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Abstract A complex interplay between host and bacterial factors allows
Staphylococcus aureus to occupy its niche as a human commensal and a major
human pathogen. The role of neutrophils as a critical component of the innate
immune response against S. aureus, particularly for control of systemic infection,
has been established in both animal models and in humans with acquired and
congenital neutrophil dysfunction. The role of the adaptive immune system is less
clear. Although deficiencies in adaptive immunity do not result in the marked
susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging
evidence suggests both T cell- and B cell-mediated adaptive immunity can influ-
ence host susceptibility and control of S. aureus. The contribution of adaptive
immunity depends on the context and site of infection and can be either beneficial
or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to
manipulate adaptive immune responses to its advantage. In this chapter, we will
review the evidence for the role of adaptive immunity during S. aureus infections.
Further elucidation of this role will be important to understand how it influences
susceptibility to infection and to appropriately design vaccines that elicit adaptive
immune responses to protect against subsequent infections.
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1 Introduction

Staphylococcus aureus is a major human pathogen. Data from the USA and Europe
indicate it is the predominant cause of both cutaneous and invasive infections and is
the leading cause of infectious morbidity and mortality in the industrialized world
(Tong et al. 2015). Strain-specific virulence strategies and acquisition of resistance
against a variety of antibiotics reflect the adaptive capabilities that have shaped its
ability to cause continually shifting patterns of disease (Chambers and Deleo 2009;
Tong et al. 2015). Despite its clear pathogenic potential, S. aureus has the ability to
coexist with its human host as a commensal, with 20–30 % of the population
colonized at mucocutaneous surfaces and significantly higher proportions exposed
at least intermittently (Verhoeven et al. 2014). The success of S. aureus as a human
commensal and pathogen suggests the evolution of a complex and intricate inter-
play between host and bacterial factors.

S. aureus has a plethora of virulence factors that evade and modulate compo-
nents of the human innate and adaptive immune system (Nizet 2007; Lowy 1998;
Rooijakkers et al. 2005). Much attention has been rightly focused on interactions
with the innate immune system, in particular neutrophils, which play a central role
in host defense against S. aureus. However, the readily detectable antibody and T
cell responses in humans and the extensive mechanisms for staphylococcal evasion
of antibody and T cell-mediated host defense suggest an important contribution of
adaptive immunity that may influence host susceptibility and will need to be
invoked by a successful vaccine. In this chapter, we will highlight the major
findings related to adaptive immune responses induced by S. aureus and the evasion
mechanisms it uses to escape this aspect of host defense.

2 Immunological Overview

The immune response against S. aureus involves activation of both the innate and
the adaptive immune systems. As the first line of defense against infections, the
innate immune response is rapidly activated by pathways that detect
pathogen-associated molecular patterns. A key result of this is activation of
phagocytic cells such as macrophages and neutrophils. Neutrophils are recognized
as a key component of the acute response and centrally important against S. aureus,
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as declared by the susceptibility of humans and mice with inherited and acquired
neutrophil defects to deep-seated infections. The adaptive immune response kicks
in later during the course of infection, dependent on the presentation of bacterial
antigens by antigen-presenting cells (APCs) and influenced by the cytokine milieu
generated by the innate response. Through T cell activation and B cell production of
antibodies, the adaptive immune response targets specific bacterial antigens and can
be recalled during subsequent infections to provide ‘memory’ against that particular
pathogen. Antibodies and T cells can have direct activity against bacteria, but also
amplify the activity of innate immune cells, e.g., by increasing phagocyte killing
and recruitment. The prevalence of recurrent infections with S. aureus suggests the
adaptive memory response is not completely effective, although it could be argued
that the relative paucity of systemic infections despite the high rate of colonization
may be evidence for its protective role. Understanding the contribution of the
adaptive immune response in determining S. aureus susceptibility may help identify
risk factors and therapeutic strategies, and will be essential to harness for successful
vaccine development.

3 Role of B Cells and Antibodies

The major function of B cells is to secrete immunoglobulins (antibodies) that
neutralize the function of target proteins (e.g., toxins and other virulence factors) or
opsonize pathogens to optimize phagocytosis and clearance. The importance of
antibody-mediated protection against infectious agents is clearly demonstrated by
patients with X-linked agammaglobulinemia (XLA), in whom lack of appropriate B
cell maturation leads to susceptibility to infections with a variety of viruses and
encapsulated bacteria that is largely reversed with the periodic administration of
pooled donor immunoglobulins (Bruton 1952; Conley and Howard 1993). The
apparent lack of increased susceptibility in this patient population to invasive S.
aureus infection argues that antibodies are unimportant in protection against S.
aureus infection. Although these patients have a recognized susceptibility to cel-
lulitis, this has also not been clearly attributed to S. aureus. The lack of increased
susceptibility to S. aureus infection in B cell- or antibody-deficient mice (Gjertsson
et al. 2000; Schmaler et al. 2011; Gaidamakova et al. 2012) parallels the obser-
vations in patients with XLA. However, recent work has revealed that primary S.
aureus cutaneous infection can induce antibody-mediated protection against a
subsequent infection in certain mouse strains (Montgomery et al. 2014), and
numerous preclinical studies have shown at least partial protection from subsequent
infection after induction of antibodies by vaccination (see below). Furthermore, the
ubiquitous presence of antibodies after S. aureus exposure in humans and animal
models, and the virulence strategies of S. aureus that have evolved to evade anti-
bodies, suggests antibodies may have a role in modulating susceptibility to infec-
tion. Evidence for this potential role will be examined in further detail here.
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3.1 Preexisting Antibodies as Immunologic Correlates
for Protection

The immune correlates of protection from and susceptibility to staphylococcal
infections are still not well understood. A few reports have suggested that preexisting
antibodies toward certain staphylococcal virulence factors can correlate with clinical
outcome in humans. Adhikari et al. (2012a) measured serum antibodies to an array
of staphylococcal exotoxins and observed that low antibody titers correlated with a
higher risk for the development of sepsis. Another study found that elevated serum
titers against S. aureus a-hemolysin (Hla) correlated with the protection from sub-
sequent infection, and invasive infections elicited a more durable antibody response
when compared to cutaneous infections (Fritz et al. 2013). This study also reported
high titer anti-staphylococcal antibodies in colonized individuals without a history of
overt infection (carriers), which may explain the enhanced recovery from infection
observed in carriers despite their increased risk of developing infection compared to
non-carriers (Wertheim et al. 2005; von Eiff et al. 2001a).

3.2 Role of Antibodies in Vaccine-Mediated Protection

S. aureus has been generally regarded as an extracellular pathogen. Consequently,
complement and antibodies with neutralizing and opsonizing qualities were con-
sidered major players not only in mediating neutralization of secreted virulence
factors, but also in facilitating uptake and clearance of the pathogen by innate
immune cells (van Kessel et al. 2014; Verbrugh et al. 1982; Leijh et al. 1981).
Because most vaccines in use today are thought to work through the elicitation of
protective antibody responses, it is also not surprising that most of the vaccine
candidates against S. aureus to date were chosen and evaluated based heavily on
their ability to generate opsonizing and neutralizing antibodies (Pozzi et al. 2012;
Fattom et al. 1990; Ohlsen and Lorenz 2010).

The conjugate vaccine StaphVax (Nabi Biopharmaceuticals) was the first S.
aureus vaccine candidate to enter a phase III clinical trial. It targeted clinically
prevalent capsular polysaccharide (CP) serotypes 5 (CP5) and 8 (CP8), emulating
the successful strategy of targeting CPs to prevent infections with Streptococcus
pneumonia and Haemophilus influenzae. Preclinical studies demonstrated that
CP-specific antibodies protected mice from lethal S. aureus challenge and bacterial
dissemination (Fattom et al. 1990, 1996), and an initial phase III clinical trial in
hemodialysis patients suggested modest reductions in bacteremia early after vac-
cination (Shinefield et al. 2002). However, a booster dose in a subsequent phase III
study failed to prevent bacteremia despite augmenting antibody titers (Fattom et al.
2004; Schaffer and Lee 2008). The reasons for this failure remain incompletely
understood, but the outcome highlighted that S. aureus virulence is not solely
dependent on CP production, a fact exemplified by the lack of capsule production in
some highly virulent strains such as USA300.
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A more recent vaccine candidate for which preclinical promise failed to translate
into clinical trial success targeted the S. aureus iron-binding surface determinant B
(IsdB). This protein was identified as a vaccine candidate by screening patients with
high antibody titers against S. aureus surface antigens displayed by an E. coli
expression library (Etz et al. 2002). Immunization with this protein in preclinical
and phase I clinical studies showed protection in mouse models of sepsis and
antibody induction in mice, macaques, and humans (Kuklin et al. 2006;
Stranger-Jones et al. 2006; Kim et al. 2010; Harro et al. 2010, 2012). However, a
phase IIB/III clinical trial with the IsdB vaccine (Merck V710) in cardiothoracic
surgery patients was stopped prematurely when, despite induction of IsdB anti-
bodies, excessive deaths were noted in the vaccine group among subjects who
developed postoperative S. aureus infections (Fowler et al. 2013). Subsequent
serum cytokine analysis showed that low IL-2 and IL-17 levels post-vaccination
correlated with mortality in subjects who later developed S. aureus infections,
consistent with a potential T cell-based mechanism although immune analysis after
infection to further characterize the associated immune response has not been
reported (McNeely et al. 2014).

Instead of targeting cell surface antigens to promote opsonophagocytic clearance
of organisms, other vaccine approaches have attempted to generate neutralizing
antibodies against secreted S. aureus virulence factors. Active and passive immu-
nization studies have validated this strategy in experimental models. The clearest
rationale for this approach has been against toxic shock syndrome, which is driven
by superantigen toxins such as staphylococcal enterotoxin A (SEA), SEB, or toxic
shock syndrome toxin 1 (TSST-1). Several studies have reported that immunization
of mice and rhesus macaques with recombinant superantigen toxoids devoid of their
superantigenic activity induces toxin-specific antibodies and protects from lethal
shock induced by the targeted wild-type toxins (Bavari et al. 1996; Lowell et al.
1996; Stiles et al. 1995; Boles et al. 2003). Furthermore, active immunization with
recombinant SEA and TSST-1 toxoid vaccines, as well as adoptive transfer of
immune sera, protected mice from systemic S. aureus infection (Hu et al. 2003;
Nilsson et al. 1999).

The option of targeting other secreted toxins that contribute to S. aureus
infection became apparent when antibodies generated against HlaH35L, a
non-pore-forming mutant of Hla, were shown to protect mice from lethal pneu-
monia (Bubeck Wardenburg and Schneewind 2008) and from skin and soft tissue
infections (Kennedy et al. 2010; Mocca et al. 2014). Similarly, antibodies raised
against a recombinant fusion protein (AT-62) designed to mimic key topographic
features of the Hla heptamer protected mice from bacteremia and lethal pneumonia
(Adhikari et al. 2012b). Antibodies raised against attenuated recombinant LukF-PV
and LukS-PV, subunits of the bicomponent Panton–Valentine leukocidin (PVL),
showed protective efficacy in a mouse bacteremia model and appeared to have
cross-neutralizing activity toward other leukocidins in PVL-deficient strains
(Karauzum et al. 2013), a potentially important characteristic given the complex
redundant and antagonistic interactions between these bicomponent toxins (Yoong
and Torres 2015). Considering the multiple virulence strategies employed by
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S. aureus, Spaulding et al. (2014) demonstrated that vaccination with a cocktail of 7
secreted virulence factors, consisting of superantigens and cytolysins, induced
antibody-mediated protection against lethal pneumonia in a rabbit model.
Interestingly, in the same report, vaccination with a cocktail of surface antigens
enhanced lethality in a rabbit model of infective endocarditis, an outcome suggested
to be due to antibody-mediated bacterial aggregation (Spaulding et al. 2014). This
highlighted the potential for deleterious antibody responses that may be elicited
depending on the antigenic targets and the model of infection. Based on the role of
antibody shown in such active immunization studies, the therapeutic potential of
passive immunization has also been demonstrated in mouse models using mouse,
human, and/or chimeric monoclonal antibodies targeting secreted or surface-bound
virulence factors such as clumping factor A (ClfA) (Domanski et al. 2005),
lipoteichoic acid (LTA) (Weisman et al. 2009, 2011), Hla (Ragle and Bubeck
Wardenburg 2009; Tkaczyk et al. 2012), and SEB (Larkin et al. 2010; Karauzum
et al. 2012; Varshney et al. 2014).

3.3 Evasion Mechanisms from the Humoral Immune
Response

S. aureus has developed evasion mechanisms that combat the B cell antibody
response. In particular, staphylococcal protein A (SpA) and the second
immunoglobulin binding protein (Sbi) (Zhang et al. 1998; Smith et al. 2011) are
virulence factors that bind immunoglobulins. SpA is a highly expressed, cell
wall-anchored surface protein that binds to the complement-binding Fcc portion of
mammalian IgG. Decoration of the staphylococcal surface with IgG molecules
bound in this reverse manner interferes with the complement activation and
opsonophagocytosis. In addition, SpA in its secreted form acts as a B cell super-
antigen, binding the F(ab)2 portion of the B cell receptor to induce B cell prolif-
eration and death (Kobayashi and DeLeo 2013). Beyond its direct effects on
opsonophagocytosis and B cell survival, SpA activity has been shown to inhibit the
development of antibody responses against other staphylococcal antigens in mouse
models and in humans (Kim et al. 2011; Falugi et al. 2013; Pauli et al. 2014). In
contrast to SpA, baseline expression of Sbi on the cell surface is low but increases
in the presence of IgG, suggesting a highly specific mechanism of immune evasion
(Zhang et al. 2000). Like SpA, Sbi can act as both a cell wall-anchored or secreted
virulence factor, binding the Fcc portion of IgG on the cell surface and the soluble
complement factor C3, respectively (Smith et al. 2011).

In addition to these specific mechanisms, S. aureus can also abandon its usual
niche as an extracellular pathogen and evade the humoral immune response as a
facultative intracellular organism. For example, it can resist killing and grow within
neutrophils (Voyich et al. 2005), or persist in epithelial cells in the form of small
colony variants (SCVs). Persistence as SCVs enables the bacterium to avoid

424 H. Karauzum and S.K. Datta



antimicrobial treatment, promote disease pathogenesis, and facilitate recurrent
infections (Tuchscherr et al. 2011; Proctor et al. 1995; von Eiff et al. 2001b;
Gresham et al. 2000). Furthermore, certain antibody responses generated against S.
aureus can promote its virulence. For example, treatment with anti-PVL antibodies
increased bacterial loads in mouse skin abscesses and inhibited in vitro killing of S.
aureus by human neutrophils (Yoong and Pier 2010). Further highlighting the
unpredictable potential for negative effects of antibody responses, the combination
of two antibodies against surface polysaccharides (CP and poly-N-acetyl glu-
cosamine) interfered with the beneficial effects of each individually on
opsonophagocytic activity and protection in mouse models of bacteremia and skin
infection (Skurnik et al. 2010).

In sum, antibody deficiency in mice and humans shows us that antibodies are not
necessary for protection against S. aureus infections. However, they may very well
contribute to the protective response as suggested by the modulation of antibody
responses by S. aureus virulence factors, the ubiquitous presence of
anti-staphylococcal serum antibodies, antibody-mediated protection after active and
passive immunization in preclinical models, and human data correlating antibody
titers with protection. Published data also support the possibility of ineffective or
deleterious antibody responses, emphasizing the need to better understand the
characteristics of a protective antibody response in order to elucidate contributions
to natural immunity and implications for vaccine design.

4 Role of T Cells

T cells are thymic-derived cells that express unique T cell receptors (TCRs) that
recognize antigen-derived peptides in the context of major histocompatibility
complex (MHC) molecules on APCs. Similar to B cells and antibodies, a case can
be made for a role for T cells during S. aureus infection based on the presence of
detectable T cell responses in humans (Zielinski et al. 2012; Kolata et al. 2015) and
the ability of the bug to modulate T cells as exemplified by its expression of a
multitude of T cell superantigens (Spaulding et al. 2013). However, it has been
reported that T cells are not essential for protection against S. aureus in mice
(Schmaler et al. 2011). Furthermore, S. aureus shows up only occasionally as a
cause of infection in evaluations of humans with T cell deficiencies (Stephan et al.
1993), although the severe susceptibility of these patients to other organisms
confounds our ability to fully assess the contribution of T cells to staphylococcal
immunity in this context. Various subsets of T cells have differing functions, and a
more nuanced role for these subsets has become evident in mouse studies and with
the recognized susceptibility to staphylococcal infections of patients with HIV and
other partial T cell disorders (Hidron et al. 2010; Cook and Tangye 2009). These
will be discussed in further detail below.

The majority of T cells are comprised of CD4+ and CD8+ T cells that have long
been recognized to be the major cellular arm of adaptive immunity. The major
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function of CD8+ T cells is to target intracellular pathogens by cytolytic killing of
the infected host cell. Consistent with S. aureus being a primarily extracellular
pathogen, a clear role for CD8+ T cells has not been reported, although CD8+ T cell
activation can be detected during S. aureus infection and staphylococcal super-
antigen exposure. Naïve CD4+ T cells are polarized toward different effector
functions depending on the cytokine milieu in which activation of their TCR
occurs. These helper T cell (Th) subsets are functionally characterized by their
cytokine expression profiles, which will be detailed below. A percentage of these
polarized cells will persist in the host as memory cells awaiting re-activation by
subsequent antigen exposure. The role of these different subsets of effector CD4+ T
cells in the context of S. aureus infection will be reviewed below. In addition to
CD4+ and CD8+ T cells, more recently described subsets of T cells, such as cd T
cells, innate lymphoid cells (ILC), and NK T cells, contribute mainly to the innate
immune response at mucosal sites rather than antigen-specific memory, although
recent reports have suggested the potential for cd T cells to contribute to a memory
response under certain circumstances (Murphy et al. 2014).

4.1 Th1 Cells

TCR-mediated activation of naïve CD4+ T cells in the presence of IL-12 signaling
via STAT4 leads to the generation of Th1 effector cells. Although capable of
producing multiple inflammatory cytokines, including IL-2, TNFa, and GM-CSF,
Th1 cells are defined by the secretion of their signature cytokine interferon (IFN)-c
and expression of the transcriptional regulator T-bet (O’Shea and Paul 2010;
Schmitt and Ueno 2015; Raphael et al. 2014). Th1 cells are not the only source of
IFNc, with various innate immune cells, including NK cells and ILC being notable
producers. Among its functions, IFNc activates phagocytic cells such as macro-
phages and neutrophils to promote killing of intracellular pathogens. Its role in
protection against these organisms is highlighted by the susceptibility of patients
with hereditary defects in IFNc signaling to infections with Mycobacteria,
Salmonella, and certain viruses (Rosenzweig and Holland 2005). Unregulated IFNc
production can contribute to immunopathology and autoimmunity (Feldmann et al.
1998).

In the context of S. aureus infections, it appears Th1 cells and IFNc can have
both beneficial and detrimental roles. Guillen et al. reported a protective role of an
enhanced Th1 response in a mouse model of septicemia and septic arthritis in mice
transgenic for lactoferrin. The enhanced production of IFNc and TNFa in these
mice during infection resulted in higher bacterial clearance and lower mortality
compared to their wild-type littermates (Guillen et al. 2002). An overproduction of
this cytokine, however, can be associated with immunopathology. An early study
evaluating the role of T cells in S. aureus-induced arthritis indicated that Th1 cells,
stained positive for the IL2R and intracellular IFNc, infiltrated the synovium of
joints of infected mice, and depletion of CD4+ but not CD8+ T cells in the infected
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animals ameliorated disease (Abdelnour et al. 1994). However, intravenous inoc-
ulation of mice deficient in T-bet, which may have deficiencies beyond a defect in
Th1 cell IFNc production (Lazarevic et al. 2013), had increased severity of septic
arthritis that was associated with increased weight loss, mortality, and kidney
bacterial burden (Hultgren et al. 2004). Consistent with the potential duality of roles
for Th1 cells during S. aureus infection, Th1 cells and IFNc production were
reported to promote chemokine-mediated neutrophil recruitment in a wound
infection model, but this resulted in a paradoxical increase of bacterial burden,
potentially due to the ability of S. aureus to persist in neutrophils (McLoughlin
et al. 2006, 2008).

Th1 cells appear to be able to contribute to vaccination-induced protection against
subsequent S. aureus infection. CD4+ T cell IFNc production was required for the
protection against subsequent systemic infection after vaccination with a recombi-
nant protein derived from Als3p, a Candida protein that cross-protected against S.
aureus (Lin et al. 2009). Similarly, vaccination with extracellular vesicles released
from S. aureus induced a Th1 response, and protection in a pneumonia model was
dependent on CD4+ T cells and IFNc (Choi et al. 2015). However, protection after
vaccination against cutaneous infection with a lethally irradiated whole-cell vaccine
was not associated with an IFNc response (Gaidamakova et al. 2012), and increased
mortality in similarly vaccinated mice after intravenous challenge was dependent on
CD4+ T cell IFNc production (Karauzum and Datta, unpublished data). Another
study also hinted at potential detrimental effects of vaccine-induced Th1 responses
by showing that mice vaccinated with heat-killed S. aureus had significant disease
burden after intravenous infection despite detectable CD4+ T cell IFNc production
(Schmaler et al. 2011); however, lack of direct comparison to an unvaccinated
control group prevents conclusive interpretation of these results.

In sum, it appears Th1 cells can have protective, detrimental, or non-contributory
roles against S. aureus infection, likely dependent on factors such as route of
infection, organism burden, antigenic targets, level of induction, and balance with
other immune mechanisms. Clarification of the conditions under which Th1 cells
exert these apparently contradictory effects will better guide approaches to inter-
ventions aimed at therapy and prevention.

4.2 Th2 Cells

Activation of naïve CD4 T cells in the presence of IL-4 via STAT6 signaling leads
to the priming of Th2 cells. This subset of CD4 T cells is characterized by its
signature transcription factor GATA-3, which promotes induction of Th2 cytokines
that include IL-4, IL-5, and IL-13. Th2 cells play an important role in host defense
against extracellular parasites, driving various aspects of cellular and humoral
immunity to promote parasite clearance and tissue repair (Allen and Sutherland
2014). Their dysregulation contributes to allergic and atopic diseases (Raphael et al.
2014; Geginat et al. 2013). Of particular relevance to staphylococcal disease is
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atopic dermatitis (AD), a prevalent inflammatory skin disorder that is characterized
by the overexpression of Th2 cytokines (Hamid et al. 1994), which contribute to
barrier permeability issues and other features of AD. Skin colonization and infec-
tion with S. aureus is almost a universal feature of AD (Boguniewicz and Leung
2011). The propensity of Th2 cytokines to inhibit antimicrobial gene programs,
including induction and mobilization of antimicrobial peptides such as human
beta-defensin (HBD)-3, are thought to contribute to this susceptibility (Kisich et al.
2008; Nomura et al. 2003; Howell et al. 2006). Th2 cytokines may not only drive
aspects of AD and staphylococcal susceptibility, but S. aureus colonization may
further promote this Th2-driven milieu. Staphylococcal cell wall components, such
as peptidoglycan (Matsui and Nishikawa 2012) and lipoteichoic acid (Matsui and
Nishikawa 2002), were shown to induce Th2 cells and may contribute along with
other secreted toxins toward the inflammatory environment in the skin of AD
patients (Schlievert et al. 2010; Nakamura et al. 2013; Brauweiler et al. 2014).

The role of Th2 responses during S. aureus infection outside the setting of AD is
less clear. S. aureus footpad infection was less severe in the Th2-biased DBA and
BALB/c mouse strains than in Th1-biased C57BL/6 mice (Nippe et al. 2011).
A protective role for Th2 cells was also suggested in an ocular keratitis model
where unexpectedly high Th2 responses in C57BL/6 mice correlated with the
protection compared to less robust responses seen in more susceptible BALB/c
mice (Hume et al. 2005). However, these correlative observations do not defini-
tively address whether the Th2 response is driving resistance to infection or whether
other immunological parameters are responsible. A recent study in a model of
persistent biofilm infection did show STAT6-dependent clearance in BALB/c mice
that suggested a contribution of Th2 responses to protection (Prabhakara et al.
2011). In the same study, neutrophilic inflammatory responses worsened infection
and this effect could be reversed by neutralization of IL-12p40 or IL-6, treatments
that would be predicted to dampen Th1 and Th17 responses, respectively, and skew
toward Th2 responses (Prabhakara et al. 2011).

The complexity of Th2 responses and their downstream effects may potentially
trigger both beneficial and detrimental responses. It seems clear that Th2 responses
contribute to a vicious cycle of inflammation and S. aureus susceptibility at the skin
in the context of AD. However, Th2 effects may play a role in achieving the
appropriate balance between inflammatory and anti-inflammatory responses in
other situations, particularly during chronic infection.

4.3 Th17 Cells

Th17 cells are a relatively recently recognized subset of effector CD4+ T cells.
They are defined by their expression of Rorct and secretion of inflammatory
cytokines, including IL-17A, IL-17F, and IL-22 (Liang et al. 2006; Chung et al.
2006; Ivanov et al. 2006). These cytokines predominantly act on epithelial cells to
enhance barrier function, antimicrobial properties, and neutrophil recruitment
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(Ouyang et al. 2008). Initially discovered in the context of autoimmunity, they have
been shown to play a protective role in mouse models of extracellular bacterial and
fungal infections, especially at mucosal sites (Ouyang et al. 2008).

A protective role for Th17 cells against S. aureus was first suggested by a report
that mice deficient in both IL-17A and IL-17F spontaneously developed mucocu-
taneous S. aureus infections (Ishigame et al. 2009). Subsequent work clarified that
induction of IL-17A from cd T cells in the skin played a critical role in controlling S.
aureus burden and abscess size after subcutaneous inoculation (Cho et al. 2010). In
this context, cd T cells functioned in their traditional role as a cytokine-activated
component of innate immunity, implicating an important role for innate immune
cell-derived IL-17A. Hla-dependent Th17 induction (Frank et al. 2012) and
influenza-mediated antagonism of Th17-dependent protection (Kudva et al. 2011)
indicated a role for Th17 cells in a model of S. aureus pneumonia. Interestingly,
CD4+ T cell depletion in the context of this Th17-inducing pneumonia model
improved outcomes in another study, hinting at a delicate balance within the CD4+ T
cell compartment between protective immunity and immunopathology (Parker et al.
2015). Deficiency in IL-17A also enhanced susceptibility to S. aureus joint infection,
although the relevant cellular source was not identified (Henningsson et al. 2010).
Deficiency in IL-17A did not increase susceptibility to systemic challenge with
S. aureus in multiple studies (Ishigame et al. 2009; Lin et al. 2009; Narita et al. 2010;
Henningsson et al. 2010), consistent with a primary role for this cytokine at skin and
mucosal sites. However, a protective function for IL-17A from vaccination-induced
Th17 cells has been shown against skin (Gaidamakova et al. 2012) and systemic
S. aureus infections (Lin et al. 2009; Narita et al. 2010; Joshi et al. 2012). Consistent
with this, antibody-dependent protection against multiple models of infection by a
four-component vaccine was further enhanced by Th1 and Th17 cell induction with
inclusion of a TLR7 agonist adjuvant (Bagnoli et al. 2015). The Merck IsdB vaccine
also showed contribution of IL-17A, but not IL-22 or IFNc, to protection in a mouse
model of sepsis (Joshi et al. 2012), and, as mentioned previously, low IL-2 and IL-17
levels post-vaccination correlated with mortality in S. aureus-infected human sub-
jects (McNeely et al. 2014). Of note, the Th17-associated cytokine IL-22 seems to
have either no or minimal effects on the course of acute cutaneous infection in mice
(Myles et al. 2013; Chan et al. 2015), but can independently contribute to protection
against pneumonia (Kudva et al. 2011) and vaccine-induced protection against skin
and systemic infection (Yeaman et al. 2014).

Autoantibody- and genetically mediated dysfunction of the IL-17 pathway pre-
disposes to mucocutaneous Candida infections (Burbelo et al. 2010; Kisand et al.
2010; Puel et al. 2010, 2011). Only a striking minority of these patients reported S.
aureus infections, making it unclear whether IL-17 is a critical element for human
anti-staphylococcal responses. However, patients with HyperIgE (or Job’s)
Syndrome, who are susceptible to staphylococcal skin and lung infections, lack
normal Th17 generation due to STAT3 dysfunction (Minegishi et al. 2007; Holland
et al. 2007;Milner et al. 2008). The role for Th17 cytokines in promoting keratinocyte
and epithelial antimicrobial function (Minegishi et al. 2009) is also consistent with an
IL-17-dependent basis for their susceptibility specifically to skin and lung infections,
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although other functions of STAT3, including its direct role in antimicrobial peptide
production (Choi et al. 2013), very likely contribute. Consistent with a potential
contribution of Th17 cells to human immunity is the Th17 depletion seen in
HIV-infected patients early in the course of disease that correlates with their increased
likelihood of S. aureus skin and soft tissue infections (Hidron et al. 2010; Prendergast
et al. 2010). Patients with AD also have decreased IL-17 pathway cytokines and
decreased antimicrobial peptides in lesional skin, potentially contributing to their
staphylococcal susceptibility (Guttman-Yassky et al. 2008). The relative induction of
these pathways in psoriasis has been postulated to contribute to the relative resistance
of these patients to S. aureus (Guttman-Yassky et al. 2008).

In sum, IL-17 from either innate or adaptive sources plays an important role
against S. aureus in mouse models of infection at skin and mucosal sites. Induction
of Th17 cells by vaccination can enhance protection at these sites and also against
bacteremia. Th17 cells appear to be potential key players in immunity against S.
aureus; however, their exact contribution to the control of human staphylococcal
infection remains to be fully elucidated and their potential for autoimmune inflam-
mation will need to be kept in check if they are to be targeted by clinical vaccines.

4.4 Regulatory T Cells

Regulatory T cells (Treg) display contact-dependent and cytokine-mediated
immunosuppressive functions that counteract inflammatory responses and main-
tain immune homeostasis. S. aureus may exploit these immunosuppressive func-
tions by inducing Treg responses that contribute, along with other
immunosuppressive mechanisms, to diminished effector T cell responses during
models of persistent infection (Ziegler et al. 2011; Tebartz et al. 2015). Increased
Treg numbers may also contribute to the immune dysregulation and S. aureus
susceptibility seen in the skin of patients with AD (Ou et al. 2004). However,
depletion of Treg exacerbated a model of chronic biofilm infection, suggesting that
an appropriate balance between inflammatory and anti-inflammatory responses is
needed for optimal bacterial control (Prabhakara et al. 2011). Further studies will be
needed to increase our nascent understanding of the role of Treg in modulating the
response to S. aureus infection and how this may influence susceptibility.

5 Conclusion

Immune control of acute S. aureus infection is critically dependent on the innate
immune system. However, adaptive immunity in the form of B cell and T cell
responses may influence this control and is potentially of particular importance in
determining the outcomes of chronic persistent infections. The search for a pro-
tective vaccine will depend on our ability to induce an effective adaptive immune
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response. Recent studies suggest that induction of an antibody response alone may
not be sufficient, and an appropriate vaccine-induced T cell response will be needed
to confer protective immunity. The potential for eliciting deleterious adaptive
immune responses has become apparent in both animal models and clinical vac-
cination trials. This highlights the need for further elucidation of the components of
an effective immune response, a task complicated by the multiple virulence
strategies and sites of infection employed by this bug that will each likely require
targeting by unique strategies for effective prevention and therapy.
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