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Abstract RNA molecules have served for decades as a paradigmatic example of
molecular evolution that is tractable both in in vitro experiments and in detailed
computer simulation. The adaptation of RNA sequences to external selection
pressures is well studied and well understood. The de novo innovation or optimi-
zation of RNA aptamers and riboswitches in SELEX experiments serves as a case
in point. Likewise, fitness landscapes building upon the efficiently computable
RNA secondary structures have been a key toward understanding realistic fitness
landscapes. Much less is known, however, on models in which multiple RNAs
interact with each other, thus actively influencing the selection pressures acting on
them. From a computational perspective, RNA–RNA interactions can be dealt with
by same basic methods as the folding of a single RNA molecule, although many
details become more complicated. RNA–RNA interactions are frequently employed
in cellular regulation networks, e.g., as miRNA bases mRNA silencing or in the
modulation of bacterial mRNAs by small, often highly structured sRNAs. In this
chapter, we summarize the key features of networks of replicators. We highlight the
differences between quasispecies-like models describing templates copied by an
external replicase and hypercycle similar to autocatalytic replicators. Two aspects
are of importance: the dynamics of selection within a population, usually described
by conventional dynamical systems, and the evolution of replicating species in the
space of chemical types. Product inhibition plays a key role in modulating selection
dynamics from survival of the fittest to extinction of unfittest. The sequence evo-
lution of replicators is rather well understood as approximate optimization in a
fitness landscape for templates that is shaped by the sequence-structure map of
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RNA. Some of the properties of this map, in particular shape space covering and
extensive neutral networks, give rise to evolutionary patterns such as drift-like
motion in sequence space, akin to the behavior of RNA quasispecies. In contrast,
very little is known about the influence of sequence-structure maps on autocatalytic
replication systems.
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1 From Replication to Fitness Landscapes

1.1 The Quasispecies

The interplay of replication, selection, and mutation is the basis of Darwinian
evolution. Replication can be interpreted as an autocatalytic chemical reaction that,
in the simplest case, is of the form

Aþ Y�!k 2Y; ð1Þ

where A is the substrate that is used as building material for the autocatalyst Y that
is required as template for its own formation. Mutation in the form of imprecise, or
error-prone, reproduction represents the universal kind of variation, which occurs in
all organisms and can be sketched by a single overall reaction step:

Aþ Y�!kxy Yþ X: ð2Þ

Here, the mutant is denoted by X, and the rate parameters k and kxy refer to two
parallel reaction channels. Reaction rates depend explicitly on the type y of the
replicator Y. These rate differences are the basis for selection due to the fact that the
different templates compete for the common resource A.
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In the case of RNA or protein molecules, y is simply the nucleotide sequence of
the molecule Y. The production of a variant X from Y, in the simplest model,
occurs with a probability qxy :¼ P½Y ! X�, while Y undergoes the copying reaction
with a rate k0ðYÞ ¼ af ðyÞ, where a :¼ ½A� is the concentration of the building
material A. Adding an unspecific outflow from the system, we arrive at a

d½x�
dt

¼
X
y

qxyaf ðyÞ½y� � u½x� ð3Þ

The dynamics of this system is thus described by two ingredients: the rate of
copying of each type, f(x), usually referred to as its fitness, and the probabilities of
specific copying errors qxy. The specific form of the flux φ plays little role for the
overall dynamics as long as it is small enough not to completely drain all the
replicating material from the system (Happel and Stadler 1999). In the simplest
case, we may assume that the total concentration of all replicating types as well as
the concentration of the building material is kept constant. This model, known as
constant organization, yields the famous quasispecies equation as follows:

d½x�
dt

¼
X
y

qxyf ðyÞ½y� � u½x� with u ¼
X
x;y

qxyf ðyÞ½y� ð4Þ

i.e., φ equals the total production of replicating types.
Since the molecular types x and y are sequences, the most common model

assumes that
qxy ¼
ndpd

� �
where n is the sequence length, d = dxy is the number of

sequence positions in which x and y differ, n is the common length of both
sequences, and p is the probability of a point mutation, i.e., the exchange of a single
letter, per copying event. Nearly all work on the quasispecies model has used this
mutation model (Eigen 1971; Eigen et al. 1989; Eigen and Schuster 1977).
Conceptually, it can be simplified further by ignoring the small probabilities of
multiple mutations, simply setting qxy ¼ 0 if x 6¼ y differ by more than a single
mutation. Sequences are “easily accessible,” i.e., adjacent, if they differ by a single
(point) mutation only. This arranges the set X of sequences as the vertices of a
graph, which is usually referred to as the sequence space ðX; sÞ. The symbol τ
denotes the accessibility structure, which here is just the edge set of graph but may,
in general, be a more complicated topological structure (Flamm et al. 2007).
Together with the fitness function f : X ! R, that sequence space forms the fitness
landscape ðX; s; f Þ.

The dynamics of a population evolving according to Eq. (4) is governed by the
underlying fitness landscape. Its stationary solutionX

y

qxyf ðyÞ½y� ¼ u½x� ð5Þ
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determines the equilibrium distribution of the variants in an evolved population. In
the limit of small mutation rates, where qxy � 1� paxy with axy ¼ 1, if x and y are
adjacent and p � 1, one can show that [x] is concentrated around the fitness
maximum (Eigen 1971). Chapters 1, 4, and 5 in this book are concerned with the
relationships of the fitness landscape (X, τ, f) and the structure of the resulting
quasispecies.

1.2 Molecular Replicators

A variety of in vitro systems embody self-replication of RNA or DNA. Although
template-instructed ligation can also be achieved without enzymes, these are
restricted to short and usually specialized sequences (Lee et al. 1996; von
Kiedrowski 1986). All copy reactions of interestingly long and diverse templates
known today, however, require elaborate enzymes.

The earliest system studied in detail was based on the RNA-dependent RNA
polymerase of the bacteriophage Qβ, a Levivirus. Extensive studies on the reaction
kinetics of this system (Biebricher and Eigen 1988) demonstrated that the kinetic
data are consistent with a many-step reaction mechanism describing the stepwise
addition of nucleotides. It can be coarse-grained to a Michaelis–Menten-like overall
reaction of the form

Aþ Yþ E � Aþ Y � E ! Y � E � X � Y � Eþ X ð6Þ

that still explains the observed three distinct regimes: exponential growth a low [Y],
linear growth for intermediate replicator concentrations, and saturation by product
inhibition at high concentrations. The rate constants depend strongly on the
sequence of the template Y since Qβ replicase is well adapted to recognize the
genomic RNA of the Qβ phage and to discriminate it from host cell sequences.
Affinity to the replicase thus is an important determinant of fitness in in vitro
evolution experiments with this system. Manipulation of the environment in this
experimental setup has lead to the selection of widely different RNA molecules with
surprising properties. SV11, for instance, is replicated from an extremely stable
metastable conformation of the RNA (Biebricher and Luce 1992); a
“drug-addicted” RNA was obtained in Kramer et al. (1974) by adding the inter-
calating dye ethidium bromide.

Enzymes that replicate nucleic acid templates effectively independent of their
sequence have evolved in particular for genomic DNA templates. The discovery of
the DNA polymerase chain reaction (PCR) (Mullis et al. 1986) was a milestone
toward sequence independent amplification of DNA sequences in vitro. It requires,
however, higher temperatures to separate the two strands of the double helical
product. Since the product of template-directed replication or ligation is invariably a
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double strand, product inhibition cannot be entirely avoided in most systems. The
simplest replication system is thus better described by

Aþ Yþ E ! Eþ Y � Y and Y � Y � 2Y ð7Þ

Under the “quasi-steady state” approximation (Segel and Slemrod 1989), this
model follows a modified kinetics (Wills et al. 1998)

d½x�
dt

¼ ½x� f ðxÞwðbðxÞ½x�cÞ � uð Þ ð8Þ

where f(x) is the fitness measures at infinite dilution, i.e., for a total concentration of
replicating material c ! 0, bðxÞ is a constant derivable from the microscopic rate
constants that describes the strength of product inhibition, and wðuÞ ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffi

uþ 1
p �

1Þ=u is a function that decays like the square root of its argument. It reduces to the
simple case for bðxÞ ! 0. A wide range of related mechanisms of template-directed
ligation, including an experimentally studied systems based on DNA triple helices
(Li and Nicolaou 1994), and the membrane-anchored mechanism suggested for the
“Los Alamos Bug” artificial protocell project (Rasmussen et al. 2003) follow the
same effective kinetic law. An approximation that replaces wðuÞ by ffiffiffi

u
p

was con-
sidered in Szathmáry and Gladkih (1989).

In contrast to the quasispecies-like models, which (apart from the mutant cloud
around the “master sequence”) effectively lead to “survival of the fittest” at least for
small mutation rates, there is no selection in the parabolic growth model (Varga and
Szathmáry 1997; Wills et al. 1998). More general systems with product inhibition,
however, allow for cooperation of all replicators whose fitness exceeds a certain
concentration-dependent threshold, which can be computed explicitly (Wills et al.
1998). Most of the experimental systems of self-replicating polymers without
enzyme fall into this class, see, e.g., Plöger and Kiedrowski (2014) for a recent
peptide nucleic acid system. Unless product inhibition is too strong (or concen-
trations become too large), these systems show selection by “extinction of the
unfittest” rather than survival of the fittest. So far, their population-level dynamics
have not been explored for complex, realistic fitness landscapes.

Several enzymatic systems have been well established to amplify nucleic acid
sequences, most famously the PCR (Erlich 1989). Here the product inhibition
problem is solved by “thermal cycling,” i.e., a periodic increase in temperature to
release product bound in duplices. An isothermal version based on T7 polymerase
is the 3SR reaction (Fahy et al. 1991). A recently introduced alternative is the
isothermal multiple displacement amplification (IMDA) (Luthra and Medeiros
2004). A common theme in these technologically highly relevant systems is that
templates are amplified nearly independently of their sequence. This enables among
other applications high-throughput DNA sequencing as well as artificial selection
(Systematic Evolution of Ligands by EXponential Enrichment (SELEX)) (Ellington
and Szostak 1990; Tuerk and Gold 1990). In the latter, amplification is alternated
by an assay that enriches RNA or DNA molecules with desired properties, thereby
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effectively implementing a user-defined fitness landscape. This allowed the creation
of RNA and DNA sequences with a surprisingly wide variety of both binding and
enzymatic properties. A detailed mathematical analysis of the SELEX procedure
and its convergence properties can be found in Levine and Nilsen-Hamilton (2007).

1.3 Quantifying Natural Fitness Landscapes

Since the volume of sequence space increases exponentially with sequence length,
it has long been impossible to obtain a comprehensive picture of fitness landscapes.
Nevertheless, early attempts to empirically chart at least a neighborhood of the
optimal or native sequence date back almost two decades (Aita et al. 2002; Aita
et al. 2000; Hayashi et al. 2006; Reetz and Sanchis 2008).

The situation has changed with the advent of micro-arrays and then deep
sequencing technologies. At least for very small model systems, it has become
possible to measure the relative abundance of a very large number of sequences.
Comparing the sequence distribution p(x) with the distribution in the initial pool
p0(x) immediately yields the estimated

f ðxÞ � pðxÞ=p0ðxÞ : ð9Þ

It is worth noting that the fitness function cannot be inferred from the equilib-
rium quasispecies distribution since the latter is usually concentrated around the
fittest member of the population, making it impossible to obtain data for more
distant parts of the landscape.

Micro-arrays have provided a convenient means of measuring the fitness of
larger samples in parallel (Lauring and Andino 2011). Instead of measuring fitness
directly from an adapting population, equilibrium parameters such as RNA-protein
binding constants also have been measured using micro-arrays (Rowe et al. 2010).
Various sources of bias deriving from the ligation and sequencing steps must be
measured and taken into account in the practical analysis of HTS-based surveys of
landscapes, see, e.g., Jimenez et al. (2013) for details. Earlier work still targeted
particular regions in sequence space. The fitness of all possible individual point
mutants of a nine-amino acid region of yeast Hsp90 was determined in Hietpas
et al. (2011). Pitt and Ferré d’Amaré (2010) mutagenized an artificial RNA ligase
ribozyme and estimated the fitness in the neighborhood of the original ligase
sequence from a reselected variant pool.

Various interpolation and machine learning schemes have been proposed to esti-
mate the structure offitness landscapes from sparse data (Romero et al. 2013;Woo and
Reifman 2014). The issue, however, remains a difficult one and the problem is far from
being solved. Most geometric and topological characteristics of the inferred fitness
landscape, such as the number of monotonically increasing paths between ancestral
and derived genotypes, the prevalence of sign epistasis, and the number of localfitness
maxima, are distorted in the inferred landscape (Otwinowski and Plotkin 2014).
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Most recently, small systems have been investigated in their entirety. An
example is a survey the space of 24-mers selected for GTP binding (Jimenez et al.
2013), see also Athavale et al. (2014) for a recent review.

Empirical landscapes seem to differ substantially between different biological
systems. DNA-protein binding landscapes (Rowe et al. 2010) have been found to be
rugged, with many local optima. Protein landscape, on the other hand, seems to be at
least locally smooth, “Mt. Fuji-like” (Aita et al. 2000; Lobkovsky et al. 2011) con-
sistent with computational prediction from simple computational models (Babajide
et al. 1997; Chan and Bornberg-Bauer 2002). Similar structures are observed for viral
fitness landscapes, both experimentally (Lauring and Andino 2011; Woo and
Reifman 2014) and in computational models (Kouyos et al. 2012). For RNA land-
scapes, however, there is an apparent discrepancy between the observed very rugged
landscapes and the computationally predicted landscape structure (Athavale et al.
2014). We return to this issue in some detail in the next section.

A promising alternative to exhaustively covering sequence space is to associate
fitness with a low-dimensional phenotype. Acevedo et al. (2014), for instance,
mapped thousands of measured fitness values of mutants onto three-dimensional
structures of viral proteins to explore the structure–function relationships.

1.4 Computer Models of RNA Evolution

RNA has turned out to be a particularly fruitful model to study fitness landscapes in
computational models of evolution. On the one hand, it is intriguing catalytic
activities and its crucial involvement in the core information metabolism of modern
life forms, having lead up to the RNA world hypothesis of pre-biotic evolution
(Gilbert 1986), justify detailed studies. On the other hand, nucleic acid structures
have specific feature, not shared by polypeptides, which make them computation-
ally tractable at a convenient coarse-grained resolution.

Nucleobases interact specifically through hydrogen bonding in a manner that
established simple combinatorial rules of complementary base pairing (GC, AU, and
GU). Paired bases form regular helical structures stabilized by π-electron interactions
whose energetics are nearly perfectly additive in terms of the contributions of
adjacent base pairs. The resulting secondary structures shown in Fig. 1 are thus
matchings in the graph theoretical sense, which are further restricted by the non-
crossing rule that excludes so-called “pseudoknots.” These simplifications result in
the combinatorial model of RNA secondary structures in which the folding problem,
i.e., the prediction of structure from sequence, can be solved efficiently and com-
pletely by means of dynamic programming (Zuker and Stiegler 1981). This simple
model, which has been parameterized by careful thermodynamic measurements
(Turner and Mathews 2010), has proved its practical relevance in thousands of
applications ranging from explaining and organizing structural features of RNAs to
the prediction of effects of mutations and wholesale design of functional RNAs. Far
from perfect, it nevertheless captures most of the energetics of RNA folding, it

Evolution of RNA-Based Networks 49



describes key features of RNA folding kinetics, and it explains many of the evolu-
tionary patterns observed in RNA. We refer to a recent book on RNA bioinformatics
for details on applications and limits of the model (Gorodkin and Ruzzo 2014).

Fig. 1 RNA folding in a nutshell. Top Folding of the yeast tRNA-Phe. The secondary structure
can be computed with little effort, while the 3D structure (shown here is the PDB crystal
structure 5TNA) is not easily accessible by computational methods alone. Below The algorithm of
RNA folding consists of fairly simple recursion relations that construct the energy (or partition
function) of a substructure on a sequence interval from i to j from smaller components. An
arbitrary structure (F) begins with either an unpaired base • or a substructure enclosed by a base
pair (C). In both cases, it then continues with a correspondingly shorter unconstrained structure.
The second line describes the decomposition of base pair enclosed structure (C) into the three
major loop types: hairpin loops, interior loops (including stacked base pairs, k = i + 1 and l = j – 1),
and multi-branch loops. The last three lines correspond to the recursion for multi-branch loops, see
Lorenz et al. (2011); Zuker and Stiegler (1981) for details. For each possible decomposition step,
the energy of the l.h.s. structure is the sum of the energies of the r.h.s. components. These
recursions require quadratic memory and cubic time in terms of the input sequence length,
providing a highly efficient and exact solution of the RNA folding problem
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Instead we concentrate here on a different aspect which was explored in sub-
stantial detail almost a quarter of a century ago (Schuster et al. 1994). The efficiency
of structure prediction has made it feasible to explore the sequence-structure map of
RNA as a proxy for genotype–phenotype maps. Starting from the insight that
genotype (sequence) is acted upon by mutation and other genetic operators while the
phenotype (structure) is subject to selection, it is appealing to model biologically
relevant fitness landscapes as compositions

f ðxÞ ¼ /ðUðxÞÞ ð10Þ

where U : X ! P is the genotype–phenotype map and / : P ! R is a fitness
function that evaluates the phenotypes y 2 P rather than the genotype. In the case of
RNA secondary structures, U is simply RNA folding as implemented, e.g., by the
ViennaRNA package (Lorenz et al. 2011) and P denotes the set of RNA secondary
structures. In many circumstances, the properties of f : X ! R are essentially
determined already by the genotype–phenotype map U, as in the case of RNA
secondary structures.

Extensive computational studies (Fontana et al. 1991; Fontana et al. 1993;
Fontana and Schuster 1998; Fontana et al. 1993; Gruener et al. 1996a, 1996b)
showed the following:

1. A large fraction of point mutations are neutral in RNA molecules in the sense
that the mutation does not change the base pairing pattern (secondary structure)
of the ground state structure.

2. The pre-image U�1ðyÞ, i.e., the sequences folding into a common RNA structure
y, is to a first approximation homogeneously distributed among the sequences C
(y) that satisfy the base pairing constraints imposed by y. Note that
U�1ðyÞ�CðyÞ.

3. As a consequence of the high degree of neutrality (1) and the approximate
homogeneity (2), there are extensive so-called “neutral networks” of sequences
folding into the same ground state structure. These neutral networks “percolate”
through sequence space and contain neutral paths that connect sequences
without detectable sequence similarity.

4. The neutral networks tend to be connected or at least to decompose into only a
small number of very large components.

5. The intersection theorem (Reidys et al. 1997) guarantees that the sets Cðy0Þ and
Cðy00Þ of sequences that are compatible with two arbitrary structures y0 and y00

have non-empty intersection.
6. The neutral networks U�1ðy0Þ and U�1ðy00Þ therefore come very close to each

other, and the distance of an arbitrary sequence x0 to a sequence x 2 U�1ðyÞ
folding into y is determined essentially by the violations of the base pairing
constraints in x0 only. This property is known as shape space covering.
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This rather special structure of the RNA folding map implies a diffusion-like
behavior of evolving populations of RNA molecules in sequence space, which
conforms to Kimura’s neutral theory (Huynen et al. 1996; Kimura 1983). It also
implies constant rates of encountering novel variants along evolutionary trajectories
(Huynen 1996). Thus, it explains the punctuated-equilibrium-like dynamics of
RNA evolution characterized by long phases of diffusion on neutral networks
interrupted by intermittent bursts of adaptive evolution when fitter mutants are
encountered at the fringes of the neutral network (Huynen et al. 1996).

A beautiful illustration of these properties of the RNA folding map is the con-
struction of a bistable ribozyme (Schultes and Bartel 2000): A single RNA folds
into either of two evolutionarily unrelated ribozyme structures and catalyzes the
corresponding reactions. Nevertheless, the bistable sequence has neighbors that are
efficient catalysts for only one of the two alternative reactions and that are con-
nected by neutral paths of the corresponding wild-type ribozyme.

Recent empirical work on very small RNA fitness landscapes defined by aptamer
binding affinities, on the other hand, seems to be at odds with these observations and
rather indicates as rugged structure without extensive paths (Athavale et al. 2014).
The empirical aptamer binding landscape, however, focussed on the small subse-
quence actually involved in binding. This is indeed expected to be dominated by a
few peaks corresponding to the best-binding motives. It forms a low-dimensional
subspace that constrains the RNA molecules to those that have the binding motive
but does not speak to the landscape defined by the large rest of the molecule.
Computational studies indeed have shown that small sequence motives (as models of
active sites or binding pockets) can be constrained without affecting the overall
structure of the RNA folding map.

A different line of evidence for (nearly) neutral paths in RNA fitness landscapes
comes from the comparative analysis homologous RNAs. Here we often observe a
strong conservation of secondary structure while the sequence may have diverged
already to beyond the detection limit (Torarinsson et al. 2006). Computational
surveys with different methods have provided good evidence that this is not at all a
rare phenomenon: More than 10 % of mammalian genomes are under stabilizing
selection for RNA secondary structure elements, but more than 85 % of these
elements are essentially unconstrained at sequence level (Smith et al. 2013). This
provides a rather direct way to observe diffusive evolution on neutral networks.

2 Autocatalytic Networks

2.1 The Bioinformatics of RNA–RNA Interactions

Specific interactions among distinct RNA molecules are readily established by
complementary base pairing, i.e., using the same principles that lead to the for-
mation of intramolecular secondary structures. Conceptually straightforward (but
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computationally at times difficult) extensions of the secondary structure model thus
also incorporate RNA–RNA interactions. Since there is no local difference between
intermolecular and intramolecular base pairs, even the same energy parameters can
be used. For an in-depth discussion, we refer to Backofen (2014) for a recent
review. An important issue is the concentration dependence. In thermodynamic
equilibrium, setting is expressed as

½AB�
½A�½B� ¼ KAB ¼ Z 0

AB

ZAZB
ð11Þ

where [A], [B], and [AB] are the concentrations of monomers of two types of RNAs
and their dimer, respectively. The key observation is that the equilibrium constant
KAB can be computed directly from the sequences using the partition function
versions of RNAfold ðZA; ZBÞ and RNAcofold or RIP (ZAB). The correct par-
tition function for the duplex can be expressed as Z 0

AB ¼ ðZAB � ZAZBÞe�be, where
ZAB is the partition function computed directly by a cofolding approach, which also
contains non-interacting conformations, and e is an initialization energy parameter
capturing the additional entropic effects of forming a duplex (Bernhart et al. 2006;
Dimitrov and Zuker 2004).

RNA–RNA interactions by means of canonical base pairing play an important
role in post-transcriptional regulation. For example, the interaction of microRNAs
with messenger RNAs and of small nucleolar RNAs with ribosomal RNAs is of this
type. Similarly, it is the preferred mode of action of bacterial small RNAs. Of
course, product inhibition in model systems of replicating nucleic acids is also
owed to RNA–RNA binding in trans.

2.2 Replicator Networks

Eigen and Schuster noticed already in the late 1970s that systems of replicating
molecules behave qualitatively different depending on whether the catalyst E in
Eq. (7) is considered part of the environment or whether the replicators also catalyze
their—or each other’s—replication (Eigen and Schuster 1979). The net reaction of
such a system can be abstracted in the form

Aþ 2Y�!k 3Y ð12Þ

for a single self-replicator with perfect accuracy and

Aþ Yþ Z �!qxykyz
Yþ Zþ X ð13Þ
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in the general case of cross-catalysis with imperfect copying. As in the quasi-
species model, Y is the template, X, which may coincide with Y, is the product of
the copy reaction, and Z is the ribozyme catalyst. The kinetic constants kyz describe
the rate of copying template Y by catalyst Z. Again qxy is the mutation probability
of producing the offspring X from the template Y.

The construction of an RNA replicase ribozyme that is capable of copying a
broad range of templates, including itself, has been an open problem for decades,
ever since the discovery that RNA molecules have catalytic activities akin to
proteins. As proof of principle, an RNA ligase ribozyme (Paul and Joyce 2002) was
obtained in 2002, the first RNA replicase followed in 2009 (Lincoln and Joyce
2009), and was improved stepwise (Ferretti and Joyce 2013). Earlier this year,
Roberson and Joyce finally described a self-replicating ribozyme that can sustain
exponential growth (Robertson and Joyce 2014). It also copies a partner ribozyme
so that the coupled system is capable of Darwinian evolution. Autocatalytic
self-replicators of this type are in principle capable of open-ended Darwinian
evolution. Experimental exploration of the test tube models of a hypothetical RNA
world comprising autonomous interacting self-replicating RNAs thus is becoming
feasible.

The dynamics of such a system can again be derived from the reaction mech-
anism under the assumption of mass action kinetics. In the simplest instantiation, it
is of the form (Stadler and Schuster 1992)

d½x�
dt

¼ ½x�
X
z

kxz½z� � u

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

selection

þ
X
y;z

qxykyz½y�½z� � qyxkxz½y�½z�
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mutation

ð14Þ

Constant organization is enforced by balancing the flux with the net production in
the system, i.e.,u ¼Pxz kxz½x�½z�, independent of the choice of the mutation rates qxy.
In the absence of mutation, p ! 0, the second term, which is proportional to the
mutation rate p, vanishes. The remaining dynamical systems are known as the
(quadratic) replicator equation (Schuster and Sigmund 1983). Maybe the most
famous special case is the hypercyclemodel (Eigen and Schuster 1979). Second-order
replicator equation also serves as a canonical model in game dynamics, and they are
equivalent to the Lotka–Volterra equations, one of the first models of predator–prey
interactions. They admit a rich mathematical theory with warrants books entirely
dedicated to their analysis (Hofbauer and Sigmund 1998). More realistic reaction
mechanisms again include variable levels of product inhibition. As in the quasispecies
case, they are dominated by product inhibition for large total concentrations and
eventually lead to global coexistence, i.e., the absence of selection. For moderate
concentrations, however, complex dynamics described effectively by the catalyzed
replication prevails Stadler et al. (2000).
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2.3 Evolution of Autocatalytic Networks

Comparably, little is known about the evolution of sequences of autocatalytic net-
works. In Stadler (2002), the diffusion (in sequence space) of a population of
interacting replicators has been studied. A major issue in models of this type is the
assignment of the reaction rates kxy as a function of sequences of template and
catalyst. This problem is analogous to the assignment of fitness values to individual
sequences in the quasispecies equation. It is even more challenging, however, since
(1) we now have a quadratic number of coefficients to determine and (2) virtually
nothing is known about the sequence dependence of the catalytic capabilities of
nucleic acids. Very simple minimal models thus have been used: In Stadler (2002),
kxy is assumed to be dependent on the Hamming distance of x and y. In Forst (2000)
and later in Stephan-Otto Attolini and Stadler (2006), the reaction rates were assumed
to depend on the interaction structure of x and z as computed by RNAcofold.
Neutrality in the interaction structure, i.e., of RNAcofold (x, z) w.r.t. mutation in
either x or y, is important for evolvability in sequence space as well as the persistence
of the population (Stephan-Otto Attolini and Stadler 2006). It remains unknown,
however, whether this type of model is realistic even in a statistical sense. One would
assume that the catalytic activity of a catalyst z on a template z depends on local
interactions close to the processive site rather than on a conserved global structure.

2.4 Distributed Autocatalysis

Macromolecules that are directly self-replicating, i.e., that can copy a template
including a second copy of themselves, are certainly the conceptually simplest
building blocks of a self-propagating system. Since it has remained open for a long
time whether RNA replicase enzymes can be constructed, alternative architectures
have been explored at least theoretically. Assuming that copy machines are
infeasible, systems of chemical reactions have been studied in which some of the
chemical species also act as catalysts. Seminal work in this direction includes Stuart
Kauffman’s string concatenation model (Kauffman 1986) or Walter Fontana’s
artificial chemistry based on the lambda calculus (Fontana and Buss 1994). The key
question is then to characterize closed, self-maintaining sets that collectively behave
as an autocatalyst. Despite substantial progress in the mathematical and computa-
tional analysis of this class of models (Hordijk et al. 2012, 2014; Smith et al. 2014),
it remains unclear whether and how they may have played a role in the origin of
life. For example, it can be shown that in large chemical systems with n distinct
molecular species, each molecule must catalyze / log n reaction in order to make it
likely to find a collective autocatalytic set (Hordijk et al. 2011). At present, no
plausible material instantiation appears to be known, and it remains to be seen
whether the required abundance and specificity of catalytic activities are realistic for
some kind of chemistry.
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