
Molecular Biology of Drug Resistance
in Mycobacterium tuberculosis

Tasha Smith, Kerstin A. Wolff and Liem Nguyen

Abstract Tuberculosis (TB) has become a curable disease, thanks to the
discovery of antibiotics. However, it has remained one of the most difficult
infections to treat. Most current TB regimens consist of 6–9 months of daily doses
of four drugs that are highly toxic to patients. The purpose of these lengthy
treatments is to completely eradicate Mycobacterium tuberculosis, notorious for its
ability to resist most antibacterial agents, thereby preventing the formation of drug
resistant mutants. On the contrary, the prolonged therapies have led to poor patient
adherence. This, together with a severe limit of drug choices, has resulted in the
emergence of strains that are increasingly resistant to the few available antibiotics.
Here, we review our current understanding of molecular mechanisms underlying
the profound drug resistance of M. tuberculosis. This knowledge is essential for
the development of more effective antibiotics, which are not only potent against
drug resistant M. tuberculosis strains but also help shorten the current treatment
courses required for drug susceptible TB.
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1 Introduction

Tuberculosis (TB) has plagued humans since antiquity. During the pre-antibiotic
era, patients diagnosed with this so-called ‘‘consumption’’ disease would have felt
hopeless, much like how people feel about many cancers today. TB was treated
with gold, arsenic, cod liver oil, herbs, bed rest, sunshine and fresh air, etc.
(Birnbaum et al. 1891), but none of these therapies were really effective. It was
therefore one of the most deadly diseases during this long period of time. The
recent discovery of antibiotics, dubbed ‘‘magic bullets’’ because of their powerful
potency against pathogenic bacteria, has brought about a real revolution in TB
chemotherapy. Starting with streptomycin in 1943, series of potent TB drugs were
introduced to clinical practice during this ‘‘golden age of antibiotics’’ (1940s–
1960s). The implementation of these drugs to TB treatment immediately resulted
in a sharp decline of TB incidence throughout the world. In fact, the euphoria of
the great success brought a sense of total control over this disease. It was com-
monly thought that TB was no longer a public health concern in many developed
countries. Some even went further to predict that TB would be soon eradicated
from the world (Myers 1963).

Yet, the disease came back in the 1980s with outbreaks of multidrug resistant
(MDR) strains, often associated with the spreading epidemic of the acquired
immune deficiency syndrome (AIDS). It is currently estimated that M. tuberculosis
is infecting around 2 billion people worldwide, equivalent to one-third of the world
population (Corbett et al. 2003). Besides an ability to persist in the face of host
defense mechanisms, allowing its wide spread, M. tuberculosis is capable of
resistance to most antimicrobial agents available (Nguyen and Pieters 2009). As a
result, the existing options for TB chemotherapy are severely restricted. The
repeated use of the same drugs, together with prolonged regimens that often lead to
poor patient compliance, has resulted in the emergence of strains that are
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increasingly resistant to the available drugs. From the first isolated strains that
were resistant to single drugs, sequential accumulation of resistance mutations has
led to the emergence of MDR, extensively drug resistant (XDR), and most recently
totally drug resistant (TDR) M. tuberculosis strains (Ormerod 2005; Dorman and
Chaisson 2007; Udwadia 2012). Infections with some of the latter strains are
essentially incurable by the current TB drugs. Therefore, these resistant strains of
M. tuberculosis pose a serious threat to worldwide TB control programs. To tackle
the current epidemic of drug resistant TB, novel therapeutic interventions are
urgently needed. Besides the efforts to develop completely new antibiotics that are
not affected by the existing resistance mechanisms, other nontraditional approa-
ches such as targeting resistance mechanisms or repurposing old drugs need to be
further investigated. For these approaches to be successful, drug resistance
mechanisms in M. tuberculosis should be thoroughly studied and well understood.

2 Acquired Antibiotic Resistance Mechanisms

Pathogenic bacteria including M. tuberculosis are able to acquire resistance to a
particular antibiotic to which they were previously susceptible. The concept here
referred to as ‘‘acquired antibiotic resistance’’ is in contrast with the intrinsic
resistance discussed later in this chapter. Acquired resistances might occur through
either mutation or horizontal gene transfer. In M. tuberculosis, horizontal transfer
of resistance genes via plasmids or transposon elements has not been reported. By
contrast, all currently known acquired resistances are mediated through chromo-
somal mutations that arise under selective pressure of antibiotic use. A summary of
M. tuberculosis genes to which mutations confer TB drug resistance is presented in
Table 1.

2.1 Genetic Mutation

Darwin’s theory of evolution is perfectly epitomized by the progression of drug
resistance in M. tuberculosis. Like any new traits arising during selective evolu-
tion, antibiotic resistant strains only become predominant in M. tuberculosis
populations if the resistance phenotypes provide the mutants with survival
advantages over their susceptible counterparts. The prolonged drug exposure due
to lengthy regimens might have greatly contributed to the continued progression of
the selective evolution of resistant strains that otherwise would hardly predominate
the population because of their reduced fitness compared to susceptible strains.
The ever-increasing drug use in response to growing TB incidences has resulted in
a steady evolution of M. tuberculosis strains that are progressively resistant to the
available drugs. Besides the matter of selective survival, recent studies show that
exposure of bacterial cells to sublethal levels of bactericidal antibiotics promotes
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cellular mutagenesis leading to increased mutation rates in other drug resistance
genes (Kohanski et al. 2010a). This phenomenon, possibly mediated through the
increased production of reactive oxygen species triggered by bactericidal antibi-
otics (Kohanski et al. 2007), might play a key role in the rapid emergence of
multidrug resistance phenotypes in pathogenic bacteria such as M. tuberculosis. In
light of this knowledge, many current TB drugs might well represent this double-
edged sword. Both isoniazid and ethionamide require activation by redox enzymes
in the mycobacterial cytoplasm to become inhibitory. This process produces
reactive oxygen and/or radicals that exert the mycobactericidal activity (Fig. 1)
(Ito et al. 1992; Wang et al. 1998). But once a mutant survives the killing action of
reactive oxygen and radicals, these same chemical matters would enhance its
mutability leading to the acquisition of additional drug resistance mutations.
Whether or not, and to what level, reactive oxygen and radical species contribute
to the rise of resistance mutations remains to be understood in M. tuberculosis.

2.1.1 New Insights into Pyrazinamide Action and Resistance

Pyrazinamide is a first-line TB antibiotic that is commonly used in combination
with other drugs to shorten treatment regimens. Despite its widespread applica-
tions in TB chemotherapy, the precise mechanism underlying its action, as well as
the mycobacterial mechanisms conferring pyrazinamide resistance had been elu-
sive until recently. Similar to isoniazid and ethionamide, pyrazinamide is a pro-
drug and conversion to its active form pyrazinoic acid is catalyzed by the
mycobacterial enzyme pyrazinamidase, encoded by the pncA gene (Scorpio and
Zhang 1996). Loss of pyrazinamidase activity leads to pyrazinamide resistance,
whereas overexpression confers increased susceptibility (Boshoff and Mizrahi
2000; Bamaga et al. 2002). Mapping of pyrazinamide resistance in M. tuberculosis
clinical isolates found most mutations associated with pncA (Scorpio et al. 1997).
However, there is a small subset of low-level pyrazinamide resistant strains that
have no mutation in pncA, suggesting that these strains might carry mutations in
genes encoding targets of pyrazinamide. In a search for M. tuberculosis proteins
that bind the active molecule pyrazinoic acid, the 30S ribosomal protein S1 (RpsA)
was identified (Shi et al. 2011). Overexpression of rpsA results in increased pyr-
azinamide resistance (Shi et al. 2011). Sequencing of a non-pncA pyrazinamide
resistant strain revealed a 3-base pair in-frame deletion that leads to loss of Ala-
nine 438 at the C terminus of RpsA (Shi et al. 2011). These observations suggested
that RpsA is involved in M. tuberculosis pyrazinamide resistance.

Besides its essential ribosomal function required for protein translation, RpsA
was previously found to be involved in trans-translation through its specific
binding to transfer-messenger RNA (tmRNA) (Wower et al. 2000; Saguy et al.
2007). Trans-translation is a cellular process involved in rescuing ribosomes that
are stalled during translation as well as in the degradation of the incomplete
polypeptide chain and its messenger RNA (Keiler 2008). In this process, stalled

Molecular Biology of Drug Resistance in Mycobacterium tuberculosis 57



NADH

NAD+

I II IV V

O2-

Fe-S
Cluster

Damage

Synthesis

Redox 
Cycling

Fenton reaction
Fe2+

Fe3+

OH
Radical
damage

Cell death Increased
mutation

rates

ATP
ADP + Pi

INH
ETH

NADH
Primary interaction of bactericidal antibiotics with their targets

NAD+

NADH

NADH

NAD+

NADPH NADP+

TCA
Cycle

α-ketoglutarate

D-isocitrate

succinate

glutamate

KGD
GDH

GS

NAD+NADH

malate

oxaloacetate

fumarate

citrate

cic-aconitate

succinic
semialdehyde

ICD

MD

58 T. Smith et al.



mRNA is displaced by tmRNA that encodes a short peptide tagging the stalled
protein for subsequent degradation.

In vitro binding experiments confirmed that pyrazinoic acid, but not pyrazin-
amide prevents interaction between RpsA and tmRNA (Shi et al. 2011). In
addition, the 3-base pair deletion found in rpsA of the non-pncA pyrazinamide
resistant strain mentioned above abolishes pyrazinoic acid binding (Shi et al.
2011). Also, pyrazinoic acid was shown to inhibit trans-translation of the reporter
protein dihydrofolate reductase (Shi et al. 2011). These results suggested that the
molecular target of pyrazinamide is the trans-translation process that might be
essential for stress survival and recovery from nutrient starvation (Keiler 2008).
Large-scale sequencing needs to be done to evaluate the significance of rpsA
mutations in clinical pyrazinamide resistant M. tuberculosis strains.

2.2 Fitness Compensation and the Inevitable Evolution
to the Totally Drug Resistant Phenotype

Acquired antibiotic resistance mechanisms are often associated with a reduced
fitness of the resistant mutants (Andersson and Levin 1999; Andersson 2006;
Andersson and Hughes 2010). This ‘‘fitness cost’’ affects the development, as well
as the stability and domination of the resistance phenotypes. It has been generally
observed that epidemics of drug resistant M. tuberculosis strains mainly circulate
among HIV positive patients, raising the hope that these mutants might never
spread widely among healthy people. However, first studies using mathematical
modeling, as well as those carried out in other organisms, predict that the fitness
cost of M. tuberculosis drug resistant strains could be reduced by the subsequent
appearance of ‘‘compensatory mutations’’, i.e., mutations that correct the fitness
cost due to earlier mutations (Reynolds 2000; Andersson and Hughes 2010; Ser-
geev et al. 2012). This compensatory evolution, restoring fitness of resistant

Fig. 1 Possible interconnections of the TCA cycle, cellular redox homeostasis, and action of
bactericidal antibiotics in M. tuberculosis. The primary interactions between bactericidal
antibiotics and their targets trigger oxidation of NADH, produced in the TCA cycle, through the
electron transport chain. This leads to increased production of superoxide that destroys iron–
sulfur clusters yielding iron for oxidation of the Fenton reaction. The Fenton reaction results in
the formation of hydroxyl radicals that damage nucleic acids, proteins, and lipids, eventually
leading to cell death. However, if a cell survives, these hydroxyl radicals increase its mutagenesis
thus promoting the emergence of MDR strains. The current TB drugs isoniazid (INH) and
ethionamide (ETH) kill mycobacteria via direct conversion to free radicals that may contribute to
the formation of MDR M. tuberculosis strains. The recently discovered MDR determinant PknG
might regulate activity of many enzymes of the TCA cycle via its phosphorylation of GarA.
These enzymes (KGD, GS, and GDH, in red) might affect the cellular NADH pool required for
the downstream electron transport chain triggered by bactericidal antibiotics thus leading to cell
death. MD: malate dehydrogenase, ICD: isocitrate dehydrogenase. Redrawn with modifications
from (Kohanski et al. 2007)

b
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strains, might stabilize the epidemic of resistance phenotypes after they emerge.
Indeed, in vitro studies suggest that resistant M. tuberculosis isolates are able to
restore their fitness after prolonged exposure to antibiotics (Gillespie et al. 2002;
Gagneux et al. 2006), although the identity of those mutations was not known. A
recent study using whole-genome sequencing identified a set of compensatory
mutations in the RNA polymerase genes of rifampicin resistant M. tuberculosis
strains (Comas et al. 2012). In vitro growth competition assays confirmed that
these mutations restore fitness of the rifampicin resistant M. tuberculosis strains
compared to their susceptible counterparts. More convincingly, these mutations
were mapped in 30 % of MDR M. tuberculosis strains isolated from regions of
MDR TB prevalence (Comas et al. 2012).

TDR M. tuberculosis strains have been confirmed in India this year (Ormerod
2005; Dorman and Chaisson 2007; Udwadia 2012). Like MDR and XDR
M. tuberculosis strains, the appearance of these TDR isolates is possibly inevitable
with the increasing use of TB antibiotics. It is probably just a matter of time before
these deadly bacteria appear more frequently in other places. The crucial question
is whether compensatory evolution might allow stabilization of these drug resis-
tance phenotypes, thus enhancing transmission rates of the resistant strains. The
coevolution of drug resistance and fitness traits in M. tuberculosis therefore rep-
resents a deadly menace to humans.

3 Intrinsic Antibiotic Resistance Mechanisms

Besides the ability to acquire new resistance through the acquisition of chromo-
somal mutations, M. tuberculosis is endowed with an array of intrinsic resistance
mechanisms that allow active neutralization of antibiotic actions. These resistance
mechanisms provide a high resistance background that not only limits the appli-
cation of available antibiotics to TB treatment, but also hampers the development
of new drugs. M. tuberculosis intrinsic drug resistance can be divided into two
categories: passive resistance and specialized resistance mechanisms.

3.1 Passive Resistance Mechanisms

Similar to the problems encountered in drug development and chemotherapy of
Gram-negative bacteria, the impermeable cell wall of mycobacteria functions as an
effective barrier for the penetration of antibiotics. Although mycobacteria are
classified as Gram-positive bacteria, their cell wall is extremely thick and multi-
layered with varied hydrophobicity. These layers create an interlayer space similar
to the periplasm of the Gram-negative bacterial cell wall (Hoffmann et al. 2008;
Zuber et al. 2008). The peptidoglycan sacculus is covered by an arabinogalactan
layer, both of which are hydrophilic, thus preventing the transport of hydrophobic
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molecules (Brennan and Nikaido 1995). These two layers are covalently linked to
an outward layer of mycolic acids, long chain fatty acids that form a waxy,
nonfluid barrier restricting penetration of both hydrophobic and hydrophilic
molecules (Liu et al. 1995). For example, diffusion of b-lactams through the
mycobacterial cell wall is hundreds of fold slower than the penetration through that
of Escherichia coli (Kasik and Peacham 1968; Chambers et al. 1995).

The role of the mycobacterial cell wall in intrinsic antibiotic resistance is well
demonstrated by the studies of mutants defective in cell wall biosynthesis. Pio-
neering work by the Nikaido laboratory identified a M. smegmatis mutant defec-
tive in mycolate biosynthesis. This mutant exhibited increased uptake of and
sensitivity to erythromycin, chloramphenicol, novobiocin, and rifampicin (Liu and
Nikaido 1999). Also, transposon mutagenesis studies confirmed the role of cell
wall integrity in mycobacterial intrinsic drug resistance (Gao et al. 2003; Philalay
et al. 2004). For example, transposon insertions in kasB or the virS-mymA operon
(rv3082 to rv3089), genes that were defined to be involved in mycolic acid bio-
synthesis, lead to increased chemical penetration and sensitivity to various anti-
biotics (rifampicin, ciprofloxacin, isoniazid and pyrazinamide) (Gao et al. 2003;
Singh et al. 2003, 2005). The ligation of mycolic acids to sugar moieties (arabi-
nogalactan or trehalose) in the cell wall is catalyzed by a family of redundant
mycolyltransferase enzymes initially known as ‘‘the antigen 85 complex’’ (Belisle
et al. 1997). Deletion of the fbpA gene encoding one of the mycolyltransferases
results in reduced levels of trehalose dimycolates and increased sensitivity to
antibiotics widely used for antibacterial chemotherapy (Nguyen et al. 2005). These
observations confirm that the mycobacterial cell wall plays an important role in
mycobacterial intrinsic resistance against antibiotics. However, because the dou-
bling time of M. tuberculosis is extremely long, the slow penetration rate might in
some cases be high enough to allow antibiotics to accumulate to inhibitory levels
well before cell division occurs, thus making cell wall permeability an important
but not a decisive determinant of drug resistance (Brennan and Nikaido 1995;
Chambers et al. 1995; Quinting et al. 1997).

Similar to the cell wall of Gram-negative bacteria, porins are mounted to outer
layers of the mycobacterial cell wall, thus allowing import of nutrients and small
molecules required for growth (Niederweis 2003). These porins might also play a
role in the import of antibiotics through the outer layer of the mycobacterial cell
wall (Danilchanka et al. 2008). In trans expression of the major porin MspA from
M. smegmatis increases susceptibility of M. tuberculosis and M. bovis to b-lac-
tams, isoniazid, ethambutol, and streptomycin (Stephan et al. 2004). By contrast,
deletion of mspA or mspC in M. smegmatis leads to increased resistance to not only
hydrophilic, but also hydrophobic and large antibiotics such as vancomycin,
erythromycin, and rifampicin (Stephan et al. 2004; Danilchanka et al. 2008).
Although M. tuberculosis encodes at least two porin-like proteins, OmpA and
Rv1698 (Senaratne et al. 1998; Siroy et al. 2008), and in trans expression of
rv1698 restores antibiotic susceptibility to a M. smegmatis mspA mutant (Siroy
et al. 2008), the role of porins in antibiotic uptake and susceptibility has not been
demonstrated directly in M. tuberculosis.
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3.2 Specialized Resistance Mechanisms

Besides the cell wall barrier that helps slow down the penetration of antibiotics
(Nikaido 1994), M. tuberculosis and other mycobacterial species operate multiple
specialized resistance machineries that allow active detoxification of drugs once
they reach the cytoplasmic space.

3.2.1 Modification of Drug Targets

Pathogenic bacteria are able to avoid antibacterial activity of antibiotics through
structural modifications of their targets, thereby reducing antibiotic binding
affinity. The mechanism that confers the intrinsic resistance of M. tuberculosis to
macrolide and lincosamide antibiotics represents a typical example for this type of
resistance. M. tuberculosis and other mycobacterial species are naturally resistant
to macrolides and lincosamides. These antibiotics stop the growth of bacterial cells
through inhibitory action on the protein synthetic machinery. They bind reversibly
to a specific site of the ribosomal RNA in the 50S subunit of bacterial ribosomes,
thus inhibiting translocation of peptidyl-tRNA (Buriankova et al. 2004). It has
been observed that the Pasteur vaccine strain Bacillus of Calmette and Guérin
(BCG) is uniquely susceptible to many macrolides and lincosamides, whereas its
parental strain M. bovis and other vaccine strains remain resistant to the antibi-
otics. Through comparative genomics, it was realized that the sensitivity of BCG
to macrolides and lincosamides is due to its chromosomal deletion of the erm37
gene encoding a ribosomal RNA methyltransferase (Buriankova et al. 2004).
erm37 is located within a larger chromosomal locus known as Region of Differ-
ence 2 (RD2) which was deleted in BCG during its culture passage. Genetic
experiments showed that the macrolide–lincosamide resistance of BCG could be
restored to the level of its parental M. bovis strain by in trans expression of the
erm37 gene from M. tuberculosis (Buriankova et al. 2004). Chemical analyses
showed that this enzyme alters structures of the M. tuberculosis ribosomes via
methylation of 23S ribosomal RNA (Madsen et al. 2005). In vitro macrolide
binding assays also confirmed that Erm37 activity reduces affinity of macrolides to
the ribosomes, thus lowering the inhibitory activity of macrolides on protein
synthesis (Buriankova et al. 2004). Other erm genes conferring macrolide and
lincosamide resistance were also identified in M. smegmatis and M. fortuitum
(Nash 2003; Nash et al. 2005). Interestingly, expression of erm genes in myco-
bacteria is inducible by exposure to macrolides and lincosamide antibiotics (Nash
2003; Nash et al. 2005; Andini and Nash 2006), suggesting that their function is
specialized for macrolide and lincosamide resistance. This inducible expression of
Erm37 is most likely controlled by the MDR transcription regulator WhiB7
(Morris et al. 2005; Burian et al. 2012), which is discussed elsewhere in this
chapter.
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Another example demonstrating the ability of M. tuberculosis to neutralize drug
action through enzymatic modification of its target is the methylation of ribosomal
RNA that mediates resistance to cyclic peptide antibiotics. Capreomycin and
viomycin are commonly used to treat MDR TB, but clinical strains resistant to
these drugs have been isolated. Genetic studies carried out with M. smegmatis and
M. tuberculosis found that mutations associated with capreomycin resistance are
mapped to the tlyA gene that encodes a 2’-O-methyltransferase (Maus et al. 2005).
TlyA methylates both 16S and 23S ribosomal RNA at nucleotide C1409 and
C1920, respectively (Johansen et al. 2006). These methylations render mycobac-
terial ribosomes susceptible to the binding of capreomycin and viomycin (Maus
et al. 2005; Johansen et al. 2006). Inactivation of tlyA led to increased resistance to
these cyclic peptides, whereas in trans complementation restored capreomycin
susceptibility (Maus et al. 2005).

3.2.2 Chemical Modification of Drugs

Mycobacteria are also able to inactivate antibiotics via direct chemical modifi-
cations. Recent studies have revealed the importance of acetylation on myco-
bacterial resistance to aminoglycosides. Aminoglycosides are broad-spectrum
antibiotics that can act either as bactericidal or bacteriostatic drugs depending on
concentration. This group of antibiotics constitutes an important position in the
history of TB chemotherapy. Whereas streptomycin was the first effective remedy
for TB, kanamycin and amikacin are currently used as last resorts to treat MDR TB
cases. In addition, resistance to these drugs in MDR strains is the hallmark to
define XDR TB. Aminoglycosides may have multiple potential mechanisms of
action. Although some of them have been shown to act as inhibitors of protein
biosynthesis, the precise mechanism of action of aminoglycosides remains to be
understood. Early studies in M. smegmatis and M. fortuitum identified homologs of
aminoglycoside 2’-N-acetyltransferase (aac) that confer resistance to gentamicin,
dibekacin, tobramycin, and netilmicin (Ainsa et al. 1996). Although a homolog of
AAC is apparently present in M. tuberculosis (Vetting et al. 2003), its function in
aminoglycoside resistance has not been demonstrated. Surprisingly, the intrinsic
resistance of M. tuberculosis to aminoglycosides has been recently attributed to a
different acetyltransferase (Zaunbrecher et al. 2009). The protein termed Enhanced
Intracellular Survival (EIS) was first discovered as a determinant of mycobacterial
survival in host macrophages (Wei et al. 2000).

High-level kanamycin resistance in M. tuberculosis isolates has been mapped to
the 16S ribosomal RNA gene rrs. However, the majority of isolates that display
lower levels of kanamycin resistance have no mutation in rrs. To study mechanisms
underlying kanamycin resistance in these isolates, a cosmid library was constructed
using genomic DNA from one of these kanamycin resistant M. tuberculosis strains
(Zaunbrecher et al. 2009). The cosmid library was transformed into a kanamycin
susceptible M. tuberculosis strain and kanamycin resistant transformants were
obtained. Further mapping of the cosmid, which conferred kanamycin resistance,
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identified mutations within the eis promoter region, which increased transcription of
eis by 180-fold (Zaunbrecher et al. 2009). Importantly, these mutations were found
in 80 % of low-level kanamycin resistant clinical isolates (Zaunbrecher et al. 2009;
Campbell et al. 2011; Engstrom et al. 2011), as well as in MDR M. tuberculosis
isolates (Huang et al. 2011). In addition, in vitro studies showed that Eis acetylates
multiple amine groups of aminoglycosides using acetyl-coenzyme A as an acetyl
donor (Chen et al. 2011), thereby inactivating the antibiotics. The dual function of
EIS in the protection of M. tuberculosis against mycobactericidal mechanisms of
both host immunity and antibiotics indicates a sinister coevolution of these two traits
under the pressure of the recent antibiotic use.

3.2.3 Enzymatic Degradation of Drugs

Another pathway that pathogenic bacteria commonly use to subvert antibiotics is
to directly degrade them using hydrolases. This mechanism is best studied in the
case of b-lactams. These antibiotics bind and inhibit the activity of penicillin
binding proteins (PBPs) involved in the assembly of the peptidoglycan network,
thereby disrupting cell wall biosynthesis and leading to cell death. There are at
least four major PBPs encoded in the genome of M. tuberculosis. These proteins
bind b-lactams at clinically achievable concentrations (Chambers et al. 1995),
indicating that target affinity is not an important determinant of b-lactam resistance
in mycobacteria. The cell wall of mycobacterial species clearly contributes to the
reduced accessibility of b-lactams to their targets. In this regard, the slow growth
rate of M. tuberculosis serves both as a negative and positive factor in contributing
to b-lactam resistance. For example, carbapenems are relatively unstable, and
therefore lose activity much faster than the mycobacterial growth rate. However,
daily uptake could lead to lethal concentrations that are sufficient to inhibit the
slow cell division machinery of mycobacteria (Watt et al. 1992). This makes the
cell wall barrier an important but not the principal determinant of b-lactam
resistance.

b-lactamases, which hydrolyze the b-lactam ring of b-lactams, have been
proven to provide the paramount b-lactam resistance in mycobacteria (Chambers
et al. 1995). This conclusion is most supported by studies in M. fallax, the only
Mycobacterium species highly susceptible to b-lactams (Kasik 1979; Quinting
et al. 1997). Permeability assays first showed that b-lactam penetration through the
cell wall of M. fallax is similar to those observed in other mycobacteria. This
barrier apparently slows down accessibility of b-lactams to their targets, but half
equilibration times should allow accumulation of the drugs at concentrations lethal
to the bacterium (Quinting et al. 1997). However, when the b-lactamase from
M. fortuitum was in trans expressed in M. fallax, its resistance was elevated to
levels comparable to other mycobacterial species (Quinting et al. 1997). It is
important to note that mycobacterial b-lactamases are generally considered less
active than those of other pathogenic bacteria. However, the slow penetration of b-
lactams across the thick cell wall of mycobacteria renders this low b-lactamase
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activity effective enough to protect mycobacteria from b-lactam action (Jarlier
et al. 1991).

The most important b-lactamase in M. tuberculosis is BlaC, which belongs to
the Ambler class-A b-lactamases (Voladri et al. 1998; Wang et al. 2006), whose
enzymology and structures have been thoroughly characterized (Voladri et al.
1998; Wang et al. 2006). BlaC exhibits broad substrate specificity, possibly due to
its large and flexible substrate-binding site (Wang et al. 2006). In addition, M.
tuberculosis BlaC displays measurable activity to carbapenems, which are gen-
erally resistant to b-lactamases of other pathogenic bacteria (Hugonnet and
Blanchard 2007; Tremblay et al. 2010). Also, b-lactamase inhibitors such as
clavulanic acid are less effective against BlaC compared to other class A enzymes.
Besides BlaC, M. tuberculosis encodes at least three more b-lactamase genes:
blaS, rv0406c, and rv3677c, which were shown to provide M. tuberculosis with
lower b-lactamase activities (Flores et al. 2005; Nampoothiri et al. 2008).
Expression of BlaC in M. tuberculosis is inducible by b-lactams (Sala et al. 2009),
indicating that this system has been specialized for b-lactam resistance. The
induction of BlaC was recently shown to be mediated through BlaI, a winged helix
regulator that functions as a transcriptional repressor of blaC expression. In the
absence of b-lactams, BlaI forms homodimers that bind the promoter of the blaC
gene, thus inhibiting blaC transcription (Sala et al. 2009). When M. tuberculosis is
exposed to b-lactams, BlaI is dissociated from its DNA binding site, thereby
derepressing the transcription of blaC that confers increased b-lactam resistance
(Sala et al. 2009).

3.2.4 Molecular Mimicry of Drug Targets

Molecular mimicry represents a fascinating mechanism that M. tuberculosis might
use to neutralize action of fluoroquinolones. These synthetic antibiotics have
recently become important drugs for the treatment of drug resistant TB cases
(Duncan and Barry 2004). Fluoroquinolones are bactericidal drugs that kill bac-
teria through inhibition of DNA replication, transcription, and repair. These
antibiotics interact with DNA gyrase or topoisomerase in complexes with DNA,
thereby stabilizing DNA breaks while inhibiting resealing of DNA strands. These
events eventually result in DNA degradation and cell death (Andriole 2005).

Similar to other bacteria, acquired fluoroquinolone resistance in M. tuberculosis
is commonly mapped to mutations in the genes that encode DNA gyrases, gyrA,
and gyrB (Table 1). However, the molecular mechanisms responsible for the
intrinsic fluoroquinolone resistance in mycobacteria have not been well under-
stood. A M. smegmatis protein (MfpA) was first identified to confer low-level
resistance to fluoroquinolones. Overexpression of mfpA from a multicopy plasmid
results in increased resistance to ciprofloxacin and sparfloxacin in M. smegmatis
and M. bovis (Montero et al. 2001). By contrast, deletion of mfpA leads to reduced
fluoroquinolone resistance, indicating that the resistance level is dependent on
mfpA expression. The sequence of MfpA has highest homology to pentapeptide
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repeat proteins in which every fifth amino acid is either leucine or phenylalanine.
Interestingly, structure of the M. tuberculosis MfpA resembles the 3D structure of
the DNA double helix (Ferber 2005; Hegde et al. 2005), with the tandem of
pentapeptide repeats coiling around in a right-handed helix of the same width as
DNA (Morais Cabral et al. 1997; Hegde et al. 2005). It was suggested that MfpA
mimics DNA structure to sequester fluoroquinolones in the cytoplasm, thus setting
DNA free from the drug attack (Ferber 2005). However, the physiological function
of MfpA and how MfpA contributes to fluoroquinolone resistance in the clinic
remain to be established. Nevertheless, this finding reveals a fascinating capability
of pathogenic bacteria in evolving novel resistance mechanisms against
antibiotics.

3.2.5 Drug Deportation By Efflux Pumps

An active mechanism that commonly provides protection against antibiotics in
pathogenic bacteria is to expel the reagents using efflux pumps. Most of these
membrane-spanning proteins play roles in the physiology or metabolism of bacteria;
for example, transporting of nutrients, toxins, wastes, or signaling molecules
through the cell wall. Therefore, the functions in antibiotic resistance of many
transporters might be secondary and due to nonspecific transportation. Indeed, 20
out of the total of 36 genes encoding membrane transport proteins in the E. coli
genome confer some levels of resistance to one or more antibiotics (Nishino and
Yamaguchi 2001). However, these transporters are commonly controlled by regu-
latory systems that might have evolved to respond to antibiotics, thus making
transport activities specialized for antibiotic resistance. For example, a major MDR
determinant in E. coli is AcrB, a transporter of a broad substrate specificity. How-
ever, activity of AcrB has evolved as its expression is controlled by three antibiotic-
responsive regulatory systems: Mar, Sox, and Rob (Alekshun and Levy 1997).

There are at least 18 transporters thus far characterized to be involved in
antibiotic susceptibility of mycobacterial species (Viveirosa et al. 2012). For more
specific information related to these transporters and their role in antibiotic
resistance, readers are referred to many recent excellent reviews (da Silva et al.
2011; Viveirosa et al. 2012). Most of these transporters confer low-level antibiotic
resistance to mycobacteria. Similar to E. coli, activities of some of these trans-
porters are coupled to regulatory systems that are responsive to antibiotics. For
example, two mycobacterial transporters, encoded by the iniBAC and efpA genes,
are negatively controlled by the transcription regulator Lsr2 (Colangeli et al.
2007). Whereas IniBAC confers resistance to isoniazid and ethambutol, EfpA is
rather a nonspecific MDR transporter (Colangeli et al. 2005, 2007). Importantly,
the transcriptional control of IniBAC and EfpA by Lsr2 is inducible by isoniazid or
ethambutol (Colangeli et al. 2007), indicating a functional evolution toward
antibiotic resistance. Another example is the positive regulation of Tap, a trans-
porter of aminoglycosides and tetracycline, by the MDR regulatory protein WhiB7
(Ainsa et al. 1998; Morris et al. 2005). Expression of WhiB7 and its regulon
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including Tap is induced when M. tuberculosis is exposed to tetracycline, strep-
tomycin, or erythromycin (Morris et al. 2005; Burian et al. 2012). Interestingly, a
recent study showed that expression of multiple efflux pumps including Tap is
induced in mycobacteria residing within host granulomas, indicating that these
molecular pumps may contribute to the drug tolerance of M. tuberculosis in latent
TB (Adams et al. 2011).

3.3 Redox Homeostasis and the Mycobactericidal Activity of Drugs

Pioneering work in E. coli and Salmonella established the relationship of antibiotic
resistance and oxidative stress responses (Demple 2005). These two phenotypes
are controlled by common regulatory proteins such as SoxRS, MarRAB, or Rob.
Although a clear reason for this regulatory overlap has not been established, it is
conserved in both E. coli and Salmonella and believed to provide evolutionary
advantages to these bacteria in the defense against general toxic environments
(Demple 2005). Growing evidence recently revealed a tight relationship of killing
mechanisms of antibiotics and cellular redox homeostasis in bacteria (Kohanski
et al. 2007, 2010a, b), which could help explain the co-evolution of regulatory
systems to control these two phenotypes. In E. coli, exposure to bactericidal
antibiotics stimulates the production of hydroxyl radicals that ultimately lead to
cell death (Kohanski et al. 2007). The terminal production of hydroxyl radicals
triggered by bactericidal antibiotics is mediated through complex sequential events
starting with the tricarboxylic acid (TCA) cycle. First, NADH produced in the
TCA cycle is oxidized via complex electron transport chains, which results in the
production of superoxide. Superoxide then damages iron–sulfur clusters, thereby
donating ferrous iron to the oxidation of the Fenton reaction that produces
hydroxyl radicals. Finally, hydroxyl radicals damage DNA, proteins, and lipids,
resulting in cell death (Fig. 1) (Kohanski et al. 2007).

In mycobacteria, the relationship between oxidative stress responses and anti-
biotic resistance has also been implicated through the studies of the prodrugs
isoniazid and ethionamide. Oxidative stress response proteins such as KatG and
AhpC were found to be important for the oxidative activation of these antibiotics
(Zhang et al. 1992, 1996; Sherman et al. 1996). In addition, expression of the stress
responsive sigma factor F (SigF) is induced by antibiotics (Michele et al. 1999).
Also, mycothiol, the actinobacterial specific thiol molecule involved in myco-
bacterial protection against oxygen toxicity, is also required for antibiotic resis-
tance (Rawat et al. 2002; Buchmeier et al. 2003; Vilcheze et al. 2008). More
recently, the relationship between redox homeostasis and antibiotic resistance has
become clearer from the studies of the MDR systems Lsr2 and WhiB7 (Morris
et al. 2005; Colangeli et al. 2009; Burian et al. 2012). Lsr2 was previously reported
to control expression of the drug efflux pump IniBAC discussed above (Colangeli
et al. 2005, 2007). Interestingly, a recent paper suggested that Lsr2 protects M.
tuberculosis from reactive oxygen intermediates, possibly through its histone-like
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activity that protects DNA from the attacks of hydroxyl radicals (Colangeli et al.
2009). WhiB7 is a MDR determinant found only in actinobacteria including
streptomycetes and mycobacteria. Deletion of whiB7 in mycobacteria leads to
increased susceptibility to multiple antibiotics, whereas overexpression results in
elevated resistance levels, indicating that WhiB7 activity is directly linked to the
multidrug resistance phenotype (Morris et al. 2005). The M. tuberculosis WhiB7
protein is a 122-amio acid iron–sulfur cluster carrying protein. Transcriptomic
analysis showed that WhiB7 affects transcription of multiple structural antibiotic
resistance genes including eis, erm37, and tap that are discussed elsewhere in this
chapter. Interestingly, expression of whiB7 could be induced by exposure to not
only antibiotics such as erythromycin and tetracycline but also the reducing
reagent dithiothreitol (Burian et al. 2012), indicating its function in antibiotic
resistance is responsive to cellular redox fluctuations. Combination of antibiotics
and dithiothreitol further elevates whiB7 expression. By contrast, an oxidative
reagent diamide inhibits whiB7 induction (Burian et al. 2012). These experiments
indicate the importance of a reductive environment for WhiB7 activity. Besides
WhiB7 and Lsr2, another MDR protein whose function might relate to oxidative
stress and the TCA cycle was recently reported in mycobacteria. The eukaryotic-
type protein kinase G (PknG) is required for the intrinsic multidrug resistance in
M. smegmatis and M. tuberculosis (Wolff et al. 2009). Either genetic deletion or
chemical inhibition of PknG kinase activity results in increased susceptibility of
mycobacteria to multiple antibiotics (Wolff et al. 2009). Interestingly, PknG was
previously reported to mediate survival of pathogenic mycobacteria in host mac-
rophages (Walburger et al. 2004). These findings indicate that traits related to
antibiotic resistance and virulence might be interconnected in M. tuberculosis.
Although the precise molecular mechanism underlying the function of PknG in
mycobacterial antibiotic resistance has remained unknown, the possible involve-
ment of this kinase in the control of the TCA cycle might provide an explanation
(Fig. 1). Together with some other kinases, PknG was found to phosphorylate
OdhI, an inhibitor of the 2-oxoglutarate dehydrogenase (ODH) complex of the
TCA cycle, in Corynebacterium glutamicum (Niebisch et al. 2006). ODH cata-
lyzes the NAD+-dependent conversion of 2-oxoglutarate (or a-ketoglutarate) to
succinyl CoA. Phosphorylated OdhI is no longer able to inhibit ODH (Niebisch
et al. 2006). In M. tuberculosis, the TCA cycle lacks ODH activity. Instead, a-
ketoglutarate is first converted into succinic semialdehyde by a-ketoglutarate
decarboxylase (KGD), before further conversion to succinate (Fig. 1) (Tian et al.
2005). The M. tuberculosis OdhI homolog, termed GarA, is also phosphorylated
by multiple mycobacterial kinases including PknG. Unphosphorylated GarA was
suggested to act as an inhibitor of KGD and NAD+-dependent glutamate dehy-
drogenase (GDH), yet as an enhancer of glutamate synthase (GS) activity (Nott
et al. 2009; Chao et al. 2010). These enzymes are required for the interconversion
of NADH and NAD+ (Fig. 1). Therefore, PknG kinase activity may affect the
cellular NADH pool that is required for the superoxide production triggered by
bactericidal antibiotics leading to eventual cell death (Kohanski et al. 2007,
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2010b). It remains to be established whether this model is correct and how PknG
affects this NADH-mediated mycobactericidal action of TB antibiotics.

4 Epigenetic Drug Tolerance

Besides the acquired and intrinsic resistance mechanisms that are defined by genetic
determinants, epigenetic drug tolerance has been observed in M. tuberculosis, often
associated with latent or relapsed TB cases. This phenotypic drug tolerance is
associated with the phenomenon of persisters, a small subpopulation of cells with
distinct but as-yet-unknown metabolic or physiological states. Persisters are
genetically identical with susceptible counterparts and able to convert into sus-
ceptible cells upon restoration of normal environments (Lewis 2008; Zhang 2012).

Whereas drug resistance mechanisms result in reduced access of an antibiotic to
its target, drug tolerance displayed by persisters might be associated with low
metabolic activities or cell division during dormancy. This leads to a reduction of
the cellular requirement for the proteins or machineries that are targeted by the
antibiotic (Lewis 2008). Therefore, binding and inhibition of antibiotics to targets
might occur normally, but the inhibition is no longer lethal to the dormant bac-
terium (Lewis 2008). In light of the recent knowledge of how bactericidal anti-
biotics kill bacterial cells (Kohanski et al. 2007, 2010b), inactive metabolic
pathways such as a stalled TCA cycle might prevent cell death caused by those
antibiotics. Once a persister re-enters active growth, cellular requirement for the
targeted proteins is resumed, thus resensitizing the metabolically active cell to
antibiotics. M. tuberculosis enters a dormant state during latent infection that is
characterized by a shutdown of most of its metabolism, leading to increased
antibiotic tolerance (Gomez and McKinney 2004; Gengenbacher and Kaufmann
2012). Indeed, latent infections possibly contain persister cells that are more dif-
ficult to treat than active TB normally caused by actively dividing bacilli (Gomez
and McKinney 2004; Gengenbacher and Kaufmann 2012). M. tuberculosis isolates
obtained from TB patients that had shown prolonged persistence or treatment
relapse showed significantly increased tolerance to isoniazid, ethambutol, and
rifampicin compared to isolates from regular patients, but this tolerance was
strictly phenotypic (Wallis et al. 1999). Also, persister-like bacilli that replicate
very slowly or completely stop growth have been isolated from TB sputum
(Garton et al. 2008). Transcriptome analysis of these cells indicated that drug
tolerance is due to low metabolic rates rather than resistance mutations (Garton
et al. 2008).

A dormant-like state could be induced in vitro by mimicking environmental
aspects of M. tuberculosis persisters surviving during latent TB. Probably, the best
known of such methods is the Wayne model in which gradual oxygen depletion
results in a stepwise transition to a dormant cell population that exhibits very low or
absent metabolic activities and increased drug tolerance (Wayne and Hayes 1996).
Another system uses nutrient starvation to obtain nonreplicating M. tuberculosis
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cells, which display down-regulated respiration and global metabolism but high
levels of multidrug tolerance (Betts et al. 2002; Xie et al. 2005). In addition,
exposure of M. tuberculosis to antibiotics such as D-cycloserine allows isolation of
drug tolerant persisters whose transcriptome displays a downregulation of metabolic
pathways characteristic of bacterial persisters (Keren et al. 2011). While all of these
models share certain features, such as reduced intracellular ATP level and increased
lipid metabolism, it is not surprising that other markers vary, possibly because of
different inducing conditions (Keren et al. 2011; Gengenbacher and Kaufmann
2012). Nevertheless, these studies confirmed the relationship of phenotypic drug
resistance and low metabolic activity during M. tuberculosis dormancy in the host.

When bacteria are growing in vitro in the absence of antibiotics, persisters can
be steadily isolated with frequencies increasing in stationary phase (Keren et al.
2004, 2011; Hansen et al. 2008; Lewis 2008). Thus, persister formation is likely an
intrinsic characteristic of a bacterial population that is related to community het-
erogeneity. It is thought that persisters function as cells that sacrifice active growth
in order to ensure survival of the population in disastrous events such as antibiotic
exposure (Keren et al. 2004; Lewis 2008). A recent study demonstrated culture
heterogeneity in M. smegmatis arisen from asymmetric cell division and cell aging
(Fig. 2) (Aldridge et al. 2012). After a cell division event, only one of the daughter
cells contains the pre-existing division pole. and thus quickly progresses through
another cycle of division, whereas the second daughter cell must first form a new
growing pole of its own (Aldridge et al. 2012). The latter cell also elongates more
slowly than the former, but it is more tolerant to antibiotics until the next division
event (Fig. 2) (Aldridge et al. 2012). Distinct subpopulations of the diversified
cultures thereby display varied levels of antibiotic susceptibility (Aldridge et al.
2012) that might be related to the formation of persisters triggered by antibiotic
exposures.

The precise molecular mechanisms underlying the formation of drug tolerant
persisters in vivo remain largely unknown. While it is extremely difficult to study
the M. tuberculosis persisters residing in granulomas of human TB infections,
animal studies and in vitro dormancy systems might help to advance our under-
standing. In the Cornell mouse model originally described in the 1950s, infected
mice are treated with isoniazid and pyrazinamide until mice show no sign of active
disease and no detectable bacilli by organ culture (McCune et al. 1956; McCune
and Tompsett 1956). Reactivation of the disease occurs spontaneously following
cessation of the treatment or triggered by immunosuppression, indicating the
existence of drug tolerant persisters that are not cleared by the regimens (McCune
et al. 1956; McCune and Tompsett 1956; Scanga et al. 1999). A similar mouse
model infected with transposon insertion M. tuberculosis mutants was recently
used to screen for mycobacterial genes involved with isoniazid persistence (Dhar
and McKinney 2010). Using this animal infection model, genes required for iso-
niazid persistence have been identified. For example, cydC, encoding a putative
ATP-binding subunit of an ABC transporter, which is upregulated during chronic
infections in mice (Shi et al. 2005), was found to be required for survival in
isoniazid treatment (Dhar and McKinney 2010). Importantly, survival of cydC
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mutant in the absence of isoniazid was identical to that of wild-type M. tuber-
culosis, indicating the function of the CydC is specialized for antibiotic
persistence.

In other bacteria, toxin–antitoxin (TA) systems have been identified as the most
obvious mechanism likely involved in persister formation. Interestingly, the
M. tuberculosis genome encodes for over 65 such TA pairs, while E. coli encodes
for roughly 20 (Keren et al. 2011). The principle behind these gene pairs consists
of a sensitive, quickly modulated method to influence large numbers of genes and
pathways by employing two components. While the ‘‘toxin’’ component inhibits
critical cellular functions such as DNA replication or translation, thus leading to
metabolic downshifts, the matching ‘‘antitoxin’’ neutralizes the activity of the
toxin, thereby resulting in upshifts of metabolism (Lewis 2008). The production
and degradation of antitoxin molecules therefore allows regulation of dormancy
triggers. TA modules are thought to be redundant (Keren et al. 2004, 2011), and
the high number contained by M. tuberculosis may indicate the great importance
for TA-mediated persister formation during latent infection. In fact, many of the
65 TA pairs encoded in the M. tuberculosis genome have indeed been shown to
play a role in drug tolerance and dormancy. When M. tuberculosis was exposed to
D-cycloserine to induce persister formation, 10 TA modules were shown to be
upregulated (Keren et al. 2004, 2011). Among those induced was rv2866 that
encodes the toxin component of the TA pair Rv2865–Rv2866. Rv2866 is a
homolog of the mRNA endonuclease RelE, which was shown to induce dormancy
by shutting down translation in E. coli (Keren et al. 2004, 2011). Another study
showed that VapC, the toxin component of the TA module VapC–VapBC, acts
through specific binding and cleavage of RNA, thus downregulating metabolism
(McKenzie et al. 2012; Sharp et al. 2012). Similarly, the toxin Rv1102c of the TA
module Rv1102c–Rv1103c acts through its ribonuclease activity, which can be
neutralized by Rv1103c that forms a complex with the toxin (Han et al. 2010).

Fig. 2 Asymmetric cell division introduces population heterogeneity in growth rate and drug
tolerance levels. A microfluidic chamber, which allows culturing mycobacterial cells for live-cell
imaging, was developed. Growth from single cells (microcolonies) up to five generations were
individually followed and analyzed. a Schematic model of growth and division starting from a
single mycobacterial cell. Elongation occurs at one pole (red arrow) that is inherited by only one
daughter cell, termed accelerator (Acc). The second daughter cell, or alternator (Alt), has to form
a new pole before elongation and cell division can occur again. This requirement for the
formation of a new growing pole results in a downshift of the cell’s elongation rate compared to
accelerators that divide at unchanged speed due to the inherited pole. b The elongation rate of
cells within 10 microcolonies is grouped dependent on cell pole ages (see a). Means of elongation
rates are indicated by the larger ovals, distributions are indicated by smaller ovals. c and
d Microcolonies in which alternators outnumber accelerators (green area, right) exhibit increased
drug persistence compared to those in which accelerators dominate (orange area, left). This is
likely due to decreased elongation rates and metabolic activity of alternator cells. Microcolonies
were treated with either meropenem (c) or isoniazid (d) at concentrations lethal for actively
growing cells. Survival was determined by measuring the number of cells in each microcolony
that could regrow after the termination of antibiotic treatment. Reproduced with permission from
(Aldridge et al. 2012)

b
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When Rv1102c was expressed without its antitoxin in M. smegmatis, growth was
arrested and the formation of persisters tolerant to kanamycin and gentamycin was
increased (Han et al. 2010).

Phosphates were recently implicated in M. tuberculosis drug persistence.
Specifically, PhoY2, the M. tuberculosis homolog of E. coli PhoU that regulates
the pst operon, acts as a negative regulator of phosphate uptake (Li and Zhang
2007; Shi and Zhang 2010). Deletion of phoY2 led to decreased tolerance of
pyrazinamide and rifampicin in M. tuberculosis (Shi and Zhang 2010). How
phosphate uptake directly impacts persister formation and drug tolerance remains
largely unknown. However, recent studies suggested that inorganic polyphosphate
might play a role in the transition from vegetative growth to dormancy and drug
tolerance in M. tuberculosis (Thayil et al. 2011). Polyphosphate might act by
inducing expression of the sigma factor RpoS that regulates expression of some 50
genes responsible for downregulation of metabolism and cell division (Shiba et al.
1997; Hengge-Aronis 2002).

In an interesting departure from the common theme of drug tolerance-metab-
olism correlation, a recent study suggested the involvement of efflux pumps in
drug tolerance of M. tuberculosis (Adams et al. 2011). This study using an in vivo
model of zebrafish infected with M. marinum followed by treatment with TB drugs
reported the emergence and enrichment of a multidrug tolerant M. marinum
population that was later disseminated into granulomas (Adams et al. 2011).
Interestingly, drug tolerance in these bacilli could be reduced by co-treatment with
efflux pump inhibitors, indicating that the observed drug tolerance was at least
partially mediated by activity of efflux pumps (Adams et al. 2011).

5 Conclusions and Perspectives

It has only been less than 100 years since antibiotics were first used to treat
bacterial infections. This time period is very short considering the pre-antibiotic
era dated back thousands of years during which infectious diseases might have
acted as selective forces of human evolution (Wang et al. 2012). For a long time,
humans and bacteria had co-evolved in duels. However, everything has changed
since antibiotics were discovered and applied in mass amounts to modern medi-
cine: bacteria now must evolve under the additional selective pressure of these
killing molecules. Evidence thus far indicates that pathogenic bacteria such as
M. tuberculosis are well able to cope with this pressure and that they have evolved
to become progressively resistant to antibiotics. Acquired resistances due to
mutations in genes encoding target proteins or genes required for drug activities
have allowed rapid evolution of mutants that become newly resistant to the anti-
biotics used. Accumulation of these resistance mutations has led to the emergence
of M. tuberculosis strains that are more and more resistant to the available anti-
biotics. More alarmingly, recent studies indicate that these drug resistant mutants
are able to evolve to regain fitness via compensatory mutations, thus enhancing
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their transmissibility and/or virulence. In addition to the acquired resistances
caused by chromosomal mutations, M. tuberculosis is naturally resistant to most
antibiotics. The profound intrinsic drug resistance in M. tuberculosis includes both
passive and specialized mechanisms, the latter of which are able to respond to the
presence of antibiotics. In fact, structural proteins capable of antibiotic resistance
might have existed long before the clinical applications of these molecules
(D’Costa et al. 2006, 2011). While these ‘‘drug resistance’’ proteins might still
play roles in the physiology or metabolism of M. tuberculosis and other bacteria,
inducible expression upon antibiotic exposure allows activities of these proteins
important for antibiotic resistance. In this regard, the evolution of regulatory
systems toward antibiotic responses might play a key role in specializing the
function of those drug resistance systems. In addition to these two types of drug
resistance, transition of M. tuberculosis from active growth into a dormant state
confers increased phenotypic drug tolerance, which reflects the therapeutic
recalcitrance of latent TB. These resistance and tolerance mechanisms hamper not
only the clinical application of available antibiotics but also the development of
new drugs. Nevertheless, understanding the resistance mechanisms could aid in the
discovery of novel chemotherapeutic methods. For example, a recently emerging
strategy termed ‘‘targeting resistance’’ uses inhibitors of resistance mechanisms to
(re)sensitize resistant bacteria to the inactivated antibiotics. This strategy might
help not only to recharge the inactivated drugs but also to synergize drugs that are
less active because of intrinsic resistance mechanisms (Nguyen 2012).
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