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Abstract The development of CD4* helper and CD8* cytotoxic T-cells expressing
the off form of the T-cell receptor («fTCR) takes place in the thymus, a primary
lymphoid organ containing distinct cortical and medullary microenvironments.
While the cortex represents a site of early T-cell precursor development, and the
positive selection of CD4*8* thymocytes, the thymic medulla plays a key role in
tolerance induction, ensuring that thymic emigrants are purged of autoreactive
affTCR specificities. In recent years, advances have been made in understanding
the development and function of thymic medullary epithelial cells, most notably the
subset defined by expression of the Autoimmune Regulator (Aire) gene. Here, we
summarize current knowledge of the developmental mechanisms regulating thymus
medulla development, and examine the role of the thymus medulla in recessive
(negative selection) and dominant (T-regulatory cell) tolerance.
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1 Introduction

T-cells bearing the alpha—beta T-cell receptor complex (a¢ffTCR) represent a
critical cellular component of immune responses aimed at targeting a wide range
of pathogens including bacteria and viruses. The development of «fST-cells occurs
within the thymus, a process that is initiated following the entry of blood-borne
lymphoid progenitors originating from the fetal liver or bone marrow (Anderson
et al. 2007; Takahama 2006). Intrathymic T-cell development is a complex pro-
cess, and involves a series of steps including T-cell commitment, proliferation,
differentiation, selection, and migration. To accommodate this developmental
program, the thymus consists of distinct T-cellular microenvironments in which
thymocytes at particular developmental stages are housed. For example, immature
T-cell precursors defined by their lack of expression of CD4 and CDS8 are enriched
in the subcapsular region, while their CD4"8" progeny, representing the bulk of
thymocytes, reside within the thymic cortex. In contrast, the thymus medulla
provides a microenvironment for the most mature single positive (SP) CD4" and
CDS8™ cells expressing high levels of the «fTCR. Importantly, these major regions
of the thymus are further defined by the phenotypically and functionally distinct
stromal cells that are contained within them, including cortical thymic epithelium
(cTEC) and medullary thymic epithelium (mTEC) (Alves et al. 2009).

Current models of thymic function are based upon the idea that an ordered
process of T-cell development occurs as a result of the sequential migration of
developing thymocytes through these distinct stromal microenvironments, ensur-
ing that they receive important signals and cell—cell interactions in an appropriate
order and context (Petrie and Zuniga-Pflucker 2007). The primary aim of this
review is to discuss the role of the thymus medulla in «fT-cell development. In
particular, we will summarize the current knowledge of the cellular and molecular
interactions that lead to thymic medulla formation, focusing on the processes
involving maturation of mTEC. In addition, we will examine how thymic med-
ullary environments contribute to both deletional and dominant self-tolerance
mechanisms that operate upon the newly positively selected «STCR repertoire.
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2 Cellular Features of the Thymic Medulla
2.1 Medullary Hemopoietic Non-T Lineage Cells

While the major hemopoietic compartment of the thymic medulla consists of
CD4" and CD8* «fTCR" thymocytes generated as a result of positive selection in
the thymic cortex, it also contains a variety of hemopoietic accessory cells that are
linked to its function. Notably, thymic dendritic cells (tDC) are enriched in
medullary areas and at the surrounding cortico-medullary junction. Given the role
of tDC in purging the positively selected repertoire of potentially autoreactive
specificities, such positioning is likely to be of importance in the screening of
newly selected cells as they migrate from the cortex into the medulla. Interest-
ingly, tDC are heterogeneous, suggestive of differing roles in thymocyte differ-
entiation. Thus, in the adult thymus, three phenotypically distinct tDC subsets have
been identified, namely plasmacytoid DC (pDC), and two subsets of conventional
DC (cDC) that can be defined by CD8«°“CDI11b*SIRPx* and CD8u-
highCDIIb=GTR Py~ phenotypes. Interestingly, these distinct tDC subsets have dis-
tinct developmental origins—while SIRPa~ tDC are generated intrathymically
from immature progenitors, both SIRPo* tDC and pDC are recruited to the thymus
from the periphery. Despite the known heterogeneity of tDC in the thymus, rel-
atively little is known about their anatomical location and positioning, and the
long-held view is that their location is limited to the medulla and surrounding
cortico-medullary junction. Interestingly however, a study recently showed that
despite the presence of abundant medullary-resident CD11c* tDC, SIRPo* tDC
were notably absent from the medulla, and instead could be detected within thymic
cortical regions, often in association with small vessels (Baba et al. 2009). Indeed,
two-photon microscopy of explanted thymic tissue demonstrated the formation of
interactions between thymocytes and tDC within the thymic cortex, again at
regions containing capillaries (Ladi et al. 2008). Collectively, such observations
argue against the notion that tDC are restricted to medullary regions and instead
suggest that distinct tDC subsets can be specifically positioned within particular
regions of the thymus, including the cortex. Moreover, multiple chemokine
receptors have been highlighted in relation to tDC recruitment and positioning,
including CCR2 (Baba et al. 2009), CCR7 (Ladi et al. 2008), CCR9 (Hadeiba et al.
2012), and XCRI1 (Lei et al. 2011), suggesting that chemokine production from
distinct intrathymic microenvironments is important in the context of tDC location
and function.

While tDC are important mediators of intrathymic negative selection of auto-
reactive thymocytes, other hemopoietic accessory cells are directly linked to the
development of thymic medullary microenvironments. In particular, Lymphoid
Tissue inducer (LTi) cells are present within thymic medullary regions, and
through their provision of TNFSF ligands such as RANKL, have been shown to
stimulate the maturation of RANK* mTEC progenitors (Rossi et al. 2007). Perhaps
importantly, LTi cells, first reported as essential mediators of lymph node (LN)
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organogenesis in the embryonic period (Cupedo et al. 2002), are found in both the
fetal and adult thymus in close association with mTEC. Moreover, analysis of LTi-
deficient RORy ™~ mice at embryonic stages prior to the emergence of positively
selected ocﬁTCRhi thymocytes has provided direct evidence that LTi cells are key
to the generation of the first cohorts of Aire* mTEC (White et al. 2008), the
development of which represents a critical step in the establishment of T-cell
tolerance in the neonatal period (Guerau-de-Arellano et al. 2009). Unlike their
well-documented role in fetal thymus, ascribing a specific role to LTi in the adult
thymus has been difficult, particularly since mTEC abnormalities in RORy-defi-
cient mice could also be explained by defective afT-cell development. However, a
recent study (Dudakov et al. 2012) showed a link between LTi and regeneration of
the adult thymus following experimental ablation. Thus, irradiation-induced
thymic atrophy resulted in the enhanced production of IL-22 by RORyt*CC
R6"NKp46~ LTi cells, with IL-22 then operating directly on thymic epithelial
compartments to promote their expansion. Given that the mTEC lineage can be
separated into distinct developmental stages (Dooley et al. 2008; Gabler et al.
2007; Nishikawa et al. 2010; Rossi et al. 2007), while stages in the cTEC lineage
have also been described (Nowell et al. 2011; Ripen et al. 2011; Shakib et al.
2009), it will be interesting to determine whether IL-22 exerts its effect on
immature or mature TEC populations, or both. Finally, although thymic LTi have
been shown to have shared a common RORyt*CD4"IL7Ra"RANKL* phenotype
with LTi in peripheral lymphoid tissues (Anderson et al. 2007), it is currently
unclear whether thymus and LN harbor tissue-specific LTi subsets, or whether LTi
populations are capable of trafficking between these tissues.

2.2 Medullary Thymic Epithelial Cells

Immunohistological analysis of thymic microenvironments is a widely used
approach with which to dissect the cellular complexity of cortical and medullary
areas, enabling the phenotypic definition of stromal compartments in both areas,
most notably thymic epithelial cells (TEC). Tissue sections of adult thymus often
show individual medullary regions embedded within a cortical matrix, although it
is important to note that the thymus medulla as a whole represents a complex
structure with seemingly separate medullary areas actually joined by intercon-
necting branches (Anderson et al. 2000). While individual medullary areas have
been shown to occur as a result of the expansion and differentiation of single
mTEC progenitors (Rodewald et al. 2001), it is not clear how the complex three-
dimensional organization of the thymic medulla is controlled, although thymic
vasculature has been proposed to play a role (Anderson et al. 2000).

The cTEC and mTEC compartments are identified by both shared and lineage
restricted molecules (Fig. 1). Many of the reagents that are used to define TEC
immunohistologically, in addition to the pan-epithelial marker EpCAM1 (Nelson
et al. 1996), recognize cytokeratin family members, structural proteins that reflect
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Fig. 1 Shared and lineage restricted markers of cortical and medullary thymic epithelial cells.
Panels of markers used in both immunohistochemical and flow cytometric analysis are frequently
used to study cTEC and mTEC lineages. While some molecules are common to both, others
enable the discrimination of these discrete lineages. However, it is important to note that it is
currently unclear how expression of these markers relates to distinct immature progenitors and
mature stages within TEC lineages

the differing morphology of cTEC and mTEC compartments (Farr and Braddy
1989). Thus, unlike their cTEC counterparts, mTEC are often defined by
expression of cytokeratin-5 and cytokeratin-14, and lack of expression of cyto-
keratin-8/18 (Klug et al. 1998, 2002). In addition, antibodies that recognize
unknown molecules expressed by mTEC include ERTRS (Van Vliet et al. 1984)
and MTS10 (Godfrey et al. 1990), while the fucose binding lectins Tetragonolobus
Purpureas Agglutinin (TPA), and Ulex Europeus Agglutinin (UEA) also demon-
strate selective reactivity with the thymic medulla in tissue sections (Farr and
Anderson 1985). However, it is not entirely clear from this type of tissue section
analysis whether such reagents reflect ‘pan-mTEC’ markers that react with the
whole mTEC compartment, or whether distinct mTEC subsets exist. Perhaps
importantly, immunohistochemical analysis of the mTEC compartment can be
further complemented by flow cytometric analysis of enzymatically disaggregated
thymus preparations. Although analysis of TEC compartments following enzy-
matic digestion can be limited by the sensitivity of cell surface molecules (Izon
et al. 1994; Seach et al. 2012), a panel of markers has emerged that is now widely
used in association with enzymatic digestion. Thus, total TEC are frequently
defined as CD45 EpCAMI1*, which can be further subdivided on the basis of cell
surface expression of Ly51, enabling the discrimination of Ly51* ¢TEC and
Ly517 mTEC compartments. Within the mTEC lineage, an additional panel of
molecules including CD40, CD80, MHC class II, and Aire reveal distinct subsets
including CDS0O"MHCII'®Y and CD80O*MHCIT" cells, often referred to as mTE-
C'" and mTEC™ (Derbinski et al. 2001; Gray et al. 2006; Hubert et al. 2008;
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Rossi et al. 2007). Until recently, the relevance of phenotypically distinct mTEC
subsets was not clear. However, many studies now show that mTEC represent a
dynamic thymic compartment, that can be defined by precursor-product relation-
ships with a turnover time of 2-3 weeks for the mature mTEC population (Gabler
et al. 2007). Functional analysis of the developmental relationships of distinct
mTEC subsets will be discussed in Sect. 3.

2.3 Non-epithelial Mesenchymal Stroma

The thymus is an epithelial-mesenchymal tissue, and during early stages of thy-
mus organogenesis, the inner epithelial rudiment is surrounded by a layer of
mesenchyme derived from the neural crest (Manley and Blackburn 2003; Rode-
wald 2008). Within the adult thymus, several cell fate-mapping studies have now
shown that much of the mesenchyme present is of neural crest origin, where it is
associated with epithelium and the endothelium of the thymus vasculature (Foster
et al. 2008; Muller et al. 2008; Yamazaki et al. 2005). During thymus develop-
ment, mesenchymal cells that form the thymic capsule penetrate the epithelial
core, separating it into lobules via trabeculae. In addition to its mesenchymal
components, vascularization of the developing thymus occurs after anlage for-
mation, culminating in a complex network of both blood and lymphatic vessels
(Odaka et al. 2006) that are composed of perivascular cells and endothelium. Thus,
a panel of markers including smooth muscle actin, ERTR7, and desmin has been
used to define histological organization of non-epithelial medulla stroma (Odaka
2009), while flow cytometric analysis using the markers podoplanin, Ly51, and
PDGFRu reveals complex heterogeneity in mesenchymal subsets (Jenkinson et al.
2007; Muller et al. 2005). While further analysis of the functional importance of
these distinct compartments is required, it is interesting to note that thymic mes-
enchyme can act as both positive and negative regulators of TEC expansion,
through their control of the Retinoic Acid and Fibroblast Growth Factor pathways
(Jenkinson et al. 2003; Sitnik et al. 2012).

The corticomedullary junction (CMJ) represents an important area with respect
to vasculature, with both the entry of lymphoid progenitors and the exit of mature
thymocytes taking place at this site (Porritt et al. 2003). Indeed, the perivascular
spaces of blood vessels at the CMJ contain c-Kit" T-cell precursors and CD4" and
CD8™" thymocytes (Mori et al. 2007), with neural crest derived pericytes control-
ling the emigration of the latter via their production of sphingosine-1-phosphate
(S1P), a ligand for sphingosine-1-phosphate receptor-1 (S1PR1) expressed by
mature thymocytes (Zachariah and Cyster 2010). Additionally, a non-epithelial
conduit system has been identified in human thymus, which represents a network
of inter-connecting tubules containing multiple basement membrane components
including laminin-5, collagen type IV and perlecan (Drumea-Mirancea et al.
2006). Interestingly, such a network is reminiscent of the conduit system present
within the T-zone of the lymph node and spleen, further highlighting the
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similarities between the thymic medulla and compartments within secondary
lymphoid tissues (Derbinski and Kyewski 2005). While the functional importance
of the thymic medullary conduit system remains unclear, its diameter appears too
small to enable transport of cells (Drumea-Mirancea et al. 2006), leaving open the
possibility that by acting as a transport network for small molecules such as
antigen and chemokines, it plays a role in medullary thymocyte migration and
tolerance induction.

3 Development of Thymic Medullary Epithelium
3.1 Defining mTEC Progenitors

Although the mTEC compartment has been shown to share a common bipotent
progenitor with the cTEC (Bleul et al. 2006; Rossi et al. 2006), relatively little is
known about the mechanisms controlling the emergence of cells that are com-
mitted to the mTEC lineage from this progenitor pool. Recently however the
possible role of FoxN1, a transcription factor representing a master regulator of
TEC differentiation (Blackburn et al. 1996; Nehls et al. 1994, 1996), has been
evaluated through analysis of TEC development in FoxN1-deficient nude mice and
a panel of mice expressing FoxN1 at varying levels (Nowell et al. 2011). Inter-
estingly, these findings suggested that the mTEC lineage might emerge from the
bipotent TEC progenitor stage via a mechanism occurring independently of
FoxN1. Given that bipotent TEC progenitors persist within the FoxN1-deficient
thymus rudiment at least until the postnatal stages (Bleul et al. 2006), these
findings suggest that FoxN1 may be selectively required downstream of the
emergence of mTEC progenitors, perhaps through controlling their survival as
well as differentiation.

The first data demonstrating the existence of mTEC committed progenitors
involved functional clonal analyses in the absence of a defined phenotype
(Rodewald et al. 2001). Subsequent attempts to define and then directly isolate
mTEC committed progenitors have often relied upon use of markers typically
associated with the mature mTEC lineage in the context of the developing
embryonic thymus, so the accurate phenotype of these cells, and the separation of
immature and mature mTEC remains obscure. For example, claudin-3 and claudin-
4, tight junction components expressed by mTEC in the adult thymus, have been
shown to identify TEC within the early thymus anlage that are also reactive with
the mTEC markers MTS10 and UEA1 (Hamazaki et al. 2007). Perhaps most
importantly, purified Claudin3/4™ embryonic TEC were shown to give rise to
mature Aire” mTEC in precursor-product experiments involving reaggregate
thymus organ cultures (RTOC), providing the first phenotypic definition of mTEC
progenitors (Hamazaki et al. 2007). In other studies, analysis of the mTEC com-
partment using CD80 and MHCII expression showed that during embryonic
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thymus development, CD80"MHCII®Y ‘mTEC'"" cells appear prior to the
emergence of CD80*MHCII™ ‘mTEC™ cells, suggesting a possible precursor-
product relationship between these populations (Gabler et al. 2007; Rossi et al.
2007). Importantly, direct analysis of mTEC development using RTOC experi-
ments demonstrated that mTEC'®Y were able to give rise to their more mature
mTEC™ counterparts, including the subset expressing Aire (Gabler et al. 2007;
Rossi et al. 2007). Further, mTEC® and mTEC™ subsets are also present in the
adult thymus (Gray et al. 2006), with BrdU labeling experiments providing evi-
dence of the continued generation of mTEC™ from mTEC' cells in the postnatal
thymus, with a turnover time of 2—-3 weeks for mTEC" cells (Gabler et al. 2007).
Collectively, these studies were important as they highlighted distinct develop-
mental stages within mTEC, and provided direct indications that the epithelial
component of the thymus medulla represents a dynamic cellular microenvironment
undergoing constant renewal. Importantly however, it is perhaps important to note
that precursor-product analysis of mTEC has frequently focused on events that
culminate in generation of the Aire* subset. Thus, it remains possible that other
mature mTEC subsets exist that are not linked to the same Aire-expressing
pathway, and which could be generated via a separate mTEC progenitor pool.
Whether such a subset resides within the mTEC'" population requires a more
detailed phenotypic and functional analysis of these poorly defined cells.

3.2 Cellular and Molecular Regulation of the mTEC
Compartment

A normal program of T-cell development and selection depends upon sequential
interactions between thymocytes and stromal cells in the cortex and then the
medulla. Importantly, studies in the late 1980s provided the first indications that
growth and formation of the thymic medulla was, in turn, influenced by developing
thymocytes. For example, analysis of thymic microenvironments following dis-
ruption of thymic hemopoietic compartments by either irradiation (Adkins et al.
1988) or treatment with the immunosuppressant cyclosporin A (Kanariou et al.
1989) was shown to have a dramatic, and reversible, impact on mTEC. Critically,
subsequent experiments showed that the transplantation of WT hemopoietic pro-
genitors into SCID mice corrected their severely disorganized thymic epithelial
microenvironments (Shores et al. 1991), providing the first evidence that signals
from hemopoietic cells directly influenced thymic epithelial cell development.
Other studies showed that peripheral T-cells (Surh et al. 1992) and SP thymocytes
could also regulate the mTEC compartment, a process requiring «STCR expres-
sion (Palmer et al. 1993; Shores et al. 1994). Such observations were collectively
described as a ‘thymus crosstalk’ process, (van Ewijk et al. 1994), during which
interaction with, and signals from, developing thymocytes are required for the
formation of thymic epithelial microenvironments.
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Although the studies above provided information on the cellular source of the
molecules that promote mTEC development and medullary growth, the nature of
the signals provided by developing thymocytes and/or additional hemopoietic cells
was, until recently poorly understood. However, several studies had noted that
mice harboring mutations in several genes critical in the NF-xB signaling,
including TRAF6 (Akiyama et al. 2005), NIK (Kajiura et al. 2004), and RelB
(Burkly et al. 1995; Heino et al. 2000; Weih et al. 1995; Zuklys et al. 2000)
displayed mTEC abnormalities. Such phenotypes often included reduced/absent
Aire expression and a failure to establish T-cell tolerance, suggesting that cell
surface receptors expressed by mTEC that utilize the NF-kB signaling cascade
could be critical molecular components of thymus medulla crosstalk. Interestingly,
the development of secondary lymphoid tissues is known to involve multiple
members of the Tumor Necrosis Factor Receptor SuperFamily (TNFRSF) (Weih
and Caamano 2003), whose ligands are expressed by lymphoid cells, raising the
possibility that a similar axis might also be involved in formation of medullary
thymic microenvironments (Anderson et al. 2007; Derbinski and Kyewski 2005).
Indeed, many studies have now shown the expression of various TNFRSF mem-
bers by mTEC, some of which have been shown to play a direct role during mTEC
development. Of these, Lymphotoxinfi Receptor (LTSR, TNFRSF3), CD40
(TNFRSF5), and RANK (TNFRSF11a) remain the best studied. For example,
studies on LTSR ™~ mice have demonstrated a reduction in mTEC numbers and
medullary disorganization, which is associated with abnormalities in thymocyte
emigration and autoimmunity. Importantly, although initial studies (Chin et al.
2003) suggested that the LT-LTSR axis was linked to the generation of Aire-
expressing mTEC, other studies showed this not to be the case (Martins et al. 2008;
Venanzi et al. 2007). Rather, LTSR appears to be involved in mechanisms con-
trolling the expression of Aire-independent Tissue Restricted Antigens (TRAs), as
well as the chemokines CCL19 and CCL21 (Chin et al. 2006; Seach et al. 2008;
Zhu et al. 2007). Importantly however, as well as being expressed by mTEC,
LTPAR is also detectable within ¢cTEC and MTS15" fibroblasts (Hikosaka et al.
2008; Seach et al. 2008). So, it remains unclear which features of LTR deficiency
are a direct result of absence of LTfR expression by mTEC, or whether abnor-
malities can occur indirectly as a result of absence of expression in other thymic
stromal compartments. In relation to the involvement of LTSR in thymocyte-TEC
crosstalk, several studies now show that LTo and LTS are expressed by mature SP
thymocytes as compared to their CD48" precursors (Boehm et al. 2003; White
et al. 2008), indicating a crosstalk process involving positively selected thymo-
cytes. Interestingly however, the absence of LIGHT, an additional LTfSR ligand
does not appear to play a role in mTEC development. Moreover, mTEC abnor-
malities in LTSR™~ mice are more severe as compared to LTS~ "LIGHT '~
double deficient mice (Boehm et al. 2003), perhaps suggesting additional unknown
ligands for LTSR that are expressed by thymocytes and which operate during
mTEC development.

Both CD40 and RANK have been shown to play key roles in the generation of
the Aire®™ subset of mTEC. While CD40 is expressed by both ¢cTEC and mTEC,
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RANK expression is higher in the latter (Hikosaka et al. 2008; Rossi et al. 2007,
Shakib et al. 2009). Moreover, absence of RANK expression leads to a dramatic
reduction in the frequency of Aire” mTEC, in both the fetal and adult thymus, with
combined RANK/CD40 deficiency in the adult reducing this mTEC compartment
further (Akiyama et al. 2008; Rossi et al. 2007). RANK deficiency and RANK/
CD40 double deficiency also results in the onset of T-cell mediated autoimmunity,
highlighting the importance of these TNFRSF molecules during intrathymic tol-
erance induction (Akiyama et al. 2008; Rossi et al. 2007). Several studies have
investigated the cellular sources of RANKL and CD40L in relation to thymocyte
crosstalk and thymic medulla formation, in both the fetal and adult thymus
(Anderson and Takahama 2012). In the fetal thymus, we showed that RANKL
expression maps to subsets of cells belonging to the innate immune system,
including RORyt" Lymphoid Tissue Inducer (LTI) cells (Rossi et al. 2007), and
invariant Vy5*TCR dendritic epidermal T-cell progenitors (Roberts et al. 2012).
Interestingly, the involvement of the innate immune system during thymus
medulla formation is active at developmental stages prior to positive selection of
the o fTCR repertoire (White et al. 2008), meaning that the crosstalk processes in
the fetal and adult thymus medulla are distinct. Given the importance of Aire
expression during neonatal tolerance (Guerau-de-Arellano et al. 2009), these
findings suggest a scenario in which the innate immune system helps in the control
of tolerance induction of the nascent TCR repertoire by ensuring efficient gener-
ation of mTEC compartments in the embryo.

In the adult thymus, as with LTJR ligands, positively selected thymocytes in
particular CD4%8~ cells, act as sources of RANKL and CD40L (Hikosaka et al.
2008; Irla et al. 2008). Relevant to this, we have recently shown (Desanti et al.
2012) that RANKL and CD40L expression map to different subsets and devel-
opmental stages within the intrathymic CD4"8~ compartment. Thus, recently
selected CD69*CD4"8 cells are enriched for RANKL" cells, while CD40L
expression is linked to more mature CD69 CD4*8~ thymocytes. Moreover,
FoxP3* Regulatory T-cells present in the thymus express RANKL but not CD40L,
demonstrating that thymocyte crosstalk in the development of the mTEC com-
partment involves distinct interactions with multiple CD4*8~ subsets.

While the above studies highlight cellular and molecular control involving the
generation of Aire” mTEC, and although the CD80" mTEC subset which contains
Aire expressing cells (Gray et al. 2006), have a turnover time of 2-3 weeks
(Gabler et al. 2007), less is known about events occurring during late stage
mTEC development. Indeed, uncertainty exists regarding possible stages of mTEC
development post-Aire expression, and the role of Aire itself during mTEC
development. Several models have been put forward to explain mTEC develop-
mental programmes in relation to the timing of Aire expression. For example,
based on cell fate mapping studies utilizing Aire-Cre transgenic mice, Aire*CD80*
mTEC were shown to progress to an Aire” CD80'" stage (Nishikawa et al. 2010),
suggestive of mMTEC maturation post-Aire expression, and arguing against the idea
that Aire directly promotes mTEC apoptosis (Gray et al. 2007). Interestingly, other
studies described a small subset of Aire” mTEC that expressed involucrin, a
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marker of both keratinocyte terminal differentiation and Hassalls Corpuscles,
concentric whorls of cells thought to represent end-stage medullary epithelium
(Yano et al. 2008). Given that the frequency of involucrin® mTEC are reduced in
the Aire ™'~ thymus (Yano et al. 2008), such observations support the ‘Terminal
Differentiation’ model of mTEC development, in which Aire plays a role during
end stage mTEC development (Matsumoto 2011). Indeed, involucrin® mTEC were
reduced in the absence of LTfR signaling (White et al. 2010), suggesting further
crosstalk mechanisms operating during post-Aire expression in mTEC. However,
it is also important to note that other studies analyzing the disruption of mTEC
development in Aire ™~ mice have suggested that Aire is required during earlier
stages of the mTEC developmental program (Dooley et al. 2008). In this
‘Developmental Model’, Aire may be involved in regulating the developmental
choice of mTEC progenitors, a process that then impacts upon TRA expression
within the thymic medulla (Gillard and Farr 2005). For example, Aire controls
mTEC expression of a panel of transcription factors, including Oct4 and Nanog,
typically associated with progenitor cells (Gillard et al. 2007). Importantly, while
these models provide distinct views on the timing of Aire expression in the mTEC
lineage, they collectively highlight the importance of Aire during normal thymus
medulla development. While further studies are required, recent analyses suggest
that Aire expression by mTEC is limited to a single window of 1-2 days (Wang
et al. 2012), which may help to provide a clearer picture of the timing and role of
Aire expression in relation to early and late mTEC developmental stages.

4 Functions of the Thymic Medulla

4.1 Medullary Thymic Epithelium and Central Tolerance
Induction

TCR gene recombination occurs in a seemingly random manner leading to the
generation of a highly diverse T-cell repertoire. While this provides a clear benefit
in terms of the capacity of T-cells to recognize and respond to diverse pathogenic
challenge, a potential negative aspect of this mode of TCR determination lies in
the generation of T-cells bearing receptors capable of both recognizing and
becoming activated by self-antigen. T-cell activation against antigens expressed by
tissues of the host leads to the highly undesirable outcome of T-cell orchestrated
autoimmune disease. In order to combat the potentially destructive generation and
subsequent escape of autoreactive T-cells into the periphery, thymic medullary
microenvironments provide several layers of tolerance induction, including that of
deletional tolerance, acting to purge autoreactive T-cell clones from the naive
repertoire via negative selection (Fig. 2).
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Fig. 2 Medullary thymic microenvironments regulate CD4 thymocyte maturation and selection
via multiple mechanisms. Newly selected CD4*8~ T-cells interact with both Aire* mTEC and
thymic dendritic cells during medullary maturation. Conventional CD4 thymocytes undergo a
series of maturational steps (SP1-4), where semi-mature autoreactive T-cell clones are deleted at
an immature stage (SP1-3) in part via Aire-dependent tissue restricted antigens generated and
presented either directly by mTEC or indirectly via antigen transfer and presentation by thymic
DC. Generation of SP4 CD4 thymocytes relies upon Aire” mTEC and subsequent emigration
occurs 4 days post-selection in an S1P-dependent manner via blood vessels at the CMJ BV.
Medullary APC interaction additionally drives pT-Reg induction in a TCR- and CD80/86-
dependent manner leading to the generation of Foxp3* T-Reg that exit thymus 5 days post-
selection

As described previously, the key cellular mediators of intrathymic central tol-
erance induction primarily constitute medullary thymic epithelium and thymic
dendritic cells acting in concert. The clear requirement for medullary thymic
epithelium in the induction of central tolerance via negative selection of autore-
active thymocytes is evidenced from several mutant mouse models demonstrating
defective mTEC development and associated onset of autoimmune disease (Ak-
iyama et al. 2005; Burkly et al. 1995; Nitta et al. 2011; Rossi et al. 2007). Fol-
lowing positive selection, maturing thymocytes demonstrate directed migration
into medullary microenvironments where they spend a calculated 4-5 days
scanning both mTEC and dendritic cells (McCaughtry et al. 2007). Interestingly,
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self-antigen presented to developing thymocytes includes multiple sources, com-
prising both peripheral self-antigen transported into the thymus by peripheral DC
subsets and self-Ag generated from intrathymic microenvironments (Baba et al.
2009; Hadeiba et al. 2012; Klein et al. 2011).

Pivotal to the efficient role of mTEC in screening developing T-cells for
autoreactive specificities is the precise array of self-antigens expressed by mTEC
against which T-cells are tested for high affinity recognition and subsequent
deletion. A key paradox in the intrathymic screening of TCR specificities is how
T-cells, while anatomically restricted to thymic microenvironments during
development, are exposed to the breadth of self-antigens normally associated with
particular peripheral tissues. A series of refined experiments have gradually begun
to unravel this contradiction of anatomical compartmentalization of T-cells and
peripheral self-antigens. Primarily, it was discovered that mTEC possessed a
highly unusual characteristic of being able to express a diverse array of antigens
normally associated with defined peripheral tissues (Derbinski et al. 2001). This
remarkable ability of mTEC to mimic the antigen profile of an array of different
tissue types led to the search for specific molecular mechanisms regulating this
unusual functional capacity. Significantly, several lines of evidence led to the
discovery of the role of the transcriptional regulator Aire (Auto-Immune REgu-
lator) in the control of mTEC peripheral tissue antigen expression. Notably, human
patients demonstrating a mutation in Aire exhibit autoimmune disease, termed
autoimmune polyglandular syndrome type-1 (APS-1) or autoimmune polyendo-
crinopathy-candidiasis-ectodermal dystrophy (APECED) (Mathis and Benoist
2009). Generation of mutant mouse strains lacking fully functional Aire protein
demonstrated a broadly similar spectrum of autoimmune disease manifestation,
providing a useful murine model to study the role of Aire in the appearance of
associated autoimmune disease (Anderson et al. 2002; Ramsey et al. 2002).
Investigation of the cellular expression pattern of Aire showed it was primarily
restricted to thymic tissue, and moreover intrathymic expression was limited to a
sub-population of mTEC (Heino et al. 2000; Nagamine et al. 1997). Importantly,
lack of Aire expression by mTEC in murine knockout models directly resulted in
reduced expression of specific peripheral tissue antigens and resulted in the gen-
eration of targeted autoimmune disease (Anderson et al. 2002; Ramsey et al.
2002). Direct evidence that mMTEC Aire-mediated expression of ectopic peripheral
tissue antigens played a central role in thymic deletional tolerance was subse-
quently demonstrated whereby deletion of potentially autoreactive transgenic
T-cell clones capable of recognizing pancreatic-associated self-antigen with a high
degree of affinity was driven in an Aire-dependent manner (Liston et al. 2003). The
exquisite sensitivity of mTEC-mediated deletion of autoreactive T-cells was later
demonstrated via elegant experiments demonstrating that the reduced expression
of a single restricted antigen specifically associated with ocular tissue by mTEC
could manifest in highly targeted auto-immunity targeted toward the eye (DeVoss
et al. 2000).

It would therefore appear clear that mTEC-mediated expression of antigens
associated with peripheral tissues plays a pivotal role in the enforcement of central
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tolerance through the deletion of autoreactive T-cell clones. However, while Aire
would appear to control the expression of a large array of peripheral tissue anti-
gens, it is important to note that not all ectopic peripheral tissue antigen expression
within mTEC is Aire-dependent (Anderson et al. 2002; Derbinski et al. 2005).
Initial experiments have indicated that at a least a portion of Aire-independent
antigens are influenced by signaling through the lymphotoxin pathway (Seach
et al. 2008), it still remains to be determined precisely how the complete array of
intrathymic TRA are regulated within the mTEC compartment.

A key question in the efficiency of thymic negative selection is posed by how
large cohorts of developing T-cells are successfully screened by a relatively minor
fraction of mTEC. Compounding this high ratio of thymocyte to mTEC distri-
bution is the high selective distribution of any single given peripheral tissue
antigen. In this regard, it has previously been estimated that any individual TRA is
expressed by less than 5 % of total Aire-positive mTEC, which themselves
comprise a minor fraction of total mTEC (Derbinski et al. 2001, 2008). In order to
effectively delete autoreactive T-cell clones, several coordinated mechanisms
appear to operate in order to ensure an imposition of central tolerance upon thy-
mocytes. While mTEC are essential cellular production units for TRA a sharing of
labor exists between mTEC and tDC in the presentation of self-antigen. Transfer
of mTEC-derived antigen would appear to occur in a directional manner from
mTEC to tDC interestingly including both intracellular and cell surface expressed
antigen (Koble and Kyewski 2009). However, as yet the precise mechanism of
how mTEC-derived self-antigen is transferred to DC for presentation to T-cells
remains currently unknown. The absolute necessity of tDC in the contribution to
negative selection is suggested both by conditional deletion of CD11c-positive
cells via targeted diphtheria toxin susceptibility leading to fatal autoimmunity and
absence of DC-MHC expression leading to inefficient transgenic T-cell deletion
against an mTEC-associated neo-antigen (Gallegos and Bevan 2004; Ohnmacht
et al. 2009). The contribution of DC to negative selection likely facilitates the
spreading of particular self-antigens within thymic microenvironments, such
antigen spread may particularly be of note in regard to recent studies indicating a
rather anatomically restricted range of intramedullary T-cell migration (Le Borgne
et al. 2009).

While transfer of antigen from mTEC to DC likely plays an important role in
the spreading of peripheral tissue antigen and presentation to developing T-cells,
direct presentation of antigen by mTEC additionally seems to shape the TCR
repertoire. Recent experiments have demonstrated that negative selection of
transgenic CD4 T-cells was impaired when MHC class II expression was selec-
tively reduced on mTEC (Hinterberger et al. 2010). Such findings clearly imply a
direct role of mTEC in autonomous presentation of antigen to T-cells, in addition
to acting as a peripheral tissue antigen reservoir for co-operative transfer to tDC.
Outstanding questions in relation to medullary enforcement of negative selection
remain, particularly regarding the specific routes of peptide generation and loading
of endogenous self-antigens into MHC II pathways in medullary thymic epithelial
cells. In addition, it is interesting to note that the major fraction of thymic DC are
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comprised of the CD205-expressing subset, being peripherally-associated with a
capacity to present exogenous antigen into both MHC class-II, and -I via cross-
presentation pathways and being capable of tolerance induction (Bonifaz et al.
2002, 2004). Whether such a proportional makeup of tDC reflects a functional
association with transfer of antigen from mTEC and presentation to both CD4 and
CD8 T-cells remains unclear. Further, as compared to peripherally equivalent DC,
thymic resident DC demonstrate an enhanced capacity for antigen cross-presen-
tation and T-cell cross-priming in the absence of DC activating factors (Dresch
et al. 2011), suggesting that thymic microenvironments may uniquely influence the
efficiency of antigen presentation via as yet undefined cellular and molecular
mechanisms.

4.2 Foxp3 Regulatory T-Cell Development

While it would appear clear that deletional tolerance mediated by thymic med-
ullary cellular microenvironments is essential for the removal of newly generated
autoreactive T-cell clones as described above, the effectiveness of such tolerizing
mechanisms does not appear to be one hundred percent efficient. The leakiness in
the efficiency of T-cell negative selection can be clearly revealed by murine
models lacking T-regulatory cell (T-Reg) populations. In the absence of Foxp3-
dependent T-Reg, autoreactive T-cell clones normally present in the peripheral
T-cell pool become apparent, with their unopposed activation rapidly leading to
the generation of catastrophic and fatal systemic autoimmunity (Kim et al. 2007).
Early experimentation demonstrating fatal autoimmunity in neonatal mice, having
undergone early stage thymectomy, among other data, presented initial evidence
that thymic microenvironments were essential for the generation of suppressive
CD4 T-cells (Josefowicz et al. 2012). Subsequently, the requirement for thymic
microenvironments in development of T-Reg was found to strictly depend upon
the selection of T-Reg by intrathymic self-antigen expression (Itoh et al. 1999;
Jordan et al. 2001). The notion that TCR specificity may influence Foxp3™ T-Reg
generation combines several pieces of evidence, including the finding that TCR
usage of conventional versus regulatory T-cells indicated partially differential
specificity with a low degree of overlay, at least in the context of an experimen-
tally limited TCR repertoire (Hsieh et al. 2004; Pacholczyk et al. 2006). The
question subsequently arising from the proposition that T-Reg are developmentally
selected by TCR specificity for cognate self-antigen is how potential self-reactivity
leads to a T-Reg fate versus the induction of apoptosis via negative selection. The
primary notion in this regard involves a role for the strength of TCR self-reactivity,
such that the selection of T-Reg occurs at an intermediate level between the low
degrees of self-peptide:self-MHC required for positive selection and the high level
of self-reactivity driving negative selection (Liston and Rudensky 2007). Directly
in support of this theory, experiments utilizing microRNA-mediated MHC class II
suppression in mTEC, resulting in a quantitative reduction in antigen presentation,
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resulted in the enhanced induction of T-Reg and a corresponding decline in
negative selection (Hinterberger et al. 2010), implying that avidity plays a deter-
mining role in thymic T-Reg development. Interestingly, evidence from Nurr77-
GFP mice, where levels of GFP expression correlate with intensity of TCR signal
strength, indicate that thymic T-Reg would appear to experience a higher level of
stimulation through their TCR than Foxp3-negative conventional T-cells (Moran
et al. 2011).

The precise developmental timing of T-Reg generation has led to multiple lines
of experimentation. While the induction of T-Reg was proposed to occur within
the CD4%8" fraction, being associated with cortical thymic localization and cor-
tical cellular interactions including cTEC (Bensinger et al. 2001; Liston et al.
2008), subsequent studies have disputed the developmental significance of Foxp3*
T-Reg generated within cortically restricted CD4*8" stages (Lee and Hsieh 2009),
instead suggesting that T-Reg in the main are generated following the transition to
a CD4 SP (SP) stage. The cellular interactions leading to Foxp3 Treg generation
therefore likely follow CD4 SP transition into thymic medullary environments, as
mediated by CCR7 guided migration (Ueno et al. 2004). While the defining
hallmark of T-Reg can be considered to be Foxp3 expression, it has been previ-
ously discovered that Foxp3"CD25" intrathymic T-Reg appear to be derived from
a Foxp3~CD25" sub-population encompassing T-Reg progenitors (pT-Reg), as
demonstrated by precursor-product experiments analyzing development of pT-Reg
in vivo (Lio and Hsieh 2008). Interestingly, Foxp3~CD25" pT-Reg selected by
TCR-directed interaction with self-antigen were subsequently found to develop
independently of TCR stimulation following their initial specification (Lio and
Hsieh 2008). While this subsequent developmental step is proposed to be TCR-
independent, evidence points to a cytokine-dependence of T-Reg maturation
beyond the initial Foxp3*CD25" stage, including signaling through 11-2 and IL-15
(Burchill et al. 2007), however the precise involvement of TCR-independent
signaling in directing Foxp3" T-Reg maturation versus maintenance and survival
remains unclear.

The differential ability of thymic medullary resident APC to dictate T-Reg
induction has formed the basis for several experimental studies attempting to
identify the key players in this important process. Primarily, both mTEC and
thymic DC would appear to be able to efficiently induce T-Reg generation, as
indicated by experimental systems providing selective absence and restriction of
antigen expression to either population of APC (Aschenbrenner et al. 2007;
Proietto et al. 2008; Spence and Green 2008). Thus, the capacity to efficiently
select T-Reg does not reside within any single thymic APC population. While the
ability of medullary-resident APC would seem to be promiscuous in the ability to
select Foxp3 T-Reg, the antigen array responsible for selecting such cells remains
unclear. The relatively small zonal territory of T-cells in medullary epithelium and
their propensity to demonstrate increased dwelling time with medullary APC
following recognition of cognate antigen, in a transgenic TCR model (Le Borgne
et al. 2009), may fit with the interesting finding that the efficiency of intrathymic
T-Reg development is highly dependent upon competition of specific T-cell clones
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for selecting antigen (Bautista et al. 2009). Such a balance of competition for
selecting ligand in relation to induction of a T-Reg fate may play a pivotal role in
determining the frequency of developing T-cells undergoing either negative
selection, T-Reg fate induction, or progression as a conventional naive T-cell.
Further, the finding that the frequency of given TCR clones within the T-cell
compartment is required to be below 1 % for efficient Treg generation, at least in
the context of monoclonal transgenic T-cells, (Bautista et al. 2009), may suggest
that a major fraction of thymic T-Reg are specifically selected by infrequently
expressed antigen. Such scarce selecting antigen may potentially reflect peripheral
tissue antigens expressed by mTEC, presenting the possibility that thymically
derived T-Reg may display preferential specificity toward defined tissue-associ-
ated antigens rather than broadly expressed ubiquitous self-antigen. However, it
should be noted that recent experiments studying the role of thymic niche avail-
ability in the regulation of T-Reg generation in a polyclonal T-cell compartment
have come to the opposing conclusion that niche availability does not limit T-Reg
generation (Romagnoli et al. 2012). It therefore remains unclear precisely how the
proportion of T-cells entering the T-Reg pathway is intrathymically regulated.
In addition to antigen presentation, provision of co-stimulation via the
CD28:CD80/86 axis plays a key role in T-Reg generation, with an absence of
CD28-mediated co-stimulation leading to a highly depleted T-Reg population (Tai
et al. 2005). As expected from promiscuous T-Reg induction influenced by self-
antigen presentation, again expression of CD80/86 on either mTEC or hemopoietic
cells, including tDC, is equally able to induce T-Reg development (Roman et al.
2010). The ability of medullary APC subsets to influence T-Reg induction may
therefore depend upon their ability to present self-antigen in conjunction with
defined co-stimulation, rather than perhaps being absolutely dependent upon the
provision of unique cell-specific signals or self-antigen arrays limited for instance
solely to mTEC. While both mTEC and tDC are able to induce T-Reg generation
in a quantitative fashion, it remains unclear whether any qualitative differences
exist between mTEC versus tDC specified T-Reg. In this regard, it could be
speculated that the spectrum of T-Reg clones induced by mTEC interaction may
differ from those generated via extrathymically derived CD8 Sirpa®™ tDC which
are able to transport peripheral antigen, including blood-borne antigens, into the
thymus (Baba et al. 2009; Li et al. 2009). Finally, while thymic DC are globally
capable of efficient T-Reg induction, in vitro studies have proposed that differ-
ences may exist in the efficiency of extrathymically CD8Sirpa* and intrathymi-
cally generated CD8*Sirpa~ DC to induce T-Reg (Proietto et al. 2008). Of
particular note, in an in vitro model, CD8 Sirpa* DC were proposed to demon-
strate a superior capacity to instruct T-Reg induction potentially by virtue of
increased maturity phenotype, including MHC class II and CD80/86 expression
levels, again suggesting that the ability of APC to induce signals through the TCR
with a particular strength may link their ability to efficiently induce T-Reg. In
addition, CD8~Sirpa* DC are proposed to selectively produce the chemokines
CCL17 and CCL22 compared to CD8"Sirpa~ DC, potentially enhancing their
ability to interact with newly selected CD4 SP thymocytes bearing the cognate
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chemokine receptor CCR4 (Proietto et al. 2008). The correct localization and
ability of medullary resident APC to efficiently interact with thymocytes is further
highlighted by findings in mice lacking expression of the Aire-dependent che-
mokine XCL1. XCL1-deficient mice demonstrate aberrant intrathymic DC posi-
tioning, albeit at normal total numbers, and display a corresponding reduction in
T-Reg development with associated autoimmune disease (Lei et al. 2011).
Together such findings highlight that the correct anatomical organization and
positioning of medullary thymic cellular components likely plays a key role in
influencing the efficiency of T-Reg development.

4.3 Post-Selection Thymocyte Differentiation

Upon entry of newly selected T-cells into medullary microenvironments, a period
of medullary residency is essential to ensure sufficient screening of CD4* and
CD8* thymocytes potentially preventing the escape of autoreactive clones into the
periphery. It would therefore appear logical that specific mechanisms may operate
in order to ensure that maturing SP thymocytes are retained within thymic medulla
for a sustained period of time. Analysis of SP thymocyte populations, particularly
CD4 thymocytes, has clearly demonstrated a distinct series of phenotypic subsets
proposed to reflect differential maturational states. Following positive selection
CD4 SP thymocytes were initially described to demonstrate a heterogeneous mix
of phenotypes, being primarily split into an immature and mature subset based on
CD24 (heat-stable antigen) and Qa-2 expression (Ramsdell et al. 1991; Vicari et al.
1994; Wilson et al. 1988). While such immature and mature SP thymocyte subsets
appeared to display differential responsiveness to external stimuli, including sus-
ceptibility to negative selection being associated with immature-type SP stages
(Kishimoto and Sprent 1997), evidence of progressive maturation has only
recently been directly presented. Specifically, four clearly defined subsets of CD4
thymocytes, termed SP1-4, defined as CD697Qa276C10~  (SPIl),
CD69%Qa276C10* (SP2), CD697Qa2~6C10~ (SP3), and CD69Qa2"6C10~
(SP4) were phenotypically identified in murine thymus. Direct in vivo injection of
traceable SP1 CD4 thymocytes into adult murine thymus provided strong evidence
for SP CD4 thymocyte maturation occurring in a regulated sequential fashion (Li
et al. 2007).

Initial estimates of SP thymocyte dwell time within medullary microenviron-
ments proposed a timespan in the region of 14 days (Egerton et al. 1990), although
contrasting studies suggested that newly generated naive thymocytes were found
to emigrate following just 2 days post intrathymic BrdU labeling (Tough and
Sprent 1994). A key question that related to this potential discrepancy in proposed
length of medullary residency was how exit from thymic microenvironments was
regulated. Two potential mechanisms proposed opposing models of either a ran-
dom exit of SP thymocytes at multiple stages of maturation (lucky-dip) versus a
linear, hierarchical mode whereby thymic exit was restricted to the most mature
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cells (Scollay and Godfrey 1995). Subsequent experiments utilizing a novel
RAG2-GFP reporter mice, whereby GFP expression levels correlated with thy-
mocyte maturation, directly demonstrated that SP thymocytes spent a relatively
brief period of 4 days within thymic microenvironments prior to their export
(McCaughtry et al. 2007). In addition, it was further substantiated that thymic
egress was found to be limited to the most mature SP thymocytes (Li et al. 2007;
McCaughtry et al. 2007). Such a relatively short time of SP thymocyte medullary
habitation presumably equates to a highly efficient process of autoreactive T-cell
screening against correspondingly rare cognate self-antigen, including peripheral
tissue antigens. In addition, the window for negative selection would appear to be
even shorter than the 4-day intramedullary window, assuming that susceptibility to
negative selection is enhanced within immature SP CD4 thymocytes defined by
CD24" (Kishimoto and Sprent 1997), again further narrowing the time frame in
which negative selection is effective (Weinreich and Hogquist 2008). In direct
relation to the efficiency of thymocyte negative selection, titration experiments
using reaggregate thymic organ culture techniques demonstrated that thymic DC
are still able to mediate efficient negative selection even at 1 % of total cell
numbers, emphasizing the efficiency of DC as potent mediators of negative
selection (Anderson et al. 1998), potentially demonstrating the highly efficient
nature whereby autoreactive T-cell clones can be screened within thymic medul-
lary microenvironments. However, it is also possible that the relatively tight
temporal availability of negative selection susceptibility may correspond with the
potential escape of autoreactive T-cell clones into the peripheral repertoire as may
occur in Treg-deficient mice (Kim et al. 2007). The extent to which autoreactive T-
cells are able to escape negative selection in the adult steady-state thymus warrants
further investigation, further, whether extended medullary dwell time of devel-
oping thymocytes at a negative selection susceptible stage could influence the
efficiency of negative selection poses an additional point of interest. Of note, a
recent study has demonstrated an increased intrathymic dwell time for newly
generated T-Reg compared to conventional T-cells (Romagnoli et al. 2012). The
mechanisms responsible for this discrepancy between these two related T-cell sub-
lineages remain unknown, as does the functional significance, if any, of this
phenomenon.

If maturation and exit of SP thymocytes is dependent upon a linear, hierarchical
model, it follows that specific mechanisms must tightly regulate the selective
ability of the most mature thymocytes to be released into the periphery. Indeed, the
ability of thymocytes to exit thymus into the periphery was clearly shown to be
highly dependent upon the action of the transcription factors Foxol and KLF2 (Bai
et al. 2007; Carlson et al. 2006; Kerdiles et al. 2009) at least in part, regulating the
expression of the cell surface receptor SIPR1 (Allende et al. 2004; Matloubian
et al. 2004). Notably, expression of SIPR1 directs chemoattraction toward a
gradient of S1P predominantly present in blood but also potentially produced by
vascular endothelium and modulated by perivascular cells in the thymus leading to
the observed exit of mature thymocytes at blood vessels located at the cortico-
medullary junction (Pham et al. 2010; Zachariah and Cyster 2010). In direct
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correlation with the progressive maturation of SP1 > SP4 thymocytes, gradual
increased expression of the previously mentioned factors, including S1PR1, has
been recently reported (Teng et al. 2011). Of interest, while it seems apparent that
the most mature SP thymocytes selectively exit the thymus, recent thymus emi-
grants still appear to require further maturation events in the periphery, as dem-
onstrated by progressive Qa-2 upregulation and a notable decrease in proliferative
response as compared to more mature naive T-cells (Boursalian et al. 2004).
Whether the developmental prompts facilitating such final maturation post-thymic
exits are unique to peripheral environments or are shared with those of the thymic
medulla is yet to be fully determined.

Assuming that ordered SP thymocyte maturation correspondingly determines
the regulated exit of mature cells as described previously, it is of particular interest
to determine whether this linear development occurs via thymocyte-autonomous
process or is influenced by external medullary microenvironmental factors. In-
trathymic injection of SP1 thymocytes into adult thymus has been observed to
follow a maturation time of 2—-3 days (Li et al. 2007), however it was also reported
that a subset of mature SP4 thymocytes were found to reside within the host
thymus for a period up to 7 days (Li et al. 2007), suggesting that while SP mat-
uration correlates with a functional capacity to emigrate, additional influences
extrinsic to thymocytes may impose upon the timing of thymocyte exit.

In relation to the question surrounding control of SP maturation, interesting
in vitro data provided evidence that isolated immature SP1 thymocytes were
capable of progression through maturation stages SP1 > SP2 > SP3 in the
absence of additional cellular support, including mTEC, however IL-7 was found
to be critical for the survival of such isolated cells in vitro (Li et al. 2007).
However, investigation of this potential regulatory axis revealed that absence of
functional IL-7 signaling in vivo did not lead to an impairment in the maturation of
post-selection SP thymocytes (Weinreich et al. 2011), suggesting that while IL-7 is
sufficient to facilitate SP survival it would not appear to be essential in order to
drive differentiation and maturation. Further analysis of the thymic microenvi-
ronment-dependent developmental requirements for SP3 > SP4 transition
identified a stage-specific requirement for medullary microenvironments as RelB-
deficient mice (Burkly et al. 1995), that display a drastic impairment in mTEC
generation, were found to lack SP3 > SP4 development (Li et al. 2007). In
addition, analysis of Aire-deficient mice again revealed defective generation of the
final stage of SP4 maturation. However, it remains unclear precisely how Aire*
mTEC influence SP4 thymocyte maturation.

Aire expression, in addition to regulating ectopic peripheral antigen expression,
also appears to control additional aspects of mTEC biology, including chemokine
expression such as CCR7 and CCR4 ligands (Laan et al. 2009) potentially influ-
encing the capacity of developing SP thymocytes to localize and interact with
mTEC. While Aire regulates chemokines associated with the attraction of mature
thymocytes, it also controls the expression of DC attractants including XCL1,
which play an essential role in regulating the efficiency of DC-mediated thymocyte
selection and interaction (Lei et al. 2011). Further, while RelB-deficient mice
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display mTEC-intrinsic defects, DC also demonstrate altered representation within
thymic microenvironments both due to mTEC-deficiencies and due to a DC-
intrinsic influence of RelB (Burkly et al. 1995; Wu et al. 1998). Further experi-
ments investigating the complex cellular interplay required for regulated SP thy-
mocyte maturation leading to efficient deletional tolerance, Treg induction, and
appropriate thymocyte maturation leading to tightly regulated thymic export will
provide valuable insights into our current understanding of how medullary thymic
microenvironments function.

5 Conclusions

The thymic medulla represents a key site in intrathymic «ffT-cell development, by
controlling the fate of thymocytes that have undergone positive selection in the
thymic cortex. The induction of T-cell tolerance in the medulla is controlled by
multiple mechanisms: central tolerance results in the elimination of autoreactive
afTCR specificities, while the development of Foxp3™ Regulatory T-cells ensures
that dominant tolerance can occur within peripheral body tissues. An increasing
body of evidence supports the idea that these mechanisms of T-cell tolerance
require both medullary epithelial cells, including the Aire* subset, and thymic
dendritic cells that act in concert to shape the developing T-cell receptor reper-
toire. While some aspects of thymus medulla function are beginning to be defined,
further studies are required to investigate several key aspects that remain poorly
understood, including the identity and requirements of mTEC progenitors, the role
of Aire in thymus medulla organization and mTEC development, and the
importance of mTEC in post-selection maturation of conventional «fT-cells.
Perhaps most importantly, how the medulla controls the balance between negative
selection and T-Reg production that ultimately results in a self-tolerant state is
poorly understood. Gaining a better understanding of these features of thymic
medulla function should help in identifying the cellular and molecular basis of
T-cell mediated autoimmunity, and could inform future therapeutic strategies
aimed at its treatment. A recent study from our laboratory has shown that med-
ullary thymic epithelial cells are essential for the development of Foxp3+ T-Reg
but are not required for continued development of conventional CD4+ thymocytes
(Cowan et al 2013)
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