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Abstract Aging is a universal phenomenon in metazoans, characterized by a
general decline of the organism physiology associated with an increased risk of
mortality and morbidity. Aging of an organism correlates with a decline in function
of its cells, as shown for muscle, immune, and neuronal cells. As the DNA content
of most cells within an organism remains largely identical throughout the life span,
age-associated transcriptional changes must be achieved by epigenetic mechanisms.
However, how aging may impact on the epigenetic state of cells is only beginning
to be understood. In light of a growing number of studies demonstrating that
noncoding RNAs can provide molecular signals that regulate expression of
protein-coding genes and define epigenetic states of cells, we hypothesize that
noncoding RNAs could play a direct role in inducing age-associated profiles of
gene expression. In this context, the role of long noncoding RNAs (IncRNAs) as
regulators of gene expression might be important for the overall transcriptional
landscape observed in aged human cells. The possible functions of IncRNAs and
other noncoding RNAs, and their roles in the regulation of aging-related cellular
pathways will be analyzed.
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1 Introduction

Aging is a universal and multifactorial process in complex living systems, char-
acterized by a general decline of the organism physiology associated with an
increased risk of mortality and morbidity. Due to its intrinsic complexity, models
for studying organism aging are often inadequate and partial, being difficult to
distinguish between causes and consequences of the aging phenomenon. At the
phenotype level, aged organisms show a characteristic panoply of features always
related to their physiological deterioration (Madrigano et al. 2012). However, the
molecular mechanisms underlying this phenotype are far to be globally understood.

In complex organisms, aging appeared to be caused by the individual cell aging.
In several types of tissues, the function of somatic cells declines with age. The term
senescence was applied to these cells that ceased to divide in culture, based on the
speculation that their behavior recapitulated organism aging. Consequently, cellular
senescence is sometimes termed cellular aging or replicative senescence. Global
aging of an organism is directly related to the individual cell aging. Increasing data
suggest that cell aging is not merely an accumulation of damage, but an accumu-
lation of damage associated with an altered transcriptional profile (Kato et al. 2011).
There is not likely to be a single gene responsible for aging. Rather, a complex
network of genomic interactions probably exists, which currently remains
unknown. In order to support this idea, a coherent and integrative view has recently
emerged with the major goal of studying the genetic mechanism subjacent to cell
aging by combining systems biology with Genomics and Proteomics (Madrigano
et al. 2012).

Spatial genome organization can critically affect gene expression in aging. While
it is well known that chromatin composition can directly shape gene activity,
three-dimensional chromatin organization is also emerging as an important gene
regulation mechanism in aging (Collado et al. 2007). There are many ways by
which chromatin interactions could be regulated: first, by modifying the DNA itself
with cytosine methylation and consequently altering protein association (Fraga
et al. 2007). Chromatin contacts could also be regulated by controlling access to
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DNA sequences with post-translational histone modifications (PTMs), the use of
histone variants or by altering nucleosome positioning. Similarly, post-translational
modification or changes in expression level of non-histone chromatin-binding
proteins could represent important mechanisms to regulate chromatin contacts.
Additionally, noncoding RNAs (ncRNAs) and their protein complexes could reg-
ulate the three-dimensional architecture of our genome. ncRNAs are a broad class
of RNAs consisting of structural (rRNAs, tRNAs, snRNAs, snoRNAs, etc.), reg-
ulatory (miRNAs, piRNAs, etc.), and of sense/antisense transcripts, whose func-
tions remain mostly uncharacterized (Mattick 2009). RNA is an ideal molecule to
regulate biological networks, since it encodes sequence information and possess a
great structural plasticity. The intrinsic relevance of ncRNAs in the regulation of
genomic output has been rapidly unveiled during the last decade (Kato et al. 2011;
Liao et al. 2011). However, the functional elements in the primary sequence of the
majority of ncRNAs that determine their regulatory role remain unknown.

This chapter will analyze the molecular aging events and discuss the possible
role of small and long ncRNAs in the regulation of pathways and processes related
to aging at the cellular level, emphasizing their importance as modulators of the
aging-mediated deterioration of cell physiology.

2 Pathways and Key Topics of Human Cellular Aging

2.1 Molecular Damage as a Driving Factor for Cell Aging

In humans, aging is thought to correlate with a recession in function of its cells and
tissues, namely immune and neuronal cells (Grolleau-Julius et al. 2010; Lu et al.
2004). At the tissue and organ level, aging can be also characterized by the
accumulation of senescent cells. Senescence is a physiological process in which
normal cells cease to divide and can be induced by nutrient starvation (replicative
senescence), DNA damage, telomere shortening, or by the expression of some
genes (oncogene-induced senescence) (Lopez-Otin et al. 2013). In normal tissues,
senescent cells are part of a mechanism devoted to the tissue regeneration which
selectively eliminates damaged and dysfunctional cells. Recently, Mufioz-Espin and
Serrano (2014) proposed that the accumulation of senescent cells in aged tissues
could be the result of the lack of proper clearance of damaged cells by the immune
system.

At the cellular level, aging is characterized by the presence of increasing
amounts of molecular damage, which leads to a physiological imbalance and
decline of cell metabolic functions. How and when cellular functions begin to
decline due to aging is unknown; however, this decline is founded within a
molecular basis. It is difficult to determine whether this molecular damage is the
main cause of aging, but its presence can be related to the impairment of the control
mechanisms that happens during organism aging (Rattan 2008). Seminal research
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by Wulf and coworkers showed early in the 1960s that the aging tissues and cells
are unbalanced for the production of RNA molecules (Wulff et al. 1962). The
authors postulated that the accumulation of mutations at the DNA level during
aging would lead to the production of faulty RNAs, responsible at least in part for
the aged phenotype. DNA damage leads to a misreading of the genetic information,
and consequently to the possibility of faulty transmission of its message (Fukada
et al. 2014). The correct functionality of the repair systems that correct DNA lesions
has been related to an increased life span in mouse models (Brenerman et al. 2014).

The main sources of molecular damage during aging in DNA, RNA, proteins,
and other biomolecules such as lipids come from free radicals or oxidative chem-
icals that can be originated either internally or externally to the cell (Fig. 1). In this
context, the mitochondrial respiratory chain is responsible for the generation of
reactive oxygen species (ROS), which include some free radicals, hydrogen per-
oxide, and the very reactive superoxide anion (Poyton et al. 2009). Extrinsic factors
such as radiation and UV light can also trigger the production of ROS and free
radicals. ROS are extremely reactive species, able to covalently modify many
macromolecules, altering their functional and structural properties, and being
responsible by the so-called oxidative stress (Nunomura et al. 2012; Di Domenico
et al. 2010). Healthy cells harbor different mechanisms to destroy the free radicals
and ROS in order to avoid their oxidative action over biomolecules, mainly based
on the antioxidant molecules.

Enzymes such as superoxide-dismutase, catalase and thioredoxin and small
organic molecules such as glutathione, are defense systems against the oxidative
action of reactive chemical species (Mari and Cederbaum 2001; Sims-Robinson
et al. 2013; Fukui and Zhu 2010). When the molecular damage is already caused,
the disturbed biomolecule must be either repaired or destroyed. DNA molecules are
typically repaired by several complex mechanisms involving macromolecular
complexes assembled at the damaged loci, which are globally triggered in the
presence of specific DNA lesions (Huen and Chen 2010; Lord and Ashworth 2012).
In the unlikely event of an unrepaired DNA lesion, a global DNA damage response
is activated and the cell will enter a cell-cycle arrest phase or become senescent in
order to ensure genome maintenance and stability (Tian et al. 2014). DNA
damage-induced senescence is also a natural mechanism to protect cells against
cancer, but its relationship with the aging process is still not clear (Lieberman 2008;
Tian et al. 2014). In mouse models during aging, some tissues appeared to be more
prone to be enriched in senescent cells induced by DNA damage or telomere
shortening (Wang et al. 2009). The same phenomenon is observed in human
progeroid syndromes of accelerated aging like Werner’s syndrome, where genetic
mutations disrupt totally or partially the molecular machinery responsible for the
genomic integrity (Pichierri et al. 2001). RNA molecules can also be targets of
oxidative damage during aging as described previously in neural cells (Nunomura
et al. 2012). These alterations would lead to faulty transcription and an imbalance in
the cellular RNA content (Fig. 1). When the affected molecules are ncRNA tran-
scripts, defects in their regulatory activities are also expected.
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Fig. 1 Molecular damage induced by internal or external factors contribute to the cellular aging
process, founded in four pillars: DNA damage, transcriptional imbalance, accumulation of
unfolded proteins and mitochondrial dysfunction. The molecular imbalance observed in aged cells
is mainly triggered by chemical or physical stress, produced from either internal or external
sources. Chemical stress can be originated by external chemicals or by the reactive oxygen species
(ROS) formed as a consequence of the cellular oxidative metabolism

Proteostasis, understood as the maintenance of a functional proteome, also
declines with aging (Perez et al. 2009). A functional and healthy proteome is related
to the chemical integrity of its components and their proper folding into a 3D space.
Many cellular and external factors can challenge the proteome to cause protein
instability or misfolding. Among them, the stress that lead to covalent modifications
such as oxidation, the translational errors, and the presence of genome mutations
are the most frequent. Misfolding can affect globular proteins or their domains
when those have a consistent three-dimensional structure. In consequence, proteins
lacking stable structure often denominated as intrinsically disordered proteins or
IDPs are less sensitive to cellular stress and mutations (Light et al. 2013).
Accumulation of misfolded proteins have negative consequences to the cell, since
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mutated and destabilized proteins often expose hydrophobic regions that tend to
aggregate or to interact with cellular structures (Chiti et al. 2003; Stefani and
Dobson 2003).

Time-dependent decline in protein functions during aging induces a stress over
the physiological mechanisms devoted to the clearance of faulty protein molecules,
mainly the proteasome and the lysosomes (Miller et al. 2014; Taylor et al. 2011).
Intermediate quality control sensors and effectors, also known as protein chaper-
ones, are also submitted to pressure during aging due to the accumulation of
unfolded proteins (Brehme et al. 2014; Taylor et al. 2011). In model systems such
as Caenorhabditis elegans, recent work demonstrated that the levels of ribosomal
and mitochondrial proteins were decreased in aged worms, supporting the notion
that proteostasis is altered during organism aging (Liang et al. 2014). Moreover,
mitochondrial enzymes of the Kreb’s cycle and electron transport chain were
diminished in aged animals, being consistent with the observed age-associated
energy impairment (Ben-Zvi et al. 2009). Also in Drosophila, impaired proteasome
function promoted aging phenotypes and reduced life span among individuals
(Tsakiri et al. 2013). In humans, proteostasis networks centered in the protein
chaperones have been characterized in relationship with neurodegenerative and
aging-related diseases (Brehme et al. 2014). Interestingly, the mass spectrometry
characterization of the proteome of human cells during aging also showed a con-
sistent picture of decreased levels of proteins involved in cell death, cell differen-
tiation and organization, response to stress, translation, RNA metabolism, and
proteostasis control during aging (Waldera-Lupa et al. 2014).

2.2 Aging-Related Metabolic Pathways

Despite its multifactorial nature, aging is regulated by specific metabolic pathways
including hormone-regulated signaling cascades and environmental nutrient sensing
systems (Barzilai et al. 2012). The main cellular pathways involved in the control of
life span in complex organisms are summarized in Fig. 2. All these pathways
together form an entangled and interconnected regulatory framework which is part
of the aging hallmarks (Lopez-Otin et al. 2013).

Insulin, insulin-like growth factor, and mTOR pathways showed crucial roles
over organism life span, being highly conserved among species (Greer and Brunet
2008). IGF and insulin pathways are activated via their cognate membrane recep-
tors inducing a signaling cascade centered in the AKT family of protein kinases that
is related to a reduction in life span in model organisms (Miyauchi et al. 2004). On
the other hand, the nutrient-dependent activation of mTOR pathway induces a
metabolic alteration toward cell growth upon regulation of catabolism mediated by
autophagy (Kapahi et al. 2010). Inhibition of this pathway extends life span in
model organisms and confers protection against a wide range of age-related
pathologies (Johnson et al. 2013). Autophagy, a well-characterized process that
protects cell integrity by removing the damaged cell components is impaired during
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Fig. 2 Metabolic pathways involved in the control of life span in humans. Nutrients and different
external signals can act as triggers for pathways that ultimately control the cell fate under diverse
biological circumstances

aging leading to the accumulation of molecular damage. This phenomenon has been
observed in model organisms and in some human tissues (Carnio et al. 2014; Zou
et al. 2014). Moreover, aging can be also considered as a chronic low-intensity
inflammation state, where cytokine activation of the NF-kB pathway plays an
important role. This cytokine-mediated activation is extremely relevant in the global
aging process of a particular organism since it can be related to the accumulation of
senescent cells and their secretory phenotype which can collaborate to the tissue
function impairment (Coleman et al. 2013). Additional modulators of cell survival
like sirtuins which are responsible for an extended life span in complex organisms,
as well as for the introduction of more complexity into the aging-related pathways
(Michan 2014).
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Within this context, the changes in the expression of genes encoding proteins
involved in aging-related metabolic pathways have been used as quantifiable bio-
markers and possible causes of aging. Next-generation sequencing technologies
have improved the resolution and information obtained from transcriptional data
related to aging. To date, multiple studies profiled age-related transcriptional
changes in mouse and human cells revealed important insight into the molecular
mechanisms of aging. Namely, a set of age-regulated genes were identified,
including genes associated with immunity and the inflammatory response, meta-
bolic energy and degradation pathways, and extracellular matrix components (de
Magalhaes et al. 2009). A parallel approach relied on genetics to search for
single-gene mutations that extend life span in model organisms. These studies
found that mutations affecting genes of the insulin signaling pathway increase the
life span of C. elegans (Kenyon et al. 1993), Drosophila (Satomura et al. 2001;
Clancy et al. 2001), and mice (Bluher et al. 2003; Holzenberger et al. 2003).
Despite such striking evolutionary conservation, the genes that appear differentially
expressed in mutant nematodes, flies, and mice tend to be species-specific
(McElwee et al. 2007), highlighting the importance of investigating biological
processes rather than individual genes to understand the molecular mechanisms
underlying aging. More recent work has further contributed to pinpoint an intimate
interplay between age-related transcriptional changes including those observed in
the noncoding genome, alterations in chromatin structure and epigenetic modifi-
cations, and persistence of irreparable DNA lesions in chromosomal and mito-
chondrial DNA (Burgess et al. 2012).

3 Small Noncoding RNAs in the Aging Context

Noncoding (nc) RNAs represent an additional layer of gene regulation implicated in
aging (Jung and Suh 2012). The ncRNAs are a remarkably diverse universe of
RNAs that are not templates for protein synthesis but can regulate their expression
in the context of human physiology and pathology. Several classes of small (typ-
ically 20-30 nucleotides) and long (>200 nucleotides) ncRNAs have been identified
and shown to act as key regulators of protein gene expression in several biological
processes (Grammatikakis et al. 2014; Di Leva and Croce 2013; Jung and Suh
2012). The medical relevance of ncRNAs is well established, particularly for some
of the small members of the group such as the miRNAs (Esteller 2011). The vast
majority of miRNAs act as posttranscriptional repressors of protein gene expression
by binding the untranslated regions (UTRs) of target mRNAs. The miRNA regu-
latory effect over a selected transcript is relatively mild and could be described as a
“fine-tuning” mechanism of post-transcriptional regulation (Grosshans and
Filipowicz 2008). In contrast, a single miRNA could act over hundreds of different
mRNAs, constituting an overall control layer that modulated the products of gene
expression. Taking into account this fact, it is very tempting to relate miRNAs and
their mechanism of action with global cell phenomena such as differentiation,



Noncoding Transcriptional Landscape in Human Aging 185

senescence, cancer, or aging (Lafferty-Whyte et al. 2009; Bates et al. 2009b).
MiRNAs have been implicated in many biological and pathological processes,
ranging from development to cancer and life span (Jung and Suh 2012). Among
them, the miRNA Lin-4 was first shown to regulate life span in C. elegans (Boehm
and Slack 2005); lin-4 was subsequently found to be part of a group of miRNAs
that change in expression as animals grow older (Ibanez-Ventoso et al. 2006). More
recently, additional miRNAs were identified that influence life span in C. elegans
both positively and negatively (de Lencastre et al. 2010). Age-related changes in
miRNA expression were also reported in mouse brain (Inukai et al. 2012) and in
human peripheral blood mononuclear cells (Noren Hooten et al. 2010). Also in
model systems, a particularly interesting case is the Ames dwarf mouse, a mouse
that shows increased delay in the onset of aging: miR-27a has been described as a
main regulator of some intermediate metabolic enzymes that are related to the
delayed aging of these animals (Bates et al. 2009a).

Moreover, the identification of mRNAs regulated by these miRNAs is further
providing clues to understand how alterations in miRNA expression can contribute
to the age-associated physiological decline. For instance, miR-146a, which is highly
expressed in aged mice, down-regulates the expression of IL-1f and IL-6 leading to
a lack of response of macrophages to proinflammatory stimuli (Jiang et al. 2012).
Other aging-related pathways such as Wnt-mediated signaling (Vinas et al. 2013)
and insuling/IGF-1 regulatory axis (Jordan et al. 2011) are also under the control of
miRNAs. Interestingly, miRNAs are also regulatory players that can respond to
hormonal stimuli, constituting feedback regulatory loops that ensure the tight
control of metabolic signals (Martin et al. 2012).

Recent studies suggested that miRNAs and their biogenesis could control spe-
cifically the aging process by targeting several apparently unrelated genes. The
nuclear work supporting this evidence has been performed using specific tissue or
organs from aging mice. For instance, some murine miRNAs such as miR-93 and
miR-214 have been found to be up-regulated in extremely old liver tissues (Li et al.
2009). Defects in the biogenesis of miRNAs have been also related to the induction
of a senescence phenotype (Mudhasani et al. 2008), and the regulatory activities of
miRNAs over cell aging and senescence-related pathways were proposed to act as
pro- and antilongevity factors (Murphy 2010; de Lencastre et al. 2010). The term
senescence was coined to describe cells that cease to divide in culture, assuming
that this behavior recapitulates organism aging. However, several lines of evidence
argue that replicative senescence and cell aging are not overlapping processes
(Wennmalm et al. 2005; Bai et al. 2011). MiRNAs are also able to revert some
senescence phenotypes induced by oncogenic factors such RAS (Borgdorff et al.
2010) and also to actively induce senescence and aging phenotypes in a variety of
cell and organism models (Tazawa et al. 2007; Li et al. 2011; Liu et al. 2012).

It is well known that miRNAs can be actively secreted by cells, being detectable
in all biological fluids. The mechanistic reasons for this phenomenon are far to be
completely understood, but probably the secreted miRNAs could function as
slow-action hormones able to regulate gene expression within cells located in
organs or tissues far from they were synthesized (Creemers et al. 2012). Circulating
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miRNAs have been also considered as powerful biomarkers for the diagnosis and
prognosis of several human conditions including aging (Weilner et al. 2013).
Several authors proposed an active role for circulating miRNAs during aging, for
instance acting as modulators of the chronic inflammatory phenotype observed in
aged individuals (Olivieri et al. 2013b). Recently, a group of up-regulated
age-related circulating miRNAs has been identified in mouse models. This group of
circulating miRNA appeared to be up-regulated in aged animals and this effect can
be reverted by caloric restriction. The genes targeted by this cohort of
age-modulated circulating miRNAs are predicted to regulate biological processes
linked to the phenotypic manifestations of aging, including metabolic changes,
demonstrating the growing importance of this circulating regulators and their roles
in the global context of organisms aging (Dhahbi et al. 2013).

4 Regulatory Long Noncoding RNAs as Modulators
of Aging Metabolic Pathways

4.1 Common Functional Features of IncRNAs Within
the Aging Transcriptional Landscape

In addition to miRNA genes, the human genome contains over 15,000 long
noncoding RNA genes (IncRNAs) (Volders et al. 2013; Bu et al. 2012). This class
of RNAs are by definition >200 bp in length, lacking significant protein-coding
capacity. Their synthesis and structure are similar to protein-coding mRNAs, as
they contain introns, have their 5’ and 3’ ends capped, and are frequently poly-
adenylated. These transcripts have initially been suggested to represent only the
bystander’s transcription within protein-coding regions. However, histone markers
of active transcription have been identified them outside protein-coding regions
(Guttman et al. 2010). A subset of IncRNAs can be highly cell- and tissue-specific
(Guttman et al. 2011) and show precise temporal specific patterns of expression as
well as a certain degree of evolutionary conservation (Cabili et al. 2011).
Meanwhile, only a small number of thousands of known noncoding RNAs have
been implicated in a specific biological function.

Loss-of-function experiments have provided further evidence of IncRNAs
functional importance on the regulation of gene expression patterns that control cell
pluripotency, differentiation and survival, as well as epithelial-to-mesenchymal
transition (Beltran et al. 2008). They also act as regulators of development and
morphogenesis (Ulitsky et al. 2011), chromosomal dosage compensation (Tian
et al. 2010), control of imprinting (Sleutels et al. 2002), cell-cycle regulation, and
alternative splicing (Tripathi et al. 2010). LncRNAs exert the regulatory function in
cis, modulating nearby genes on the same allele, or in trans by affecting genes at
long genomic distances (Court et al. 2011). LncRNAs also interact with genomic
DNA as well as RNA, and they function as flexible molecular scaffolds for the
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recruitment of chromatin modifying enzymes and transcription factors (Saxena and
Carninci 2011; Gupta et al. 2010), driving their correct localization to genomic
DNA targets. LncRNAs have also been shown to regulate the activity of other
ncRNAs, specifically miRNAs, by acting as “sponges” that titrate miRNAs away
from natural mRNA targets (thereby acting as competing endogenous RNAs;
ceRNAs) (Cesana et al. 2011). However, the role of lincRNAs in cell aging needs to
be further investigated.

Despite the lack of experimental data, an altered expression pattern of the
noncoding transcriptome is also expected in aging. In fact, IncRNAs are known to
be involved in the control and regulation of cell fate decisions, including cell
lineage commitment (Lin et al. 2014) and stemness (Guttman et al. 2011). Similar
regulatory circuits based on the ncRNAs have been proposed to be on the basis of
the age-dependent evolution of some human diseases such as cognitive disorders
(Qureshi and Mehler 2011). In a small number of cases, the noncoding transcrip-
tome was used to characterize the aging process and their phenotypic consequences
(Chang et al. 2013). Also very recently, a specific cohort of IncRNAs has been
characterized as implicated in replicative cell senescence (Abdelmohsen et al.
2013). However, in the majority of the studied cases, the relationships between
IncRNAs and aging can only be depicted by the particular regulatory action exerted
over a gene or an aging-related pathway, and not over the global aging process
(Fig. 3). Moreover, these regulatory mechanisms have been frequently character-
ized outside the aging phenomenon itself and related to other biological problems
such as cell differentiation, lineage commitment, or cancer (Table 1).

4.2 IncRNAs and DNA Damage

As already discussed, the cell capacity to respond to DNA damage is essential to
avoid the deleterious accumulation of functional mutations during aging (Jackson
2009). Several IncRNAs have been recently characterized as regulator of the cel-
lular DNA damage response. One of the initial evidences of the regulatory role of a
IncRNA on the DNA damage response was observed for RoR, a strong negative
regulator of P53. Interestingly, and unlike other P53 regulators such as MDM?2
which causes an ubiquitin-mediated P53 degradation, the IncRNA RoR suppresses
the translation of P53 protein by direct interaction with hnRNPI (Zhang et al. 2013).

Other IncRNAs acting as modulators of the DNA damage response
(DDR) include the CDKN2B antisense transcript also known as ANRIL (Wan et al.
2013b). Globally, ANRIL contributes to the maintenance of cellular responses
triggered by DNA damage, via its regulation of cell-cycle checkpoints, apoptosis,
and DNA repair (Wan et al. 2013b). ANRIL is transcriptionally activated by E2F1,
and functions as homeostatic regulator by inhibiting P53 protein and thus bringing
down the DNA damage response. In the particular case of cancer cells, the aberrant
expression of this IncRNA would imbalance the DDR and eventually cause the
blockage of this defense mechanism (Wan et al. 2013b).
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The role of chromatin structure in DDR has been extensively studied, including
chromatin modifications. Recently, the IncRNA-JADE which is induced after DDR
has been characterized as an inducer of histone H4 acetylation. The histone acet-
ylation is ensured via activation of the closing coding gene JADE1, a component of
the HBO1 histone acetylation complex (Wan et al. 2013a).

More recently, a group of long intergenic radiation-responsive ncRNAs (LIRRs)
have been shown to have an important role in the p53-mediated DDR. The
expression of these IncRNAs is induced after a radiation-induced cell injury.
A member of this family, LIRR1, has been characterized as an important regulator
of the DDR. Its overexpression in human cells led to a decreased expression of
several DNA repair proteins, an activation of p53, induction of p21 expression, and
a cell-cycle G1 phase arrest (Jiao et al. 2015).

Other IncRNAs potentially involved in the mechanisms of DNA damage repair
are TARID, which has been characterized as a regulator of DNA demethylation
involved in base excision repair (Arab et al. 2014) and PCAT-1, a IncRNA iden-
tified in prostate cancers which negatively regulates the homologous recombination
mechanism via repression of the tumor suppressor BRCA2 (Prensner et al. 2014).
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4.3 IncRNAs and Inflammation

Human aging is characterized by a low-degree chronic inflammatory state, being a
significant risk factor for morbidity and mortality in elderly individuals. The eti-
ology of human chronic inflammation during aging remains unknown; however, the
identification of pathways and modulators that control this phenotype is important
in order to understand whether specific treatments that control inflammation can be
beneficial to elderly people (Franceschi and Campisi 2014). In this context, the role
of noncoding RNAs, inflammation, and aging has been extensively explored for the
case of the miRNAs and reviewed elsewhere (Olivieri et al. 2013a). On the other
hand, the evidences of the regulatory role of IncRNAs on the inflammation process
are relatively more recent and derived from isolated observations.

Probably, one of the first IncRNAs characterized as a modulator of the inflam-
matory signals is Lethe. This mouse IncRNA is selectively induced by proinflam-
matory cytokines via NF-kappaB or glucocorticoid receptor agonists, and functions
as a negative regulator in a feedback signaling to NF-kappaB. Lethe is able to
interact with the RelA subunit of the NF-kappaB, inhibiting the RelA binding to the
DNA targets and their activation (Rapicavoli et al. 2013). Interestingly, Lethe
decreases with the organism aging, which is associated with an increase in the
proinflammatory signals mediated by NF-kappaB pathway in several human tissues
(Magbool et al. 2013; Sriram et al. 2011).

Another IncRNA, PACER (p50-associated COX-2 extragenic RNA), has been
recently characterized as a modulator of the inflammation also within the cancer
context; however, its regulatory functions could be extended far from this disease to
the overall inflammatory phenotype observed in aging (Krawczyk and Emerson
2014). PACER IncRNA is able to interact with p50, a repressive subunit of the
NF-kappaB leading to an activation of competent NF-kappaB p65/p50 dimers. This
mechanism will further enable the recruitment of histone acetyltransferases, a
genome-wide histone acetylation, and RNApol II initiation complex assembly,
constituting a global modulator of the inflammatory process (Krawczyk and
Emerson 2014). In the same context, a IncRNA transcript which partially overlaps
the gene encoding the interleukin-7 receptor alpha-subunit (IL7R) designated as
Inc-IL7R has been characterized as a modulator of the inflammatory response via
epigenetic regulation of the promoters of several inflammatory mediators (Cui et al.
2014). Indirect evidences have also linked the role of MALAT1 (Liu et al. 2014)
and HOTAIR (Liu et al. 2015) IncRNAs to the regulation of the inflammatory
response.

Also in the case of acute inflammatory events, the role of IncRNAs is becoming
to be relevant. Recently, Li and coworkers have characterized a group of around
160 IncRNA founded to be differentially expressed upon innate activation of THP1
macrophages (Li et al. 2014a). Among them, a lincRNA called THRIL (TNFalpha
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and hnRNPL related immunoregulatory lincRNA) was required for expression of
many immune response genes including cytokines and transcriptional and post-
transcriptional regulators of TNFalpha expression (Li et al. 2014a). The authors
were also able to correlate the levels of THRIL IncRNA with the severity of the
symptoms of acute inflammatory diseases as Kawasaki syndrome.

4.4 Regulation of Senescence by IncRNAs

Senescence is an essential process to understand organism aging, since aged tissues
have the tendency to accumulate senescent cells. The senescent phenotype can be
reached by several biological routes involving different external stimuli and sig-
naling cascades (Munoz-Espin and Serrano 2014). Early work by Gorospe’s lab-
oratory showed that human senescent cells are characterized by a specific pattern of
differentially expressed IncRNAs when compared to replicative cells.
(Abdelmohsen et al. 2013). Further work has described different IncRNAs involved
in the modulation of the senescence process.

HOTAIR IncRNA is clearly up-regulated in senescent cells, being associated
with ubiquitin ligases to constitute a platform for protein ubiquitination. In senes-
cent cells, HOTAIR helps to ubiquitinate Ataxin-1 and Snurportin-1, accelerating
their degradation and preventing premature senescence (Yoon et al. 2013). Another
IncRNAs such as UCAL is involved in a more directed control of the senescence
process. In fact, the IncRNA UCAL is able to bind and sequester hnRNPAI,
stabilizing the CDKN2A-p16INK complex and inducing senescence (Kumar et al.
2014). Interestingly, down-regulation of NEATI, a IncRNA located in nuclear
paraspeckles, has been also related to the induction of replicative senescence since
it controls the overall nuclear organization (Yoon et al. 2014).

Also recently, Kumar and coworkers characterized a IncRNA called PANDA
that is able to differentially interact with polycomb repressive complexes (PRC1
and PRC2) and the transcription factor NF-YA to promote or suppress senescence.
In proliferation cells, the scaffold-attachment protein factor SAFA and the PANDA
IncRNA recruit polycomb complexes to repress senescence-promoting genes
(Puvvula et al. 2014).

In this context, study of several types of tumors and their development allowed
the identification of an additional IncRNA denominated as FAL1 (Focally amplified
IncRNA on chromosome 1), which was overexpressed in cancers with poor out-
come. Molecular characterization of FALI transcript determined its ability to
interact with the epigenetic repressor BMI1 to modulate the transcription of some
genes including CDKNI1A. FALI overexpression in tumors maintains the cells in
the proliferative state. In consequence, FAL1 can be considered as a classical
oncogene, mainly because of its ability to repress p21, a CDK inhibitor which is an
inductor of senescence (Hu et al. 2014).
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4.5 Regulatory LncRNAs and the Insulin Pathway

The insulin/IGF-1 metabolic axis is an essential regulatory pathway that is involved
in organism development and aging. In fact, the levels of growing hormone and
IGF-1 declined with aging. Low peripheral levels of IGF-1 are associated with
increased aging-dependent risk of several conditions such as sarcopenia and oste-
oporosis (Barzilai et al. 2012). Moreover, in humans the aging process is accom-
panied by a phenomenon known as “insulin resistance” (IR), characterized by a
lack of response of insulin receptors across the body. The IR syndrome is com-
pensated by a hyperinsulinemia which can be considered as a risk factor for
age-related diseases (Erol 2007). Epigenetic factors, including the regulatory effects
of the noncoding transcriptome, could be potential modulators of this
age-dependent decline of the insulin signaling pathway (Koerner et al. 2012).

One of the first IncRNAs characterized as a direct global regulator of the insulin
signaling pathway is CRNDE. This IncRNAs has been firstly characterized as an
overexpressed noncoding transcript in human colorectal cancer, being able to
promote metabolic changes to support the aerobic glycolytic metabolism in cancer
cells. Selective knockdown of CRNDE IncRNA by RNAIi experiments affected the
expression of many genes, which showed correlation with insulin/IGF-1 signaling
pathway components and responses, including lipid and sugar metabolism (Ellis
et al. 2014).

Other recently characterized IncRNAs included E330013P06, a mouse IncRNA
up-regulated in macrophages obtained from diet-induced insulin-resistant type 2
diabetic mice, but not in type 1 diabetic mice. Reddy and coworkers determined that
this IncRNA must constitute a link between insulin and inflammation pathways,
since its knockdown inhibited the expression of inflammatory genes induced by
diabetic stimuli (Reddy et al. 2014).

4.6 Regulatory IncRNAs in the WNT, mTOR, and Sirtuin
Pathways

Aging-related metabolic pathways are closely related to those observed as
dis-regulated in tumors, empowering the propensity of elderly people to suffer
cancer. For instance, WNT and downstream effectors regulate processes that are
relevant for cancer progression such as cell senescence and death which are also
significant for complex organism aging (Anastas and Moon 2013). Some IncRNAs
have been characterized recently as possibly involved in the regulation of WNT
signaling pathway. The most relevant is probably IncRNA-p21, a long noncoding
RNA which represses the WNT/B-catenin signaling axis (Wang et al. 2014a).
Inversely, CCAT2 a IncRNA related to metastases in colon cancer has shown to be
an enhancer of WNT signaling activity. Its mechanism of action involves a direct
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interaction with the TCF7L2 transcription factor, being itself also a downstream
target of WNT (Ling et al. 2013).

Additional aging-related pathways such as mTOR signaling are also susceptible
to the modulation exerted by IncRNA. In this context, the work by Li and
coworkers proposed a new role for the UCAl IncRNA (Li et al. 2014b).
Experimental evidences linked the molecular regulatory mechanism of UCA1
IncRNA to the glucose and energy metabolism. This IncRNA is able to induce the
expression of hexokinase 2 (HK2) in tumor cells by a mechanism that involves the
activation of mTOR pathway (Li et al. 2014b). Regulation of mTOR signaling in
the context of aging is related in part with autophagy. Also very recently, a IncRNA
designated as FLJ1181 and derived from the 3’-UTR of the TGFB2 gene was
characterized as a complementary endogenous ncRNA (ceRNA) involved in the
regulation of autophagy via mTOR (Ge et al. 2014). Complementary endogenous
RNAs or ceRNAs are IncRNAs which sense and capture miRNAs, acting as
sponges that remove miRNAs from their action places. FLJ1181 binds miR-4459
which is a regulator of the autophagy-related 13 protein (ATG13). In consequence,
FLJ1181 is a mTOR activator which acts as a link with the autophagy process (Ge
et al. 2014).

Sirtuins are a wide group of enzymes with deacylase or mono-ADP
ribosyl-transferase activity, classically related to cell differentiation processes and
also with aging and extended life span in complex organisms (Liu and Sun 2011;
Mantel and Broxmeyer 2008). Some recent evidences have pointed out the possible
role of ncRNAs in the regulation of sirtuin activity. Wang and coworkers identified
a natural antisense transcript (NAT) derived from divergent antisense transcription
of Sirtl gene (Wang et al. 2014b). This NAT has been characterized in myogenic
differentiation of mouse model cells and showed regulatory activity of the Sirtl
gene. Due to their ubiquity, diversity of functions, and inter-species conservation,
NATSs are good functional candidates to be studied in within the context of the
aging process (Werner 2013).

5 Conclusions and Further Perspectives

Eukaryotic genomes are pervasively transcribed into hundreds of RNA transcripts,
many of them without evident capacity for coding proteins. The degree of organism
complexity strongly correlates with the relative proportion of noncoding DNA in
their genomes. Noncoding RNA transcripts have been pointed out as essential
modulators of many biologically relevant processes. The ability of noncoding
RNAs to regulate biological processes is mainly related to the intrinsic nature of the
RNA molecules, able to carry sequence information as DNA but also to fold into
complex structures and to have catalytic activity as proteins.

The specific role of some families of ncRNAs such as miRNAs and IcnRNAs is
starting to be unveiled. As described along this review, some of the evidences
pointing specific ncRNAs to their regulatory functions within the aging context are
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still circumstantial and in the majority of the cases extracted in an indirect fashion
using aging-related diseases or cancer. Taking into account the complexity of the
pathways and regulatory events involved in human aging, a single “master regu-
lator” is not expected. Moreover, the accumulation of data obtained with the study
of specific metabolic pathways involved in aging clearly suggests the presence of an
important regulatory layer modulating aging-related processes which is ensured by
the action of specific ncRNAs. Indeed, the aberrant ncRNA expression could be a
new factor contributing to aging and aging-associated conditions in humans. The
presence of aberrantly expressed ncRNAs in aging-related diseases opens room for
RNA-based therapeutics using oligonucleotide-based drugs.

Our knowledge of the roles and rules of the noncoding transcriptome within the
human aging context is still in its infancy, with only a few examples of miRNAs
and IncRNAs characterized as regulators of aging-related pathways. One of the
main weaknesses to develop functional aging studies is the lack of strong models of
the process, which is more relevant in the case of the ncRNAs since they are not
conserved across species. Future trends need to be focused in the development of
new aging models, but also on the dissection of the molecular mechanism under-
lying the action of the already characterized ncRNAs and in the discovery of new
relevant ones. The use of new techniques to characterize the function and structure
of the genome at its output will be essential to understand the particular role of each
ncRNA in the complex aging landscape. In this context, the combination of
chromosome conformation capture techniques with the determination of structural
features of the transcribed RNAs will open a new field of research to understand the
wide range of functional genomic changes associated with the aging process and the
role of ncRNAs in the regulation of these events.
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