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Abstract The proper regulation of the development and function of peripheral
helper and cytotoxic T cell lineages is essential for T cell-mediated adaptive
immunity. Progress made during the last 10–15 years led to the identification of
several transcription factors and transcription factor networks that control the
development and function of T cell subsets. Among the transcription factors
identified are also several members of the so-called BTB/POZ domain containing
zinc finger (ZF) transcription factor family (BTB-ZF), and important roles of
BTB-ZF factors have been described. In this review, we will provide an up-to-date
overview about the role of BTB-ZF factors during T cell development and in
peripheral T cells.
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1 Introduction

1.1 A Brief Summary of abT Cell Development

T-lineage lymphocytes, which are defined as a cell population expressing either
the abTCR or the cdTCR chains, develop in the thymus. After immigration into
the thymus, early T cell progenitors that still retain the developmental potency to
develop into other hematopoietic lineages undergo several regulatory processes to
be fully committed to the T lymphocyte lineage. These early immature T cells
neither express CD4 nor CD8 and therefore are called double-negative (DN)
thymocytes. The early development of thymocytes is accompanied with the ini-
tiation of the recombination of either the Tcrb or Tcrd gene loci that encode for the
TCRb or TCRd chains, respectively. The successful generation of a functional
TCRb chain results in the formation of the pre-TCR complex, which is a hete-
rodimeric complex on the surface of DN thymocytes formed by the newly gen-
erated TCRb chain with the invariant pre-Ta protein. The expression of a
functional pre-TCR, a checkpoint known as b-selection, results in the inhibition of
a further rearrangement of the Tcrb locus as well as in a rapid proliferation and
leads to the induction of Cd4, and Cd8a and Cd8b1 (Cd8) gene expression. Hence,
DN thymocytes progress to the CD4 and CD8 expressing double-positive (DP)
stage of T cell development. The transition to the DP stage is accompanied with
the functional rearrangement of the Tcra locus and DP thymocytes express a
mature abTCR formed by the TCRa and TCRb chains. CD4+CD8+ DP phenotype
cells are subjected to another selection process, known as a positive/negative
selection, during which reactivity of abTCR to self-peptide/MHC is evaluated and
CD4 and CD8 proteins serve as coreceptors for peptide/MHC recognition during
this process. As a consequence of positive and negative selection, only limited
numbers of DP thymocytes are allowed to further differentiate and to face the cell
fate decision to become either helper or cytotoxic T cells. It has been known that
both TCR specificity to MHC types and CD4/CD8 coreceptor expression perfectly
correlates with outcome of helper/cytotoxic lineage choice. Thymocytes selected
via MHC class I molecules differentiate into cytotoxic T cells and shut-off Cd4
gene expression, thereby acquiring a CD4-CD8+ single-positive (CD8SP) surface
phenotype. On the contrary, those DP cells selected by MHC class II develop
toward the helper T lineage and become CD4+CD8- single-positive (CD4SP)
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thymocytes by loosing Cd8 gene expression. Thus, the CD4/CD8 coreceptors
expression profile is a good marker to define distinct developmental stages of
thymocytes (Carpenter and Bosselut 2010; Singer et al. 2008). Progress made
during the last 10–15 years led to the identification of several transcription factors
and the characterization of a transcription factor network that is essential for Cd4
and Cd8 gene regulation and for helper/cytotoxic lineage choice during T cell
development (Taniuchi and Ellmeier 2011; Ellmeier et al. 2013). Among the
transcription factors identified are ThPOK and MAZR, two members of the so-
called BTB/POZ domain containing zinc finger (ZF) transcription factor family
(BTB-ZF) (Stogios et al. 2005). Moreover, members of the BTB-ZF family play
also important roles at other stages of T cell development and BTB-ZF factors
have been identified as crucial regulators of peripheral T cell function (Bilic and
Ellmeier 2007; Siggs and Beutler 2012; Beaulieu and Sant’Angelo 2011). In this
review, we will provide an up-to-date overview about the role of BTB-ZF factors
during T cell development and in peripheral T cells.

1.2 The BTB/POZ Domain Containing Family of Zinc
Finger Transcription Factors

The BTB (broad-complex, tramtrack, and bric-a-brac) domain, also known as POZ
(Pox virus and ZF) domain, is an eukaryotic protein–protein interaction motif. The
BTB domain, which is approximately 90–120 amino acids long, can mediate
homo-oligomerization, hetero-oligomerization, and facilitates also interactions
with other proteins that lack BTB domains (Bardwell and Treisman 1994; Stogios
et al. 2005; Collins et al. 2001). It has been reported that there are approximately
200 genes in the human genome that contain a BTB domain (Stogios et al. 2005).
These BTB domain containing factors can be divided into several subgroups
dependent on the presence of additional domains, such as C2H2 ZF motifs (BTB-
ZF), factors containing a so-called Kelch motif (Stogios and Prive 2004) and
proteins with a potassium channel tetramerization T1 domain (KCTD proteins; Liu
et al. 2013) among others (Stogios et al. 2005). Although there is little amino acid
sequence homology in the BTB domain between members of different subgroups,
a structural analysis reveals conservation in the tertiary protein structure (Stogios
et al. 2005). The various BTB proteins have a broad range of biological functions
and regulate a variety of different cellular and molecular processes. These include
the transcriptional control of development, differentiation, cancer (Kelly and
Daniel 2006; Bilic and Ellmeier 2007; Beaulieu and Sant’Angelo 2011; Lee and
Maeda 2012; Siggs and Beutler 2012; Lunardi et al. 2013), the regulation of actin
and cytoskeleton dynamics (Perez-Torrado et al. 2006; Albagli et al. 1995), protein
targeting for ubiquitination (Pintard et al. 2004; Genschik et al. 2013) and others
(Stogios et al. 2005).
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BTB-ZF factors form one large subgroup of BTB domain containing proteins.
There are 49 BTB-ZF genes in mammalian genomes (Gray et al. 2013) and all
members have their BTB domain, like many other BTB factors, located at the N-
terminus, while the ZF DNA binding domain is located at the C-terminal end
(Stogios et al. 2005). Several studies have shown that the BTB domains of some
BTB-ZF proteins mediate homo- as well as hetero-oligomerization of BTB-ZF
proteins (Hoatlin et al. 1999; Takenaga et al. 2003; Kobayashi et al. 2000). In
addition, BTB-ZF factors interact with via their BTB domain nuclear corepressors
such as NCoR1, SMRT, and BCoR (Huynh and Bardwell 1998; Ahmad et al.
2003; Melnick et al. 2000, 2002; Polo et al. 2004; Huynh et al. 2000; Bilic et al.
2006), which are part of large, multi-subunit complexes that can contain various
chromatin-modifying enzymes like members of the BAF complex, methyl-DNA
binding proteins, and histone deacetylases (HDACs) (Jepsen and Rosenfeld 2002;
Mottis et al. 2013). Thus, it is likely that BTB-ZF factors might serve as site-
specific recruitment factors for chromatin-modifying complexes to their target
genes. Moreover, BTB-ZF factors such as PLZF and Bcl6 interact with the E3
ubiquitin ligase Cullin 3 (Mathew et al. 2012), which influences the ubiquitination
status of several components of chromatin-remodeling complexes (Lydeard et al.
2013). BTB-ZF proteins have been linked with transcriptional repression, although
they can also activate target genes. It is likely that the protein composition as well
as posttranslational modifications of such multi-subunit complexes recruited via
BTB-ZF proteins will determine whether a BTB-ZF factor will act as a repressor
or activator of its target gene.

2 BTB-ZF Proteins and the Regulation of T Cell
Development and Function

So far, nine BTB-ZF proteins have been implicated in the regulation of various
aspects of T cell development and function (Fig. 1 and Table 1). All these factors
show a similar domain-like structure with an N-terminal BTB domain and the C-
terminal Zn finger motifs; however, the number of ZFs and the spacing between
consecutive ZFs within the C-terminal ZF domain differs greatly (Fig. 2).

2.1 Zbtb1: A Determinant of Lymphocyte Development

Zbtb1 (ZF and BTB domain containing 1), encoded by the Zbtb1 gene, has been
identified by Butcher and colleagues in an ENU screen as an important regulator of
lymphocyte development, in particular the T cell lineage (Siggs et al. 2012). Mice
homozygous for a missense mutation (C47R) in Zbtb1 (designated as scanT mutant
strain) were developmentally normal and fertile; however, mutant mice were devoid
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of T cells, while NK cell numbers and to a lesser extent also B cell numbers were
reduced in comparison to wild-type mice. The generation of BM chimeras reveled
that the phenotype was intrinsic to the hematopoietic system, although hemato-
poietic cell development was not affected before lymphoid specification. In a
competitive environment in mixed BM chimeras, all lymphoid lineages were
absent, while the myeloid compartment was not affected (Siggs et al. 2012). Puck
and colleagues independently identified Zbtb1 as an important regulator of the
generation of T cells in a homozygous transgenic strain that lacked T cells due to an
insertion of the transgene in the Zbtb1 locus (Punwani et al. 2012). The generation of
Zbtb1-null mice confirmed that Zbtb1 is essential for the generation of T cells due to
hematopoietic cell-intrinsic defects, while NK cells were less affected in compari-
son to T cells. B cell numbers were almost normal in Zbtb1-/- mice. The analysis of
fetal thymi showed that already decreased numbers of early DN1 thymocytes and a
failure to progress beyond this stage. Zbtb1 is also expressed in the spleen and in
lymph nodes. In developing thymocytes, Zbtb1 is upregulated during the DN to DP
transition. Two splicing isoforms of Zbtb1 have been identified, one encoding for a
full-length Zbtb1 protein with eight ZF motifs, while a shorter Zbtb1 isoform
expressed at lower levels encodes for a protein with only five ZF motifs (Punwani
et al. 2012). Although not demonstrated in T cells, Zbtb1 can function as a tran-
scriptional repressor (Liu et al. 2011; Matic et al. 2010) and the repressor activity of

Fig. 1 BTB-ZF factors regulating T cell development and the differentiation/function of
peripheral T cell subsets. The drawing shows an overview about the various developmental stages
of thymocyte development and different subsets of peripheral CD4+ and CD8+ T cells. The name
of the BTB-ZF factors implicated in the regulation of a particular thymocyte and T cell subset are
indicated. See text for more details. DN double-negative, DP double-positive, NKT natural killer
T cells, Th1 T-helper 1, Th2 T-helper 2, Th17 IL-17-producing Th cells, Treg regulatory T cells,
Tfh follicular helper T cells, CTL cytotoxic T lymphocytes. The dotted lines with arrowheads
indicate less well-defined differentiation pathways leading to the generation of memory CD4
(CD4mem) and CD8 (CD8mem) T cells
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Table 1 This table shows the murine and human gene names encoding for BTB-ZF factors
implicated in T cell development and the regulation of peripheral T cell function. The function of
BTB-ZF factors and the reference reporting the activity is shown at the right

Murine
gene

Human
gene

Synonym
(alternative names)

Functions during T cell development
and in peripheral T cell

Bcl6 BCL6 (BCL5, BCL6A, LAZ3,
ZBTB27, ZNF51)

Key factor for Tfh differentiation and Tfh
survival (Johnston et al. 2009; Nurieva et al.
2009; Yu et al. 2009; Hollister et al. 2013)

Bcl6-/- Tregs failed to suppress Th2-type
immune responses in vivo leading to strong
lung inflammation in an allergic airway
inflammation model (Dent et al. 1997; Ye
et al. 1997; Sawant et al. 2012)

Bcl6 is an important regulator of both CD4+ and
CD8+ memory T cell generation and
homeostasis (Ichii et al. 2002, 2004, 2007)

Bcl6b BCL6b BAZF (ZBTB28, ZNF62) Regulates activation of naïve CD4+ T cells
(Takamori et al. 2004)

Modulates secondary response of CD8+ memory
T cells (Manders et al. 2005)

BAZF/Bcl6b-null CD8+ T cells influence the
number of cycling hematopoietic progenitor
cells in the spleen (Broxmeyer et al. 2007)

Patz1 PATZ1 MAZR (RIAZ, ZBTB19,
ZNF278, ZSG)

Represses CD8 expression in DN thymocytes
(Bilic et al. 2006)

Part of the transcription factor network
controlling CD4/CD8 cell fate choice
(Sakaguchi et al. 2010)

Zbtb1 ZBTB1 Regulates the generation of the lymphoid lineage,
in particular T cells and NK cells (Siggs et al.
2012; Punwani et al. 2012)

Zbtb7a ZBTB7A LRF (FBI1, FBI-1,
pokemon, ZBTB7,
ZNF857A)

Indirectly affects B versus T cell choice via
upregulation of Notch ligand Delta-4 on
erythroblasts (Lee et al. 2013a)

Controls Th cell-specific gene expression
(Carpenter et al. 2012)

Zbtb7b ZBTB7B ThPOK (cKrox) Key commitment factor for CD4 lineage
specification (He et al. 2005; Sun et al. 2005)

Represses CD8 lineage genes in CD4+ T cells
(Wang et al. 2008a; Egawa 2009; Rui et al.
2012)

Regulates expansion of CD8+ memory T cells
(Setoguchi et al. 2009)

Important for cdT cell maturation (Park et al.
2010)

Regulates functional differentiation of invariant
NKT cell subsets (Engel et al. 2010, 2012;
Enders et al. 2012)

(continued)
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Zbtb1 is regulated by SUMOylation (Matic et al. 2010). Together, these data
indicate an essential role for Zbtb1 in the generation of the T cell lineage and also for
the generation of NK and B cells.

Of note, Zbtb1-/- mice show increased numbers of short-term HSC, multi-
potent progenitors, and common lymphoid progenitor cells (Punwani et al. 2012),
while scanT mice do not (Siggs et al. 2012). This might indicate that the mutant
Zbtb1 generated from the C47R Zbtb1 allele might still have some residual
function. Further studies are required to reveal the molecular mechanisms of how
Zbtb1 regulate lymphocyte development and the differentiation of the hemato-
poietic system.

2.2 Miz-1: A Regulator of Early T Cell Differentiation

Miz-1 (Myc-interacting ZF protein 1), encoded by the Zbtb17 gene, is a transcription
factor that has been initially identified as a c-myc interacting factor (Peukert et al.
1997). Like many other BTB-ZF factors, Miz-1 can both positively and negatively
regulate its target genes, dependent on interaction with other factors (Moroy et al.
2011). Germline deletion of Miz-1 results in embryonic lethality due to defects
during gastrulation (Adhikary et al. 2003). Therefore, Möröy and colleagues gen-
erated a conditional Miz-1 allele that lacks the BTB domain upon Cre/loxP-mediated
recombination (Kosan et al. 2010). Initially, studies using Vav-Cre-mediated dele-
tion of Miz-1 focused on B cells and revealed a crucial role for Miz-1 in IL-7

Table 1 (continued)

Murine
gene

Human
gene

Synonym
(alternative names)

Functions during T cell development
and in peripheral T cell

Zbtb16 ZBTB16 PLZF (green’s luxoid,
ZNF145)

Essential for the development and function of
invariant NKT (Kovalovsky et al. 2008;
Savage et al. 2008)

Important for the regulation of an effector
program and effector function in innate-like T
cells (Savage et al. 2008; Raberger et al. 2008;
Kovalovsky et al. 2010)

Important for the development of innate-like
CD8+ T cells (Weinreich et al. 2010;
Verykokakis et al. 2010)

Zbtb17 ZBTB17 Miz-1 (pHZ-67, ZNF151,
ZNF60)

Essential for early T cell lineage development at
ETP/DN1 stage (Saba et al. 2011b)

Ensures proper pre-TCR expression and the
regulation of P53 target genes in DN3
thymocytes (Saba et al. 2011a)

Zbtb32 ZBTB32 Rog, PLZP (FAXF,
FAZF, TZFP,
ZNF538)

Important regulator of Th2-type immune
responses in vitro (Miaw et al. 2000, 2004)
and in vivo (Hirahara et al. 2008; Hirasaki
et al. 2011)
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receptor signaling during early B cell development (Kosan et al. 2010). Subsequent
studies showed that Miz-1 is also essential for the T cell lineage. Loss of Miz-1
(using the Vav-Cre-deleter strain) led to a severe reduction ([100 fold) of thymocyte
numbers accompanied also by a severe reduction of DN subsets, in particular ETP/
DN1 and DN2 stages (Saba et al. 2011b). By performing a comprehensive in vitro
analysis using the OP9-DL1 system, the drop in ETP/DN1 cells could be linked to
extensive cell death in the absence of Miz-1. A further analysis showed that Miz-1
regulates the expression of SOCS1, most likely by a direct regulation since Miz-1
binds to the Socs1 promoter region and loss of Miz-1 leads to an upregulation of
Socs1 expression. As a consequence, STAT5 activation and Bcl-2 expression in
response to IL-7 signaling is impaired. The functional importance of Bcl-2 upreg-
ulation was confirmed genetically, since transgenic overexpression of Bcl-2 rescues
the survival defect of Miz-1-null ETP/DN1 cells, indicating a crucial role for Miz-1
for the survival of ETP/DN1 cells (Saba et al. 2011b).

Although the transgenic expression of Bcl-2 restored in part thymocyte numbers
in the absence of Miz-1, there was still a reduction of DP thymocytes due to a
developmental block at the DN3 stage, indicating another role for Miz-1 during
early T cell development (Saba et al. 2011a). Despite normal expression of many
genes required for the generation of a pre-TCR including Rag1, Rag2, Cd3e, pTa,
and intact VDJ recombination, only a few Miz-1-null cells expressed a surface pre-
TCR. Miz-1-null DN3 cells do not proliferate and display increased cell death and
this correlated with the enhanced expression of p53 target genes such as Cdkn1a,
Puma, and Noxa. However, transgenic TCR expression together with transgenic
Bcl-2 rescued partially the developmental block at the DN3 stage, suggesting that
the role of Miz-1 in DN3 cells is in part to ensure proper pre-TCR expression and

Fig. 2 Domain structure of BTB-ZF proteins. The drawing show the location of the BTB domain
(in red) and the C2H2 zinc finger motifs (in blue) in BTB-ZF factors implicated in the regulation
of T cells. The name of the protein and the gene name (in parenthesis) are indicated at the left.
The numbers at the right indicate the length in amino acids. For MAZR/Patz1, an alternative
splice variant encoding for a 537 amino acids long BTB-ZF protein that contains six zinc finger
motifs has been described (Kobayashi et al. 2000)
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the regulation of P53 target genes (Saba et al. 2011a). Of note, thymocyte devel-
opment and the appearance of mature CD4SP and CD8SP cells was normal when
Miz-1 was deleted at DN2/3 stage by Lck-Cre (Saba et al. 2011b), indicating that
Miz-1 mainly controls early T cell development but has rather a minor role at later
stages of thymocyte maturation beyond the DN stage. Alternatively, other factors
can compensate for loss of Miz-1 thymocyte differentiation after b-selection.

2.3 ThPOK/Zbtb7b: A Master Commitment Factor for CD4
Lineage Differentiation

ThPOK (T-helper-inducing POZ/Krueppel-like factor, initially known as cKrox),
encoded by the Zbtb7b gene, was first identified as a binding protein to the pro-
moter regions of collagen genes (Widom et al. 1997), indicating that the expres-
sion in this protein is not restricted to hematopoietic cells. Indeed human Zbtb7b
gene expression was detected in foreskin and fibroblast (Widom et al. 2001).
During T cell differentiation, Zbtb7b gene exhibits a quite unique expression
pattern, since it is induced in MHC class II-signaled DP thymocytes and expressed
in CD4+ helper T cells, while developing CD8 lineage T cells remain ThPOK
negative (He et al. 2005; Sun et al. 2005).

Two groups independently identified that ThPOK is a key regulator of CD4
lineage development. Kappes and colleagues unraveled the role of ThPOK during
T cell development by using a combination of classical positional cloning
approaches to identify the responsible gene locus causing the helper-deficient
(HD) phenotype (Dave et al. 1998) and transgenesis to rescue the gene defect
identified in HD mice (He et al. 2005). A spontaneous missense mutation in the
Thpok gene, which alters an arginine residue in the second zinc finger domain to a
glycine, resulted in a severe reduction of CD4+ T cell in the periphery through
redirected differentiation of MHC class II-restricted thymocytes toward
CD4-CD8+ T cells (He et al. 2005). Bosselut and colleagues identified ThPOK in
a screen for genes induced in DP cells during CD4 lineage differentiation (Sun
et al. 2005). Both groups showed that enforced expression of ThPOK from
CD4+CD8+ DP preselection thymocytes and onward prevents generation of CD8+

cells through directing MHC class I-restricted cells to become CD4+CD8- T cells
(He et al. 2005; Sun et al. 2005). Subsequent loss of function studies of ThPOK
during thymocyte differentiation by gene targeting confirmed the important role
for ThPOK in the regulation of CD4/CD8 cell fate choice (Egawa and Littman
2008; Muroi et al. 2008; Wang et al. 2008b). Together, these results indicate that
ThPOK expression is not only essential but also sufficient to endow CD4+CD8-

phenotype during thymocyte maturation beyond a MHC restriction of cells
(Kappes et al. 2006).
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A key mechanism by which ThPOK endows CD4 expression to the helper T
cells is the antagonistic function of ThPOK against the Cd4 silencer (Wildt et al.
2007; Muroi et al. 2008). Moreover, ThPOK represses CD8 lineage genes such as
Runx3 and cytotoxic effector genes such as Granzyme B and Perforin (Egawa and
Littman 2008; Wang et al. 2008a) and might also directly repress the Cd8 gene
complex via binding to Cd8 enhancers (Rui et al. 2012). However, it remains
uncharacterized how ThPOK contributes to confer total helper function to MHC
class II-restricted T cells. A recent study indicated that MHC class II-restricted
cells retained some helper-related functions in the absence of ThPOK (Carpenter
et al. 2012). As we discussed later in detail, LRF/Zbtb7a, which is the most-related
BTB-ZF family member to ThPOK, is shown to compensate for loss of ThPOK
function in some helper T cell subsets (Carpenter et al. 2012).

The findings that revealed an essential role of ThPOK for CD4 lineage
development stimulated studies addressing the mechanism that restricts ThPOK
expression only to MHC class II-restricted cells. These studies led to the identi-
fication of a transcriptional silencer element, hereafter referred to as a Thpok
silencer, in the Thpok gene locus (He et al. 2008; Setoguchi et al. 2008). Kappes
and colleagues utilized transgenic reporter expression assays and identified two
cis-regulatory regions, designated as distal and proximal regulatory elements
(DRE and PRE, respectively). Interestingly, DRE was shown to function both as a
transcriptional enhancer and as a silencer, while only an enhancer function was
associated with PRE (He et al. 2008). The Thpok silencer was independently
identified by Taniuchi and colleagues (Setoguchi et al. 2008). The silencer is
essential to repress Thpok expression during differentiation of MHC class I-
restricted cells (He et al. 2008; Setoguchi et al. 2008), thereby preventing an
aberrant differentiation pathway toward CD4+ cells in those cells. Along with a
Thpok derepression by lack of Runx complex function (Setoguchi et al. 2008),
‘‘knock-in’’ mutagenesis approaches within the Thpok silencer showed that Thpok
silencer activity requires binding of Runx complexes (Tanaka et al. 2013).
However, Runx binding to the silencer was also detected in cells expressing Thpok
gene (Setoguchi et al. 2008), indicating that Runx binding alone is not sufficient to
activate the Thpok silencer. Thus, it is possible that an uncharacterized mechanism
in addition to Runx binding is involved in a control of the Thpok silencer activity.
As we will discuss below, MAZR, another member of the BTB-ZF gene family,
was shown to be necessary for full Thpok repression in MHC class I-signaled cells
through regulation of the Thpok silencer function (Sakaguchi et al. 2010). A
further characterization of protein complexes bound to the Thpok silencer will be
important to unravel the mechanism(s) that facilitates the switch in Thpok silencer
activity between CD4 and CD8 lineage cells.

In addition to the inactivation of the Thpok silencer, several positive cis-reg-
ulatory elements (i.e., enhancers) are also necessary for appropriate ThPOK
expression in CD4 lineage T cells. It was recently shown that distinct sequences
within DRE are responsible for enhancer and silencer activity of DRE (He et al.
2008; Muroi et al. 2013). While the enhancer activity in DRE is responsible for the
initiation of Thpok gene, the enhancer within PRE functions later to upregulate and
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maintain ThPOK expression (Muroi et al. 2008). It is likely that these two
enhancers, which display a distinct stage-specificity, cooperatively regulate Thpok
expression.

Interestingly, ThPOK also regulates CD8+ T cells function. In vitro stimulation
of CD8+ T cells leads to the derepression of ThPOK in a fraction of CD8+ T cells
(Setoguchi et al. 2009). Although the loss of ThPOK does not affect CD8 T cell
differentiation into effector T cells and the long-term persistence of Ag-specific
memory T cells, the clonal expansion is significantly less in both primary and
secondary CD8+ T cell responses in the absence of ThPOK (Setoguchi et al. 2009),
indicating an unexpected role for ThPOK in CD8 lineage T cells in vivo.

In addition to its function in conventional abT cells, ThPOK also plays a role in
the regulation of innate-like T cells such as cdT cells and invariant NKT (iNKT)
cells. ThPOK expression is upregulated during the developmental transition from
CD24+ immature to CD24- mature cd thymocytes and the maturation of cdT cells
in the thymus, in particular NK1.1+ cd thymocytes subsets, is impaired in ThPOK-
deficient mice (Park et al. 2010). iNKT cells are another innate-type T cells
expressing invariant Va14 chain (Constantinides and Bendelac 2013; Rossjohn
et al. 2012) and are recently characterized to be composed of several functionally
different subsets (Lee et al. 2013b). The emergence of CD8+ iNKT cells in
ThPOK-deficient mice indicates that ThPOK also represses Cd8 gene expression
in this innate cell subset as observed in conventional abT cell differentiation
pathways (Engel et al. 2010). ThPOK also contributes to confer IL4 producing
property to iNKT cells during maturation of iNKT cells (Engel et al. 2010). In
addition, ThPOK-deficient mice contain a higher proportion of IL-17-producing
cells (NKT17) (Enders et al. 2012; Engel et al. 2012), indicating that ThPOK
negatively regulate differentiation of this NKT17 subset. Thus, ThPOK is involved
in the specification of distinct NKT cell subsets.

It has been proposed that separation of CD4 helper and CD8 cytotoxic lineage
in the thymus is stably inherited after activation of cells. Indeed, the findings of an
involvement of epigenetic mechanism in the repression of the Cd4 and Thpok
genes provided supportive mechanistic insight into how Cd4 and Thpok genes are
kept silenced in CD8+ cytotoxic T cells (Zou et al. 2001; Tanaka et al. 2013).
However, little is known about how Cd8 gene expression is repressed and con-
versely how Cd4 and Thpok expression is stably maintained in helper T cells.
Current studies have unraveled an unappreciated developmental plasticity retained
in CD4+ T cells, which allow them to reactivate the program to become cytotoxic-
related property. When CD4+ T cells are transferred into lympho-deficient host
mice, a proportion of these cells exposed to gut-specific environmental cues
reexpress CD8a chain and become CD4+CD8aa+ cells that also express other
cytotoxic-related genes (Mucida et al. 2013; Reis et al. 2013). Prior to such a
dressing up with cytotoxic features, ThPOK expression is vanishing, while Runx3
expression is induced. Continuous expression of ThPOK using retroviral expres-
sion vectors prevents this reprogramming, confirming that ThPOK downregulation
is essential for the acquisition of cytotoxic features. Similar to the initial lineage
selection in the thymus, the Thpok silencer is also involved in erasing Thpok
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expression in the gut (Mucida et al. 2013). Thus, an antagonistic cross-regulation
between ThPOK and Runx3 also regulates the maintenance of CD4 lineage
identity in peripheral lymphoid organs.

2.4 MAZR/Patz1: Part of the Transcription Factor Network
that Controls CD4/CD8 Lineage Choice

MAZR (Myc-associated Zn finger related)/Patz1 [POZ (BTB) and AT hook
containing ZF 1], encoded by the Patz1 gene, has been first described as an
interacting partner of Bach2 (Kobayashi et al. 2000), which is a B cell-specific
transcriptional repressor involved in antibody class switching (Muto et al. 2004)
and that has also been shown to function in T cells (Hu and Chen 2013; Roy-
choudhuri et al. 2013; Tsukumo et al. 2013). In humans, PATZ1 has been iden-
tified as a factor interacting with the Ring finger protein RNF4, a mediator of
androgen receptor activity (Fedele et al. 2000). It was described that MAZR/Patz1
activates several promoters (Kobayashi et al. 2000; Morii et al. 2002); however, it
also functions as a transcriptional repressor (Fedele et al. 2000; Bilic et al. 2006;
Sakaguchi et al. 2010; Abramova et al. 2013). This indicates context- and gene
loci-dependent transcriptional activation and repression functions of MAZR/Patz1.
Mice with a germline deletion of MAZR/Patz1 are embryonic lethal on a C57BL/6
background due to defects in the CNS and in the cardiac outflow tract. The MAZR/
Patz1-null mice on a mixed 129 Sv/C57BL/6 background are born at reduced
Mendelian ratio and are smaller in size (Sakaguchi et al. 2010; Valentino et al.
2013). This indicates important functions for MAZR/Patz1 during embryonic
development, differentiation, and proliferation. Moreover, MAZR/Patz1 is linked
with oncogenesis, since MAZR/Patz1-deficient mice develop Bcl6-dependent
lymphomas (Pero et al. 2012). Moreover, MAZR/Patz1 is also involved in the
regulation of embryonic stem cell identify (Ow et al. 2013). During T cell
development it was shown that MAZR/Patz1 interacts in DN thymocytes with
several Cd8 cis-regulatory elements. MAZR/Patz1 is expressed at high levels in
DN thymocytes and downregulated at later stages of developing T cells. MAZR/
Patz1, like other BTB-ZF proteins, interacts with the nuclear coreceptor NCoR1
and enforced expression of MAZR/Patz1 during T cell development impairs the
activation of CD8 expression in a proportion of DP thymocytes, resulting in a
variegated expression of CD8 (Bilic et al. 2006). This indicates that MAZR/Patz1
is part of a transcriptional complex that represses CD8 in DN cells and that
downregulation of MAZR/Patz1 is necessary for the proper activation of the
Cd8ab gene complex during the DN to DP transition.

The generation of MAZR/Patz1-deficient mice combined with Mazr+/+ and
Mazr-/- fetal liver transfer experiments into recipient mice revealed that MAZR/
Patz1 is also part of the transcription factor network that controls CD4/CD8 cell fate
choice of DP thymocytes (Sakaguchi et al. 2010). In the absence of MAZR/Patz1,
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a fraction of MHC class I-signaled DP thymocytes redirects into CD4 lineage T
cells instead of developing into the CD8 lineage. A detailed molecular and genetic
analysis of MAZR/Patz1-deficient mice revealed that MAZR/Patz1 represses
ThPOK, the master commitment factor of CD4 lineage differentiation. As described
above, ThPOK expression leads to the development of CD4 lineage cells, while
repression of ThPOK is essential for CD8 lineage differentiation. In the absence of
MAZR/Patz1, ThPOK is derepressed in a fraction of MHC class I-signaled
CD4+CD8lo thymocytes, leading to the redirection of CD8+ T cells into the CD4
lineage. Interestingly, MAZR/Patz1 interacts with Runx complexes (Sakaguchi
et al. 2010), which are essential for the repression of ThPOK (Setoguchi et al.
2008). This suggests that MAZR/Patz1 and Runx complexes together are required
to repress ThPOK expression during CD8 lineage differentiation. Moreover, a
fraction of peripheral MAZR/Patz1-null CD8+ T cells derepressed ThPOK (Sak-
aguchi et al. 2010), suggesting that MAZR/Patz1 has also a role in regulating
peripheral CD8+ T cell function.

2.5 PLZF: A Key Regulator of NKT Cells and Other Innate-
like T Cells

PLZF (promyelocytic leukemia ZF), encoded by the Zbtb16 gene, was initially
identified as target of chromosomal translocations that lead to the development of
acute promyelocytic leukemia (Chen et al. 1993; Suliman et al. 2012). Subsequent
studies following the generation of PLZF-deficient mice (Costoya et al. 2004)
revealed important functions for PLZF in many biological processes such as
renewal of germ stem cell and spermatogenesis, skeletal patterning, and also in the
hematopoietic system (Costoya et al. 2004; Suliman et al. 2012). Moreover, a
nonsense mutation in the Zbtb16 gene is the molecular cause of the luxoid phe-
notype in mice (Buaas et al. 2004).

Several studies have shown that PLZF is important for the development of
innate-like T cells, a subset of T cells that is characterized by having a CD44hi

expression phenotype and by displaying immediate effector functions such as the
rapid release of cytokines upon activation (Lee et al. 2011). In contrast to ‘‘clas-
sical’’ CD44hi effector/memory T cells, innate-like T cells acquired their effector
phenotype during their development and not in response to antigen stimulation.
Certain innate-like T cells are derived from DP thymocytes and at least some of
these cells can be selected on nonclassical MHC class Ib molecules (Rodgers and
Cook 2005) via interaction with hematopoietic cells rather than with thymic epi-
thelial cells (Urdahl et al. 2002). Innate-like T cell subsets include, among others,
iNKT cells, H2-M3-specific T cells (Colmone and Wang 2006; Mir and Sharma
2013), mucosal-associated invariant T (MAIT) cells (Treiner and Lantz 2006; Le
Bourhis et al. 2013), and certain cdTCR+ T cell subsets. PLZF received a lot of
attention in the field of T cell biology when it was shown that PLZF plays an
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important role for the development and function of iNKT cells (Kovalovsky et al.
2008; Savage et al. 2008). Although loss of PLZF did not change the development
of conventional T cells, loss of PLZF led to severely reduced numbers of iNKT
cells in the thymus, spleen, and liver. The PLZF-null iNKT cells that emerged
showed impaired effector function and were preferentially redistributed to lymph
nodes (Kovalovsky et al. 2008; Savage et al. 2008). In contrast, enforced trans-
genic expression of PLZF in conventional T cells (which do not express PLZF)
induced an effector phenotype (Raberger et al. 2008; Savage et al. 2008; Kova-
lovsky et al. 2010) and led to a migration of T cells into peripheral tissues such as
lung and liver (Savage et al. 2008). This links PLZF expression with the regulation
of an effector program and effector function, a process regulated by PLZF in
association with the E3 ligase cullin 3 (Mathew et al. 2012), although the
molecular details about how PLZF regulates target genes are largely unknown.

PLZF expression has been observed in other innate-like T cell subsets such as
Vc1.1+Vd6.3+ TCR expressing T cells in the mouse (Alonzo et al. 2010; Felices
et al. 2009; Kreslavsky et al. 2009) and MAIT cells (Savage et al. 2008) and
unconventional CD4+ T cells that are selected on MHC class II-dependent thy-
mocyte–thymocyte interactions in the human (Lee et al. 2010). A surprising role
for PLZF and PLZF-expressing T cell subsets for the proper regulation of T cell
development was demonstrated in studies that analyzed several mutant mouse
mice that have increased numbers of CD8+ T cells with innate-like T cell char-
acteristics (Alonzo and Sant’Angelo 2011; Lee et al. 2011). Mice deficient for Itk
(Atherly et al. 2006; Broussard et al. 2006), Klf2 (Weinreich et al. 2009;
Weinreich et al. 2010), CBP (Fukuyama et al. 2009) or Id3 (Verykokakis et al.
2010) develop large numbers of innate-like CD8+ T cells. However, these
developmental alterations are not intrinsic to the developing innate-like CD8+ T
cells but are caused due to IL-4-producing PLFZ+ T cell subsets including NKT
cells and cdTCR+ T cells that are enhanced in the absence of Itk, Klf2, CBP, and
Id3 (Weinreich et al. 2010; Verykokakis et al. 2010). In the absence of PLZF or
IL-4 signaling, the development of the innate-like T cell phenotype is reverted and
Itk-, KLF2-, CBP-null mice (Weinreich et al. 2010), or Id3-/- mice (Verykokakis
et al. 2010) have a normal appearance of naïve CD8+ T cells.

2.6 ROG/PLZP: Regulating T Cell Activation and Th2
Cytokine Production

The transcription factor ROG (repressor of GATA)/PLZP (PLZF-like zinc finger
protein), which is encoded by the Zbtb32 gene, was isolated in a search for factors
that interact with GATA-3 (Miaw et al. 2000), which is a key regulator of early T
cell development, the specification of the CD4 T cell lineage and for Th2 cell
differentiation (Hosoya et al. 2010). ROG/PLZP, also known as TFZP (Lin et al.
1999) and FAZF (Hoatlin et al. 1999) is expressed, if at all, at very low levels in
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the thymus, spleen and in non-stimulated T cells. However, ROG/PLZP is tran-
siently induced within 24 h under Th1 and Th2 polarizing conditions and rein-
duced upon anti-CD3 restimulation (Miaw et al. 2000, 2004). Early studies showed
that enforced expression of ROG/PLZP in established Th2 cell clones inhibits
cytokine expression, further indicating a repressive role via GATA-3 inhibition.
ROG/PLZP inhibited also IFNc expression in Th1 cell clones (Miaw et al. 2000),
thus ROG/PLZP might regulate other transcription factors in addition to GATA-3.
Subsequent studies revealed that ROG/PLZP regulates also T cell proliferation
upon TCR triggering independent of GATA-3 activity (Kang et al. 2005; Miaw
et al. 2004; Piazza et al. 2004). ROG/PLZP has been shown to be a target gene of
NFATc2 (Miaw et al. 2004). NFATc2-deficient CD4+ T cells display a hyper-
proliferative phenotype with increased production of IL-4 (Xanthoudakis et al.
1996; Hodge et al. 1996). NFATc2-null T cells failed to fully upregulate ROG/
PLZP and transgenic expression of ROG/PLZP attenuated the hyperproliferation
observed in NFATc2-deficient CD4+ T cells, while expression of ROG/PLZP in
wild-type CD4+ T cells only modestly interfered with the proliferation upon anti-
CD3/anti-CD28 stimulation (Miaw et al. 2004). Thus, ROG/PLZP might be part of
a NFATc2-mediated negative feedback mechanism that controls the extent of T
cell activation.

The proposed role of ROG/PLZP in T cell proliferation and cytokine produc-
tion has been confirmed by the generation and analysis of Zbtb32-/- mice. ROG/
PLZP-deficient mice are born at normal Mendelian ratio and show no gross
developmental or pathological alterations. ROG/PLZP-null T cells have an
increased proliferative response to anti-CD3 stimulation and produce increased
levels of IL-2 due to enhanced NF-jB activity (Kang et al. 2005). Surprisingly,
ROG/PLZP-deficient T cells differentiated normally into Th1 or Th2 cells in vitro
with only a modest elevation of cytokine expression. However, Nakayama and
colleagues showed that ROG/PLZP-deficient mice have enhanced allergic airway
inflammation accompanied with an increase in Th2 cytokines in the bronchoal-
veolar lavage, while transgenic mice expressing exogenously ROG in the T cell
lineage showed reduced allergic airway inflammation (Hirahara et al. 2008). The
effect was intrinsic to T cells, since adoptive transfer of OVA-primed ROG/PLZP-
null CD4+ T cells or of OVA-primed transgenic ROG/PLZP-expressing CD4+ T
cells into OVA-primed wild-type mice enhanced or attenuated eosinophil numbers
in the inflamed lung, respectively (Hirahara et al. 2008). Moreover, ROG/PLZP
inhibits also type-2 allergic responses in a contact hypersensitivity model (Hirasaki
et al. 2011). Together, these studies demonstrate a crucial in vivo role for ROG/
PLZP in Th2-type-mediated diseases. Whether ROG/PLZP is also important for
Th1 and Th17-type immune responses in vivo is not clear. ROG/PLZP-deficient
mice have a similar incidence and clinical score in EAE, indicating that Th1/Th17-
mediated immune responses are not severely affected by loss of ROG/PLZP (Kang
et al. 2005). Further studies are needed to reveal potential functions of ROG/PLZP
beyond Th2-type immune responses.
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Of note, ROG/PLZP represses GATA-3-mediated transactivation in Th2 cells
by preventing, at least in part, GATA-3 binding to DNA (Miaw et al. 2000).
However, ROG/PLZP might also use different cell-type specific mechanisms to
repress target genes independently of GATA-3. CD8+ T cells that are activated
under Th2-polarizing conditions (Tc2 cells; Kelso and Groves 1997; Seder et al.
1992) produce Th2-type cytokines such as IL-4, IL-5, and IL-13, although IL-4
expression is lower than in Th2 cells (Croft et al. 1994) and cannot be enhanced by
overexpression of GATA-3 (Miaw et al. 2004). ROG/PLZP is expressed at much
higher levels in Tc2 cells compared to Th2 cells. ROG/PLZP binds to a so-called
ROG responsive element within the 30-UTR of the Il13 gene, which is in close
proximity upstream to the Il4 gene locus. This cis-regulatory region is also bound
by HDAC1 and HDAC2, and binding of ROG/PLZP, HDAC1, and HDAC2
correlated with diminished acetylation of the Il4 gene locus in Tc2 cells in com-
parison to Th2 cells (Miaw et al. 2004). This suggests that the recruitment of ROG/
PLZP together with HDACs and potentially other components of corepressor
complexes in Tc2 cells leads to a weakened expression of IL-4 in Tc2 cells.

Taken together, ROG/PLZP is a crucial factor in the regulation of Th2 immune
responses in vivo.

2.7 LRF/Zbtb7a: Controlling ThPOK-Independent Helper
Functions

The transcription factor LRF/Zbtb7a (Leukemia/lymphoma Related Factor; known
previously as Pokemon), encoded by the Zbtb7a gene, regulates many lineage
decisions during hematopoiesis and plays a role in the maturation and differenti-
ation of peripheral B cells. Moreover, LRF/Zbtb7a has important functions during
oncogenic transformation (Lunardi et al. 2013). Zbtb7a-/- mice are embryonic
lethal and die around day 16 due to severe anemia (Maeda et al. 2007). The
analysis of conditional Zbtb7afl/fl mice in which Zbtb7a was inducible deleted by
Mx-Cre implicated LRF/Zbtb7a in the regulation of B versus T cells choice, since
DP thymocytes developed in the BM at the expense of B cells upon deletion of
LRF/Zbtb7a (Maeda et al. 2007). This phenotype is reminiscent to the phenotype
of mice that expresses a constitutively active form of Notch (Pui et al. 1999),
suggesting that LRF/Zbtb7a might antagonize Notch signaling. A later study
demonstrated that aberrant T cell development in the BM in the absence of LRF/
Zbtb7a is due to the upregulation of Notch ligand Delta-4 on erythroblasts, which
leads to a premature differentiation of hematopoietic stem cells toward T cells (Lee
et al. 2013a). This indicates that loss of LRF/Zbtb7a indirectly affects B versus T
cell choice.

In the T cell lineage, LRF/Zbtb7a is expressed at low levels in DP thymocytes
and is upregulated to much higher levels in CD4SP and CD8SP thymocytes and in
peripheral T cells (Carpenter et al. 2012). However, deletion of LRF/Zbtb7a using
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Cd4-Cre did not lead to any alterations during T cell development (Carpenter et al.
2012). A surprising role for LRF/Zbtb7a in the control of Th cell-specific gene
expression was identified by Bosselut and colleagues when T-helper immune
responses were analyzed in ThPOK-deficient mice (Carpenter et al. 2012). As
described above, ThPOK/Zbtbt7b, to which LRF/Zbtb7a is closely related, is a key
commitment factor for the CD4 T cell lineage. In the absence of ThPOK, MHC
class II-restricted thymocytes are redirected into CD8+ T cells (Keefe et al. 1999)
and a fraction of these cells reexpressed CD4 upon activation (Carpenter et al.
2012). Moreover, ThPOK-null mice are able to mount a Th1-type T-helper
response upon Leishmania major infection (Carpenter et al. 2012). This indicates
that ThPOK is not essential for the maintenance of some Th cell functions and that
other factors might be responsible for compensating ThPOK function or control-
ling ThPOK-independent Th functions. The analysis of conditional ThPOK and
LRF/Zbtbta double-deficient mice revealed that ThPOK-independent Th functions
are dependent on LRF/Zbtb7a (Carpenter et al. 2012), suggesting that ThPOK/
Zbtb7b and LRF/Zbtb7a have in part redundant functions in maintaining Th cell-
specific gene expression.

2.8 BAZF/Bcl6b: Regulating Memory CD8+ T Cells

BAZF (Bcl6-associated ZF protein, also known as Bcl6b), encoded by the Bcl6b
gene, is a transcriptional repressor that was identified due to the very high
homology to Bcl6 (Okabe et al. 1998). BAZF/Bcl6b and Bcl6 bind to the same
target sequences that partially overlap with the STAT6 binding sites, suggesting
that BAZF/Bcl6b and Bcl6 may repress some STAT-mediated transcription by
binding to STAT binding sites (Hartatik et al. 2001). Bcl6 and BAZF/Bcl6b are
able to bind to each other and this interaction with Bcl6 appears to be essential for
the repressive function of BAZF/Bcl6b (Takenaga et al. 2003). BAZF/Bcl6b does
not bind directly nuclear corepressor complexes, thereby BAZF/Bcl6b might
recruit corepressor complexes via its association with Bcl6 (Takenaga et al. 2003).
Whether other BTB-ZF proteins are able to interact with BAZF/Bcl6b has not been
reported. BAZF/Bcl6b expression is restricted to heart, lung, and activated
splenocytes (Okabe et al. 1998). Later studies showed that BAZF/Bcl6b is
expressed in CD4SP and CD8SP thymocytes and in peripheral activated CD4+ T
cells (Takamori et al. 2004) and in memory CD8+ T cells (Manders et al. 2005).
BAZF/Bcl6b is implicated in the regulation of angiogenensis in wound healing
(Ohnuki et al. 2012); however, not much is known about the function outside the
hematopoietic system.

A hint about the role of BAZF/Bcl6b in T cells was provided with the analysis
of BAZF/Bcl6b knockout mice, which were independently generated by three
research groups. BAZF/Bcl6b-deficient mice are viable, fertile, and display no
gross abnormalities (Takamori et al. 2004; Manders et al. 2005; Broxmeyer et al.
2007). Tokuhisa and colleagues focused on the analysis of CD4+ T cells. T cell

The Role of BTB-Zinc Finger Transcription Factors 37



development is normal in the absence of BAZF/Bcl6b and there is also a normal
distribution of peripheral naïve and memory CD4+ and CD8+ T cell subsets.
However, BAZF/Bcl6b-deficient CD4+ T cells show reduced proliferation upon
anti-CD3 stimulation and impaired IL-2 production. In contrast, transgenic Bcl6b-
expressing CD4+ T cells showed an increase proliferative response upon anti-CD3
stimulation (Takamori et al. 2004). The proliferation of CD44hi effector/memory
CD4+ T cells is not affected by gain or loss of BAZF/Bcl6b function, suggesting
that BAZF/Bcl6b functions specifically during the activation of naïve T cells
(Takamori et al. 2004). Fearon and colleagues analyzed the role of BAZF/Bcl6b
during the secondary response of memory CD8+ T cells, since CD44hi CD8+ T
cells expressed higher levels of BAZF/Bcl6b compared to CD44lo CD8+ T cells
(Manders et al. 2005). Enforced expression of BAZF/Bcl6b reduced the growth of
CD8+ T cells in response to IL-2 (Manders et al. 2005). Using a vaccinia virus and
an influenza infection model it was shown that BAZF/Bcl6b-deficient mice have
normal primary CD8+ T cell responses. However, CD8+ memory T cells were
unable to induce IL-2 and to generate effector cells after in vitro restimulation and
the magnitude of the memory response in vivo was reduced (Manders et al. 2005).
These data suggest that BAZF/Bcl6b has a nonredundant role in controlling the
secondary response of CD8+ memory T cells. Dent and colleagues generated
another strain of BAZF/Bcl6b-deficient mice (Broxmeyer et al. 2007). The authors
focused on the role of BAZF/Bcl6b in hematopoiesis and found that the numbers
of cycling hematopoietic progenitor cells (HPC) were reduced in the BM of
BAZF/Bcl6b-null mice, while the numbers of cycling HPC in the spleen were
increased upon loss of BAZF/Bcl6b. Depletion experiments revealed that the
enhanced population of HPC in the spleen is due to the presence of BAZF/Bcl6b-
null CD8+ T cells. Thus, it is likely that BAZF/Bcl6b-null CD8+ T cells produce a
cytokine or other soluble factors that interfere with the function of HPC. Further
studies are required to understand this in more detail.

2.9 Bcl6: Regulating B and T Lymphocytes

The proto-oncogene Bcl6 (B cell leukemia/lymphoma 6), encoded by the Bcl6
gene, has been initially identified as a gene that is frequently translocated in B cell
lymphomas (Ye et al. 1993, 1995). Bcl6 has important functions in B cells and is
essential for germinal center (GC) B cell formation (Dent et al. 1997; Ye et al.
1997). Bcl6 is expressed at high levels in GC B cells and it represses target genes
important for the terminal differentiation of B cells into plasma cells, such as
Blimp-1 (Shaffer et al. 2000). Bcl6 represses also p53 in GC B lymphocytes and
modulates DNA damage-induced apoptosis in GC B cells (Phan and Dalla-Favera
2004), suggesting that Bcl6 contributes to lymphomagenesis in part by the sup-
pression of p53 (for reviews on the role of Bcl6 in B cells and in B cell lym-
phomas, see Ci et al. 2008; Basso and Dalla-Favera 2012; Bunting and Melnick
2013).
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The analysis of Bcl6-/- mice indicated that Bcl6 has also important functions
in the T cell lineage. Bcl6 is a crucial regulator of the differentiation of follicular
helper T cells (Tfh), which are an important T cell subset essential for the gen-
eration and function of GC B cells (Vinuesa and Cyster 2011; Crotty 2011). Bcl6
is expressed at high levels in Tfh and Bcl-6-deficient T cells failed to differentiate
into Tfh cells (Johnston et al. 2009; Nurieva et al. 2009; Yu et al. 2009; Liu et al.
2012). Further, Bcl6-null CD4+ T cells failed to induce GC responses (Nurieva
et al. 2009; Johnston et al. 2009) and Bcl6-null mice show enhanced differentiation
of other Th subsets. In contrast, enforced expression of Bcl6 induces key Tfh
molecules such as CXCR5 and PD-1 but inhibits the differentiation of Th1, Th2,
and Th17 cells (Yu et al. 2009), although another study suggest that Bcl6 might
have a positive role for the generation of Th17 cells (Mondal et al. 2010). More
recent data using conditional targeting approaches confirmed the importance of
Bcl6 for the generation of Tfh in vivo and indicated also a role for Bcl6 in the
regulation of Tfh survival (Hollister et al. 2013).

Bcl6 has also been implicated in regulating Treg function. Bcl6-null Treg cells
were able to suppress T cell responses in vitro and in a Th1-type colitis model
in vivo. However, Bcl6-/- Tregs failed to suppress Th2-type immune responses
in vivo leading to strong lung inflammation in an allergic airway inflammation
model (Sawant et al. 2012). It has been shown that Bcl6 repressed Th2-type genes
in Tregs by impairing the transcriptional activity of Gata3. In the absence of Bcl6,
Treg acquires certain Th2 effector functions (Sawant et al. 2012). This might
contribute to the enhanced Th2 responses and Th2-type inflammation observed in
Bcl6-/- mice, which develop at a high frequency myocarditis and pulmonary
vasculitis due to infiltration of eosinophils contributing to the early death of about
50 % of Bcl6-/- mice (Dent et al. 1997; Ye et al. 1997). However, increased
differentiation of Th1, Th2, and Th17 cells as observed in Bcl6-null mice was not
observed upon T cell-specific deletion of Bcl6 (Hollister et al. 2013). This indi-
cates that T cell-extrinsic factors might regulate enhanced Th subset differentiation
upon germline deletion of Bcl6. In addition, a subset of Bcl6-dependent follicular
CXCR5-expressing Foxp3+ regulatory T cells as well as CXCR5+ follicular NKT
cells have been described and implicated in the regulation of the GC reaction
(Chung et al. 2011; Linterman et al. 2011).

Bcl6 also plays a role in the generation and maintenance of CD8+ memory T
cells, in particular central memory T cells (Ichii et al. 2002, 2004). Bcl6-/- mice
display reduced numbers of central memory T cells, while transgenic expression of
Bcl6 leads to increased numbers of central memory T cells and Bcl6 transgenic T
cells display enhanced proliferation upon restimulation. Moreover, Bcl6 is
important for the generation of long-term memory CD4+ T cells, probably via
regulating survival of memory precursor CD4+ T cells (Ichii et al. 2007). Thus,
Bcl6 is an important regulator of both CD4+ and CD8+ memory T cell generation
and homeostasis.
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3 Conclusion

Members of the BTB-ZF family have been implicated in the development of
human diseases such as B cell lymphomas and promyelocytic leukemia for over
20 years and the crucial role of some of these factors in B cells was soon thereafter
established. During the last 10 years, BTB-ZF factors received a lot of immuno-
logical attention also from T cell biologists and these studies revealed important
roles for BTB-ZF factors in the T cell lineage from early stage T cell progenitors
until the formation of memory T cells during an immune response. Several
important questions about this gene family remain to be addressed. To compre-
hensively understand how BTB-ZF factors modulate the immune systems, novel
tools such as reporter mice for BTB-ZF factors are required to identify immune
cell subsets that potentially might be controlled by these factors. Moreover, at a
molecular level, it will be important to characterize protein complexes that toge-
ther with BTB-ZF factors regulate target gene expression. This will reveal whether
some BZB-ZF factors share certain interacting partners and/or whether unique
interacting partners exists and also how posttranslational modifications of BTB-ZF
factors regulate their activity. A better description of these interacting networks
will help to understand why BTB-ZF factors act at certain gene loci as tran-
scriptional repressors, while other genes loci are activated by BZB-ZF factors.
Finally, it can be expected that the identification of genome-wide target genes
using ChIP-seq and RNA-seq approaches and the functional analysis of pathways
regulated by the various members of the BTB-ZF family will provide novel insight
into regulatory circuits that control T cell development and function. This will also
help to better understand the role of BTB-ZF factors in hematopoietic cells beyond
the T cell lineage. Since mutations in ZBTB24 were identified in patients suffering
with immunodeficiency, centromeric instability, and facial anomalies syndrome
type 2 (ICF2) (de Greef et al. 2011; Chouery et al. 2012; Nitta et al. 2013), this
might also provide insight into the molecular cause of human immunodeficiencies.
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