Tat) translocate fully fol-
ded and co-factor-containing proteins across biological membranes. In this review,
we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway
is composed of two components, namely a TatA and TatC pair, which are often
complemented with additional TatA-like proteins. We provide overviews of our
current understanding of Tat pathway composition and mechanistic aspects related
to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility,
requirements for the correct folding and incorporation of co-factors in cargo pro-
teins and the functions of known cargo proteins. Tat pathways of several
Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of
Bacillus subtilis. We discuss both shared and unique features of the different
Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future
research on Tat, including the development of this protein transport pathway for the
biotechnological secretion of high-value proteins and its potential applicability as
an antimicrobial drug target in pathogens.
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1 The Twin-Arginine Protein Translocation Pathway

The movement of substances across biological membranes is essential for the
growth, replication and survival of all living cells. In order to translocate substances
through these phospholipid bilayers a variety of diverse import and export systems
have evolved. One class of compounds that need to be translocated across mem-
branes are proteins. However, transporting proteins over a membrane is not enough
to guarantee their proper function, as proteins require correct folding and often
co-factors for full functionality. Consequently, there is an intimate relationship
between the protein translocation process and protein folding. Protein translocation
pathways ensure that substrates are folded either post-translocationally or
pre-translocationally. In the case of the Sec pathway for protein secretion, the
translocated proteins are folded after translocation (Tjalsma et al. 2000). In contrast,
twin-arginine translocation (Tat) pathways are known specifically for the ability to
move pre-folded and co-factor-containing proteins across membranes.
Translocation of large globular and tightly folded proteins across a membrane is no
small feat as the energy needed and the size of the membrane passage required is far
greater than that needed for translocating a loosely folded polypeptide chain by the
Sec pathway. Exactly how the Tat pathway is able to transport these globular
proteins without breaking the cellular barrier or destroying transmembrane ion
gradients (e.g. the proton-motive force) is perplexing and of great fundamental
scientific interest.

The Tat pathway is evolutionarily conserved in all the kingdoms of life. It is
present in 77 % of bacteria, in archaeal species and in the membranes of thylakoids
in plants and cyanobacteria (Chaddock et al. 1995; Hutcheon and Bolhuis 2003;
Simone et al. 2013). Remnants of the pathway have even been observed in sponges
(Pett and Lavrov 2013a). The focus of this chapter is the Gram-positive bacterial
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Tat pathway, where the folded proteins are moved from the cytoplasm into the
membrane, cell wall or extracellular milieu. Tat systems have been most exten-
sively studied in the Gram-negative bacterium Escherichia coli, but also in the
Gram-positive Bacillus and Corynebacterium species, and in pea thylakoids [re-
viewed in (Palmer and Berks 2012; Goosens et al. 2014b; Patel et al. 2014)].

What has become evident from comparing the various Tat systems is that they
are broadly conserved with a high degree of similarity between proteins and
mechanisms. For this reason, this review builds on and refers to observations made
in Tat systems from other species in addition to Gram-positive bacteria.

2 Tat-Dependent Cargo

The number of Tat-dependent cargo proteins ranges from over 100 in Streptomyces
species, to only a few in B. subtilis and Staphylococcus aureus and none in, for
example, Lactobacillus species (Schaerlaekens et al. 2001, 2004b; Widdick et al.
2006; Joshi et al. 2010; Yamada et al. 2007; Biswas et al. 2009; Goosens et al.
2013; Bolotin et al. 2001; Kleerebezem et al. 2003). These Tat-dependent cargo
proteins include secreted proteins, lipoproteins, cell wall-associated proteins and
proteins that form components of larger extracytoplasmic complexes on the
membrane surface (Widdick et al. 2011; Keller et al. 2012; Monteferrante et al.
2012b; Goosens et al. 2013; Miethke et al. 2013).

Cargo may be destined for the Tat pathway for numerous reasons. Many
Tat-dependent substrates are known to require complex co-factors for activity and
these are incorporated into the protein in the cytoplasm prior to membrane
translocation. Certain other proteins that bind divalent metal ions with affinity
ranges lower down in the Irving Williams series, such as Mn, may use the Tat
pathway to avoid competing ions with higher binding affinities, such as Zn (Tottey
et al. 2008; Monteferrante et al. 2012b). Extremophiles and archaea may need to
fold the proteins prior to secretion due to the harsh external milieus in which they
live (Bolhuis 2002; Rose et al. 2002). Further, some Tat-destined proteins form
multi-protein complexes that are translocated in a hitchhiker or piggyback manner
(Rodrigue et al. 1999; Friedrich et al. 2000; Wu et al. 2000a).

Tat substrates have been implicated in a wide range of cellular functions and in
the case of pathogenic bacteria they have been associated with virulence, antibiotic
resistance and antibacterial compounds (McDonough et al. 2005; De Buck et al.
2008; Weatherspoon-Griffin et al. 2011). Notably, certain industrially relevant
proteins are difficult to produce due to co-factor—or disulphide-bond requirements
and in some organisms, such as E. coli and Corynebacterium glutamicum, the Tat
pathway has been successfully used for export of these types of proteins, including
the alkaline phosphatase PhoA, carbohydrate oxidase, antibody fragments and
human tissue plasminogen activator (DeLisa et al. 2003; Kim et al. 2005; Bruser
2007; Ribnicky et al. 2007; Panahandeh et al. 2008; Maurer et al. 2009; Matos et al.
2013; Scheele et al. 2013). Also, the Tat system of Gram-positive bacteria has been
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used to secrete small enzymes (De Keersmaeker et al. 2006; Kikuchi et al. 2006,
2008; Scheele et al. 2013). However, biotechnological applications have not yet
taken full advantage of the potential of Gram-positive bacterial Tat systems.
Although the ability to secrete complex cargo directly into the fermentation broth is
enticing, production has been hampered by low yields possibly due to yet
unidentified quality control requirements.

In addition to a folded state, Tat cargo proteins also have a unique
‘twin-arginine’ signal peptide signature. In principle, the N-terminal signal peptides
of Tat substrates have a similar tripartite structure as the N-terminal signal peptides
of Sec substrates; they are made up of a polar N-region, a hydrophobic H-region in
the middle and a polar C-region next to the signal peptidase cleavage site (Tjalsma
et al. 2004). However, a distinguishing feature of Tat signal peptides is the presence
of two-arginine residues in the N-terminal region that form part of the consensus
motif SRRxFLK where x is a polar amino acid (Berks et al. 2000; Stanley et al.
2000; Tjalsma et al. 2004). Compared to Sec signal peptides, the Tat signal peptides
also tend to be longer, their N-terminal region is more positively charged (Tjalsma
et al. 2000), and their H-region is slightly less hydrophobic (Cristobal et al. 1999).
While the twin-arginine residues are conserved, mutation studies have shown that
changes in the motif result in a variation of phenotypes, ranging from completely
blocked to slowed down translocation of the cargo (Chaddock et al. 1995; DeLisa
et al. 2002; Mendel et al. 2008).

Several Tat prediction software programs are available, including TatFind and
PRED-TAT (Rose et al. 2002; Bendtsen et al. 2005; Bagos et al. 2010). However,
although the signal peptide region is important for translocation, amino acid
sequence motifs and patterns are not always reliable predictors, especially since Tat
cargo has also been associated with piggyback or hitchhiker mechanisms in
organisms like E. coli. Here, proteins without a signal peptide of their own bind to
the Tat substrate possessing the Tat signal peptide and are exported as a complex by
the machinery (Rodrigue et al. 1999; Wu et al. 2000a). Further, Sec–Tat substrate
overlap has been shown to occur and sequence ambiguity can lead to false-positive
identifications (Tjalsma et al. 2000; Jongbloed et al. 2002; Kouwen et al. 2009;
Keller et al. 2012; Goosens et al. 2013). Therefore, although bioinformatic tools are
invaluable for lead finding, potential Tat substrates need to be confirmed
experimentally.

3 Tat Components and Processes

Genes for the Tat system are observed in 77 % of sequenced microbial genomes.
The respective organisms typically contain a TatA and TatC pair (Fig. 1), which are
often encoded by genes found within a single operon (Wu et al. 2000b; Yen et al.
2002; Simone et al. 2013). Such tatA-tatC operons are occasionally located in the
vicinity of genes for Tat cargo proteins (Jongbloed et al. 2000, 2004; Biswas et al.
2009).

72 V.J. Goosens and J.M. van Dijl



Fig. 1 Tat components and interactions of Tat complexes with their cargo. Tat protein
translocases are essentially composed of two types of subunits, namely TatA-like proteins and
TatC, which have distinct membrane topologies (upper panel). TatA-like proteins (indicated in
orange and red) have an Nout–Cin topology and consist of two helical domains, one of which spans
the membrane while the other one (amphipathic) is exposed to the cytoplasm. TatC is an integral
membrane protein with six transmembrane domains and an Nin–Cin topology. The translocation
process is believed to involve two major Tat complexes, namely a docking complex (middle panel)
and a translocation complex (lower panel). The docking complex is composed of TatC and a
TatA-like protein (red). In some organisms, such as E. coli, the latter TatA-like protein has a
specialized docking function in which case it is referred to as TatB. Docking of cargo proteins
(green) involves interaction of the twin-arginine signal peptide (purple) with TatC. Once the cargo
protein has docked, a large number of TatA-like proteins (orange) are recruited to the translocation
site, thereby forming the translocation complex
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3.1 TatA, TatA-like and TatC Proteins

TatA and TatA-like proteins are small membrane proteins with an N-out C-in
topology. They have a small N-terminal extracytoplasmic domain, a single trans-
membrane helix and an amphipathic helix that lies on the membrane surface or is
partially embedded in the membrane on the cytoplasmic side (Fig. 1) (Lange et al.
2007; Hu et al. 2010; Walther et al. 2010). In numerous species, tatA genes have
undergone multiple duplication events forming the tatA-like genes, and these are
found in the main tat operon or elsewhere in the genome (Wu et al. 2000b; Yen
et al. 2002). Some TatA-like proteins can simply be duplicate TatA proteins, such
as TatE or TatA2 in Corynebacterium species, Streptomyces coelicolor, Salmonella
enterica and E. coli (Sargent et al. 1999; Ikeda and Nakagawa 2003; Kalinowski
et al. 2003; Nishio et al. 2003; Baglieri et al. 2012). In B. subtilis and C. glu-
tamicum, the expression of the duplicate proteins TatAc and TatE, respectively, has
been shown to assist the activity of the primary TatA protein (Kikuchi et al. 2006;
Goosens et al. 2015). However, in some instances, duplicate TatA-like proteins
(often referred to as TatB) have further undergone sequence divergence and
functional specialization. This seems to have occurred independently numerous
times. TatA-like proteins with divergent functions, such as TatB have been studied
in E. coli, Streptomyces species and in the thylakoids of plant chloroplasts (where
they are referred to as Hcf106). In these organisms, both TatA and TatB are needed
for full translocation activity (Sargent et al. 1999; Mori and Cline 2001;
Schaerlaekens et al. 2001; De Keersmaeker et al. 2005a). Intriguingly, certain TatA
proteins (e.g. the TatA proteins from B. subtilis) are able to functionally replace
both E. coli TatA and TatB in the TatA-B-C system (Barnett et al. 2008). This is
even more remarkable since TatA shares only 20 % sequence similarity with TatB
although the E. coli TatA and TatB are structurally the same (Hicks et al. 2003;
Lange et al. 2007; Hu et al. 2010; Walther et al. 2010). Nevertheless, minor changes
to E. coli TatA allow it to complement for TatB (Blaudeck et al. 2005; Barrett et al.
2007). Therefore, no clear definition exists that allows one to properly differentiate
TatA from TatB, and in many sequence annotations where a second TatA-like
protein has been defined as TatB, this annotation may be erroneous. Importantly,
over 50 % of the Tat-encoding genomes sequenced to date specify only a
TatA-TatC component (Simone et al. 2013). Accordingly, the concept that a core
Tat system composed of a core TatA-TatC pair with various assistant TatA-like
proteins is gaining more support. This view is backed by studies in B. subtilis,
where a third TatA protein (TatAc) was shown to assist TatAy in protein translo-
cation, and in Helicobacter pylori, Campylobacter jejuni, and C. glutamicum where
a second TatA-like protein was shown to be essential only under some conditions of
Tat-dependent protein translocation but not all (Kikuchi et al. 2006; Benoit and
Maier 2014; Liu et al. 2014; Goosens et al. 2015; Oertel et al. 2015). Thus, in many
organisms, it is not necessary to have a TatB as is found in E. coli and thylakoids,
which have TatA, TatB and TatC subunits, each with their own function.
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Unlike TatA, TatC proteins are large integral membrane proteins with six
membrane-spanning domains (Fig. 1). TatC is central to the Tat pathway as is
evident by the multiple protein interactions in which this protein is involved. The
TatC transmembrane regions interact with other TatC proteins (Buchanan et al.
2002; Punginelli et al. 2007), but also with the cargo protein (Behrendt et al. 2004;
Frobel et al. 2012). Both the cargo protein and TatA(-like) proteins (e.g. E. coli
TatB) have been shown to interact with the membrane-embedded region of TatC
and its conserved cytoplasmic loop (Buchanan et al. 2002; McDevitt et al. 2006;
Schreiber et al. 2006; Holzapfel et al. 2007; Strauch and Georgiou 2007; Frobel
et al. 2011; Zoufaly et al. 2012; Ma and Cline 2013; Blümmel et al. 2015).
Although the extracytoplasmic loops do not share high sequence similarity, random
mutagenesis studies showed that the conserved secondary structure is vital (Strauch
and Georgiou 2007; Kneuper et al. 2012). Further, the C-terminal tail of TatC has
been shown to be essential for successful Tat-dependent protein translocation in B.
subtilis (Eijlander et al. 2009b).

3.2 Translocation Process

The mechanism of translocating cargo proteins via the Tat pathway has not been
concretely defined. However, what is currently agreed upon is that there are at least
two Tat complexes and at least three steps to the process (Cline and Mori 2001).
The first step, the formation of a docking complex, is initiated when cargo proteins
interact with a TatC and TatA(-like) complex at the membrane (Fig. 1) (Bolhuis
et al. 2001; Whitaker et al. 2012). In E. coli and thylakoids, this is where the
(TatA-like) TatB proteins perform their specialized functions. The signal peptide of
the cargo protein directly interacts with TatC in the docking complex and is inserted
into the membrane after proofreading (Cline and Mori 2001; Alami et al. 2003;
Papish et al. 2003; Robinson et al. 2011; Frobel et al. 2012). In the second step, the
translocation complex is formed. This occurs once the cargo protein has ‘docked’,
and a large number of TatA proteins are recruited to the translocation site in a
manner that is dependent on the proton-motive force, thereby forming the
translocation complex (Fig. 1) (Mori and Cline 2002; Alami et al. 2003;
Dabney-Smith et al. 2006). The final step is the translocation itself, but how this
occurs is not clear. A recent study by Blümmel et al. (2015) indicates that TatBC
oligomers can assemble into closed intramembrane substrate-binding cavities,
where TatB monomers would form dome-like structures that are surrounded by
TatC monomers. These TatBC complexes would bind the N-termini of TatA pro-
tomers facilitating contacts with TatB and membrane-inserted cargo proteins.

There are two popular translocation models, which are both speculative: the pore
and the membrane-weakening models [reviewed in (Berks 2015; Patel et al. 2014)].
Both models are supported by data and, depending on their interpretation, some
results are used to reinforce either. The pore model was conceived based upon
single particle electron microscopy studies that showed TatA and TatA-like proteins

Twin-Arginine Protein Translocation 75



self-assemble to form cup-like structures or pores with varying diameters (Gohlke
et al. 2005; Oates et al. 2005; Beck et al. 2013). Consistent with this model, the
E. coli TatA complexes have been shown to form ladders of multiple sizes in native
gels (Gohlke et al. 2005; Oates et al. 2005; Beck et al. 2013) giving rise to the
hypothesis that a pore made up of TatA proteins adapts its diameter to the globular
cargo by varying the amount of TatA components (Fig. 1). The theory goes that
TatA-cargo protein interactions within the cup-like TatA structure allow for
translocation by the folding-in (trap-door mechanism) or twisting (iris mechanism)
of the amphipathic helix of TatA up into the membrane (Berks et al. 2000; Gouffi
et al. 2004; Gohlke et al. 2005; Walther et al. 2013). In contrast, the
membrane-weakening model predicts that the TatA complexes observed by electron
microscopy do not form a pore, but that the aggregates of TatA proteins form
destabilised membrane regions that permit cargo passage (Bruser and Sanders
2003). Data that support this include the length of the TatA transmembrane region,
which is too short to span the lipid bilayer (Rodriguez et al. 2013). Also, the B.
subtilis TatAd complexes observed by single particle electron microscopy were
structurally too small to represent pores that can accommodate a substrate (Beck
et al. 2013). Other evidence not consistent with the pore model is that the large size
variation and laddering effect seen in E. coli TatA complexes have not been con-
vincingly observed for other TatA and TatA-like proteins (Baglieri et al. 2012;
Monteferrante et al. 2012a; Walther et al. 2013). Moreover, NMR studies suggest
that, because the TatA amphipathic helix is not flexible (Walther et al. 2010), the
movement of the amphipathic helix into the membrane would have to be sudden
and, most likely, disruptive. Another piece of evidence that seems to support the
membrane-weakening model is the involvement of the phage shock protein PspA in
Tat-dependent protein transport. For example, PspA has been implicated in the
stabilization of the membrane under stress conditions (Darwin 2005; Vrancken
et al. 2008) and in suppressing proton leakage (Kobayashi et al. 2007). PspA binds
both E. coli TatA (Mehner et al. 2012) and phospholipids (Kobayashi et al. 2007)
forming scaffold-like structures in the membrane (Standar et al. 2008). The possible
involvement of PspA in Tat-dependent protein transport suggests that the translo-
cation event induces stress. Importantly, expression of PspA has been shown to
improve Tat-dependent protein secretion in both S. lividans and E. coli and, hence,
its role in suppressing proton leakage that may occur in the Tat export process may
be conserved in both Gram-positive and Gram-negative bacteria (DeLisa et al.
2004; Vrancken et al. 2007).

4 Cargo protein Processing and Quality Control

A defining feature of Tat is its inability to translocate incorrectly folded proteins.
Although a small amount of flexibility has been described for small synthetic
peptides (Hynds et al. 1998; Richter et al. 2007; Rocco et al. 2012), the system is
known to have strict folding requirements regarding its native substrates. If a
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protein is not sufficiently folded or does not have its co-factors inserted, the
translocation is prevented and the protein is degraded (Jack et al. 2004; Kolkman
et al. 2008; Matos et al. 2008). Protein folding, co-factor insertion and quality
control prior to Tat complex interactions are therefore considered important for
cargo translocation. The quality control step has been shown to occur at the docking
complex (Buchanan et al. 2008; Panahandeh et al. 2008; Frobel et al. 2012; Rocco
et al. 2012). Further evidence of quality control prior to docking complex formation
has been clearly described in E. coli, where a number of substrate-specific chap-
erones have been identified (Oresnik et al. 2001; Jack et al. 2004). However,
homologous chaperones have not been characterized in other organisms, and it
remains unclear which factors may be involved in pre-translocational protein
folding and quality control prior to docking-complex interactions in Gram-positive
bacteria. Nonetheless, in B. subtilis the Tat-dependent QcrA protein was shown to
undergo quality control at two subcellular locations, in the cytoplasm and mem-
brane, and on two different pre-QcrA intermediates. While neither of the pre-QcrA
proteins were translocated, pre-QcrA quality control occurred both at the mem-
brane, where the Tat-docking complex is shown to perform proofreading functions,
and in the cytoplasm via an as-yet-unknown mechanism (Goosens et al. 2014a).
Quantitative proteomic studies have implicated the membrane-targeting chaperone
DnaJ and co-factor assembly protein SufS with the Tat pathway in B. subtilis
(Albrecht et al. 2011; Goosens et al. 2013; Castanie-Cornet et al. 2014). However,
functional studies are still required to confirm these links. What has clearly been
shown is a direct interaction between the B. subtilis TatAd protein and the soluble
chemoreceptor HemAT, and between TatAd and the putative pentose transporter
CsbC within the membrane. Not only do HemAT and CsbC individually interact
with TatAd, but they are also essential for the secretion of the TatAd-specific cargo
protein PhoD (Monteferrante et al. 2013). Exactly what the roles of these proteins in
the PhoD quality control and Tat-dependent export pathway are remained unclear.

It has been suggested that the Tat-associated quality control is linked to a pool of
cytoplasmic TatA (Pop et al. 2003; De Keersmaeker et al. 2005a, b; Schreiber et al.
2006; Westermann et al. 2006; De Keersmaeker et al. 2007; Frielingsdorf et al.
2008). In this model, the cytoplasmic TatA of B. subtilis, Streptomyces lividans or
thylakoids interacts with cargo prior to translocation and guides it to the docking
complex in the membrane. Also, overexpressed TatA molecules have been
observed to form distinct tubes in the cytoplasm (Berthelmann et al. 2008).
However, since the cytoplasmic TatA-cargo protein interaction has only been
observed under induced circumstances and the presence of TatA in the cytoplasm
has not been shown consistently under all experimental methodologies, future
studies will need to verify the possible quality control function of cytoplasmic TatA
(Wexler et al. 2000; Barnett et al. 2008; Leake et al. 2008; Barnett et al. 2009;
Ridder et al. 2009).

Other steps in the quality control of Tat-dependent cargo proteins occur during
or shortly after membrane translocation. In particular, these include the removal of
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the twin-arginine signal peptide by signal peptidases, which has been widely
observed (Jongbloed et al. 2004; Luke et al. 2009; Widdick et al. 2011; Goosens
et al. 2013). In addition to signal peptidases, extracytoplasmic proteases have also
been shown to effect the Tat-dependent cargo protein EfeB in B. subtilis. EfeB
directly interacts with and requires the cell wall-bound protease WprA for pro-
cessing (Monteferrante et al. 2013), but is degraded by extracellular proteases in the
growth medium (Krishnappa et al. 2012). EfeB forms part of a membrane-bound
complex with the EfeU and EfeO proteins, and the association with extracellular
proteases is an indication of a possible assembly proofreading mechanism
(Monteferrante et al. 2013).

5 Flexibility of the Tat System Between Different
Organisms

Expression of B. subtilis Tat components in E. coli leads to Tat-dependent export
and functionally replaces the Tat pathway in E. coli (Barnett et al. 2008, 2009;
Monteferrante et al. 2012a; van der Ploeg et al. 2012). Single B. subtilis tatA genes
are able to functionally replace both the E. coli TatA and TatB proteins (Barnett
et al. 2008; Monteferrante et al. 2012a; Beck et al. 2013). However, when similar
interspecies experiments were performed in a B. subtilis background, comple-
mentation was not that simple. Although the Tat systems from Bacillus cereus and
Listeria monocytogenes were functional in B. subtilis, the Tat system from S.
aureus was barely active in B. subtilis (Barnett et al. 2008, 2009; van der Ploeg
et al. 2011a, 2012). These differences suggest that the Tat pathway alone is not
enough to ensure complete translocation and possible chaperone or quality control
mechanisms in E. coli and S. aureus do not match up with those in B. subtilis.

Interspecies variations have also been observed with regard to the export of
cargo proteins. The addition of a Tat signal peptide to a cargo protein has allowed
for heterologous Tat-dependent translocation in many cases, but this does not
always equally prove successful in all genetic backgrounds and with all cargo
(Thiemann et al. 2006; Meissner et al. 2007; Kikuchi et al. 2008; Widdick et al.
2008; Scheele et al. 2013). Environmental salt (i.e. NaCl) conditions also affected
the Tat-dependent export of cargo that was heterologously expressed in B. subtilis
suggesting external conditions and media may affect Tat-dependent secretion (van
der Ploeg et al. 2011a, 2012). However, the environmental salt concentration did
not significantly affect the amount of Tat-dependently translocated QcrA in B.
subtilis (Goosens et al. 2015). The influence of salt on the translocation of other
cargo is therefore not necessarily an intrinsic Tat effect.

78 V.J. Goosens and J.M. van Dijl



6 Monoderm Gram-Positive Bacterial Tat Systems

Bacterial phyla are broadly defined by the physical properties of the outer layer of
their cell structure. In most cases, bacteria are classified by the outcome of so-called
Gram staining. The Gram staining procedure was developed in the late nineteenth
century and works by interaction of the stain with the peptidoglycan of the cell wall.
The stain is either retained by the peptidoglycan, giving cells a purple colour, or
washed out. Accordingly, this gave rise to the common nomenclature of
Gram-positive bacteria where the stain is retained, or Gram-negative bacteria where
the stain is not retained. The Gram-positive bacteria have a single plasma mem-
brane surrounded by a thick outer cell wall composed of peptidoglycan (i.e. a
monoderm cell envelope). In contrast, Gram-negative bacteria have a double
membrane with a peptidoglycan layer in between (i.e. a diderm cell envelope).
Although the Gram-staining-based nomenclature is generally a good indicator of
the physical properties of the outer layer of cells, it can be ambiguous. Some
bacteria stain positive, but do in fact have a diderm cell envelope structure. Such
bacteria include mycobacteria, corynebacteria, rhodococci and nocardiae. The Tat
systems of these diderm Gram-positive bacteria will not be detailed here, as they
have been reviewed previously (Goosens et al. 2014b) and not much new infor-
mation has become available since this review was published.

6.1 Bacillus subtilis

Bacillus subtilis is the major Gram-positive model organism with an extensive array
of genetic tools, including in-depth genomic, transcriptomic and proteomic insights
(Kunst et al. 1997; Tjalsma et al. 2000; Eymann et al. 2004; Wolff et al. 2007;
Buescher et al. 2012; Nicolas et al. 2012). A number of Bacillus species are
biotechnologically relevant. B. subtilis, Bacillus licheniformis and Bacillus amy-
loliquefaciens, for example, have the ability to secrete large titres of proteins,
qualify for the Qualified Presumption of Safety (QPS) status of the European Food
Safety Authority, and many of their products have a Generally Recognized As Safe
(GRAS) status from the US Food and Drug Administration. Furthermore, B. subtilis
becomes naturally competent, thereby allowing for easy genetic modification
(Tjalsma et al. 2000; van Dijl et al. 2002; Graumann 2011).

The B. subtilis Tat system is one of the most extensively studied Tat systems
within the field, because it has unique characteristics in particular relating to gene
duplication. As indicated above, duplication of TatA and TatA-like proteins is a
common feature in most Tat systems. However, the duplication of TatC proteins is
rare except in Bacillus species, where multiple isoforms of TatC have been
observed (Jongbloed et al. 2000; Yen et al. 2002; Simone et al. 2013).

The core progenitor operon in B. subtilis is tatAy-tatCy (Simone et al. 2013).
This operon has been duplicated and, consequently, there is a second separate tat
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operon named tatAd-tatCd. Thus, B. subtilis Tat is specified by two separate
operons, which are expressed at different times and, under normal conditions, do
not share substrate specificity (Jongbloed et al. 2004; Eijlander et al. 2009a; Nicolas
et al. 2012; Goosens et al. 2013). The predominant Tat pathway is TatAy-TatCy
and, although an early bioinformatics analysis has predicted up to 69 potential
Tat-dependent substrates, only three substrates have been confirmed to be strictly
TatAy-TatCy-dependent, namely EfeB, QcrA and YkuE (Tjalsma et al. 2000;
Jongbloed et al. 2002, 2004; Monteferrante et al. 2012b; Goosens et al. 2013). The
genes for the second B. subtilis Tat pathway, TatAd-TatCd, are found next to the
gene for its only known substrate, the phosphate acquisition protein PhoD.
Accordingly, the tatAd-tatCd operon is only expressed under low-phosphate con-
ditions (Eder et al. 1996; Jongbloed et al. 2000, 2004; Nicolas et al. 2012).

Apart from duplicating the whole tatAy-tatCy operon, the Tat system of B.
subtilis has a further tatA duplication, namely tatAc. This third tatA gene is located
elsewhere on the chromosome, and it is expressed constitutively under numerous
conditions (Nicolas et al. 2012). Although it was investigated in several studies, a
physiological role for TatAc has, until recently, remained enigmatic (Tjalsma et al.
2000; Jongbloed et al. 2002, 2004; Eijlander et al. 2009a; Nicolas et al. 2012).
TatAc is unable to form an active translocon when paired with TatC proteins in B.
subtilis (Eijlander et al. 2009a; Goosens et al. 2015). However, when expressed in
E. coli, TatAc formed functional translocases with either E. coli TatBC, B. subtilis
TatCd or B. subtilis TatCy (Monteferrante et al. 2012a; Beck et al. 2013). This
difference illustrates the interpathway flexibility of E. coli and further suggests
potentially different quality control or chaperone activities in the Tat pathways of B.
subtilis and E. coli. Yeast two-hybrid (Y2H) protein–protein interaction studies
have shown that not only does TatAc interact with itself and the B. subtilis TatA
proteins, but it also directly interacts with HemAT (Monteferrante et al. 2013).
HemAT was in turn shown to be essential for the Tat-dependent secretion of PhoD,
which therefore suggested a functional role for TatAc in B. subtilis (Monteferrante
et al. 2013). A functional role for TatAc as a Tat-assistance protein was confirmed
when it was shown to permit the translocation of EfeB in cells with an impaired
TatAy function, despite the fact that TatAc was unable to replace TatAy (Goosens
et al. 2015). It thus seems that TatAc, the third TatA-like protein of B. subtilis,
reflects an intermediate evolutionary step in TatA-TatB specialization. In this
scenario, the presently available data suggest that the defective TatAy protein has a
role that is comparable to that of E. coli TatB, while TatAc has a role similar to that
of E. coli TatA. Altogether, it can be concluded that the core Tat translocon in B.
subtilis is composed of a TatAy-TatCy pair and that the TatAc protein has a
non-essential assistant role in translocation. For example, TatAc could allow for
more efficient cargo-Tat protein–protein interactions, and it might improve the
overall efficiency of the Tat pathway (Goosens et al. 2015).

All confirmed B. subtilis Tat-dependent cargo proteins are known to contain
co-factors, thereby emphasizing their need for the Tat pathway (Schneider and
Schmidt 2005; Monteferrante et al. 2012b; Miethke et al. 2013; Rodriguez et al.
2014). Further, QcrA contains a disulphide bond in addition to its iron-sulphur
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cluster (Iwata et al. 1996; Link et al. 1996; Schmidt and Shaw 2001;
Hunsicker-Wang et al. 2003). Of note, QcrA has been observed to be a
Tat-dependent substrate in a wide-range of organisms (Molik et al. 2001;
Bachmann et al. 2006; De Buck et al. 2007; Goosens et al. 2013; Pett and Lavrov
2013b; Oertel et al. 2015). Both QcrA and EfeB form part of larger extracyto-
plasmic complexes, where the QcrA-B-C proteins form the cytochrome bc1 com-
plex, whereas the EfeU-O-B proteins form an iron uptake system. This organization
of Tat-dependent substrate proteins into larger complexes further suggests that the
Tat pathway assists in protein complex assembly (Yu et al. 1995; Schneider and
Schmidt 2005; Miethke et al. 2013; Sousa et al. 2013). The extracellular protease
WprA also directly affects EfeB and indirectly influences YkuE (Monteferrante
et al. 2013). The action of WprA may thus be associated with this complex
maturation.

Most of the observed phenotypes associated with Tat-deficiencies have been
linked directly to the known substrates, i.e. PhoD is required under phosphate
starvation and EfeB is required under conditions of iron deficiency and low salt
(Jongbloed et al. 2000; van der Ploeg et al. 2011b). However, quantitative pro-
teomic studies revealed that numerous proteins associated with motility and biofilm
formation were decreased in tatAy-tatCy deficient strains, leading to the identifi-
cation of an, as-yet, not-well-understood Tat-associated delayed biofilm formation
phenotype (Goosens et al. 2013). Most studies investigating Tat have used Western
blotting techniques to validate Tat-dependency of substrates. Although this remains
the golden standard and a powerful tool, it does not give an indication of whether
the protein is correctly folded and active. In the B. subtilis studies, the activity of
cargo proteins was determined using the alkaline phosphatase activity of YkuE
(Monteferrante et al. 2012b) and the ferric iron uptake to assess EfeB activity
(Miethke et al. 2013; Goosens et al. 2015). EfeB is a hemoprotein that oxidizes
ferrous iron to ferric iron for uptake via EfeU and EfeO. For this reason, EfeB
stimulates growth under microaerobic conditions where ferrous iron is more
abundant. In addition, EfeB was shown to have an important role in the protection
against cell envelope stress through the elimination of reactive oxygen species that
are generated in the presence of ferrous iron (Miethke et al. 2013).

6.2 Streptomyces

Streptomyces species are found naturally in the soil where they often form mycelia.
These bacteria have become workhorses for industry as they can be used for the
high-level production of various antibiotics and secreted proteins (Anne et al.
2012). The Tat system is a major contributor to overall protein secretion in these
species with numbers of potential substrates ranging between 100 and 189
(Widdick et al. 2006; Joshi et al. 2010; Palmer and Berks 2012). The Tat system in
Streptomyces species is composed of at least three Tat components, where the genes
for a minimal TatA-TatC system are found clustered and the gene for an extra
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TatA-like protein (depending on the species, these are called TatB or TatA2) is
located elsewhere on the chromosome (Schaerlaekens et al. 2001; Palmer and Berks
2012). Crosstalk between the Sec and Tat pathways has been observed in the sense
that Sec-dependent secretion was enhanced by a mutated Tat system or reduced by
an overexpressed Tat system (Schaerlaekens et al. 2004a; De Keersmaeker et al.
2006).

In S. lividans, optimal secretion of the Tat-dependent substrates xylanase C and
tyrosinase occurred when all three Tat components were present. Secretion did still
occur when a single TatA or TatB protein was paired with TatC, albeit at lowered
efficiency. It was therefore concluded that the TatA-like proteins in Streptomyces
were unable to fully functionally replace each other and that each must have a
specialized function (De Keersmaeker et al. 2005a). A very interesting observation
made in S. lividans was that both TatA and TatB proteins were detected in the
cytoplasm under native conditions (De Keersmaeker et al. 2005b), and when
expression was induced these TatA-like proteins apparently interacted with
Tat-dependent cytoplasmic pre-proteins (De Keersmaeker et al. 2005a, 2007).

6.3 Staphylococcus

Not all Staphylococcus species have a Tat pathway. However, this pathway has
been identified in Staphylococcus haemolyticus, Staphylococcus carnosus,
Staphylococcus lugdunensis and S. aureus (Biswas et al. 2009). The staphylococcal
Tat pathway is composed of a single TatA–TatC pair. This Tat pathway has been
investigated for biotechnological applications in S. carnosus and, although shown
to secrete heterologous proteins, it was considered inadequate for the required
applications (Thiemann et al. 2006; Meissner et al. 2007). To date, only one native
Tat-dependent staphylococcal substrate, FepB, has been confirmed, and inactivation
of the Tat system did not show any global changes in protein secretion profiles
(Yamada et al. 2007; Biswas et al. 2009). FepB is an iron-dependent peroxidase
encoded by the fepABC operon, and the corresponding complex is very similar to
the iron-scavenging EfeUOB complexes in E. coli, B. subtilis and L. monocyto-
genes (Biswas et al. 2009; Miethke et al. 2013; Turlin et al. 2013). Interestingly, in
a mouse kidney abscess model, the bacterial load of tat or fepB mutant strains was
shown to be decreased, thereby pointing at a physiologically relevant role of
Tat-dependent export of FepB in staphylococcal disease (Biswas et al. 2009).

6.4 Listeria monocytogenes

Listeria monocytogenes is a saprophytic bacterium that, once it has entered the food
chain, becomes a dangerous food-borne pathogen. The Listeria Tat system is
composed of a TatA–TatC pair (Desvaux and Hebraud 2006; Machado et al. 2013).
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In strains where tat genes were deleted, no significant changes in cell viability or
virulence have been described (Machado et al. 2013; Halbedel et al. 2014).
Bioinformatic analysis predicted two potential Tat-dependent substrates, namely
FepB (Lmo0367) and a FabF-like protein (Lmo2201) (Desvaux and Hebraud
2006). However, when these proteins were tagged and expressed neither was
Tat-dependent (Halbedel et al. 2014). Nonetheless, the FepB signal peptide was
shown to confer Tat-dependent secretion in the S. lividans agarase reporter assay,
and both a tatC and fepB mutant strain displayed decreased overall ferric reductase
activity (Widdick et al. 2008; Tiwari et al. 2015). Hence, there is evidence of a
FepB-Tat association, but none of the currently available data confirms a direct
Tat-dependency. The fepB gene is co-transcribed in an iron-induced fepCAB
operon, which is also Fur-regulated (Ledala et al. 2010; Tiwari et al. 2015).
Although the tat operon is transcribed in the early exponential phase in rich
medium, it is Fur-regulated and highly induced under iron starvation conditions
(Ledala et al. 2010; Machado et al. 2013; Tiwari et al. 2015). Therefore, it is
conceivable that, in order to detect the possible Tat-dependency of FepB, envi-
ronmental conditions with low iron availability may be required, or as in B. subtilis,
other environmental conditions such as low salt (van der Ploeg et al. 2011b;
Goosens et al. 2015). In fact, the Listeria fepCAB operon is highly reminiscent of
the Tat-associated fepABC and efeUOB operons in S. aureus and B. subtilis,
respectively. Accordingly, there appears to be a conservation of the Tat requirement
in these iron-scavenging complexes.

6.5 Streptococcus

The majority of Streptococcus species studied have no identifiable Tat components.
However, genes encoding a TatA and TatC protein have been identified in
Streptococcus sanguinis and Streptococcus thermophilus. Intriguingly, in both S.
sanguinis and S. thermophilus these tat genes are localized in close genomic
proximity to three genes that resemble the efeUOB, fepCAB and fepABC operons of
B. subtilis, Listeria and Staphylococcus, respectively. Further, in both
Streptococcus species, the EfeB-like iron-dependent peroxidase contains a
twin-arginine motif in the signal peptide. In the facultative anaerobe S. ther-
mophilus, EfeB was shown to be translocated by the Tat system, and mutation of
efeB or tatC resulted in decreased growth under aerobic conditions, suggesting that
the respective proteins have a role in protecting the cell against oxidative stress (Xu
et al. 2007; Zhang et al. 2015).
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7 Conclusion

The investigations on the Tat pathways of Gram-positive bacteria, as described in
this review, suggest a general association between the Tat pathway and
iron-scavenging complexes, phosphate acquisition and respiratory complexes.
Intriguingly, phylogenetic analyses of TatC showed that 89 % of species that have
TatC are either facultative aerobes, or facultative or obligate anaerobes, while only
11 % are obligate aerobes (Simone et al. 2013). Thus, the majority of organisms
with a Tat system find themselves in anaerobic environments. Of note, anaerobic
bacteria and anaerobic growth are, over all, relatively poorly characterized. It thus
seems likely that the full potential of the Tat pathway and the spectrum of biological
functions that it fulfils are currently substantially underappreciated. With this in
mind, an important challenge for future Tat-related research could be the explo-
ration of this pathway in the microbiota of the human gut. Here bacteria, many of
which are Firmicutes, need to thrive and survive in a challenging anaerobic envi-
ronment that continuously changes depending on the ingestion of different nutrients
by the host, continuous flow-through and influx of oxygen from the gut epithelium
(Khan et al. 2012). Indeed, sequence analyses have shown that various dominant
gut microbes do contain tat genes, and it would be interesting to explore their
functions and find out whether they are conditionally essential.

The Tat system is known to be essential in only a few bacteria (Palmer and Berks
2012), including Mycobacterium tuberculosis where Tat has been shown to be
important for drug resistance and virulence (Raynaud et al. 2002; McDonough et al.
2005). Yet, gene essentiality is often condition-dependent and this also applies to
some tat genes as exemplified in B. subtilis, where the absence of the tatAy-tatCy
operon leads to severe growth impairment in salt- or iron-depleted environments.
This conditional essentiality implies that Tat is a potentially druggable target in
notoriously drug-resistant pathogens, such as M. tuberculosis.

Today, there are various areas in the Tat field that merit further research, some of
which have been touched upon in the present review. For example, this applies to
the condition-dependent regulation of tat gene expression, including possible roles
of antisense RNAs and small non-coding regulatory RNAs. In this respect, it is
worth mentioning recent studies, showing that the non-coding RNA Mcr7 of M.
tuberculosis modulates TatC expression, thereby serving as an intriguing new Tat
secretion control mechanism (Solans et al. 2014). Other major knowledge gaps
concerning the Tat pathways of Gram-positive bacteria relate to the chaperones that
guide cargo folding and cofactor insertion, quality control of cargo prior to mem-
brane translocation, the actual mechanism of Tat-mediated translocation of cargo
across the membrane, and post-translocational cargo processing and quality control.
Research into these areas will be important, not only to enrich our fundamental
understanding of protein translocation mechanisms, but also to open up the enig-
matic Tat pathway for the biotechnological secretion of high-value proteins, and to
explore the potential of Tat as an antimicrobial drug target.
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