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Abstract Histophilus somni is a commensal and an opportunistic bacterial
pathogen associated with multisystemic diseases in cattle and sheep. Some strains
of H. somni isolated from the genital tract of cattle are biochemically and sero-
logically similar to the pathogenic strains, but are relatively innocuous. Several
virulence factors/mechanisms have been identified in H. somni, of which the
phase-variable lipooligosaccharide, induction of apoptosis of host cells,
intraphagocytic survival, and immunoglobulin Fc-binding proteins have been well
characterized. The genomes of H. somni pneumonia strain 2336 and preputial strain
129Pt have also been sequenced, and comparative analyses of these genomes have
provided novel insights into the role of horizontal gene transfer in the evolution of
the respective strains. Continued analyses of the genomes of H. somni strains and
comparing them to the newly sequenced genomes of other bacteria facilitated the
identification of a putative integrative and conjugative element (designated
ICEHs02336) encoding tetracycline resistance. Comparative genomics also showed
that the uptake signal sequence (5-AAGTGCGGT) of Haemophilus influenzae is
abundant in H. somni and provided a genetic basis for the recalcitrance of some
strains of this species to natural transformation. The post-genomic era for H. somni
offered an opportunity for the functional characterization of genes identified by
computational methods. This opportunity has been realized to a great extent by
transcriptomic studies that have identified several small noncoding RNAs and new
genes. These new discoveries and developments are expected to stimulate further
in-depth investigations of H. somni, especially from the systems biology viewpoint.
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1 Introduction to Genomic Analyses

The terms “genomics” and “genomic methods” describe “the molecular and
bioinformatics techniques that employ all or part of the genome to answer a
question about an organism or a group of organisms” (Carruthers et al. 2012).
Genomics has immense applications in the quest to understand nature, and com-
parative microbial genomics is an indispensable tool for molecular pathogenic
bacteriology. The first complete genome sequence from a free-living organism was
that of Haemophilus influenzae strain Rd KW20 (Fleischmann et al. 1995), a close
relative of H. somni. This pioneering work at the erstwhile Institute for Genomic
Research (TIGR) popularized the concept of whole-genome random sequencing by
the “shotgun” approach. Since the completion of the first bacterial genome
sequence, thousands of bacterial and archaeal genomes have been sequenced and
annotated using novel tools and techniques. The genomes of several species of
Pasteurellaceae have also been sequenced, and whole-genome comparisons have
provided new insights into the physiology and evolution of members within this
very important bacterial family (Challacombe and Inzana 2008).

Numerous in vitro and in vivo studies during the pre-genomic era have shed
light on the differences in virulence properties and genetic traits between H. somni
pathogenic isolates from sick animals and commensal isolates from the genital tract
(Corbeil et al. 1995). H. somni pneumonia strain 2336 (NCBI taxonomy ID
228400) and preputial strain 129Pt (NCBI taxonomy ID 205914) have been phe-
notypically well characterized in the laboratory and utilized in several comparative
studies (Corbeil et al. 1997; Inzana et al. 1992, 2002). The genomes of these two
strains have been completely sequenced and compared (Challacombe et al. 2007,
Siddaramappa et al. 2011). This chapter will provide an overview of the
pre-genomic investigations, comparative genomic analyses, and post-genomic
studies of H. somni strains.
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2 Comparative Genomics

Several temperate bacteriophages that infect strains of H. influenzae have been
purified and described (Williams et al. 2002). However, temperate bacteriophages
that infect strains of H. somni remain to be isolated and characterized. Nevertheless,
prophages and their associated sequences appear to be rife in the genome of H.
somni strain 2336, but less abundant in the genome of strain 129Pt (Siddaramappa
et al. 2011), indicating that the natural repertoire of bacteriophages that potentially
infect some strains of H. somni strains could be large. Furthermore, a large portion
of strain-specific sequences occurring in strains 2336 and 129Pt appear to be due to
prophages and their associated sequences (Siddaramappa et al. 2011). Although the
Mu-like prophage (FluMu) found in H. influenzae strain Rd KW20 is absent in the
genomes of H. somni strains, the genome of H. somni strain 2336 contains a
prophage that appears to be partially related to the Mannheimia haemolytica ser-
otype Al lysogenic bacteriophage ¢MhaA1-PHL101.

In addition to the prophages and their associated sequences, the genomes of H.
somni strains contain several genomic islands that appear to be unrelated to each
other (Siddaramappa et al. 2011). A genomic island that is homologous to
ICEHin1056, which is a 59,393-bp integrative and conjugative element (~39 % G
+C) containing genes encoding ampicillin, chloramphenicol, and tetracycline
resistance in H. influenzae type b strain 1056, has also been identified in H. somni
strain 2336 (Mohd-Zain et al. 2004). The genomic island of H. somni strain 2336
was more precisely delineated upon comparison with ICEPmul, which is an
integrative and conjugative element (~42 % G+C) containing genes encoding
resistance to multiple antibiotics in Pasteurella multocida strain 36950 (Michael
et al. 2012). This genomic island of H. somni strain 2336 appears to be a putative
integrative and conjugative element and is referred to as ICEHs02336 (~40.5 % G
+C). An integrative and conjugative element ICEMhI, ~40 % G+C) containing
genes encoding resistance to multiple antibiotics and closely related to ICEPmul is
also present in M. haemolytica strain 42548 (Eidam et al. 2015). Whereas the
nucleotide identity between ICEMhl and ICEHinl056 is only ~70 %, the
nucleotide identity between ICEMhI, ICEPmul, and ICEHs02336 is ~99 %.

Furthermore, ICEPmul and ICEMhI are integrated site-specifically into
tRNA™" in the chromosomes of P. multocida strain 36950 and M. haemolytica
strain 42548, respectively (Eidam et al. 2015; Michael et al. 2012). A comparison of
these loci as well as ICEHs02336 indicated that each element contains 11-bp (5'-
GATTTTGAATC) terminal direct repeats and an 86-bp tRNA™" at the right ter-
minus (Fig. la). Although ICEPmul is smaller in size than ICEMhI by
~ 10,000 bp, it contains more antimicrobial resistance genes than the latter (Eidam
et al. 2015; Michael et al. 2012). As reported previously, ICEHs02336 contains the
tetracycline repressor gene fetR and the tetracycline resistance gene fetH (Michael
et al. 2012; Mohd-Zain et al. 2004; Siddaramappa et al. 2011), and H. somni strain
2336 is resistant to tetracycline (MIC 8 pg/ml) (Ueno et al. 2014). A schematic map
of ICEHs02336 is shown in Fig. 1b, and a comparison of the ORFs that occur
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Fig. 1 a Comparison of ICEMh1, ICEPmul, and ICEHs02336. Each ICE contains 11-bp terminal
direct repeats (DR1 and DR3) and an additional direct repeat (DR2) within the 86-bp tRNA™"
gene (underlined). A 51-bp sequence occurs between the tRNAM" gene and DR3. These features
are identical among the three ICEs. The sequence between DR1 and the tRNA™" gene (92110 bp
in ICEMh1, 82,066 bp in ICEPmul, and 66463 bp in ICEHs02336) contains genes that distinguish
the three ICEs. Numbers above/below the maps (e.g., 2098396 and 2190664) indicate nucleotide
positions within the respective chromosomes. b Schematic map of ICEHs02336. Terminal direct
repeats (DR1 and DR3) shown in Fig. 1a are indicated by vertical black bars. Arrows represent
ORFs found within ICEHs02336 and compared in Table 1. Blue arrows represent ORFs that have
orthologs in ICEPmul, but not in ICEMhi. Gray arrows represent ORFs that have orthologs in
ICEPmul and ICEMhI. Black arrows represent ORFs that have no orthologs in ICEPmul and
ICEMhI. Red arrows represent tetR and tetH (have orthologs in ICEPmul and ICEMhI). Gray
arrows containing asterisks represent ORFs that have full-length or partial homologs in H. somni
strain 129Pt

among ICEPmul, ICEMhI, and ICEHs02336 is shown in Table 1. Although these
elements are closely related, they are not identical and it is evident from Table 1 that
they display a mosaic structure with alternating conserved and variable regions. In
particular, ICEHs02336 lacked 22 ORFs found in ICEPmul, and 13 of these 22
OREFs are also absent in ICEM#AI. In contrast, ICEPmul and ICEMhI lack 12 ORFs
found in ICEHs02336. Interestingly, H. somni strain 129Pt lacks an analogous ICE,
but contains short stretches of homologous sequences. Not surprisingly, most of the
OREFs identified in ICEPmul and/or ICEHs02336 have distant homologs outside of
the Pasteurellaceae.
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It is interesting to note that M. haemolytica strain 42548, P. multocida strain
36950, and H. somni strain 2336 were isolated from cases of naturally occurring
bovine respiratory tract infections in different parts of the USA (Pennsylvania,
Nebraska, and Washington, respectively) in different years (2007, 2005, and 1980s,
respectively), but harbor closely related genomic elements containing antibiotic
resistance determinants. Multidrug-resistant isolates of these respiratory pathogens
appear to be more common among animals in bovine feedlots (Klima et al. 2014).
Furthermore, horizontal transfer of ICEs that mediate antibiotic resistance from M.
haemolytica and H. somni to P. multocida, and from P. multocida to Escherichia
coli, has been demonstrated (Klima et al. 2014). It is possible that these ICEs have a
common evolutionary origin, and indiscriminate use of antibiotics favors their
preservation and dispersal in the field.

3 Comparative Transcriptomics

Computational gene prediction at best provides a “first pass” structural annotation
of genomes and has many limitations, which could be overcome using experimental
approaches that involve the analyses of the transcriptome. Attempts have been
made to obtain a high-resolution transcriptome map of H. somni strain 2336 using
the Illumina RNA-Seq technology (Kumar et al. 2012). Comparison of the tran-
scriptome map of strain 2336 with the computationally annotated genome facili-
tated the identification of 94 small noncoding RNA (sRNA) of various sizes (70—
695 bp, average G+C content 39.3 %). A vast majority of these SRNA (82 of 94)
were reported to be novel (unidentified in previous bacterial transcriptome studies)
and proposed to play roles in housekeeping and virulence, in addition to gene
regulation. Sequence analyses of the 94 sRNA indicated that 31 were specific to
strain 2336, 41 were specific to strains 2336 and 129Pt, 11 had homologs only in
the genomes of P. multocida, H. influenzae, and H. parainfluenzae, and 11 had
homologs in the genomes of other distantly related bacteria (Kumar et al. 2012).
Furthermore, the start sites of five predicted genes (HSM_0031, 0525, 0789, 1019,
and 1729) were corrected using the RNA-Seq data and comparison with other
phylogenetically related homologs.

Genome annotation had predicted that putative proteins encoded by HSM_0603,
0748, 1385, 1666, and 1744 (hypothetical protein, a-L-fucosidase, 3-hydroxyde-
canoyl-ACP dehydratase, DNA damage-inducible protein, and alcohol dehydroge-
nase, respectively) were shorter than their homologs in other species. RNA-Seq data of
strain 2336 showed the presence of full-length mRNA for these genes and confirmed
that the putative proteins were truncated at the N-terminus due to either frameshift
mutations (for HSM_ 1385 and 1744) or non-functional start codons (for the other three
genes) (Kumar et al. 2012). Analyses of the RNA-Seq data indicated that 1636 of the
1980 predicted protein-coding genes were transcribed and there were 278 operons
consisting of 730 genes in H. somni strain 2336 (Kumar et al. 2012).
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4 Plasmids and Shuttle Vectors

Plasmid-borne resistance to multiple antibiotics is a relatively common feature
among some members of the Pasteurellaceae. Isolates of H. somni resistant to
tetracycline and harboring fetH, albeit lacking plasmids, have been cultured from
nasal swabs of feedlot calves from Alberta, Canada (D’Amours et al. 2011).
Furthermore, plasmid profiling as a means of identification and characterization of
field isolates of H. somni has been reported (Appuhamy et al. 1998; Fussing and
Wegener 1993). Efforts have also been made toward deciphering and describing the
complete nucleotide sequences of plasmids from H. somni strains (Izadpanah et al.
2001; Siddaramappa et al. 2006). All four H. somni circular plasmids whose
sequences have been deciphered/described are referred to as cryptic plasmids since
they lack the genes that encode functions other than those necessary for their own
replication (Izadpanah et al. 2001; Siddaramappa et al. 2006). Interestingly, the
largest H. somni circular plasmid that has been completely sequenced (pHS129,
5178 bp) appears to be a dimer (Siddaramappa et al. 2006), and the natural
occurrence of such plasmid dimers among bacteria is relatively rare.

The possibility of using native or non-native plasmids, after suitable modifica-
tions, as shuttle vectors that function in E. coli and H. somni has been explored. H.
somni strain HS91 was transformed with plasmid pD70Kan®, which is derived from
M. haemolytica plasmid pD70 (Briggs and Tatum 2005). Interestingly, in vitro
modification of pD70Kan® using a commercially available Hhal methylase sig-
nificantly improves the transformation efficiency (Briggs and Tatum 2005).
Furthermore, H. somni strain 129Pt, which contains plasmid pHS129, can be
transformed with pLS88, which is a broad-host-range plasmid purified from
Haemophilus ducreyi (Sanders et al. 1997). In vivo modification of pLS88 using the
recombination-deficient H. influenzae strain DB117 improves the transformation
efficiency (Sanders et al. 1997).

H. somni strain 129Pt has also been transformed with a modified version of H.
somni circular plasmid pHS649 (Siddaramappa et al. 2006). Derivatives of pLS88
that transform H. somni with a higher efficiency (e.g., pNS3K) have also been
developed using kanamycin resistance as the selectable marker (Sandal et al. 2008).
Therefore, it appears that pHS129 and pLS88 do not belong to the same incom-
patibility group, as are pHS129 and pHS649. The possibility of improving these
vectors or other forms of pLS88 (such as pLSSK and pLSKS) (Wood et al. 1999)
for efficient transformation of H. somni strains remains to be explored.

5 Mutagenesis

Although chemical mutagenesis is a popular technique in bacterial genetics and
ethyl methanesulfonate has been used to obtain non-capsulated mutants of
Actinobacillus pleuropneumoniae (Inzana et al. 1993), it has not been widely used
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in other members of the Pasteurellaceae. Transformation and mutagenesis of
strains of H. somni using exogenous DNA molecules is difficult, at least in part due
to an omnipresent restriction—modification system.

Molecular genetic analyses of H. somni were invigorated following the
demonstration that in vitro or in vivo modification improves the transformation
efficiency of shuttle plasmids for H. somni (Briggs and Tatum 2005; Sanders et al.
1997). Successful transformation of H. somni strain 129Pt with a putative
virulence-associated gene of H. somni strain 2336, and the stable expression of the
gene in the transformed strain, demonstrated the utility of H. somni preputial iso-
lates for genetic analyses (Sanders et al. 1997). Furthermore, transformation of
strain 129Pt was also used to demonstrate that lobl is involved in lipooligosac-
charide (LOS) biosynthesis in H. somni and that the 5'-(CAAT), repeats within
lobl are involved in LOS phase variation (McQuiston et al. 2000) (see chapter on
“The Many Facets of Lipooligosaccharide as a Virulence Factor for Histophilus
somni”). These studies used a commercial electroporator to introduce heterologous
DNA into H. somni rendered electrocompetent by growth in brain—heart infusion
broth or Columbia broth and washing the bacterial pellets with 272 mM sucrose
solution (Briggs and Tatum 2005; McQuiston et al. 2000; Sanders et al. 1997).

A non-replicative suicide plasmid methylated in vitro by Hhal methylase was
used for mutagenesis of a H. somni strain 738 DNA locus involved in LOS
biosynthesis by homologous recombination-mediated allelic exchange (Wu et al.
2000). The mutant strains had an altered LOS profile in comparison with the
wild-type strain, indicating that lob2A could be involved in LOS biosynthesis (Wu
et al. 2000). However, the prototype mutant strain (H. somni 738-lob2A1::Km)
could not be complemented using shuttle vector pLSIlob2A, reportedly due to
inefficient electrotransformation (Wu et al. 2000) (see chapter on “The Many Facets
of Lipooligosaccharide as a Virulence Factor for Histophilus somni”).

A combination of methylation in vivo using the H. influenzae cloning strain
DB117 and in vitro using Hhal methylase has been shown to improve the trans-
formation efficiency of plasmids for H. somni strain 8025 (Sanders et al. 2003).
A fivefold increase in transformation efficiency is observed after plasmids derived
from H. somni strain 8025 are reintroduced into the same strain by electroporation
(Sanders et al. 2003), indicating that the restriction—modification systems among H.
influenzae and H. somni strains could be different. Furthermore, homologous
recombination-mediated allelic exchange was used for partial deletion of a locus
encoding high molecular weight immunoglobulin-binding proteins (HMW IgBPs)
in H. somni strain 8025 (Sanders et al. 2003). A significant difference (p < 0.001) in
the adherence of the mutant or wild-type strain to bovine pulmonary artery
endothelial cells was also reported (Sanders et al. 2003). Of interest is that both lob]
and the gene encoding for HMW IgBPs contain the H. influenzae uptake signal
sequence (see Sect. 6).

A temperature-sensitive plasmid was developed to obtain in-frame, unmarked
aroA deletion mutants of H. somni (Tatum and Briggs 2005). M. haemolytica native
plasmid pD70 was modified by inserting the Tn903 kanamycin resistance cassette
and the modified plasmid (pD70Kan®) mutagenized using hydroxylamine. A single
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base-pair mutation from G to A at position 301 within the origin of replication
renders this plasmid temperature sensitive. The aroA gene from H. somni was
amplified by PCR and cloned into the temperature-sensitive plasmid pGA301oriC
to create pTsHsaroC. An in-frame deletion was engineered within pTsHsaroC to
create the replacement plasmid pTsHsAaroAC (Tatum and Briggs 2005). This
replacement plasmid is methylated in vitro using Hhal methylase, electroporated
into H. somni strain 2336, and recovered at the permissive temperature of 30 °C for
2 h on medium containing 50 pg/ml kanamycin. The plates are then incubated at the
non-permissive temperature (41 °C) for 16 h to select for single-crossover mutants
containing the temperature-sensitive replacement plasmid integrated into the
chromosome by homologous recombination (Tatum and Briggs 2005). Single-
crossover mutants are cultured in broth without kanamycin at the permissive
temperature for 16 h to facilitate a second crossover event and plasmid excision.
This process is repeated twice, and bacteria from the third-pass culture are streaked
onto plates without kanamycin. The plates are incubated at 37 °C for 16 h, and
colonies are further replica-plated with or without kanamycin selection. After
incubation at 37 °C, kanamycin-sensitive colonies are selected and the absence of
the kanamycin gene is tested by PCR. Deletion of aroA is also confirmed by PCR
(Tatum and Briggs 2005).

A non-replicative suicide plasmid methylated in vitro using Hhal methylase can
also be used for complete deletion of the ibpA open reading frame encoding HMW
IgBPs in H. somni strain 2336 by homologous recombination-mediated allelic
exchange (Hoshinoo et al. 2009). The isogenic mutant strain was less cytotoxic than
wild-type strain 2336 for bovine FBM-17 macrophage-like cells, murine J774.1
macrophage-like cells, and bovine primary monocyte cells (Hoshinoo et al. 2009).
Although wild-type strain 2336 significantly compromised the ability of murine
J774.1 macrophage-like cells and bovine primary monocyte cells to phagocytize
microspheres, the isogenic mutant strain had no such effect, indicating that IbpA
(specifically the Fic region; see chapter on “Histophilus somni Surface Proteins”) of
H. somni may play a role in pathogenesis (Hoshinoo et al. 2009).

Homologous recombination-mediated exchange of genes encoding the major
outer membrane protein (MOMP) between H. somni strains 129Pt and 2336 has
been described (Ueno et al. 2014). Since plasmid-based cloning of the H. somni
gene encoding MOMP proved difficult, a vector-free strategy that utilizes the direct
electroporation of PCR-amplified, Hhal-methylated linear DNA into H. somni was
developed (Ueno et al. 2014). Following allelic exchange, strain 129Pt stably
expresses the gene encoding MOMP from strain 2336 (HSM_1447, ompH/OmpH,
1443 bp/380 aa) and strain 2336 stably expresses the gene encoding MOMP from
strain 129Pt (HS_0971, ompH/OmpH, 951 bp/316 aa), and the proteins can be
detected by Western and dot blots using strain-specific anti-MOMP monoclonal
antibodies. Furthermore, strains 129Pt and 2336 stably express a chimeric gene
encoding MOMP (due to combining parts of genes encoding MOMPs from the two
strains) after allelic exchange, and the fusion proteins can be detected using
strain-specific anti-MOMP monoclonal antibodies in Western and dot blots (Ueno
et al. 2014). The serum susceptibilities of strain 129Pt expressing HSM_ 1447 and
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strain 129Pt expressing the fusion protein (containing portions of HSM_1447 at the
C-terminus) are significantly greater than those of the wild type (Ueno et al. 2014).
This is not surprising since the genomes of strains 129Pt and 2336 differ from each
other, and the genes encoding the OmpH homologs have only 56 % identity.

To overcome the inherent low efficiency of transformation and recombination of
non-replicative suicide plasmids used for allelic exchange in H. somni, improved
methods of mutagenesis need to be developed. Mutagenesis of H. somni using a
commercially available transposon (Sandal et al. 2009) represents a significant step
in this direction. Electroporation of H. somni strain 2336 yields up to 100
kanamycin-resistant colonies per 20 ng of the EZ-Tn5™ <KAN-2> Tnp
Transposome™ (Epicentre, Madison, WI). Of 500 transposon mutants of H. somni
strain 2336 screened for biofilm formation using the crystal violet assay, 55 formed
either more or less biofilm than the wild-type strain. Of the several transposon
mutants confirmed to produce less biofilm than the wild-type strain by scanning
electron microscopy, six contained a transposon insertion in a region of the ibpA gene
that encodes a putative filamentous hemagglutinin. This indicates that filamentous
hemagglutinins, which are important attachment factors in other pathogenic bacteria
[such as Bordetella (Villarino Romero et al. 2014)], likely contribute to H. somni
biofilm formation and possibly pathogenesis (Sandal et al. 2009). Mutagenesis of H.
somni strain 2336 genes putatively encoding S-ribosylhomocysteinase ({uxS), uni-
versal stress protein E (uspE), major facilitator transport protein, and a protein of
unknown function has also been achieved using the EZ-Tn5™ <KAN-2> Tnp
Transposome™ (Sandal et al. 2009; Shah et al. 2014). Interestingly, both luxS and
uspE mutants are attenuated in an acute septicemia mouse model, whereas only the
uspE mutant is deficient in biofilm formation (Shah et al. 2014).

6 Natural Transformation

The ability of bacteria to internalize chromosomal fragments and/or plasmids under
natural conditions is referred to as competence. Competence is proposed to be
regulated by biochemical as well as environmental cues, and the purposes for
internalizing DNA within the host cell could be non-genetic (e.g., nutrition) or
genetic (e.g., transformation) (Mell and Redfield 2014). Although most naturally
competent bacteria are indiscriminate in DNA internalization, members of the
Pasteurellaceae and the Neisseriaceae are known to prefer conspecific DNA. The
preferential internalization of conspecific DNA by members of these two families
appears to be facilitated by short uptake signal sequences (Mell and Redfield 2014).
In H. influenzae, the uptake signal sequence is a nonamer (5'-AAGTGCGGT, or its
reverse complement), and comparative genomic analyses have demonstrated the
abundance of this sequence in Actinobacillus actinomycetemcomitans,
P. multocida, and H. somni (Bakkali et al. 2004; Redfield et al. 2006).
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Although several members of the Pasteurellaceae are believed to be competent,
only H. influenzae, A. actinomycetemcomitans, and A. pleuropneumoniae have
been shown to undergo natural transformation under laboratory conditions
(Redfield et al. 2006). In other species, the lack of competence or transformation in
the laboratory is believed to be due to the failure to mimic native conditions and/or
dysfunctional genetic systems (Redfield et al. 2006). Notably, H. somni strains
2336 and 129Pt lack a comD homolog and appear to encode a shortened ComE
homolog. Since it has been demonstrated that functionality of each gene within the
com operon is essential for transformation of H. influenzae (Carruthers et al. 2012),
it could be presumed that H. somni strains 2336 and 129Pt are non-transformable.
This appears to be valid in the case of strain 129Pt since it fails to be transformed
when plasmid pNS3K (Sandal et al. 2008), genomic DNA from a lob2A mutant of
strain 738 (Wu et al. 2000), or genomic DNA from transposon mutants of [uxS or
uspE of strain 2336 is used (Shah et al. 2014). However, strain 2336 can be
transformed with a low efficiency when plasmid pNS3K or genomic DNA from a
lob2A mutant of strain 738 is used. Nevertheless, strain 2336 fails to transform
when genomic DNA from transposon mutants of [uxS or uspE is used. Moreover,
H. somni strains 649, 8025, and M14-622 also fail to transform when genomic
DNA from a lob2A mutant of strain 738 is used (Shah et al. 2014). Therefore, it is
likely that H. somni strains differ in their competency/transformability, and this
could be due to the lack of specific com genes and/or the variety of restriction—
modification systems that occur in this species (Briggs and Tatum 2005;
Siddaramappa et al. 2011). Differences in competence and transformation have also
been observed among strains of H. influenzae lacking specific com genes (Maughan
and Redfield 2009). Furthermore, transformation of H. influenzae with restriction
endonuclease-digested conspecific DNA is dependent on fragment size (Beattie
et al. 1982), and it has been hypothesized that restriction endonucleases released by
lysed cells may cut donor DNA fragments destined for uptake and reduce recom-
bination efficiency (Mell and Redfield 2014).

7 Conclusions

Biochemical and genetic studies in the pre-genomic era firmly establish H. somni as a
potent opportunistic pathogen. Complete genome sequencing reveals the pathogenic
repertoire of this species, and comparative genomic analyses facilitate the identifi-
cation of chromosomal regions that resemble the pathogenicity islands of other vir-
ulent bacteria. One such pathogenicity island has now been identified as ICEHs02336
and appears to represent a classical horizontally transferred element. Transcriptome
analyses indicate that ~80 % of the predicted genes of H. somni strain 2336 are
readily transcribed, and ~44 % of these genes are operonic. Furthermore, electro-
transformation of H. somni appears to be more efficient than natural transformation.
In addition, genetic manipulation of H. somni is achievable through either suicide
plasmid-based homologous recombination (targeted mutagenesis) or transposomes



68 S. Siddaramappa

(random mutagenesis), and several plasmids are now available that can serve as
shuttle vectors. Future investigations of H. somni are expected to be guided by the
principles, technologies, and developments discussed in this chapter.
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