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Abstract The innate immune system harbors a multitude of different receptor
systems and cells that are constantly prepared to sense and eliminate invading
microbial pathogens. Staphylococcus aureus enters the body on its exposed
epithelial surfaces, e.g., on skin and mucosa. The initial interaction with epithelial
cells is governed by Toll-like receptor (TLR)-2-mediated local production of soluble
mediators, including cytokines, chemokines, and antimicrobial peptides. The overall
goal is to achieve a steady state of immune mediators and colonizing bacteria.
Following cell and tissue invasion clearance of bacteria depends on intracellular
microbial sensors and subsequent activation of the inflammasomes. Tissue-resident
mast cells and macrophages recruit neutrophils, macrophages, and NK cells. This
inflammatory response supports the generation of IL-17 producing NKT, γδ T cells,
and T helper cells. Local dendritic cells migrate to the lymph nodes and fine-tune the
adaptive immune response. The scope of this chapter is to provide an overview on
the major cell types and receptors involved in innate immune defense against
S. aureus. By segregating the different stages of infection from epithelial barrier to
intracellular and systemic infection, this chapter highlights the different qualities of
the innate immune response to S. aureus at different stages of invasiveness.
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1 Introduction

In the last two decades, our understanding of the cellular and molecular mechanisms
regulating innate immune defense has been refined. The researchers working in this
field have not only cloned and described a broad variety of receptors responsible for
the sensing of microbial pathogens but we have also learned how the different
immune cell subsets contribute to immune defense and shape the effector function of
the adaptive immunity. Despite all of these efforts, we have only started to under-
stand how all of these cells and receptors integrate to mount a pathogen-specific
protective immune response and which factors determine the differences in the
outcome and quality of the immune response observed among individuals.

Numerous studies have dealt with the innate immune response against S. aureus.
They have defined the receptors and cells required for innate immune protection
against infection with this pathogen. It has even been postulated that clearance of S.
aureus infection can solely rely on the innate immune system (Schmaler et al. 2011;
Josefsson and Tarkowski 1999). By contrast, activation of adaptive immune cells in
S. aureus infection has rather been associated with exacerbated inflammation and
development of arthritis (Josefsson and Tarkowski 1999) and is most likely due to
aberrant activation of B and T lymphocytes by S. aureus superantigens (reviewed in
Broker et al. 2014). Nevertheless, a multitude of studies also highlighted that S.
aureus also possesses a broad variety of virulence factors that promote its superb
ability to adapt to a hostile environment and successfully evade the innate immune
defense (reviewed elsewhere in this volume).

This chapter provides an overview on the innate immune mechanisms involved
in physiological recognition and immune defense against S. aureus in carriers and
local and systemic infections. Unfortunately, to date, there are no studies available
that systemically compare the immune response to colonizing, invasive, and
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intracellularly persisting S. aureus strains. The authors have, therefore, defined
different layers of antibacterial immune defense on a cellular (Fig. 1A) and a
receptor level (Fig. 1B) and assigned these to the different stages and types of
infection.

2 The Encounter at the Epithelial Barrier

When encountering the body surfaces, S. aureus cells interact with and adhere to
epithelial surfaces in skin and mucosa. The presence of adherent bacterial cells is
sensed by epithelial surface receptors that recognize microbial components derived
from the bacterial cell wall. These include wall teichoic acid (WTA), lipoteichoic
acid (LTA), peptidoglycan (PG), and lipoproteins (Lpp). Additionally, secreted
bacterial toxins such as alpha toxin, beta hemolysin, and Panton-Valentine leuko-
cidin (PVL) are neutralized by preformed IgA present in the mucosa (Verkaik et al.
2009). Notably, to date, there is nearly no information available that allows a
comparison of the epithelial and leukocyte responses upon initial encounter of the
pathogen to those maintained in chronic colonization with S. aureus.

b Fig. 1 The different layers of innate immune defense. A: Antibacterial defense on a cellular
level: 1. Epithelial barrier: keratinocytes and mucosal epithelial cells are the first to encounter
bacteria. Bacteria are sensed by surface receptors and intracellular pattern recognition receptors
(PRRs). These cells produce antimicrobial peptides (blue) and cytokines in response to stimulation
of TLR2 or Nod-like receptors in response to S. aureus lipoproteins and/or peptidoglycan. 2.
Tissue-resident cells: mast cells, tissue-resident macrophages, innate lymphoid cells (ILCs),
plasmacytoid dendritic cells (pDCs), NKT, and innate B cell subsets present in the tissues are
prepared to fight invading pathogens. They express a broad variety of scavenger receptors and
PRR that enable bacterial recognition, phagocytosis, and release of chemokines and proinflam-
matory cytokines, which attract leukocytes from blood. 3. Transmigration of cells from blood:
neutrophils, monocytes, and NK cells immigrate from blood and participate in phagocytosis and
clearance of bacteria and abscess formation. 4. Lymph nodes: Cell migration from the infected
site initiates the antigen-specific adaptive immune response. Dendritic cells migrate to lymph
nodes and present antigen to T cells. Neutrophils and macrophages interact with B cells. B:
Cellular levels of innate immune receptors. 1. Surface receptors on epithelial cells and
leukocytes mediate the recognition of bacterial cell wall components. TLR2 recognizes
staphylococcal lipoproteins and plays a central role in phagocyte activation. Scavenger receptors
such as CD36 and SR-A recognize S. aureus and promote phagocytosis and bacterial clearance. 2.
Endosomal TLRs recognize microbial nucleic acids. They are activated upon degradation of the
bacterium and acidification of the phagosome. 3. Cytosolic receptors sense liberated bacterial
degradation products such as peptidoglycan and microbial DNA. In infections with S. aureus, they
activate the NLRP3, NLRC5, and AIM2 inflammasomes and promote caspase-1-dependent
activation of IL-1β and IL-18, thus driving the formation of IL-17-producing T cells
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2.1 The Sentinel Function of Toll-like Receptor-2:
Permitting Colonization and Preventing Invasion

The major surface receptor implicated in epithelial recognition of Gram-positive
commensals such as S. aureus is Toll-like receptor (TLR)-2, a pattern recognition
receptor (PRR) expressed on cells of epithelial, endothelial, and leukocyte origin. It
senses di- and triacylated bacterial Lpp by forming heterodimers together with
TLR6 and TLR1, respectively (Jin et al. 2007; Kang et al. 2009). Its engagement by
S. aureus-derived TLR2 ligands contributes to the integrity of the epithelial barrier
by supporting tight junctions and skin wound repair (Kuo et al. 2013). In vivo
studies demonstrated that mice lacking TLR2 (or the central TLR adaptor molecules
MyD88 and IRAK4) are highly susceptible to S. aureus infection (Takeuchi et al.
2000; Kielian et al. 2005; Yimin Kohanawa et al. 2013; Suzuki et al. 2002). In
infection with this pathogen, these mice exhibit reduced cytokine responses and a
higher bacterial burden in the affected organs. Well in line with these findings,
patients with genetic mutations in the irak4 and myd88 loci display increased
frequencies with pyogenic infections, among them S. aureus (reviewed in von
Bernuth et al. 2012). However, the requirement for TLR2 in the human is less clear.

Staphylococcal Lpp account for approximately 2 % of the proteome and function
as regulators of the iron transport through the cytoplasmic membrane (Schmaler
et al. 2010; Babu et al. 2006; Maresso and Schneewind 2006). S. aureus expresses
more than 50 lipoproteins, among them SitC or the tandem lipoproteins encoded in
the pathogenicity island vSaα (Stoll et al. 2005; Hashimoto et al. 2006; Kurokawa
et al. 2011; Nguyen et al. 2015). Maturation of Lpp involves several steps of
posttranslational modification, the most important one being the transfer of a dia-
cylglycerol group by the phosphatidyl glycerol diacylglyceryl transferase (lgt)
(Sankaran et al. 1995; Sankaran and Wu 1995). This modification is essential for
recognition via TLR2 (Stoll et al. 2005; Hashimoto et al. 2006; Kurokawa et al.
2011; Schmaler et al. 2009).

Activation of TLR2 on keratinocytes leads to the release of antimicrobial pep-
tides (AMP) and proinflammatory cytokines and neutrophil-attracting chemokines
(Niebuhr et al. 2010a; Wanke et al. 2011; Olaru and Jensen 2010). Well in line with
a central role of TLR2 in the recognition of S. aureus in the skin, unresponsiveness
of keratinocytes from patients with atopic dermatitis to TLR2 stimulation might
contribute to colonization of affected skin with S. aureus (Niebuhr et al. 2011).

Similarly, expression of TLR2 protected against nasal colonization with S.
aureus (Gonzalez-Zorn et al. 2005). Moreover, deficient secretion of nasal AMP
and S. aureus-triggered downregulation of TLR2 have been proposed to support S.
aureus nasal carriage (Gonzalez-Zorn et al. 2005; Nurjadi et al. 2013; Zanger et al.
2011; Quinn and Cole 2007) and adherence of S. aureus on bronchial epithelial
cells that express low to absent levels of TLR2 (Mayer et al. 2007). Furthermore,
recent reports proposed that S. aureus induces expression of TLR2 on salivary
epithelial cells (Negrini et al. 2014) and triggers the release of the chemoattractant
cytokine IL-8 from colonic epithelial cells in a TLR2-dependent manner (Kang
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et al. 2015), a finding important in light of the gastrointestinal tract serving as an
important reservoir for colonizing S. aureus strains (Nowrouzian et al. 2011; Gries
et al. 2005; Kato-Matsunaga and Okonogi 1996; Bhalla et al. 2007; Klotz et al.
2005).

Notably, sensing via TLR2 cannot distinguish between viable and dead bacteria.
Furthermore, TLR2 activity is subject to strain variation, e.g., it varies depending on
the proliferative and metabolic state (Hilmi et al. 2014). TLR2 recognition, there-
fore, exerts an immune stimulatory effect on epithelial cells and a broad range of
immune cells, but it is not solely responsible for bacterial clearance or containment
of adherent S. aureus on the epithelial surfaces. Not surprisingly, it was, thus, not
possible to prove an association of single nucleotide polymorphisms in the tlr2 gene
with either S. aureus carriage and/or associated rhinopolyposis (Sachse et al. 2010;
Tewfik et al. 2008) or infection with S. aureus (El-Helou et al. 2011; Moore et al.
2004).

Keeping in mind that sensing of TLR2-active lipoproteins is coupled to bacterial
proliferation and loss of cell wall integrity that uncover the cytoplasmic membrane
(Hilmi et al. 2014; Wolf et al. 2011), the central role of TLR2 sensing might be
attributed to two key determinants: Firstly, TLR2-dependent induction of AMP that
degrade bacterial cells achieves a steady-state condition in the quantity of colo-
nizing bacterial cells, thus making further recruitment and activation of phagocytes
unnecessary: This principle has been described in drosophila but very probably is
also valid for mammalian immune defense (Zaidman-Remy et al. 2006). Secondly,
TLR2 exerts an important priming effect on epithelial cells and immune cells, thus
preparing these cells to recognize invading S. aureus via intracellular sensors that
subsequently induce its elimination by intracellular bacterial lysis in phagocytes or
death of infected epithelial cells.

These events prepare the grounds for the polarization of T cell responses, most
importantly the generation of Th17 cells in S. aureus skin infections, which are
reviewed in Miller and Cho (2011). Nonetheless, S. aureus and diacylated TLR2
Lpp derived thereof also induce thymic stromal lymphopoietin (TSLP) (Takai et al.
2014; Vu et al. 2010), a cytokine expressed by human epidermal keratinocytes and
mucosal epithelial cells that favors Th2 cell responses and blocks Th1/Th17 dif-
ferentiation (Ziegler et al. 2013). In addition, S. aureus and TLR2 ligands have been
implicated in the promotion of tolerance established via TLR2-dependent
IL-10-mediated suppression of T cell responses induced by S. aureus or
TLR2-dependent infiltration of colonized skin with myeloid suppressor cells
(Skabytska et al. 2014; Chau et al. 2009).

Altogether, these findings highlight the central role of TLR2 in the recognition of
S. aureus on epithelial cells from different body origins. Notably, the stimulatory
function of TLR2 on epithelial cells is supplemented by its effects on professional
phagocytes, which are discussed later in this chapter. The current findings further
illustrate that TLR2 balances pro- and anti-inflammatory immune responses, thus
permitting colonization but preventing infection.
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2.2 Bacterial Invasion: Immune Defense Relies
on Intracellular Sensors and Inflammasome Activation

Upon invasion of epithelial cells (or endosomal escape in professional phagocytes),
cytosolic pattern recognition receptors (PRRs) secure immune detection of invading
pathogens. In this context, recognition of S. aureus occurs via peptidoglycan
binding by Nod receptors. The Nod1 receptor senses meso-diaminopimelic acid
(mesoDAP) in PG, which is present in peptidoglycan of Gram-negative species; the
Nod2 receptor recognizes the muramyl dipeptide present in peptidoglycan of
Gram-positive and Gram-negative organisms (Girardin et al. 2003). Nod2−/− cells
were irresponsive to S. aureus PG (Volz et al. 2010). Nevertheless, one report
claimed that both Nod receptors contribute to the recognition of S. aureus
(Kapetanovic et al. 2007). A central role of Nod2 in vivo was demonstrated in a
skin infection model using in nod2-deficient mice (Hruz et al. 2009). In this study,
production of α-toxin facilitated Nod2 recognition by promoting access to the
cytosol through pore formation in the plasma membrane.

TLR2 stimulation represents an important costimulus for Nod2-dependent
recognition of peptidoglycan and vice versa (Volz et al. 2010; Schaffler et al. 2014).
Furthermore, staphylococcal lipoteichoic acid (LTA) enhances recognition of TLR2
ligands and PG by a, so far, ill-defined mechanism. Additionally, Nod2 ligand MDP
enhances LTA-triggered induction of cyclooxygenase-2 in macrophages (Ahn et al.
2014), which increases bactericidal activity against S. aureus (Bernard and Gallo
2010).

Notably, recognition of PG is greatly facilitated by uncovering the minimal PG
recognition motifs: PG digestion by PG recognition proteins (PGRP) facilitates Toll
signaling in drosophila and phagocytosis of S. aureus in human cells (De Marzi
et al. 2015; Garver et al. 2006). Moreover, PG digestion by lysozyme is an
important prerequisite for efficient activation of the NLRP3 inflammasome
(Shimada et al. 2010). However, the PG-hydrolyzing activity of the major autolysin
(atl) and D-alanylated wall teichoic acid interferes with recognition of S. aureus PG
by drosophila PGRP (Kurokawa et al. 2011; Atilano et al. 2011, 2014) and
O-acetylation of muramic acid (oat) typically found in S. aureus makes PG resistant
to the hydrolytic activity of lysozyme (Shimada et al. 2010; Bera et al. 2007). This
results in a pathogenicity factor-mediated suppression of proinflammatory cytokine
production and subsequent inflammasome activation, facilitates colonization of skin
and mucosa, and enables prolonged intracellular persistence. Relevance of these
mechanisms was further provided by studies on S. aureus mutants with minimized
PG synthesis, i.e., absence of nonessential peptidoglycan binding proteins, which
rendered S. aureus less virulent while more susceptible to antibiotics and resulted in
better bacterial clearance in infection (Reed et al. 2015).

Subsequent to engagement of cytosolic PRR, S. aureus induces activation of the
inflammasomes. These cytosolic molecular complexes mediate the activation of
caspase-1, which triggers the release of biologically active IL-1β and IL-18 and cell
death. Notably, next to TLR activation, inflammasome activation depends on the
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presence of ATP, which is required for the induction of an intracellular potassium
flux (Franchi et al. 2007; Arlehamn et al. 2010; Petrilli et al. 2007). S. aureus
establishes this intracellular potassium gradient via agr-dependent expression of
pore-forming toxins, e.g., α-hemolysin, Panton-Valentine leucocidin (PVL), and
phenol-soluble modulins; this results in NLRP3 (NACHT, leucine-rich repeat
(LRR), and pyrin domain-containing protein 3)-dependent caspase-1 activation in a
variety of cell types, ultimately leading to pyroptosis and secretion of IL-1β and
IL-18 (Soong et al. 2015; Accarias et al. 2015; McGilligan et al. 2013; Holzinger
et al. 2012; Perret et al. 2012; Craven et al. 2009; Munoz-Planillo et al. 2009; Chi
et al. 2014; DuMont and Torres 2014; Queck et al. 2008; Bocker et al. 2001; Gurcel
et al. 2006). By contrast, the absence of agr and/or pore-forming toxins promotes
intracellular persistence and survival of S. aureus by inducing autophagy, a process
counteracting NLRP3 and caspase-1 activation and associated pyroptosis and IL-1β
production (Soong et al. 2015). Nevertheless, the role of autophagy and Nod/NLRP3
activation in immune recognition of intracellularly persisting metabolically inactive
small colony variants has not been sufficiently addressed to date.

Moreover, an earlier study suggested that low MOIs of S. aureus promote IL-1β
and IL-18 cleavage via activation of NLRC5 (Davis et al. 2011). In addition, a
recent study suggested a specific role of the DNA-activated absent in melanoma-2
(AIM2) inflammasome in IL-1β-mediated bacterial immune defense in S. aureus
CNS infection (Hanamsagar et al. 2014). To date, however, there is no evidence for
involvement of the cytosolic RNA-sensing RIG-I-like receptors (RLR) in immune
defense against S. aureus.

Notably, in murine S. aureus infection models, neutrophil recruitment, cuta-
neous abscess formation, and clearance of S. aureus in pneumonia were shown to
be dependent on IL-1β levels (Labrousse et al. 2014; Cho et al. 2012; Miller et al.
2007). However, based on a murine model of α-toxin-dependent severe necrotizing
pneumonia, pharmacological intervention with NLRP3 activation was also dis-
cussed to ameliorate the course of disease (Kebaier et al. 2012). Moreover, a study
in patients with atopic dermatitis suggested that the Th2-derived cytokines IL-4,
IL-5, and IL-13 counteract activation of S. aureus α-toxin-induced activation of
NLRP3 and ASC (Niebuhr et al. 2014). This finding supported the hypothesis that
susceptibility of Th2-prototypical DBA/2 mice to S. aureus infection could be
attributed to the failure to activate the NLRP3 inflammasome, while S. aureus-
resistant C57BL/6 mice with an inherent Th1-profile clear S. aureus by activating
the inflammasome (Accarias et al. 2015).

2.3 Linking Inflammasomes to Protective T Cell Responses:
The Role of NLRP3 in Th17 Differentiation

Interestingly, a recent study proposed that NLRP3/IL-1β-dependent recruitment of
IL-17-producing γδ-T cells is required for recruitment of neutrophils to the infection
site (Maher et al. 2013). Further in vitro studies showed that IL-1β and IL-23
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support a T cell receptor and CD1d-dependent IL-17A response to heat-killed S.
aureus in invariant NK T cells (Doisne et al. 2011). This T cell subset expresses a T
cell receptor that recognizes lipid antigens in a CD1d-restricted manner and NK cell
markers. It is typically found in barrier tissues where it assumes a protective role in
colonization with S. aureus (Nieuwenhuis et al. 2009) and a murine S. aureus sepsis
model (Kwiecinski et al. 2013). Alternatively, induction of Th17 cells was reported
to be induced by dendritic cells; here, IL-1β production and IL-23 production were
triggered by dual activation of surface TLRs (TLR2/4/5) and concomitant
engagement of FcγRIIA by staphylococcal immune complexes with IgG (den
Dunnen et al. 2012).

Taken together, these findings argue for the coexistence of redundant innate
immune mechanisms for the induction of Th17-mediated immune defense. Future
work is needed to understand whether certain mechanisms are more relevant in
distinct disease entities.

3 Professional Phagocytes and Their Effector Functions

3.1 Phagocytosis: Linking Intracellular Lysis to Antigen
Presentation

Engulfment, ingestion, and phagosomal degradation of microorganisms by pro-
cesses such as acidification and enzyme digestion are essential for killing of the
microbes and are required for activation of cells of the adaptive immune response
via antigen presentation by MHCII molecules. This process is initiated by cellular
recognition of S. aureus PAMPs and opsonins. One important opsonin is
mannose-binding lectin (MBL), a collection that contributes to bacterial recognition
and mediates activation of complement and innate immune cells. Its binding to S.
aureus facilitates phagocytosis by enhancing opsonization by complement com-
ponents and synergy with TLR2/6 ligands in the phagosome (Neth et al. 2000,
2002; Ip et al. 2008). Survival of mice lacking MBL is severely impaired after
intraperitoneal injection of S. aureus (Shi et al. 2004). MBL has been shown to
increase uptake of S. aureus via upregulation of the scavenger receptor SR-A (Ono
et al. 2006). However, strain-specific differences in MBL binding have been
attributed to differences in the surface carbohydrate structures (Shang et al. 2005).

It should, however, not be disregarded that the processes of internalization and
phagosome maturation are important prerequisites for MyD88/TLR-dependent
recognition of S. aureus (Wolf et al. 2011; Ip et al. 2010). Albeit TLR2 itself does
not mediate phagocytosis, sensing of S. aureus and induction of the proinflam-
matory cytokine response only occur upon recruitment of TLR2 to the phagosome
(Underhill et al. 1999). Degradation of bacteria in the phagosome facilitates
recognition of PG via Nod receptors and, thus, activation of the inflammasome
(Wolf et al. 2011; Shimada et al. 2010; Ip et al. 2010; Sokolovska et al. 2013;
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Kaplan et al. 2012). Interestingly, inflammasome-mediated activation of caspase-1
not only activates IL-1 and IL-18 precursors but also participates in the acidification
of the phagosome (Sokolovska et al. 2013), which enables recognition of microbial
nucleic acids by TLRs (Parcina et al. 2008, 2013).

Staphylococcal ribosomal (23S) RNA is recognized in a sequence-specific
manner by TLR13 expressed in murine conventional CD8HIGH DC but not plas-
macytoid dendritic cells (pDCs) (Oldenburg et al. 2012). This receptor is not
expressed in humans, but staphylococcal RNA was recently shown to mediate
human monocyte activation by TLR8 (Bergstrom et al. 2015). By contrast, in
human B cells, pDC activation by S. aureus is blocked by inhibitory oligonu-
cleotides blocking TLR7 and TLR9, the only TLRs expressed in these cell types
(Parcina et al. 2008, 2013; Hornung et al. 2002).

Further support for a role of phagocytosis in cellular defense against S. aureus is
provided by the importance of scavenger receptors in infection. These receptors
mediate recognition and clearance of S. aureus and are typically expressed on
phagocytes:

Most prominently, mice lacking CD36, a receptor expressed in macrophages,
monocytes, endothelial, and epithelial cells, are highly susceptible to S. aureus
infections (Hoebe et al. 2005; Stuart et al. 2005; Blanchet et al. 2014). Of note, mice
with a double deficiency in CD36 and SR (scavenger receptor)-A, another scav-
enger receptor required for phagocytosis of S. aureus (Amiel et al. 2009), died of
pneumonia but were protected from S. aureus peritonitis (Blanchet et al. 2014).

Interestingly, CD36 has been implicated in the recognition of phosphatidylserine
on apoptotic cells (Fadok et al. 1998). The same receptor specifically recognizes S.
aureus via the diacylglycerol moiety in LTA and acts as a coreceptor for TLR2
(Hoebe et al. 2005; Nilsen et al. 2008; Baranova et al. 2008). Supporting its
association with TLR2, expression of CD36 was higher in patients with atopic
dermatitis carrying a TLR2 polymorphism (R753Q) that leads to reduced TLR2
reactivity (Niebuhr et al. 2010b; Mrabet-Dahbi et al. 2008).

Moreover, PIR-B (paired immunoglobulin-like receptor) was also found to bind
S. aureus LTA (Nakayama et al. 2012). A protective function in S. aureus pneu-
monia was found to be due to suppression of the inflammatory response (Banerjee
et al. 2010).

Notably, CD36 and α5β1 integrin, the receptor for vitronectin, a plasma protein
that binds to apoptotic cells, collaborate in apoptotic cell recognition (Fadok et al.
1998). S. aureus binds vitronectin via extracellular adherence protein
(Eap) (Hussain et al. 2008). It is, therefore, likely that cells involved in apoptotic
cell clearance also participate in the recognition of S. aureus. Well in line with the
tolerogenic response induced by apoptotic cells, in murine peritonitis the presence
of Eap on S. aureus had an anti-inflammatory effect that led to a reduction in
infiltrating neutrophils (Chavakis et al. 2002).
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3.2 Tissue-resident Phagocytes

3.2.1 Mast Cells: Well-prepared Guardians of Skin and Mucosa

Mast cells are important sentinels in the skin and mucosa. These phagocytic cells
are prepared to kill bacteria with intracellular ROS or release extracellular traps and
AMP. They further have the unique ability to rapidly release cytoplasmic granules
storing preformed vasoactive and immune stimulatory mediators, e.g., histamine,
TNF, and the proteases tryptase and chymase into the extracellular environment. In
bacterial infections, they have mainly been implicated in defense against respiratory
pathogens in pneumonia (reviewed in Urb and Sheppard 2012). Since they pre-
dominantly reside at sites where encounters with invading pathogens are to be
expected due to constant contact with the exterior environment, it should not be
over interpreted that mast cells were not required for bacterial clearance or host
survival in an in vivo S. aureus peritonitis model (Ronnberg et al. 2014).

Mast cells contribute to the elimination of S. aureus by release of extracellular
traps, proinflammatory cytokines, and AMP (Abel et al. 2011; Rocha-de-Souza
et al. 2008; von Kockritz-Blickwede et al. 2008a). S. aureus-derived PG, LTA,
protein A, and TLR2 ligands have been implicated in mast cell activation (Jawdat
et al. 2006; Matsui and Nishikawa 2002, 2005; Terada et al. 2006; McCurdy et al.
2003). Degranulation was recently postulated to be specifically induced by S.
aureus δ-toxin, which links colonization to allergic reactions in atopic dermatitis
(Nakamura et al. 2013). However, recent studies highlight that S. aureus evades
these bactericidal effects by invading mast cells via α5β1 integrin, a reaction
demonstrated in mucosal tissue from nasal polyposis (Abel et al. 2011; Hayes et al.
2015).

3.2.2 Macrophages: Tissue-Specific Vigilants Balancing the Local
Immune Response

Macrophages are professional phagocytes that are either resident in the tissue or
develop from monocytes that enter the tissue from the blood vessels. Their major
function is the clearance of invading pathogens from the site of infection and
antigen presentation to T cells in the periphery and in the lymphatic organs.
Tissue-resident macrophages are often highly specialized on their specific envi-
ronment, e.g., marginal zone macrophages in the spleen, microglia in the brain,
alveolar macrophages, and macrophages in the thymus are each equipped to fulfill
their specific tasks.

Again, TLR2 plays a central role in the release of soluble mediators mediating
bacterial defense and in bacterial killing, e.g., in macrophages, staphylococcal
lipoproteins induce proinflammatory cytokines, nitric oxide (NO), and reactive
oxygen species (ROS) (Nguyen et al. 2015; Kim et al. 2015; Nandi et al. 2015;
Bishayi et al. 2014). Moreover, in brain abscesses of TLR2-deficient mice,
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secretion of proinflammatory cytokines and NO was abrogated, but IL-17 pro-
duction was increased (Kielian et al. 2005). Furthermore, expression of S. aureus-
binding scavenger receptor, lectin-like oxidized low-density lipoprotein receptor-1
(LOX-1) (Shimaoka et al. 2001), and murine macrophage scavenger receptor
(MSR)-AI/II was increased in response to S. aureus and TLR2 ligands in microglia
arguing for a specific role of TLR2 and these scavenger receptors in CNS infection
(Kielian et al. 2005).

By contrast, a recent study claimed that neither TLR2 expression on macro-
phages nor proinflammatory cytokine production by macrophages is essential for
immune defense against S. aureus (Yimin Kohanawa et al. 2013). Nevertheless, the
importance of macrophages in antistaphylococcal immune defense was recently
demonstrated in a murine post-influenza pneumonia model where resistance to S.
aureus infection was achieved by GM-CSF-mediated influx of neutrophils and
alveolar macrophages and mainly established by the production of reactive oxygen
species (ROS) in macrophages (Subramaniam et al. 2014). In an additional study,
MyD88-dependent activation of dermal macrophages and their interaction with
neutrophils was shown to be required for control of neutrophil-mediated inflam-
mation in cutaneous S. aureus infection (Feuerstein et al. 2015).

In addition, several studies reported binding and uptake of S. aureus cells in
marginal zone (MZ) macrophages (Palecanda et al. 1999; van der Laan et al. 1999;
Westerberg et al. 2008; Birjandi et al. 2011). It was further suggested that in vivo
uptake was mediated by macrophage receptor with collagenous structure
(MARCO) (Palecanda et al. 1999; van der Laan et al. 1999). This receptor might,
therefore, play a central role in MZ macrophage-mediated removal of S. aureus
from the bloodstream.

Notably, the currently available studies do not differentiate between pro- and
anti-inflammatory monocyte and macrophage subsets. However, macrophage
polarization is highly dependent on the microenvironment, e.g., GM-CSF, TLR2
ligands, and Fcγ receptors differentially affect macrophage function (reviewed in
Martinez and Gordon 2014). Contradictory findings, might therefore, arise from the
tissue- and/or mouse strain-specific milieu and the predominance of functionally
distinct subpopulations.

3.3 Blood-Derived Phagocytes

Both epithelial cells and tissue-resident innate immune cells release chemokines
and cytokines upon bacterial encounter. These soluble mediators provoke trans-
migration of cells from the blood circulation. Activation induces differentiation
peripheral blood monocytes to inflammatory monocytes, macrophages, and den-
dritic cells that transmigrate into the tissue and participate in bacterial clearance.
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3.3.1 Neutrophils: Recruited to Resolve Uncontrolled Spread
of Infection

Neutrophils are recruited to the site of infection and represent the hallmark of early
antistaphylococcal defense in the invaded tissue (reviewed in Rigby and DeLeo
2012). They further participate in abscess formation, an event that is supported by
S. aureus-derived toxins and their ability to induce a specific form of programmed
cell necrosis (necroptosis) (reviewed in Kobayashi et al. 2015; Greenlee-Wacker
et al. 2015). Indeed, phagocytosis and subsequent intracellular lysis of S. aureus in
neutrophils are often prevented by staphylococcal virulence factors, and infected
neutrophils containing viable bacteria evade efferocytosis by macrophages via an
upregulation of CD47 expression, the phosphatidylserine “don’t eat me” signal
(Greenlee-Wacker et al. 2014).

Nevertheless, neutrophils are essential for antistaphylococcal innate immune
defense, a fact that was demonstrated in mice depleted of neutrophils (Kohler et al.
2011; Robertson et al. 2008; Verdrengh and Tarkowski 1997) but can also be
derived from increased susceptibility to S. aureus seen in neutropenic patients and
in patients with genetic defects in neutrophil function, i.e., chronic granulomatosis
disease (CGD) (Hartl et al. 2008; McNeil 2014) and mouse models thereof (Kohler
et al. 2011; Pizzolla et al. 2012). Furthermore, increased mortality in S. aureus
septicemia after depletion of complement was mainly attributed to insufficient
recruitment of neutrophils (Sakiniene et al. 1999). In addition, in mice,
MyD88-dependent IL-1 and IL-18 signalings are required for mobilization of
neutrophils and resolution of staphylococcal skin abscesses (Miller et al. 2006) and
post-burn infection (Kinoshita et al. 2011). Therefore, neutrophils remain central
cells in immune defense against S. aureus and other compensatory mechanisms
such as the release of bactericidal antimicrobial peptides most likely govern
neutrophil-dependent first-line immune defense against S. aureus.

Despite their synthesis in many different types of phagocytes, e.g., monocytes,
macrophages, and DC, the highest levels of defensins as HNP1-3 are expressed by
neutrophils (Ryu et al. 2014). AMP, such as cathelicidin (LL-37) and α-defensin,
contribute to bacterial killing and degradation in the phagosome (Jann et al. 2009),
neutralize toxins (Cardot-Martin et al. 2015), induce the production of cytokines
(Chaly et al. 2000), exert chemotactic activity (Yang et al. 2001), and facilitate the
formation of neutrophil extracellular traps (NETs) (Neumann et al. 2014). However,
again, S. aureus virulence factors shield the pathogen from AMP. This occurs
through AMP-inactivating enzymes (Braff et al. 2007; Jin et al. 2004;
Sieprawska-Lupa et al. 2004) and modification of charge of surface structures, e.g.,
via D-alanylation of WTA and LTA (Collins et al. 2002; Peschel et al. 1999;
Simanski et al. 2013).

A recent study further highlights that in vivo recruitment of neutrophils to the
site of infection occurs in two waves, e.g., initially from the blood, and secondly,
they are mobilized from the bone marrow (Kamenyeva et al. 2015). The authors
propose that in S. aureus infection, neutrophils enter the lymph node medulla and
interfollicular areas where they interact with B cells to interfere with antibody
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production (Kamenyeva et al. 2015). The significance of these findings remains
unclear but is well compatible with a previously described anti-inflammatory role of
neutrophils in staphylococcal arthritis (Verdrengh and Tarkowski 1997).
Concomitant with the release of neutrophil myeloid-related proteins (MRP) -8 and -
14 into the bronchoalveolar fluid exerts an additional protective effect in pneumonia
by mediating transmigration of neutrophils, this phenomenon might be necessary
for resolution of inflammation (Achouiti et al. 2015).

3.4 Dendritic Cells: Orchestrating the Adaptive Immune
Response in Tissue and Lymph Nodes

3.4.1 Myeloid Dendritic Cells: Expert Control of T Cell Responses

Dendritic cells regulate the T cell response in infection via presentation of antigen
and concomitant expression of T cell polarizing costimulatory ligands and release
of cytokines and other soluble mediators.

Myeloid dendritic cells (mDCs) are specialized cells whose major function is to
present antigen to T cells after migration to the local lymph nodes. They play a key
role in the clearance of S. aureus, and their depletion increases mortality in an
in vivo model of bacteremia (Schindler et al. 2012). Furthermore, Jin et al. high-
lighted that mDCs expressing the C-type lectin BDCA1+ are highly responsive to
S. aureus and support differentiation of T cells into IFNγ-producing CD4+ (Th1)
and CD8+ (Tc1) cells (Jin et al. 2014). Interestingly, this property was attributed to
high expression levels for TLR2 and the scavenger receptor SR-A whose expres-
sion levels were low on mDCs with a BDCA3+ CD16+ phenotype.

Another study differentiated the effects of S. aureus Lpp and PG on monocytes
and on in vitro generated monocyte-derived dendritic cells: While PI3K-dependent
production of anti-inflammatory IL-10 is induced on monocytes, production of
Th1/Th17 polarizing cytokines IL-12 and IL-23 is triggered in monocyte-derived
dendritic cells (Frodermann et al. 2011). Well in line with this report, it was
demonstrated that IRAK4 reverts IL-10-dominated tolerogenic MyD88-dependent
signaling in S. aureus- or TLR2/4-stimulated human monocytes from
PKB/Akt/mTOR-dependent IL-10 to Th1-promoting IL-12 secretion (Over et al.
2013). However, release of phenol-soluble modulins by S. aureus results in the loss
of T cell priming capacity and the induction of T regulatory cells (Schreiner et al.
2013).

In the skin, S. aureus is phagocytosed by Langerhans cells, a specialized DC
subset found in dermis (Reis e Sousa et al. 1993). Furthermore, in a murine atopic
dermatitis model, dual activation of DC via TLR2 ligands and IL-4 induced the
progression of self-limited Th2-mediated dermatitis to chronic cutaneous inflam-
mation (Kaesler et al. 2014).
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Myeloid-derived suppressor cells, on the contrary, suppress T cell responses and
thereby contribute to the persistence of S. aureus in chronic infections (Tebartz
et al. 2015). They further halt monocyte and macrophage-mediated clearance of S.
aureus biofilm (Heim et al. 2014), and once induced by TLR2/6 ligands are
recruited to S. aureus colonized skin where they suppress T cell responses to the
pathogen (Skabytska et al. 2014).

3.4.2 Plasmacytoid Dendritic Cells and Type I Interferons:
Fine-Tuning of Innate and Adaptive Immune Responses

Plasmacytoid dendritic cells are considered to be DC of lymphoid origin. They
represent the major producers of systemically active interferon-α in the human body
and have been implicated in tolerance to oral antigens (Goubier et al. 2008). They
are present in the blood, in the lymphatic organs, and probably all peripheral
tissues. S. aureus induces pDC-derived secretion of IFN-α, TNF, and IL-6 (Parcina
et al. 2008; Michea et al. 2013). However, depending on the tissue environment,
soluble mediators such as prostaglandins and TGF-β alter pDC-derived cytokine
secretion panels and their function (Michea et al. 2013; Bekeredjian-Ding et al.
2009; Contractor et al. 2007). Their role in infection, particularly S. aureus infec-
tion, was extensively reviewed in Bekeredjian-Ding et al. (2014).

One of their most important characteristics is the expression of Fcγ receptor IIA
and Fcε receptor that exert positive and negative regulatory effects, respectively, on
pDC activation and release of IFN-α. Therefore, pDC most likely orchestrate the
secondary immune response to S. aureus (Parcina et al. 2008), and their pre-
sumptive role in first-line immune defense is limited to invasion by protein
A-bearing S. aureus strains and pDC-mediated support of polyclonal B cell acti-
vation (Parcina et al. 2013).

Additionally, pDC might be involved regulation of the antistaphylococcal
immune response by type I interferon. In vivo, induction of IFN-α production in
pDC by TLR9 ligand CpG ODN was protective against S. aureus pneumonia in a
hemorrhagic shock model (Roquilly et al. 2010) and IFN-α-mediated resistance of
host cells against S. aureus alpha toxin (Lizak and Yarovinsky 2012). Similarly,
IFN-β increased clearance of S. aureus from murine BMDC and human monocytes
in vitro and in an cutaneous infection model in vivo (Kaplan et al. 2012), and
deficiency in IFN-α/β receptor or TLR9 expression resulted in improved clearance
of bacteria from mice with S. aureus pneumonia (Parker and Prince 2012).
However, IFN-β production was associated with increased inflammation and cel-
lular necrosis in murine skin infection (Kaplan et al. 2012).

Notably, several studies showed that IFN-α- and IFN-α-inducing TLR7/9 ago-
nists suppressed the formation of Th17 cells under healthy conditions, in infection,
and autoimmune disease (Cui et al. 2014; Hirohata et al. 2010; Liu et al. 2011;
Meyers et al. 2006; Vultaggio et al. 2011). The inhibitory effect of IFN-α on Th17
responses can be attributed to the induction of the IL-17-suppressing cytokine IL-27
(reviewed in Goriely et al. 2009). In accordance with these findings, lack of IL-27
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receptor expression increases Th17 cell numbers and decreases the bacterial burden
in post-influenza S. aureus pneumonia (Robinson et al. 2015).

Moreover, a recent report showed that S. aureus-induced expression of osteo-
pontin in DC was responsible for increased Th17 induction (Salvi et al. 2013).
Upregulation of osteopontin occurred upon TLR2 activation and concomitant
absence of IFN-β induction, which was observed with Gram-negative bacteria after
engagement of LPS/TLR4 and subsequent recruitment of TRIF (Salvi et al. 2013).
Notably, S. aureus-induced IFN-β release is further prevented by lysozyme resis-
tance of S. aureus and its resistance to degradation in the phagosome (Kaplan et al.
2012). Nevertheless, protective effects of IFN-I-mediated suppression of Th17
responses on DC have also been described: In a murine EAE model, IFN-I sup-
pressed the expression of an intracellular translational isoform of osteopontin
(iOPN) in myeloid DC; this enabled IL-27 synthesis and, in turn, decreased
Th17-mediated inflammation, which ultimately slowed down the progression of
EAE (Shinohara et al. 2008; Guo et al. 2008).

Furthermore, generation of monocyte-derived dendritic cells in the presence of
IL-27 resulted in increased suppression of intracellular growth of S. aureus,
upregulation of MHC II, and increased IL-12 secretion that shifted the T cell
response to a Th1 phenotype (Jung et al. 2015). IL-27 further induced the synthesis
of IFN-α and IFNλ1 in PBMC and DC derived from healthy donors, thus promoting
an autoregulatory negative feedback loop (Cao et al. 2014). Thus, intertwined
regulation of IFN-α and IL-17 determines the polarization of CD4+ T cell
responses, the efficacy of bacterial clearance, and the degree of inflammation in
autoimmune disease and infection. A fine-tuned balancing of these two cytokines is,
therefore, most likely very critical for the resolution of S. aureus infection and
immunopathology.

4 The Last Frontiers Before Adaptive Immunity

4.1 Innate Immune B Cells: Rapid Supply of Antibacterial
Antibodies

In murine peritonitis and sepsis, rapid accumulation of IgM-secreting plasmablasts
is observed within 48 h after bacterial challenge (Martin et al. 2001). The cells
responsible for this early IgM secretion are B cell subsets that express B cell
receptors that recognize thymus-independent (TI) antigens, e.g., bacterial PAMPs
such as capsular polysaccharides, LPS, and phosphocholine and phosphatidylser-
ine, which are also present on apoptotic cells. Together with PRR, stimulation
targeting of these B cell receptors elicits B cell proliferation and differentiation to
plasmablast in a T cell-independent manner. Release of these antibacterial IgM
molecules (also called natural IgM) enables bacterial opsonization and subsequent
complement activation. It has further been postulated that cellular uptake of S.
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aureus immune complexes with IgM is promoted by an Fcα/μ receptor (Shibuya
and Honda 2006).

Among these, specialized B cell subsets are CD5-positive B1a and
CD5-negative B1b cells that reside in the peritoneal and pleural cavities in mice.
B1b cells are capable of phagocytosis of S. aureus, intracellular bacterial killing,
and antigen presentation to T cells (Gao et al. 2012). Albeit this response is weaker
than in macrophages, it underlines the phylogenetic relationship of innate immune
B cells and macrophages.

Notably, S. aureus targets VH3+ B cells via protein A, which results in long-term
depletion of the B1a and MZ B cell pools (Goodyear and Silverman 2004; Viau
et al. 2005). In the presence of pDC and costimulation via TLR2-active Lpp and
endosomal TLRs, protein A-activated B cells are not directly harmed by pro-
grammed cell death but undergo differentiation to IL-10-secreting B regulatory cells
and IgM-producing plasmablasts (Parcina et al. 2013; Bekeredjian-Ding et al.
2007). This process enables IL-10-mediated suppression of T cell responses before
ultimately resulting in cell death due to the physiologically short life span of
plasmablasts and, again, extinction of these B cell subsets.

4.2 Natural Killer Cells: Neglected Sensors for Intracellular
Persisting S. aureus?

NK cells have mainly been studied in viral infection and malignancy. They are
attracted to the infected tissue and enter by transmigration from the bloodstream.
Their ability to recognize infected and damaged cells independent of
MHC-restricted antigen presentation of antibodies makes them very flexible and
invaluable cells for the rapid defense against invading pathogens. Upon encounter
of suspicious cells, the release of IFNγ and granules containing cytotoxic proteases
(granzymes) and perforine induces apoptosis of the encountered cell.

Although resistance Rag2-IL2Rγ−/− C57BL/6 mice against S. aureus infection
suggested that NK cells are not essential for innate immune defense against S.
aureus (von Kockritz-Blickwede et al. 2008b), the interaction of natural killer cells
with alveolar macrophages was shown to be beneficial in murine S. aureus pneu-
monia models (Zhao et al. 2014; Small et al. 2008). Similarly, upon exposure to S.
aureus interaction with monocytes was required for activation of human NK cells
in vitro (Haller et al. 2002). A protective role of NK cells was further described in
the development of S. aureus arthritis (Nilsson et al. 1999). Detection of NK cells in
human joint infections caused by chronically persistent S. aureus, indeed, argues
for a potential role of NK cells at the site of infection (Wagner et al. 2006).
Nevertheless, the obvious role of NK cells in the detection intracellularly persisting
S. aureus and the elimination of infected cells have not yet been demonstrated.
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4.3 Innate Lymphoid Cells: Confinement of S. aureus to Its
Niche?

In tissues exposed to the environment and colonized by commensals, innate lym-
phoid cells (ILCs) prevent bacterial translocation beyond the epithelial barrier,
trigger mucosal IgA production, and function as important regulators of immune
homeostasis (reviewed in Philip and Artis 2013; Tait Wojno and Artis 2012;
Diefenbach et al. 2014). Notably, commensals trigger the development of ILC, and
ILCs phenotypically and functionally adapt to changes in the composition of the
local microbiome (Tait Wojno and Artis 2012). NK cell receptors (NCR) such as
NKp44/46 and expression of TLR2 and its coreceptors enable binding and sensing
of the local microbiota (Philip and Artis 2013).

Three different classes of murine ILC have been defined by the expression of
prototypical transcription factors and T helper cell-like cytokine secretion profiles,
e.g., Tbet+ ILC (group 1) produce IFNγ, GATA3+ ILC (group 2) secrete IL-5,
IL-9, and IL-13 and RORγt+ ILC (group 3) release IL-17A, IFNγ, and IL-22
(Diefenbach et al. 2014; Robinette et al. 2015). Notably, NK cells have recently
been allocated to group 1 ILC (Philip and Artis 2013; Robinette et al. 2015;
Monticelli et al. 2012). In the human, similar ILC subsets have been described,
including different group 2-like ILCs in the respiratory tract and skin or different
CD127+ group 3-like ILCs in tonsils, appendix, and Peyer’s patches (Tait Wojno
and Artis 2012; Monticelli et al. 2012; Mjosberg and Eidsmo 2014). Nevertheless,
despite their presence at the main sites of S. aureus colonization, at present there is
no available information on their role in preventing invasion. We can only speculate
that in chronic carriers, ILC might confine S. aureus to its niche, thus preventing
systemic immune responses.

5 Conclusion

A broad variety of receptor systems cooperates in sensing S. aureus and regulating
the host immune response to this pathogen (see Table 1 for summary).
TLR2-dependent recognition of S. aureus by epithelial cells limits the spread of
colonizing S. aureus on the skin and mucosal surfaces. Upon cell and tissue
invasion activation of resident innate immune cells by S. aureus fosters a
proinflammatory environment that attracts neutrophils, NK cells, and monocytes
from the blood. Notably, degradation of bacteria in the phagosomes is essential for
bacterial recognition via TLR, activation of the inflammasomes, and subsequent
bacterial clearance. However, evolution has selected S. aureus strains that are
resistant to these processes.

At present, we know that innate immune cells and PRR also participate in the
resolution of S. aureus infections. However, the exact mechanisms involved remain
to be investigated and are potentially exploited by S. aureus to promote tolerance.
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Finally, future work is needed to clarify the role of innate immunity and, in par-
ticular, NK cells in the recognition of intracellular persisting S. aureus and the role
of ILC in immune homeostasis in chronic carriage.
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