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Abstract Bacteria have been by far the most promising resource for antibiotics in
the past decades and will in all undoubtedly remain an important resource of
innovative bioactive natural products in the future. Actinobacteria have been
screened for many years, whereas the Myxobacteria have been underestimated in
the past. Even though Actinobacteria belong to the Gram-positive and
Myxobacteria to the Gram-negative bacteria both groups have a number of similar
characters, as they both have huge genomes with in some cases more than 10kB and
a high GC content and they both can differentiate and have often cell cycles
including the formation of spores. Actinobacteria have been used for the antibiotic
research for many years, hence it is often discussed whether this resource has now
been exhaustively exploited but most of the screening programs from pharma-
ceutical companies were basing on the cultivation mainly of members of the genus
Streptomyces or Streptomyces like strains (e.g., some Saccharopolyspora,
Amycolatopsis or Actinomadura species) by use of standard methods so that many
of the so called “neglected” Actinobacteria were overlooked the whole time. The
present review gives an overview on the state of the art regarding new bioactive
compounds with a focus on the marine habitats. Furthermore, the evaluation of
Myxobacteria in our ongoing search for novel anti-infectives is highlighted.
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1 Marine Actinobacteria

1.1 Introduction

Over the last years, the commercial natural product research came back into focus
because “the pipeline for new antibiotics is running dangerously low” (Fenical and
Jensen 2006). While the rate of newly discovered antibiotics from soil inhabiting
Actinobacteria decreased, the rate of re-isolation increased (Fenical et al. 1999; Lam
2006). However, to further explore this promising source of novel bioactive sec-
ondary metabolites, new strains had to be isolated with alternative methods or in
unexplored environments (Lam 2006). Therefore, not only isolation techniques, but
also the sampling sites had to be altered. With 70 % of the earth surface and a
microbial abundance of 106 per mL in sea water and 109 per mL in ocean bottom,
oceans are the world’s biggest environment (Fenical and Jensen 2006). However, not
only seawater and sediments aremicrobial rich environments, alsomarine organisms,
flora and fauna like sponges harbor abundant communities (Ward and Bora 2006).

1.2 Marine Actinobacteria?

Over a long time, it was not clear whether truly “marine” Actinobacteria really exist
because of the fact that there has been a lot of re-isolation of terrestrial strains and
known compounds (Moore et al. 2005). The explanation for this assumption was
the wash-in from terrestrial spores into the sea (Goodfellow and Haynes 1984) and
the sampling problems of marine samples which were taken mostly close to the
coast (Fenical and Jensen 2006). However, in the year 1984, the first marine
Actinobacterium was found: Rhodococcus marinonscens (Helmke and Weyland
1984). 7 Years later, in 1991, the first marine Actinobacteria genus “Salinispora
spp.” which obligately requires seawater for growth (Jensen et al. 1991) was
published. But even with the application of DNA sequence-based methods and the
corresponding ability to analyze the relationships between this genus and their
terrestrial relatives, the first seawater-obligate Actinobacteria genus “Salinospora”
(grammatically incorrect; corrected to Salinispora) was described in 2005 (Mincer
et al. 2005) and its two species Salinispora tropica and Salinispora arenicola were
published (Maldonado et al. 2005a). Moreover, with the help of the type strains of
these species, which are actively growing in sediment samples, the metabolic
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activity in the natural marine environment was demonstrated (Mincer et al. 2005).
In addition to this finding, Fenical and Jensen (2006) also detected uncommon
secondary metabolites produced by Salinispora strains and were inspired to further
search for new groups of marine Actinobacteria. With the help of 16S analysis of
the phylogenetic diversity as well as new cultivation approaches, Stach and Bull
(2005) demonstrated that deep-sea sediments contained more than 1300 different
actinobacterial operational taxonomical units which led to the assumption that there
is a great opportunity to find novel species and genera. Fenical and Jensen (2006)
cultivated diverse strains within six Actinobacteria families and many of them
seemed to represent new taxa like Salinispora and Mariniphilus (Fig. 1). In addi-
tion to the taxonomic findings and therefore the demonstration of the existence of
marine Actinobacteria, these strains turned out to be “excellent producers for sec-
ondary metabolites”.

1.3 Where Can One Find Marine Actinobacteria?

The geographical origin of the new actinobacterial producer strains, published
compounds and bioactivities of 67 % of marine natural products (up to 2003) was
restricted to Japan, the Mediterranean as well as the Western Pacific Ocean (Blunt
et al. 2007; Bull and Starch, 2007). However, because of the growing focus on the
research on marine natural products, a dramatic rise of the published data from the
China Sea was observed just one year later (Bull and Starch 2007). Marine
Actinobacteria are present in diverse marine habitats, which are widespread over the
ocean. These habitats are influenced by numerous geographical as well as physical
parameters like temperature and salinity. Furthermore, they underlie geochemical
impacts and ocean currents. But also ecosystems like salt marshes, wetlands,
estuaries, continental shelves as well as the open ocean and the deep sea are habitats
for specialized marine Actinobacteria (Ward and Bora 2006). The marine habitat
starts with the sea surface microlayer, followed by the water column, from a few
millimeters below the surface to more than 10,000 m depth, down to the sea floor
with the micro- and macro-fauna and-flora, which were used as host for epibiosis
and symbiosis, as well as the sea subfloor and deep biosphere. Within the habitat of
the sea floor, varying sediments of varying geology, mineral nodule fields, car-
bonate mounds, cold seeps, hydrocarbon seeps, saturated brines, and hydrothermal
vents were observed (Ward and Bora 2006).

The sea surface microlayer is an environment which is to date poorly charac-
terized. However, some studies showed the existence of Actinobacteria and
Proteobacteria within this habitat (Ward and Bora 2006). In the water column,
together with the b- and d-Proteobacteria, Firmicutes, Cytophaga-Flavobacter-
Bacteriodes (CFGs) and Chlorobia, Actinobacteria belong to the mid-range of
abundance. a- and c-Proteobacteria dominated this habitat. Interestingly, theses
compositions of strain collectives were also found in coastal and pelagic waters,
despite differences in isolation techniques used and scale (Ward and Bora 2006).

Actinobacteria and Myxobacteria—Two of the Most Important … 275



Fig. 1 Tree illustrating the phylogenetic relationships of 13 groups of marine-derived actinobac-
teria within six different families. The taxonomic status of the MAR groups is not really clear
whereas it is known that they include numerous of new species. However, the MAR1 group was
described as the genus Salinispora and the MAR2 group as the genus Marinispora (modified after
Fenical and Jensen 2006)
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Marine sediments are the best known source for the isolation of Actinobacteria
from marine habitats. Studies on the 16S rRNA, to detect the phylogenetic diversity
of Actinobacteria in marine sediments, showed that some deep-sea sediment con-
tained up to 13,000 different actinobacterial operational taxonomic units which are
forecast to belong to a large number of novel species and genera (Stach and Bull
2005). Also cultivation approaches of a range of depths and sediments (Maldonado
et al. 2005b; Kim et al. 2004; Takami et al. 1997) illustrate the diversity and new
insights in Actinobacteria classification (Maldonado et al. 2005a) and biogeogra-
phy. These insights were used as inspirations for the isolation and recognition of
novel marine Actinobacteria (Magarvey et al. 2004; Ward and Bora 2006).
Furthermore, molecular studies on three different structural types of stromatolites
(“organisms that have been present in the fossil record from greater than 3.5 billion
years ago,” cf. Ward and Bora 2006) ensured the presence 6–9 % of actinobacterial
clones in the their complex mat community (Papineau et al. 2005).

However, there are not only the upper centimeters of marine sediments har-
boring Actinobacteria but also the below sea subfloor and the deep biosphere were
found to be a natural habitat for these bacteria. Up to a depth of 800 m, a minor
fraction of Actinobacteria were isolated (Stach et al. 2003; Inagaki et al. 2003) and
molecular studies with specific primers showed a high actinobacterial diversity in
clone libraries (Stach et al. 2003).

Moreover, marine Actinobacteria even live in marine organisms like many free
swimming aswell as sessile vertebrates and invertebrates. These organisms aremostly
known to produce bioactive metabolites but these substances are often produced by
symbiotic living microorganisms. The pufferfish, for example, was for a long time
supposed to be the producer of the potent neurotoxin tetrodotoxin (TTX). However, to
date this substance is known to be produced by numerous of marine organisms.
Additionally, the production could also be correlated to many taxa of marine bacteria
which live in symbiotic relationships with these organisms. In case of the pufferfish, a
TTX-producing Actinobacteria (closely related to Nocardiopsis dassonvillei) and
some TTXproducingBacillus strains were isolated out of its ovaries which are known
to harbor high levels of TTX (Wu et al. 2005;Ward and Bora 2006).With the help of a
sodium channel blocker assay using a mouse neuroblastoma cell culture bioassay,
toxicity levels of 0.1–1.6 MU/g bacteria cells were observed [MU: amount of toxin
which was expressed, calculated from the observed cell ratio (relationship between
survival cell ratio and authentic TTX amount)] (Wu et al. 2005;Ward and Bora 2006).
Furthermore, some TTX producing Actinobacteria like Micrococcus spp. and
Streptomyces spp. were isolated out of deep sea and marine sediment (Do et al. 1990,
1991) which support the assumption that the symbiotic living organisms are
responsible for the TTX production. However, to date the biosynthesis of TTX in
bacteria or other organisms has not been described (Chau et al. 2011).

Furthermore, marine invertebrates such as sponges were described as natural
habitat for marine Actinobacteria. They are known over a long time to be a prolific
source of bioactive substances. Because of the reason that they are sessile organ-
isms, they use the bioactive metabolites as a kind of chemical defence (Hill 2004;
Ward and Bora 2006). However, up to 35 % of sponge biomass is comprised of
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microorganisms, which build an abundant microbial community (Hentschel et al.
2012; Webster and Taylor 2012; Steinert et al. 2014). Sponge-associated bacteria
have been also frequently described as producers of bioactive natural products
(Blunt et al. 2011, 2012, 2013). These communities include amongst other
Actinobacteria also Salinispora and related strains (Hentschel et al. 2002).

1.4 Isolation of Marine Actinobacteria

To date, the most common sources for the isolation of marine Actinobacteria are
sediments and sponges. However, as mentioned above, Actinobacteria were found
almost everywhere in the marine environment. Because of the large amount of
bacteria living in the marine sediment (109 bacteria per mL, Fenical and Jensen
2006), the cells have to be separated using diverse dilution or stamp techniques.

The common method for the isolation of marine Actinobacteria is very similar to
the methods used to isolate terrestrial ones. On the one hand, sea mud can be
directly spread over the agar media (Okami and Okazaki 1972) or the sediment
samples may be diluted and treated with diverse methods as described below.

Some sediment samples were mixed with sterile sea water (Jensen et al. 1991;
Mincer et al. 2002) or used as dried samples (Takizawa et al. 1993) before they were
heated up between 6 and 60 min (Mincer et al. 2002; Jensen et al.1991, Takizawa et al.
1993) at about 50 °C. This heat-shock treatment should dispatch most non-spore
forming bacteria to provide the slow growing Actinobacteria a selective benefit for
growth. Such measures had to be taken to avoid that, as described in the concurrent
paper of Karwehl and Stadler (2016) for fungi, the fast-growing strains in soil samples
would inadvertently overgrow the more interesting, hitherto unexploited ones.
Afterwards, the samples were diluted in several dilution steps and plated on different
types of nutrient rich agar plates. Pathom-Aree et al. (2006) used sterile saline solution
(Ringer’s solution) to pre-incubate the sediment samples for 30 min before the
dilution and the following inoculation on a range of different media and an incubation
temperature of 55 °C for the isolation of new thermophilic Actinobacteria taxa.

Another dilution technique was described by Mincer et al. (2002) for the iso-
lation of the first Salinispora species. In this study, in addition to the heat-shock
dilution series approach, the wet sediment was air dried and afterwards pressed into
a sterile form plug. This plug was used as a stamp to inoculate the agar plates by
stamping the plug several times in a circular fashion onto the plate to cause a
dilution of the sediment. This approach was used with and without a previously
described heat-shock treatment.

For the isolation of “novel marine-derived Actinobacteria taxa” Magarvey et al.
(2004) used a modification of the medium Stan21, which is normally used to isolate
Myxobacteria from soil samples (Shimkets et al. 2004). Therefore, the yeast extract
was eliminated and the distilled water was replaced by artificial sea water. After the
media preparation and the addition of cycloheximide, filter paper disks were placed
on the agar plates and the wet sediment was spotted on the surface of the cellulose.
The plates were incubated afterwards for 30–90 days at 30 °C in a humidified
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chamber. With this method they isolated some unknown marine Actinobacteria
which cluster between the Salinispora clade and the genus Micromonospora.

One possibility for the isolation of marine Actinobacteria out of seawater is a
simple filter technique. Okami and Okazaki (1972) described a method by which
the seawater was centrifuged and filtered through a 0.3 µl pore size filter. The
concentrated microorganisms on the filter were afterwards suspended in filtered sea
water and plated on different isolation media.

To isolate Actinobacteria out of sponges several approaches are described. In
classical isolation techniques, the sponge samples were directly stamped on isolation
media or, in the dilution series method, sponge samples are crashed with a mortar,
placed into sea water and after sedimentation, plated in different dilutions on specific
sponge isolation agar (Mantalvo et al. 2005; Jiang et al. 2007). However, there are
also some modifications of this method. Abdelmohsen et al. (2010) added the
supernatant of crashed sponges (sponge extract) into the isolation media to rebuilt
the natural environment. A further approach is the addition of both, “aqueous
extract” like described before and “organic extract” where the sponge tissue was
extracted with the help of hexane, dichlormethane and methanol. Finally, both
studies demonstrated an enhanced number of novel isolated strains (Webster and
Hill 2001; Selvin et al. 2004; Abdelmohsen et al. 2010). However, for all of these
approaches, the sponges had to be harvested. To keep the sponges alive, Steinert
et al. (2014) constructed a so called diffusion growth chamber (DGC). This chamber
was built out of two combined centrifuge microfilter sections and was inoculated
with different types of media. The media compositions differed in the amount of
nutrients. Furthermore, every medium includes a small amount of sponge homo-
genate which was prepared out of a homogenized sponge sample in sterile sea water.
After inoculation, the DGCs were directly inserted in the living sponge and retaken
after 4 weeks of incubation (Fig. 2). Subsequently, one part of the inoculated media
was plated on isolation media and the other part was used to inoculate new DGCs
which were inserted into the same sponges. In this study, the authors showed that
they were able to detect and cultivate more bacteria than using the classical direct
plating method while the sponges stayed in their natural environment.

Most of the isolation media contained fungicidal agents like cycloheximide and
nystatin to reduce fungal contamination as well as rifampicin and nalidixic acid to
dispatch fast-growing Gram-negative bacteria. All plates were incubated between 2
and 6 weeks between room temperature and 28 °C.

1.5 Bioactive Substances Produced by Marine
Actinobacteria

While we concentrate in this review on the bioactive secondary metabolites like
antibiotics, cytotoxic agents and fungicides, marine Actinobacteria also produce
melanins, enzymes, enzyme inhibitors, single cell proteins as well as probiotics
which can be used for example in aquaculture (Manivasagan et al. 2013).
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Novel metabolites isolated from marine Actinobacteria include the antitumor
agents chromomycins B, A2 and A3 from Streptomyces coelicolor (Lu et al. 2012),
the antibacterial frigocyclinone from Streptomyces griseus (Bruntner et al. 2005),
the antifungal and anticancer agents, daryamides from Streptomyces sp. (Sivakumar
et al. 2007) and further ones as listed in Table 1. However, it becomes apparent that
most of the producer strains were classified as Streptomyces species, which are
common terrestrial bacteria. To date, “real new structures” were only isolated from
the two genera of genuine marine Actinobacteria Salinispora and Marinospora
(Manivasagan et al. 2013). Salinosporamides A and B (Fig. 3) are both produced
by Salinispora tropica. These compounds are b-lactone-c-lactams produced by a
mixed PKS/NRPS biosynthesis. Salinosporamide A is an orally active proteasome
inhibitor that induced apoptosis in multiple myeloma cells with mechanisms distinct
from the commercial proteasome inhibitor anticancer drug Bortezomib (Chauhan
et al. 2005). As NPI-0052, salinosporamide A entered as the first compound iso-
lated out of an obligate marine organism, the clinical studies in multiple phase I
trials for solid tumors, lymphoma, and multiple myeloma (http://www.
nereuspharm.com/NPI-0052.shtml). The second compound, salinisporamide B,
differs only in a lack of chorine and the subsequently less activity by a factor of 500
(Manivasagan et al. 2013). However, the terrestrial Streptomyces strain JS360 is the
producer strain of the cinnabaramides A-G which are structurally close related to
salinosporamide A (Stadler et al. 2007). These substances are also described as

Fig. 2 Diffusion growth chamber (DGC) for in vivo cultivation of sponge-associated bacteria.
Build-up of DGC out of two combined centrifuge microfilter sections with diffusible membranes
(DM), inoculated with different types of media within the chamber (AC) and the plastic holder
(H) for fixing within the sponge
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Table 1 Examples of secondary metabolites produced by marine actinobacteria

Compound Biological activity Species/Isolate Reference

1,8-Dihydroxy-2-ethyl-3
methylanthraquinone

Anticancer Streptomyces sp. Huang et al.
(2006)

1-Hydroxy-1-norresistomycin Antibacterial;
anticancer

Streptomyces
chinaensis

Gorajana et al.
(2005) and
Kock et al.
(2005)

2-Allyloxyphenol Antimycrobial; food
preservative; oral
desinfectant

Streptomyces sp. Arumugam
et al. (2010)

Abyssomycin C Antibacterial
(inhibition of PABA
biosynthesis)

Verrucosispora
maris

Bister et al.
(2004)

Albidopyrone Anticancer Streptomyces sp. Hohmann et al.
(2009a)

Antracyclines Anticancer Streptomyces
galileus

Fujii and
Ebizuka (1997)

Arenicolides A-C Mild anticancer
activity

Salinispora
arenicola

Jensen et al.
(2007)

Arenimycin Antibacterial;
anticancer

Salinispora
arenicola

Asolkar et al.
(2006)

Aureoverticillactam Anticancer Streptomyces
aureoverticillatus

Mitchell et al.
(2004)

Avermectin Antiparasitic Streptomyces
avermitilis

Burg et al.
(1979)

Bafilomycin ATPase-inhibitor of
microorganisms,
plant and animal
cells

Streptomyces
griseus,
Streptomyces
halstedii

Werner et al.
(1984) and
Frändberg et al.
(2000)

Bisanthraquinone Antibacterial Streptomyces sp. Socha et al.
(2006)

Butenolides Anticancer Streptoverticillium
luteoverticillatum

Li et al. (2006)

Carboxamycin Antibacterial;
anticancer

Streptomyces sp. Hohmann et al.
(2009b)

Chinikomycns Anticancer Streptomyces sp. Li et al. (2005)

Chlaramphenicol Antibacterial,
inhibitor of protein
biosynthesis

Streptomyces
venuzoelae

Bewick et al.
(1976)

Chlorodihydroquinones Antibacterial;
anticancer

Novel
Actinobacteria

Soria-Mercado
et al. (2005)

Cyanospraside A Unknown Salinispora pacifica Jensen et al.
(2007)

Cyclomarines Antiinflammatory Streptomyces sp.,
Salinispora
arenicola

Schultz et al.
(2008)

(continued)
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Table 1 (continued)

Compound Biological activity Species/Isolate Reference

Daryamides Antifungal;
anticancer

Streptomyces sp. Sivakumar
et al. (2007)

Dermacozines Anticancer, radical
scavenging

Dermacoccus sp. Abdel-Mageed
et al. (2010)

Diazepinomicin Anticancer Micromonospora sp. Charan et al.
(2004)

Enterocin Bacteriostatic Streptomyces
maritimus

Piel et al.
(2000)
Max-Planck
Inst., Jena

Essramycin Antibacterial Streptomyces sp. El-Gendy et al.
(2008)

Frigocyclinone Antibacterial Streptomyces
griseus

Bruntner et al.
(2005)

Glaciapyrroles Antibacterial Streptomyces sp. Macherla et al.
(2005)

Hygromycin Antimicrobial,
immunosuppressive

Streptomyces
hygroscopicus

Omura et al.
(1987), Uyeda
et al. (2001)

Lajollamycin Antibacterial Streptomyces
nodosus

Manam et al.
(2005)

Lincomycin Antibacterial,
inhibitor of protein
biosynthesis

Streptomyces
lincolnensis

Peschke et al.
(2006)

Lynamicins Antibacterial Marinispora sp. McArthur et al.
(2008)

Mansouramycins Anticancer Streptomyces sp. Hawas et al.
(2009)

Marinomycin A-D Antimicrobial,
anticancer

Marinispora Kwon et al.
(2006)

Mechercharmycins Anticancer Thermoactinomyces
sp.

Kanoh et al.
(2005)

Mitomycin C Anticancer, binds to
double stranded
DNA

Streptomyces
lavendulae

Mao et al.
(1999)

ML-449 Anticancer Streptomyces sp. Jørgensen et al.
(2010)

Pacificanones A and B Antibacterial Salinispora pacifica Oh et al. (2008)

Piericidins Anticancer Streptomyces sp. Hayakawa
et al. (2007)

Proximicins Antibacterial;
anticancer

Verrucosispora sp. Fiedler et al.
(2008)

Rapamycin Immunosuppressive,
antifungal

Streptomyces
hygroscopicus

Vezina et al.
(1975)

(continued)
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Table 1 (continued)

Compound Biological activity Species/Isolate Reference

Resistoflavin methyl ester Antibacterial;
anti-oxidative

Streptomyces sp. Kock et al.
(2005)

Salinamides Antiinflammatory Streptomyces sp. Moore et al.
(1999)

Saliniketal Cancer
cemoprevention

Salinispora
arenicola

Jensen et al.
(2007)

Salinispyrone Unknown Salinispora pacifica Jensen et al.
(2007)

Salinispyrone A&B Mild anticancer
activity

Salinispora pacifica Oh et al. (2008)

Salinosproramide A Anticancer;
antimalarial

Salinispora tropica Jensen et al.
(2007) and
Prudhomme
et al. (2008)

Salinosporamide B and C Anticancer Salinispora tropica Williams et al.
(2005)

Sesquiterpene Unknown Streptomyces sp. Wu et al.
(2006)

Staurosporine Antitumor;
phycotoxicity

Streptomyces sp. Wu et al.
(2006)

Streptokordin Antitumor Streptomyces sp. Jeong et al.
(2006)

Streptomycin Antimicrobial Streptomyces
griseus

Egan et al.
(1998)

Streptozotocin Diabetogenic Streptomyces
achromogenes

Herr et al.
(1967)

Tetracyclines Antimicrobial Streptomyces
achromogenes,
Streptomyces
rimosus

Saleh et al.
(1985) and
Hansen et al.
(2001)

Thiocoraline Anticancer Micromonospora
spp.

Perez Baz et al.
(1997)

Tirandamycins Antibacterial Streptomyces sp. Carlson et al.
(2009)

TP-1161 Antibacterial
(inhibition of protein
synthesis)

Nocardiopsis sp. Engelhardt
et al. (2010)

Valinomycin Isophor, toxic for
Pro- and Eukaryotes

Streptomyces
griseus

Andersson
et al. (1998)

ZHD-0501 Anticancer Actinomadura sp. Han et al.
(2003)

Elaiomycins B and C Anticancer Streptomyces sp. BK
190

Helaly et al.
(2011)

N-(2-hydroxyphenyl)-
2phenazinamine (NHP)

Anticancer,
antifungal

Nocardia
dassonvillei

Gao et al.
(2012)
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strong proteasome inhibitors. However, Rachid et al. (2011) detected a significantly
weaker cytotoxic effect then caused by salinosporamide A. Other unprecedented
substances produced by Salinispora tropica are sporolide A, arenicolide A,
cyanosporaside A, and salinipyrone A (Fig. 3). Even though, the salinipyrones A
and B (Fig. 3) were first isolated out of the obligate marine Actinobacterium
Salinispora pacifica (Oh et al. 2008). Both substance did not show antibiotic
activity against drug resistance human pathogens, however a moderate cytotoxic
activity was detected (Jensen et al. 2007; Manivasagan et al. 2013).

Marinomycin A (Fig. 3), produced by a Marinophilus strain (Kwon et al. 2006),
is a new polyene macrolide with a high toxicity to tumor cells and antibiotic effect
against vancomycin-resistant Enterococcus faecium and methicillin-resistant
Staphylococcus aureus.

In conclusion, the discovery of the new marine Actinobacteria genera
Salinispora and Marinophilus could be directly correlated to the new and
unprecedented compounds with new structures and partially new modes of action.
Like described before, molecular studies indicate a great potential for the isolation

Fig. 3 Examples of new bioactive compounds and their corresponding structures produced by
novel genera of marine actinobacteria
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of novel genera of marine Actinobacteria. However, new isolation techniques will
have to be established and unexplored environments have to be sampled to avoid
re-isolations of bacteria out of known genera producing common compounds.

2 Myxobacteria—The Underestimated Bacterial Resource

2.1 History of Myxobacteria

The first myxobacterium was discovered in 1809 by the German botanist H.F. Link
and named Polyangium vitellinum, but erroneously it was characterized as fungus
because of the characteristic fungi-like life cycle (Link 1809). It took many years,
until 1892, until Roland Thaxter identified these organisms as bacteria (Thaxter
1892). Actually, the order of Myxococcales consists of 55 species including 28
genera (Fig. 4) and differentiates from other Gram-negative prokaryotes by the
mutuality to have a special life cycle.

Myxobacteria belong to the d-subgroup of proteobacteria and therefore are
Gram-negative. The vegetative cells are rod-shaped with the ability to glide over

Fig. 4 Current taxonomy of the order Myxococcales
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solid surfaces and form some kind of multicellular, species-specific
“fruiting-bodies” under starvation conditions without access to a sufficient nutri-
ent storage (Reichenbach et al. 1988) (Fig. 5). Those fruiting bodies can comprise
up to 105 individuals and show a wide range of differences between the genera and
species referring their height, shape and color, which mostly varies from yellow,
orange or red until brown or even black (Reichenbach 1983; Garcia and Müller
2014a, b, c, d, e).

Within the fruiting bodies, the vegetative cells transform to short, so called
myxospores, often enclosed in sporangioles. Because of desiccation resistance,
myxospores are able to survive in unfavorable environmental conditions for many
years (Reichenbach et al. 2006a, b). Myxobacteria can be found in large popula-
tions on many substrates in nature all over the world, e.g., soil, rotting wood, and
other habitats. Due to their nutritional requirements, myxobacteria can be divided
into two ecological groups that are also in agreement with their phylogeny.
Predators use other bacteria or yeasts as food source, and cellulose decomposers,
belonging to the genera Sorangium and Byssovorax, decompose organic materials
by producing different types of lytic exoenzymes (Reichenbach et al. 1988;
Reichenbach et al. 2006a, b).

Fig. 5 a Fruiting bodies of Stigmatella aurantiaca (bar = 1000 µm); b Cells of Myxococcus
virescens (bar = 50 µm); c Swarming of Corallococcus coralloides (bar = 5000 µm)

286 W. Landwehr et al.



Another important and interesting feature of myxobacteria is their ability to
produce a broad range of structurally diverse secondary metabolites, many of them
with bioactivity. The working group Microbial Strain Collection at the
Helmholtz-Center for Infection Research (HZI) in Braunschweig, has the largest
collection of myxobacteria worldwide with more than 9000 strains, including all
validly described type strains (Fig. 6).

The major part of the collection is represented by species of the frequently
occurring genera Corallococcus, Myxococcus, Nannocystis, and Sorangium (Gerth
et al. 2003). Chondromyces, Myxococcus, and Sorangium are producers of most of
the interesting natural products, consequently they became enriched in the collec-
tion (Fig. 7).

Byssovorax 1
Sandaracinus, 1

Plesiocystis, 1

Anaeromyxobacter, 1

Enhygromyxa, 1
Phaselicystis, 1

Pseudenhygromyxa, 1

Aetherobacter, 3
Aggregicoccus , 3

Vulgatibacter , 1
Labilithrix, 1Minicystis , 1

Racemicystis, 3

Myxococcus, 1454

Kofleria, 11

Hyalangium, 38
Jahnella, 17
Chondromyces, 136

Byssovorax, 1
unclassified, 679

Sorangium, 2017

Corallococcus, 2139

Archangium, 205
Nannocystis 1551Haliangium 2

Melittangium, 79
Stigmatella, 146

Cystobacter, 
393

Pyxidicoccus, 12

Polyangium, 205

Nannocystis, 1551Haliangium, 2

Fig. 6 Number of strains at the HZI
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2.2 Isolation Methods

To find new bioactive substances, it seems reasonable to exploit new producer
organisms and to insert these novel species and genera in the latest taxonomic
classification (Müller and Wink 2014). It is necessary to use basic routine methods
(Dawid 2000; Shimkets et al. 2006) as well as new approaches (Garcia et al. 2009;
Mohr et al. 2015) for the isolation and cultivation of potential and interesting new
producer strains.

In general, myxobacteria are characterized as mesophilic soil organisms which
prefer a temperature of 30° and a neutral pH. Nevertheless, also acidophilic
(Brockman and Boyd 1963), alkaliphilic (Hook 1977) and psychrophilic (Dawid
et al. 1988) species were found in the last decades, demonstrating the enormous
adaptability of myxobacteria even to extreme uncomfortable habitats. Myxobacteria
can also be found in marine, saline habitats, for example Haliangium ochraceum
and Haliangium tepidum (Iizuka et al. 1998). To isolate new myxobacterial strains
from different biotopes, environmental samples (e.g., soil, sand, dead wood, bark,
leaves, compost) were treated by a standardized procedure. For soil samples, an
amount of 50–150 g of sample is collected in 1–5 cm depth below the surface in
sterile vials. Before the enrichment on different plates, the sample has to be air dried

Fig. 7 Percentage of genera in the producers of our novel secondary metabolites from
myxobacteria (modified according to Gerth et al. 2003)
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and characterized concerning different parameters like color, size, grain, content,
and acidity (Dawid 2000). Commonly, different types of plates are used for the
enrichment of a wide range especially of myxobacteria species referring to the
methods of Reichenbach et al. (2006). Living E. coli cells on water agar are suitable
as the feed organism for predatory myxobacteria (Shimkets et al. 2006). Many soil
bacteria are able to degrade dead, but not living, microorganisms. Furthermore,
most soil bacteria grow faster than myxobacteria. Using living bait organisms,
myxobacteria have an advantage in comparison to other, not or less swarming,
competitors (Garcia et al. 2009). To enrich and isolate specifically cellulose
degrading myxobacteria, mineral salt agar Stan 21 is used. Sterile filter paper is
placed on the top of the agar and serves as food source (Shimkets et al. 2006). The
plates are normally incubated at 30° over a period of several weeks, until the
visually striking myxobacteria can be seen with the naked eye. The following
isolation, purification, and identification of new strains are carried out on VY/2
plates, containing yeast as nutrient source (Dawid 2000). It is supposed, that the
preparation of the medium, combining the important characteristics like in the
natural habitats of myxobacteria, leads to high advantage finding novel strains. For
example, novel strains were isolated by growing at room temperature (23°) as well
as under white light or sun light exposure and on acidic or saline agar plates (Mohr
et al. 2015; Garcia et al. 2009). The identification of the facultative anaerobic genus
Anaeromyxobacter (Sanford et al. 2002) leads to the assumption, that different air
conditions tried within the isolation procedures can reveal facultative anaerobic and
microaerophilic species (Garcia et al. 2009). Culture-independent methods, like
clone bank analyzes, revealed that there is a high number of new potential producer
species (Mohr et al. 2015). The development of new cultivation methods is
important to find the best growth conditions for all these different types of uncul-
tivated myxobacteria.

The procedure of the standardized screening method, developed at the HZI,
starts with the cultivation of a new isolated strain in different liquid complete media
(each 100 ml) with different C- and N-sources. The bacteria are cultivated at 30 °C
and shaking (180 rpm) 7–14 days. Myxobacteria secrete the secondary metabolites
out of the cells into their environment, in this case into the medium. To bind the
metabolites and thereby preventing a feedback inhibition or a degradation of the
metabolite by a producer strain, XAD16 adsorber resin is added to the culture. After
sieving, the resin, and the adsorbed compounds are extracted with acetone, evap-
orated and finally eluted with methanol, resulting in a raw extract of a 1:100
concentration which is used for further analyzes (Reichenbach and Höfle 1993).
However, it is necessary to find the best growth conditions and to optimize the
specific production rate for each producer strain, as well as an economic justifiable
fermentation process has to be established.

To investigate the effect of a crude extract from a new potential myxobacterial
producer strain against different pathogens with clinical importance and to find the
active principle, the working group Microbial Strain Collection at the HZI use a
dereplication system, which is a combination of a biological activity assay and a
chemical screening with liquid chromatography-high resolution mass spectrometry
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(LC/HRMS). First, the minimum inhibitory concentration (MIC) of the extract is
determined by the use of a microtiter plate based serial dilution assay containing
different Gram-positive and Gram-negative bacteria as well as fungi to assess
selectivity. After semipreparative high performance liquid chromatography
(HPLC), the inhibitory effect of the fractionated extract is examined against the
affected organisms and further analyzed by ultra-high resolution-time of flight mass
spectrometry (UHR-TOF-MS) regarding molecular masses and molecular formulae
(Fig. 8). These obtained molecular features are matched against known myxobac-
terial compounds from the in-house database (Myxobase) or Dictionary of Natural
Products (Taylor and Francis Group 2016). The strategy consisting of the use of the
different methods above gives possibilities to find and identify new bioactive
substances from myxobacteria.

2.3 Genetical Potential

The genomes of myxobacteria belong to the largest ever found in bacteria. The
genome of the Sorangium strain So ce56, for example, consists of more than 13,000
base pairs and includes seventeen secondary metabolite gene clusters (Schneiker
et al. 2007) and the genome ofM. xanthus comprises at least around 9000 base pairs
(Goldman et al. 2006). It is suggested that this large genome size is connected to the

Fig. 8 Combination of activity assay and HPLC-MS
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extraordinary and complex life cycle of myxobacteria. In contrast to other bacteria,
they need a much more complex genetic constitution to demonstrate their special
social behavior including swarming and culminating fruiting bodies. Within these
enormously large genomes, there probably exists a high capacity concerning to the
unlimited number of unknown and promising secondary metabolites (Wenzel and
Müller 2009).

It is hardly possible to figure out the potential of a strain to produce bioactive
substances only by phenotypic and biochemic analyzes, because some metabolites
cannot be detected due to the applied extraction and detection methods (Wenzel and
Müller 2009). Therefore, our research is focusing on the discovery of biosynthetic
pathways and the connected gene clusters of novel, potentially anti-infective natural
compounds as well as the full genome sequences of scientific interesting bacteria
strains. With this information, it might become easier to find possibilities for
enhancing the production of known metabolites as well as activating unused “si-
lent” genes for novel substances (Müller and Wink 2014). The genome mining
approach is based on the genome sequences, which are used to predict synthesized
compounds with the help of bioinformatics analyzes. The recovered genetic
information can lead to specific inducing of the supposed biosynthetic gene clusters
that encode for new bioactive products (Müller and Wink 2014).

2.4 Pharmaceutically Important Secondary Metabolites

Myxobacteria are a rich source of novel and unique secondary metabolites, mainly
polyketides and nonribosomal polypetides. Many of these metabolites show
antibiotic activities and are urgently needed as new drugs for a broad range of
applications. These skills probably evolved because of the natural competition
between different kinds of organisms in varying habitats. For example, the cellulose
degrading members of the genus Sorangium have to combat other cellulose
degraders sharing the same habitat like fungi which also use wood (cellulose) as
nutrient source, whereas proteolytic myxobacteria need to stand up to other
degraders of decaying organic material (Gerth et al. 2003). The existence of a link
between the production of biological active secondary metabolites and microbial
predation is supposed, because about 20 % of the known myxobacterial compounds
show antibiotic effects. The importance of secondary metabolites derived from
natural producers should not be underestimated, because they are the source of
almost 50 % of most important medications for humans (Demain 1999).

The scientific interest for myxobacteria increased already in the year 1947, when
it was shown that a strain ofMyxococcus virescens has a significant inhibitory effect
on the growth of Staphylococcus aureus (Oxford 1947). In the following years
many research groups all over the world tried to find the active compounds by
optimizing the growth conditions. It was believed for a long time that it is very
difficult to cultivate myxobacteria in liquid medium and that these organisms are
somewhat problematic with regard to their axenic growth in general (Reichenbach
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and Höfle 1993). The breakthrough in discovering antibiotic substances from
myxobacteria happened in 1977 by elucidation of the complete chemical structure
of the potent antifungal secondary metabolite ambruticin, produced by Sorangium
cellulosum (Connor et al. 1977; Ringel et al. 1977). Next to the use as antibiotic or
antifungal drug, biologically active secondary metabolites can also be used as
antiparasitic, antiviral and antitumor drugs in human and veterinary medicine and
also as insecticides, acaricides, and herbicides. They can act, e.g., as inhibitors of
carboxylases, polymerases, or mitochondrial respiration as well as inhibitors of
eukaryotic protein synthesis (Weissmann and Müller 2009). Furthermore, also
antidiabetic, antimalarial, antihypertensive, antihypercholesterolemic, insuline-
sensitizing, and immunoregulatory characteristics can be attributed to microbial
products (Grabley and Thiericke 1999; Schreurs et al. 2009; Berod et al. 2014).
A molecule with biological effects can also work as a model for a synthetic pro-
duction to get a higher output under better economic conditions (Reichenbach and
Höfle 1993). More than 100 new and important myxobacterial core structures have
been discovered (Garcia et al. 2009), some of them are summarized in Table 2.
Another important ability of myxobacteria is the production of polyunsaturated
fatty acids (PUFAs) like eicosaoentaenoic acid (EPA) and docosahexaenoic acid
(DHA), which play an important role in food industry and for pharmaceutical
applications (Garcia et al. 2011; Gemperlein et al. 2016).

Table 2 Important compounds and their biological activity found in myxobacteria

Compound Activity Mode of action Species Reference

Ambruticin Antifungal Interfere with
high-osmolarity
glycerol
(HOG) signaling
pathway

S. cellulosum Ringel et al.
(1977); Connor
et al. (1977)
Vetcher et al.
(2013)

Aurachins Antibacterial Block NADH
oxidation

S. aurantiaca Kunze et al. (1987)

Chrondramide Antifungal/
cytostatic

Interfere with actine
polymerisation

C. crocatus Kunze et al. (1995)

Crocacin Antibacterial Inhibits electron
transport

C. crocatus Kunze et al. (1994)

Cystobactamids Antibacterial Inhibit type II
topoisomerase

Cystobacter
sp.

Baumann et al.
(2014)

Cystothiazol Antifungal/
cytostatic

Inhibits
submitochondrial
NADH oxidation

C. fuscus Ojika et al. (1998)

Disciformycins Antibacterial n/a P. fallax Surup et al. (2014)

Epothilones Cytotoxic Inhibition of
microtubule
function

S. cellulosum Gerth et al. (1996)

Etnangien Antibacterial Inhibits nucleic acid
polymerases

S. cellulosum Irschik et al. (2007)

(continued)
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Furthermore, the natural compounds can also work as a basic structure for
chemical modifications which can lead to an exploitation in the pharmaceutical
area. Epothilones A and B, for example, were originally found in a Sorangium
cellulosum strain and are distinguished by antifungal and cytotoxic activity (Gerth
et al. 1996). Meanwhile, there are modified versions of these molecules already
used in the active treatment against different types of cancer or are present in
clinical trials. Until epothilones were discovered, the common medication for
advanced and early-stage breast cancer was taxanes, anthracyclines, and capec-
etabine, but these agents are often subjected to a multidrug-resistance, which has a
natural origin in the patient. It is suggested that there is an overexpression of efflux
pumps and other proteins serving as efflux pumps, so that the anticancer agents can
be removed very easy out of the targeted cancer cell (Egerton 2008). In fact, this
resistance limits dramatically the chances of success within a therapy (Burger et al.
2003). As an effective alternative to the chemotherapies with taxanes and

Table 2 (continued)

Compound Activity Mode of action Species Reference

Melithiazols Antibacterial Inhibit NADH
oxidation

M. lichenicola,
A. gephyra,
M. stipitatus

Sasse et al. (1999)

Myxothiazol Antifungal Inhibits electron
transport

M. fulvus Gerth et al. (1980)

Myxovalargin Antibacterial Inhibits protein
synthesis and
damages cell
membranes

M. fulvus Irschik et al. (1983)
Irschik and
Reichenbach
(1985)

Myxovirescin Antibacterial Inhibition of signal
peptidase

M. virescens Gerth et al. (1982)

Rhizopodin Cytostatic Alteration of protein
phosphorilation

M. stipitatus Sasse et al. (1993)

Ripostatin Antibacterial Inhibits RNA
polymerase

S. cellulosum Irschik et al. (1995)

Sorangicin Antibacterial Inhibits RNA
polymerase

S. cellulosum Irschik et al. (1987)

Soraphens Antifungal,
antiviral,
Cancerocidal,
Immunoregulatory,
Insulin-sensitizing

Inhibit acetyl-CoA
carboxylase

S. cellulosum Gerth et al. (1994)
Schreurs et al.
(2009)
Martinez et al.
(2013)
Berod et al. (2014)
Corominas-Faja
et al. (2014)
Koutsoudakis et al.
(2015)

Stigmatellin Antibacterial Inhibits electron
transport

S. aurantiaca Kunze et al. (1984)
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anthracyclines, the semi-synthetic epothilone derivative ixabepilone (Ixempra®)
was developed in October 2007 for monotherapie of different stages of breast
cancer (Fig. 9) (Reichenbach and Höfle 2008). In contrast to the other available
pharmaceuticals referring to this disease, ixabepilone is just low affected by
multidrug-resistant mechanisms and consequently offers a chance to eliminate the
tumor cells effectively (Pivot et al. 2007).
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