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Abstract The development of animal models that demonstrate excessive levels of
alcohol consumption has played an important role in advancing our knowledge
about neurobiological underpinnings and environmental circumstances that engen-
der such maladaptive behavior. The use of these preclinical models has also provided
valuable opportunities for discovering new and novel therapeutic targets that may be
useful in the treatment of alcohol use disorder (AUD). While no single model can
fully capture the complexities of AUD, the goal is to develop animal models that
closely approximate characteristics of heavy alcohol drinking in humans to enhance
their translational value and utility. A variety of experimental approaches have been
employed to produce the desired phenotype of interest—robust and reliable exces-
sive levels of alcohol drinking. Here we provide an updated review of five animal
models that are commonly used. The models entail procedural manipulations of
scheduled access to alcohol (time of day, duration, frequency), periods of time when
access to alcohol is withheld, and history of alcohol exposure. Specially, the models
involve (a) scheduled access to alcohol, (b) scheduled periods of alcohol deprivation,
(c) scheduled intermittent access to alcohol, (d) scheduled-induced polydipsia, and
(e) chronic alcohol (dependence) and withdrawal experience. Each of the animal
models possesses unique experimental features that engender excessive levels of
alcohol consumption. Both advantages and disadvantages of each model are
described along with discussion of future work to be considered in developing
more optimal models. Ultimately, the validity and utility of these models will lie
in their ability to aid in the discovery of new and novel potential therapeutic targets
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as well as serve as a platform to evaluate treatment strategies that effectively reduce
excessive levels of alcohol consumption associated with AUD.
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1 Introduction

Alcohol use disorder (AUD) is a chronic relapsing disease that constitutes a signif-
icant public health problem. Heavy (excessive) levels of alcohol consumption over a
prolonged period of time along with increased vulnerability to relapse represent
hallmark features of AUD. The development of animal models that incorporate these
key behavioral characteristics has played an important role in advancing our knowl-
edge about biological underpinnings and environmental circumstances that engender
such maladaptive behavior. These preclinical models are also crucial for identifying
new potential therapeutic targets as well as providing a platform for evaluating the
efficacy and safety of various treatment strategies.

We previously outlined numerous experimental approaches employed in devel-
oping rodent models of excessive alcohol self-administration (Becker 2013). As
noted in that review, a major effort devoted to this endeavor has entailed devising
experimental strategies that overcome the fact that rodents typically do not self-
administer alcohol in sufficient amounts to produce overt signs of intoxication.
Further, when given the opportunity to voluntarily drink alcohol, even under cir-
cumstances when access is unlimited, rodents rarely will consume alcohol in a
manner that results in significant elevation in blood alcohol levels (above legal
limits). In the past 2—-3 decades, the field has progressed with the development of
several new models and the resurrection and refinement of some older ones that
demonstrate excessive and physiologically relevant levels of alcohol consumption.
As detailed in our last review (Becker 2013), these models have generally entailed
incorporating genetic manipulations (e.g., selective breeding for high alcohol drink-
ing and preference), environmental manipulations that involve modifying scheduled
access to alcohol and scheduled periods of alcohol deprivation, and linking drinking
procedures with dependence models. Here we provide an updated review of these
various models, again outlining procedural and translational advantages and disad-
vantages as well as addressing more contemporary work highlighting potential
sex-related differences.
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2 Models of Continuous Free-Choice Access to Alcohol

A common approach for studying voluntary alcohol consumption in rodents
involves providing continuous (24-h) access to alcohol in a 2-bottle choice situation.
Alcohol solutions of varying concentrations are presented in the home cage along
with an alternative fluid (typically water) over a number of days. The main advan-
tages of this approach are that it is relatively simple to implement, it enables
relatively quick assessment of general avidity for alcohol, and it is a useful model
for screening genetic determinants of the behavior (Ciccocioppo 2012; Crabbe et al.
2010). Indeed, unrestricted (24-h) daily access to alcohol in this 2-bottle choice
model has been used to selectively breed lines of rats (e.g., P/NP, HAD/LAP,
AA/ANA, and UChA/UChB) (McBride et al. 2014; Quintanille et al. 2006; Sommer
et al. 2006) and mice (e.g., HAP/LAP) (Grahame et al. 1999) that display
high vs. low alcohol preference and intake. The model has also been extensively
employed to characterize alcohol consumption in unique recombinant inbred models
of mice (e.g., BXD lines) (Gill et al. 1996; Phillips et al. 1994; Rodriguez et al. 1994,
1995) and different outbred strains of rats (Azarov and Woodward 2014a, b; Khanna
et al. 1990; Priddy et al. 2017). The major disadvantage of this unlimited free-access
model, however, is that it is difficult to determine whether alcohol intake reaches
levels that are physiologically relevant (achieving significant blood alcohol levels
that accompany behavioral signs of intoxication). Except for studies using selec-
tively bred mice (Matson and Grahame 2013; Matson et al. 2014), most studies have
not shown relevant levels of intoxication using this standard continuous access
2-bottle choice procedure. Also, since the main dependent variable is the cumulative
amount of alcohol consumed each day (24-h period), the model does not allow for
more refined analyses of temporal patterns and structure of drinking (e.g., bout
frequency and duration). Restricting access to alcohol for shorter periods of time is
a convenient way to relate alcohol consumption more precisely to resultant blood
alcohol levels. Further, since rodents are nocturnal, providing scheduled access to
alcohol during the dark phase of their circadian cycle (when eating, drinking, and
general activity are at the highest levels) facilitates greater alcohol consumption.

3 Models Involving Scheduled Access to Alcohol

A mouse model that involves limited access to alcohol restricted to the dark phase of
the circadian cycle was developed to model binge-like drinking (Crabbe et al.
2011a). The model, commonly referred to as “drinking-in-the-dark” (DID), was
designed to yield a high level of alcohol intake over a defined period of time so as to
produce blood alcohol concentrations above the US legal limit of intoxication
(=0.08 g/dL)—thereby satisfying the clinical criteria for binge-like drinking
(NTAAA 2004). Typically, the procedure entails offering mice a single bottle of
alcohol (20% v/v) for 2 h starting 3 h after the dark phase begins for 3 consecutive
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days. This is followed by a 4th day when access is extended to 4 h. This scheduled
alcohol access produced significant consumption on the final day of this 4-day
procedure in C57BL/6 mice, with resultant blood alcohol levels typically reaching
>0.10 g/dL (Rhodes et al. 2005; Thiele et al. 2014; Thiele and Navarro 2014). Not
surprisingly, alcohol intake in this model differed substantially across genotypes
(inbred strains and recombinant mouse lines), and, importantly, drinking in C57BL/
6 mice produced observable signs of intoxication as indexed by measures of motor
incoordination (Rhodes et al. 2007). When the model incorporated a 2-bottle choice
situation (water available as the alternative fluid), reduced alcohol intake and
resultant blood alcohol levels have been reported (Phillips et al. 2010; Rhodes
et al. 2007). However, another study with mice that had a history of drinking sucrose
showed that alcohol intake in this 2-bottle choice situation (water as the alternative
fluid) achieved significantly elevated blood alcohol levels (>0.80 g/dL) (Giardino
and Ryabinin 2013). Overall, the DID model has proven to reliably produce high
levels of alcohol consumption in a short period of time, and this binge-like alcohol
drinking does not appear related to motivation for obtaining calories contained in the
alcohol (Lyons et al. 2008). In general, alcohol consumption in the DID model has
been reported to be greater in female compared to male C57BL/6J mice (Levine et al.
2021; Younis et al. 2019).

A modified version of the 4-day DID model was employed by Crabbe and his
colleagues to generate selectively bred lines of mice that drink substantial amounts
of alcohol that produce behavioral signs of intoxication. In this work, mice from a
genetically heterogeneous stock (HS/Npt) were tested in a 2-day single-bottle (20%
alcohol) paradigm (2-h access the first day and then 4-h access the next day, both
during the early part of the dark cycle). Over several generations, average blood
alcohol levels registered immediately following the 4-h drinking session increased
from an initial value of approximately 0.03 g/dL (prior to selective breeding) to
0.10 g/dL (Crabbe et al. 2009). This high drinking-in-the-dark (HDID-1) selected
line also consumed significantly more alcohol than the control line from which they
were selected, even though the selection was based on blood alcohol levels (not the
amount of alcohol consumed). Interestingly, HDID-1 mice from the 13-17th selected
generations consumed similar amounts of alcohol and other tastants (sucrose, sac-
charin, and quinine) as the control line when the solutions were presented under
continuous (24-h) access conditions. However, greater intake was noted in the
HDID-1 mice when preference testing was extended for several days under limited
access conditions (Crabbe et al. 2011b). A second replicate line (HDID-2) displayed
average blood alcohol levels that increased to 0.10 g/dL in 19 generations (Barkley-
Levenson and Crabbe 2014). These HDID selected lines do not show differences in
alcohol metabolism, but intake and blood alcohol levels were reduced when water
was included as an alternative solution in the 4-day DID model (Barkley-Levenson
and Crabbe 2014). A relatively modest preference for alcohol was displayed by male
and female HDID lines when access was extended continuously (24-h/day) in the
standard 2-bottle choice situation and intake remained relatively stable over several
weeks (Crabbe et al. 2022). This suggests there are some distinct genetic influences
that shape binge-like drinking when access is restricted versus those governing
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consumption when alcohol access is unlimited. Other studies have shown that HDID
mice display increased sensitivity to some acute alcohol effects (locomotor stimulant
effects) but reduced sensitivity to sedative/ataxia effects (Barkley-Levenson and
Crabbe 2014). In studies using operant conditioning procedures, male and female
HDID-2 mice (but not the HDID-1 line) showed increased oral self-administration
(under both FR-1 and FR-3 schedules), but there was no apparent difference in
progressive ratio responding (breakpoint) or cue-induced reinstatement of alcohol
seeking behavior for either selected line compared to the progenitor line (Jensen
et al. 2021; Savarese et al. 2021). These results align with findings indicating no
differences in expression of conditioned place preference (Barkley-Levenson et al.
2015) and suggest some independence of genetic influences for motivational/
rewarding effects of alcohol versus those underlying selection for binge-like drink-
ing. On the other hand, the fact that both HDID lines show reduced alcohol-induced
conditioned taste aversion suggests that reduced sensitivity to alcohol-related aver-
sion may play a permissive role in elevated drinking in these mice (Barkley-
Levenson et al. 2015).

Several studies have provided alcohol under limited access conditions (2-h/day)
for an extended period of time. For example, presenting alcohol alone 2-h/day for
14 days produced faster rates of consumption (more drinking during the early
portion of the drinking sessions) and tolerance to the ataxic effects of alcohol
(Linsenbardt et al. 2011). This model has also been effectively used to study
consequences of alcohol binge-like exposure in utero (Boehm et al. 2008) and during
adolescence (Metten et al. 2011). Other studies have provided scheduled daily access
to alcohol (2-h/day) over several weeks, but alcohol was presented along with water.
Using this model, selectively bred high alcohol-preferring (HAP) lines of mice were
shown to “front-load” (accelerate drinking during the early portion of the limited
access sessions), and the emergence of this binge-like drinking pattern was associ-
ated with rewarding effects of alcohol (Ardinger et al. 2020). Using male and female
C57BL/6 mice, studies have shown that 2-3 weeks of drinking alcohol under these
conditions also lead to apparent habitual drinking, as defined by resistance to alcohol
reward devaluation produced by adulteration of the alcohol solution with quinine
(i.e., persistence of alcohol drinking in the face of aversion related to the bitter taste
of quinine) (Bauer et al. 2021; Schuh et al. 2022; Sneddon et al. 2019, 2021).
Another model of limited access drinking that entails simultaneously offering
several concentrations of alcohol (5—40%) for 2 weeks was shown to demonstrate
measures of negative affect related to alcohol withdrawal that varied depending on
sex, age, and procedural conditions (Lee et al. 2017; Szumlinski et al. 2019).

Models involving scheduled access to alcohol have also been used in rats. Male
rats selectively bred for high alcohol preference (P rats) consumed more alcohol in a
2-bottle free-choice situation (10% alcohol vs. water) when access was scheduled
over four 1-h periods (each separated by 2 h) during the dark cycle compared to
when the alcohol was available continuously for the equivalent 4-h period (Murphy
et al. 1986). Building on these results, more recent studies have examined the effect
of offering P rats concurrent access to three fluids (water vs. 15% alcohol vs. 30%
alcohol) over three 1-h access periods during the dark phase of the circadian cycle.
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Over several weeks alcohol consumption in this model was shown to register
significant blood alcohol levels (> 0.08 g/dL) as well as behavioral signs of
intoxication (motor impairment), with effects more robust in females compared to
males (Bell et al. 2011; McBride et al. 2010). Similar results were observed with
selectively bred lines of high alcohol preference/drinking (P, HAD) rats when access
to alcohol was limited to 2-3 h (Bell et al. 2014). Using a protocol that involved
limited access (1-h/day) to multiple alcohol solutions in male Sardinian preferring
(sP) rats, it was observed that randomizing the time of alcohol access each day
produced higher levels of alcohol intake (and resultant blood alcohol levels) com-
pared to consistently scheduled alcohol access (Colombo et al. 2014, 2015, 2017).

4 Models Involving Scheduled Alcohol Deprivation

Animals with a long history of daily access to alcohol display a transient yet robust
increase in voluntary alcohol consumption and preference when alcohol is
reintroduced after a period of deprivation. This alcohol deprivation effect was first
formally described in rats (Sinclair and Senter 1968) but has also been demonstrated
in mice (Salimov and Salimova 1993; Salimov et al. 2000; Tambour et al. 2008).
Most studies have examined the phenomenon in rats using 2-bottle choice contin-
uous access models. Increased alcohol drinking has been noted after relatively brief
periods of deprivation (~24 h) as well as following longer (several weeks) depriva-
tion intervals (Sinclair and Li 1989). The alcohol deprivation effect has also been
demonstrated using limited access operant self-administration procedures in rats
(Heyser et al. 1997; Holter et al. 1997) and mice (Sparta et al. 2009). However,
there were no effects of deprivation on alcohol intake reported in a study using a
modified (sipper-tube) self-administration procedure (Samson and Chappell 2001).

The alcohol deprivation effect has been demonstrated in outbred rat strains such
as Wistar (Vengeliene et al. 2003) and Long-Evans (Sinclair and Tiihonen 1988).
Similarly, an alcohol deprivation effect has been reported in rats selectively bred for
high alcohol preference (P rats) under free-choice continuous access and limited
access operant paradigms (McKinzie et al. 1998; Sinclair and Li 1989; Vengeliene
et al. 2003). However, a robust increase in alcohol consumption following a period
of deprivation has not been reliably observed in other rat lines selectively bred for
high alcohol preference, including the Alko alcohol-accepting (AA) rats (Sinclair
and Li 1989; Sinclair and Tiithonen 1988) and the Indiana high alcohol drinking
(HAD) rats (Rodd-Henricks et al. 2000a). The Sardinian P (sP) rats, which were
generated using the same selection criteria as the Indiana P rats, showed a fairly
modest increase in alcohol intake that was very brief in duration (Agabio et al. 2000)
or no increase after deprivation (Serra et al. 2003). Collectively, these data do not
support a consistent relationship between selection for high alcohol preference/
intake and expression of a robust alcohol deprivation effect.

Although the alcohol deprivation effect has been viewed as a model for alcohol
relapse and craving, there are some drawbacks related to the model. One concern
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relates to the specificity of the phenomenon, since exaggerated intake of other
rewarding tastants (e.g., sucrose and saccharin) can be demonstrated in rats follow-
ing a period of deprivation (Avena et al. 2005; Wayner et al. 1972). As noted above,
the increase in alcohol intake after short or long periods of deprivation is typically
short-lived, with intake returning to baseline (pre-deprivation) levels in a few days.
However, when P rats are given concurrent access to several alcohol concentrations
(10, 20, and 30%) along with water, the alcohol deprivation effect was shown to be
more robust and more durable (Rodd-Henricks et al. 2001). Further, this same
experimental paradigm was reported to produce an alcohol deprivation effect in
HAD rats even though these animals do not show such an effect when a single
alcohol concentration is offered in a free-choice situation (Rodd et al. 2004).

While enhanced alcohol intake following a single deprivation period has been
shown to be a transient effect, repeated deprivation experience produces longer
lasting increases in alcohol consumption. For example, after long-term free access
to several alcohol solutions, repeated “forced” abstinence periods resulted in pro-
gressively greater increases in alcohol intake, a shift in preference for higher alcohol
concentrations, and longer lasting deprivation effects in Wistar rats (Spanagel and
Holter 1999, 2000) and P rats (Rodd-Henricks et al. 2000b, 2001). Additionally,
concurrent access to multiple concentrations of alcohol along with exposure to
repeated cycles of deprivation produced significant increases in alcohol consumption
in HAD rats, a genotype that does not readily exhibit an alcohol deprivation effect
following a single period of deprivation (Rodd et al. 2009; Rodd-Henricks et al.
2000a). Using a similar experimental strategy involving multiple alcohol concentra-
tions (0, 5, 10, and 15%) and several cycles of deprivation, increased alcohol
consumption was demonstrated over repeated episodes of re-exposure to alcohol
in rats selectively bred for low alcohol preference and drinking (NP and LAD rats)
(Bell et al. 2004). This suggests that genetic selection for low alcohol preference/
consumption can be overcome by experimental parameters that ordinarily engender
expression of a more robust alcohol deprivation effect. Interestingly, offering several
alcohol concentrations and repeated cycles of deprivation did not alter the magnitude
or duration of a relatively brief and modest alcohol deprivation effect in sP rats
(Serra et al. 2003).

In addition to enhancing the alcohol deprivation effect under 24-h free-choice
conditions, repeated episodes of deprivation augmented and prolonged oral alcohol
self-administration using operant conditioning procedures in Wistar, P, and HAD
rats (Oster et al. 2006; Rodd et al. 2003; Spanagel and Holter 2000). Further, this
effect was shown to be accompanied by an apparent enhancement of the reinforcing
efficacy of alcohol, as indexed by higher breakpoint values under progressive ratio
testing procedures (Oster et al. 2006; Rodd et al. 2003; Spanagel and Holter 2000).
In a long-term drinking model involving several months of free-choice alcohol
access and multiple episodes of deprivation, Wistar rats not only increased alcohol
intake and demonstrated a progressive shift in preference for higher previously less
preferred alcohol concentrations, but these rats also exhibited less sensitivity to the
otherwise unfavorable adulteration of alcohol with quinine (Spanagel et al. 1996).
This latter effect has been suggested to reflect more compulsive aspects of drinking
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that develops as a function of long-term access to alcohol with repeated intervening
periods of abstinence (deprivation) (Spanagel 2009).

Fewer studies have systematically studied the alcohol deprivation model in mice
(Vengeliene et al. 2014). In one study, the effect of repeated deprivation cycles on
alcohol intake in a 2-bottle choice (10% alcohol vs. water) continuous access
situation differed in substrains of C57BL/6 mice (Khisti et al. 2006). Repeated
4-day deprivation periods initially produced a robust alcohol deprivation effect in
C57BL/6NCrl mice, but the transient increase in intake diminished in magnitude
over successive deprivation cycles. In contrast, alcohol consumption did not signif-
icantly change following single or multiple cycles of deprivation in C57BL/6J mice.
In a modified version of the alcohol deprivation effect, C57BL/6J mice showed
increased alcohol intake following repeated weekly deprivation periods of 6 days
(alcohol was reinstated 1 day each week). However, this effect was abolished with a
longer (2-week) deprivation period (Melendez et al. 2006). Another study using
male C57BL/6N mice also failed to show an effect of repeated alcohol deprivation
periods (Vengeliene et al. 2014). In a recent study, male and female mice of the
selectively bred HDID-1 and HDID-2 lines were given unlimited access to alcohol in
their home cage continuously for 46 weeks. This was followed by five 2-week
deprivation periods, with 2 weeks of resumed drinking after each deprivation period.
Mice showed a stable pattern of intake over the initial 46 weeks that was not affected
by repeated deprivation periods compared to mice that continued having
uninterrupted access to alcohol (Crabbe et al. 2022).

Although relatively few studies have examined the alcohol deprivation effect in
mice, single or multiple deprivation periods have not reliably produced enhanced
alcohol drinking when alcohol is offered in the home cage under limited access
conditions. A study in male C57BL/6J mice using the DID model examined alcohol
intake over 6 weeks, with each of the 4-day drinking opportunities separated by
3 days off. A lickometer system was used in the study to show that mice gradually
develop higher levels of intake during the first 15-min of access to the alcohol bottle
(front-loading). In addition, increased alcohol intake was observed with repeated
DID cycles (Wilcox et al. 2014). Another study using this procedure showed that
repeated experience with weekly DID cycles (up to 10) did not result in significant
signs of anxiety-like behavior but favored a subsequent increase in alcohol intake
using a 24-h access protocol. However, mice did not show an increase in alcohol
intake during the repeated cycles of DID (Cox et al. 2013).

5 Models Involving Scheduled Intermittent Alcohol Access

Another model that engenders a high level of alcohol consumption involves chronic
intermittent access to alcohol. In this model, inherent in the scheduled intermittency
of free access to alcohol are repeated periods of abstinence. Although the model is
similar to the paradigm described above involving repeated periods of deprivation,
in this case, the periods of alcohol access and deprivation are relatively short (days
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rather than weeks), thereby accelerating the pace at which excessive levels of alcohol
intake can be established. This chronic intermittent access procedure was first
described to produce increased drinking in rats when alcohol was provided on a
continuous basis for 2 days with intervening 2-day abstinence periods (Wayner et al.
1972) or for 24-h every other day (Wise 1973). More recently, free access to 20%
alcohol was offered in a 2-bottle choice situation (with water) for 24 h, 3 days a week
(with no more than 2 days of abstinence between access days). Within 5-6 drinking
sessions, alcohol consumption increased from baseline levels of about 2 g/kg/24-h to
approximately 5-6 g/kg/24-h in Long-Evans rats (Simms et al. 2008). A similar
outcome was reported in another study where Long-Evans rats exposed to the same
procedure displayed progressively increased consumption and preference for 20%
alcohol over 20 drinking sessions (Carnicella et al. 2009). This escalation of drinking
along with an increased preference for alcohol was also demonstrated in Wistar rats
(Simms et al. 2008), although another study using a 3-bottle choice situation
(water vs. 5% vs. 20%) reported a two- to threefold difference in the change in
alcohol intake and preference depending on the supplier of Wistar rats (Palm et al.
2011). The escalation of intake in Long-Evans and Wistar rats produced significantly
elevated blood alcohol levels in samples taken after the first 30 min of the drinking
sessions, with several subjects attaining levels above 0.08 g/dL (Carnicella et al.
2009; Simms et al. 2008). In another study, male Wistar rats that had 24-h access to
alcohol in the home cage every other day not only displayed increased alcohol intake
but also showed impaired working memory during acute (but not protracted) periods
of abstinence (George et al. 2012). Increased alcohol consumption has also been
noted in Sprague-Dawley rats following the 2-bottle (water vs. 20% alcohol) inter-
mittent access paradigm (Bito-Onon et al. 2011), but the effect may only be observed
in a portion of the animals (Moorman and Aston-Jones 2009).

In addition to home-cage drinking, this intermittent alcohol access model has also
been extended to oral alcohol self-administration behavior using operant condition-
ing procedures. For example, Long-Evans rats were shown to vigorously respond to
self-administered 20% alcohol when operant sessions scheduled every other day
were gradually reduced from overnight to 30 min in duration (Simms et al. 2010).
The increased amount of alcohol self-administered resulted in significant elevation
of blood alcohol levels following the 30-min session, with average values of ~0.06 g/
dL and several rats registering blood alcohol levels above 0.10 g/dL (Simms et al.
2010). In another study, prolonging the intermittent access schedule for several
months not only increased home-cage alcohol drinking but also transferred to
increased operant oral alcohol self-administration in Wistar rats (Hopf et al. 2010).
Further, rats maintained on the intermittent access schedule to 20% alcohol for 3—
4 months demonstrated resistance to quinine adulteration of alcohol in home-cage
drinking and operant responding, but this effect was not observed in rats with a
history of intermittent alcohol access for only 1.5 months (Hopf et al. 2010).

A few studies have examined drinking in this intermittent access model in rats
selectively bred for high alcohol preference. For instance, P rats were shown to
exhibit increased alcohol intake under conditions in which 24-h free-choice (20%
alcohol vs. water) access was given every other day. However, this increase in
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alcohol consumption from an average baseline level of 4-5 g/kg/24-h) to 67 g/kg/
24-h over 20 drinking sessions was relatively modest compared to the escalation of
intake exhibited in Long-Evans and Wistar rats reported in the same study (Simms
et al. 2008). In contrast, using a similar 2-bottle choice (20% alcohol vs. water),
every other day scheduled access paradigm, the Sardinian P (sP) rats showed robust
escalation of drinking (nearly a twofold increase in alcohol intake over 20 drinking
sessions (Loi et al. 2010). This increase was also noted during the first hour of access
during the dark phase, with intake rising from baseline levels of ~0.5 to 1.5-2.0 g/kg.
Alcohol consumption in sP rats given intermittent access significantly exceeded
intake registered in sP rats that were given the same alcohol solution (20% vs. water),
but in a continuous access pattern. After 10 drinking sessions, consumption in the
intermittent access group produced behavioral signs of intoxication, as measured by
motor impairment in a rotarod task. Additionally, these rats exhibited resistance to
the effects of quinine adulteration of alcohol as well as competing effects of
concurrent access to saccharin (Loi et al. 2010). It is interesting that sP rats are
very responsive to this chronic intermittent access procedure in which relatively
short periods of access and abstinence (deprivation) are repeatedly alternated, while
the Indiana P rats (but not sP rats) display robust escalation of drinking in a model of
repeated deprivations where access and deprivation periods are longer in duration
(Rodd-Henricks et al. 2001; Serra et al. 2003). An explanation for this discrepancy is
not readily apparent at present (Loi et al. 2010).

Recent studies have suggested that sex and environmental factors (e.g., housing
conditions) may modulate escalation of drinking in this model. Female Wistar rats
that were pair housed (separated by a divider) did not show an increase in drinking
compared to single-housed females or males independent of housing conditions
(Moench and Logrip 2021). In another study, female Long-Evans rats showed
significantly higher levels of intake compared to males and a gradual increase in
alcohol preference, but neither males nor females showed an increase in alcohol
intake over 7 weeks of intermittent access to 20% alcohol (vs. water) (Pirino et al.
2022). Intermittent access to alcohol in the home cage has also been used to “prime”
rats before training them to respond to alcohol in an operant self-administration
protocol. In these studies, it was observed that male P, Lister Hooded, and Long-
Evans rats showed the expected gradual increase in alcohol intake over days of
intermittent access while Wistar rats did not (Hernandez and Moorman 2020;
McCane et al. 2021; Smeets et al. 2022). Overall, the emergence of escalated alcohol
intake in the rats (and mice; see below) using this model depends on various factors
including sex, genotype, and housing conditions (Carnicella et al. 2014; Spear
2020).

Similar studies have been conducted in mice. For example, Melendez (2011)
reported that adult male C57BL/6J mice provided 24-h access to alcohol in a 2-bottle
choice situation (15% alcohol vs. water) consumed significantly more alcohol when
it was presented every other day in comparison to mice that received continuous
access to alcohol every day. Specifically, initial alcohol intake (67 g/kg/24-h)
increased to 14—15 g/kg/24-h over 7 drinking sessions in the intermittent access
group while intake increased to 8-9 g/kg/24-h in the continuous access group. A
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large portion of the alcohol consumed occurred within the first 6 h when it was
presented during the dark phase of the circadian cycle, and the increased level of
drinking in the intermittent group reverted to lower (baseline) levels of intake when a
continuous access schedule was implemented (Melendez 2011). In another study,
C57BL/6J mice were first acclimated to increasing concentrations of alcohol and
then maintained on a 24-h 2-bottle choice (20% alcohol vs. water) regimen, with
access scheduled either every other day or continuously every day. Over the course
of 4 weeks, alcohol consumption increased to ~20 g/kg/24-h in the intermittent
access group compared to ~16 g/kg/24-h for the continuous access group (Hwa et al.
2011). This increase in alcohol consumption as a function of intermittent access was
more robust in female (30 g/kg/day) compared to male (20 g/kg/day) C57BL/6]
mice, and extending intermittent access for 16 weeks in the male subjects resulted in
mild expression of withdrawal-related hyperexcitability. Also, intake over the first
2-h in a single-bottle test with 20% alcohol was greater in mice with intermittent
compared to continuous access, and this greater intake resulted in higher blood
alcohol levels (Hwa et al. 2011). However, using similar procedures, others have not
observed this large a difference in intake between mice offered alcohol in an
intermittent versus continuous fashion (Crabbe et al. 2012). The intermittent access
model has been used with a variety of mouse genotypes including HDID, C3H/Hej,
and C57BL/6J, among others). Although increased alcohol intake was observed in
all the genotypes, it was not related to previous baseline levels of intake under
continuous access conditions or subsequent withdrawal symptoms (Rosenwasser
et al. 2013). Other recent studies have shown that female but not male C57BL/6J
mice show escalation of alcohol intake in this model (Bloch et al. 2020; Cannady
et al. 2020). Thus, in both rats and mice, females appear more likely to demonstrate
elevated alcohol consumption when it is presented in an intermittent fashion. An
explanation for this possible sex-related difference awaits further investigation.

6 Models Involving Schedule-Induced Polydipsia

Animals have been shown to engage in excessive drinking behavior when delivery
of food reinforcement is scheduled in an intermittent fashion (typically a fixed time
interval) that is not under the animal’s control (Falk 1961). This adjunctive behavior
(excessive drinking) is displayed as a consequence of and in relation to another
behavior that is evoked by environmental change (eating small amounts of food
delivered in a scheduled manner that is not determined by the animal). The term
schedule-induced polydipsia refers to the excessive nature of adjunctive drinking
under these conditions, which greatly exceeds the fluid intake that would occur if the
same total amount of food was presented all at once.

When an alcohol solution is the available fluid, this schedule-induced polydipsia
results in excessive levels of alcohol consumption (10-14 g/kg/24-h) in rats that
leads to dependence, as evidenced by overt signs of withdrawal when the alcohol is
removed (Falk and Samson 1975; Falk et al. 1972). Alcohol consumption during
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daily 3-h sessions over several months was reported to be sufficient to produce
dependence (Tang and Falk 1983). In a more recent study, a schedule-induced
polydipsia procedure was used to assess alcohol consumption in rats selectively
bred for high and low alcohol preference (Gilpin et al. 2008a). Across a number of
alcohol concentrations, P rats and one of the replicate lines of HAD rats showed
greater water and alcohol intake compared to their non-preferring counterparts
(NP and LAD-2 rats). In all cases, blood alcohol levels were positively correlated
with alcohol intake after the 1-h sessions, with many rats registering levels >0.08 g/
dL (Gilpin et al. 2008a). This procedure has also been used to induce high levels of
alcohol intake in adolescent male and female Sprague-Dawley rats, with intake (10%
alcohol mixed with chocolate Boost®) yielding blood alcohol levels exceeding
0.08 g/dL in 30 min in males (0.086 + 0.013 g/dL) and females (0.075 + 0.010 g/
dL) (Hosova and Spear 2017).

Schedule-induced polydipsia procedures have also been used to examine alcohol
consumption in mice. In an early study involving outbred (ICR-DUB) female mice,
four daily 1-h sessions (each separated by 6-h) produced high levels of drinking in
mice given access to 6% alcohol (14-20 g/kg/day) or 10% alcohol (17-25 g/kg/day).
In both cases, this level of intake over 7 days was not sufficient to produce significant
signs of withdrawal following the scheduled access phase of the study (Ogata et al.
1972). Over 20 daily 1-h sessions, the alcohol-preferring C57BL/6J inbred strain
consumed a substantial amount of 5% alcohol (~5 g/kg) relative to their initial intake
(~1 g/kg). In contrast, the non-preferring DBA/2J inbred strain showed only a very
modest increase in alcohol consumption under the same schedule conditions
(Mittleman et al. 2003). However, in another study using a fixed-time schedule of
food delivery (as opposed to a variable schedule used in the Mittelman et al. (2003)
study, both C57BL/6J and DBA/2J mouse strains were shown to exhibit high levels
of alcohol intake and signs of intoxication (Ford et al. 2013). These results highlight
the importance of environmental factors (e.g., schedule of food presentation)
interacting with genotype in governing alcohol consumption in this model.

Advantages of this model are that animals consume large quantities of alcohol
orally and on a voluntary basis (Falk and Tang 1988). Disadvantages of this
approach include lack of specificity of the effect since polydipsia can be seen
when other fluids are made available (including water) and the fact that animals
are typically maintained on a food-restricted diet. This latter issue raises concern
about whether motivation to drink alcohol is related to its pharmacological effects or
its caloric content. Of note, challenging the non-specific nature of this polydipsia
model, a recent study showed that a subset of male Sprague-Dawley rats exhibited
heightened alcohol consumption but no change in water intake under the same
schedule-induced polydipsia experimental parameters (Fouyssac et al. 2021).

Another shortcoming of this model to consider is that when the schedule of
intermittent reinforcement is relaxed, alcohol consumption reverts to control levels
in rats (Tang et al. 1982). That is, elevated alcohol drinking does not endure under
free-choice conditions even though the animals consumed large amounts of alcohol
when it was available under intermittent schedules of food reinforcement (Ford
2014). However, inasmuch as such schedules that induce adjunctive behaviors are
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stressful (Falk 1971; Lopez-Grancha et al. 2006), it may be that studies in rodents
have not utilized experimental parameters that are optimal for establishing the
negative reinforcing effects of alcohol. That is, while schedule-induced polydipsia
procedures are effective in establishing the positive reinforcing effects of alcohol
(Meisch 1975), experimental conditions that facilitate association of alcohol con-
sumption with stress relief (escape from the onerous nature of the intermittent,
response non-contingent schedule of food delivery) may be required for producing
long-lasting elevated drinking. A study conducted with high- and low-drinking
mouse strains (C57BL/6J and DBA2/], respectively) found that schedule-induced
polydipsia results in high levels of alcohol intake and intoxication in both strains.
Increases in blood alcohol levels were also associated with elevations in circulating
levels of corticosterone due to the schedule restrictions (Ford et al. 2013; see also
studies with monkeys in Jimenez et al. 2017). A more recent study conducted with
male Sprague-Dawley identified a subpopulation of subjects that failed to drink a
high level of water but consumed a high level of alcohol under the same schedule
that induced polydipsia. This subpopulation was identified as “alcohol copers” for
their avidity to drink alcohol to cope with the stress of this schedule. This same group
of “alcohol coper” rats showed higher resistance to reduce drinking when the alcohol
solution contained quinine (Fouyssac et al. 2021).

While this chapter mainly focuses on rodent models of excessive alcohol drink-
ing, it is noteworthy that the schedule-induced polydipsia paradigm has been
effectively used in nonhuman primates to demonstrate sustained high levels of
alcohol intake (Grant et al. 2008). Further, the pattern of drinking during the
induction phase of this model was shown to predict the degree of heavy drinking
once the schedule-induced polydipsia regimen was relaxed. That is, cynomolgus
monkeys that reached levels of intake that produced blood alcohol levels above
0.08 g/dL during the induction phase were classified as “gulpers” (as opposed to
“sippers”) and showed higher levels of alcohol consumption during a subsequent
12-month continuous free-choice access period. Excessive alcohol consumption
during this free-access period produced behavioral signs of intoxication in many
of the subjects. Additionally, extending the open-access period to more than 2 years
along with intervening periods of abstinence not only produced sustained excessive
levels of alcohol consumption but also resulted in functional (synaptic) and mor-
phological adaptations in the brain (putamen) (Cuzon Carlson et al. 2011). In
separate studies, the level of aggressive temperament displayed by male and female
rhesus macaques during late adolescence was shown to predict the level of alcohol
intake in the schedule-induced polydipsia model; i.e., subjects displaying higher
aggressive behavior also showed greater levels of alcohol intake and resultant blood
alcohol levels (McClintick and Grant 2016). In another study, dominance hierarchy
(dominant or subordinate status) did not relate to the levels of intake under schedule-
induced polydipsia in adult male cynomolgus monkeys. However, after the induc-
tion phase of the study, when the schedule was relaxed, subordinate monkeys
showed higher levels of alcohol intake than dominants (Galbo et al. 2022). Recently,
Grant and her colleagues have shown that alcohol intake following induction in the
schedule-induced polydipsia paradigm can be modulated by chemogenetic
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inhibition of the putamen in male and female rhesus monkeys. Specifically,
inhibiting this area associated with habitual responding produced higher water and
alcohol drinking (no sex-related differences were observed). However, during sub-
sequent sessions alcohol intake reverted to baseline levels and water drinking was
reduced to below baseline levels (Grant et al. 2022). Thus, the schedule-induced
polydipsia procedure has proven to be effective and integral to this monkey model of
heavy drinking that captures many of the features of alcohol use disorder.

7 Models Involving Alcohol Dependence and Withdrawal

Over the past two decades, rodent models involving chronic alcohol exposure
producing dependence have been successfully linked with self-administration pro-
cedures to demonstrate excessive levels of alcohol intake (Becker 2008, 2014,
Becker and Lopez 2016; Becker and Ron 2014). Indeed, numerous studies involving
mice and rats have demonstrated escalated alcohol consumption using home-cage
free-choice models and operant conditioning procedures (Griffin 2014; Lopez and
Becker 2014; Vendruscolo and Roberts 2014). In most cases, dependence has been
induced by administering alcohol vapor via inhalation chambers. For example, rats
exposed to chronic alcohol vapor treatment consumed significantly more alcohol
than non-dependent controls under free-choice unlimited (24 h/day) access condi-
tions (Rimondini et al. 2002, 2003; Sommer et al. 2008). Similar results have been
reported in mice following chronic alcohol vapor exposure, with voluntary alcohol
consumption assessed using a limited access (2 h/day) schedule (Becker and Lopez
2004; Dhaher et al. 2008; Finn et al. 2007; Huitron-Resendiz et al. 2018; Lopez and
Becker 2005; Lopez et al. 2017). Additionally, studies using operant conditioning
procedures have demonstrated increased alcohol self-administration in mice (Chu
et al. 2007; Lopez et al. 2014) and rats (C. K. Funk and Koob 2007; Gilpin et al.
2008b, ¢, 2009; Meinhardt and Sommer 2015; O'Dell et al. 2004; Richardson et al.
2008; Roberts et al. 1996, 2000) with a history of chronic alcohol vapor experience.

A key feature of this model that yields robust and reliable escalated alcohol
responding/intake is the delivery of chronic alcohol exposure in an intermittent
pattern such that multiple withdrawal episodes are experienced (Lopez and Becker
2005; O'Dell et al. 2004). This point highlights the importance of establishing the
negative reinforcing effects of alcohol in driving enhanced motivation to imbibe
(Becker 2014; Koob 2021, 2022). Additionally, the intensity of repeated chronic
intermittent ethanol (CIE) exposure cycles (producing high and sustained blood
alcohol levels) was shown to be critical in favoring escalation of alcohol consump-
tion in the model (Griffin et al. 2009a). Further, the effect appears specific to alcohol
because repeated cycles of CIE exposure did not produce alterations in water intake
or consumption of highly palatable fluids such as sucrose and saccharin (Becker and
Lopez 2004; Lopez et al. 2012). This suggests that the increase in alcohol consump-
tion is not a non-specific effect related to a general need to hydrate with fluids or
increase caloric intake.
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Using this approach, enhanced alcohol responding/intake has been shown to be
durable, evident in dependent animals well beyond acute withdrawal. Indeed, with
an increased number of CIE exposure cycles, upregulated alcohol intake was shown
to be not only further augmented but also sustained for a longer period of time
(several weeks) following final withdrawal compared to intake in a separate group of
non-dependent mice (Lopez and Becker 2005). Further, analysis of the temporal
pattern of alcohol consumption revealed that dependent mice not only consumed
more alcohol than non-dependent animals over the entire 2-h access period, but the
rate of consumption was faster and progressively increased over successive with-
drawal test periods (Griffin et al. 2009b; see also Robinson and McCool 2015
with rats).

In both mice and rats, escalation of alcohol self-administration following repeated
cycles of CIE exposure was reported to be associated with significantly higher
resultant blood alcohol levels compared to that achieved by more modest and stable
levels of intake in non-dependent animals (Becker and Lopez 2004; Roberts et al.
2000). Additionally, the faster rate of alcohol intake and greater overall amount
consumed exhibited by dependent mice have been shown to result in significantly
higher peak and more sustained alcohol concentrations measured in the brain
compared to levels achieved from consumption of alcohol in non-dependent animals
(Griffin et al. 2009b). Moreover, greater voluntary alcohol consumption in depen-
dent mice produced brain alcohol concentrations that approximated those levels
experienced during chronic intermittent alcohol exposure that rendered the subjects
dependent in the first place. While it is tempting to speculate that CIE-exposed
animals display increased voluntary alcohol drinking behavior to attain blood and
brain alcohol levels in a range consistent with sustaining dependence, the extent to
which resultant brain alcohol concentrations play a role in driving as well as
perpetuating enhanced alcohol drinking in dependent animals remains to be
determined.

Despite the growing and convergent body of evidence indicating that rodent
models of dependence involving CIE exposure produce robust escalation of volun-
tary alcohol consumption, the mechanisms underlying enhanced motivation to
imbibe in the context of dependence are not fully understood. As noted above,
mechanisms that govern the regulation of drinking behavior involve complex and
dynamic processes (Koob and Le Moal 2008; Koob and Volkow 2016). An interplay
among numerous biological and environmental factors influence the motivational
effects of alcohol, and these may change as the subject gains more experience with
the drug (Cunningham et al. 2000). Alcohol dependence may be characterized as an
allostatic state fueled by progressive dysregulation of motivational processes and
neural circuitry controlling intake (Becker 2008; Heilig et al. 2010; Koob 2003;
Koob and Le Moal 2008; Koob and Schulkin 2019). Such neuroadaptations may
play a role in enhancing the rewarding effects of alcohol, thereby fostering the
transition from regulated alcohol use to uncontrolled, excessive levels of drinking.
Additionally, the potential for alcohol to alleviate negative affect and other symp-
toms of withdrawal serves as a powerful motivational force that likely promotes and
sustains high levels of drinking (Becker 2008; Heilig et al. 2010; Koob 2021, 2022).



H. C. Becker and M. F. Lopez

Studies involving CIE exposure have provided evidence for enhanced rewarding
effects of alcohol. For example, studies employing operant self-administration pro-
cedures have demonstrated augmented motivation to self-administer alcohol
(increased responding and consumption) in alcohol-dependent mice (Chu et al.
2007; Lopez et al. 2014) and rats (Gilpin et al. 2008c, 2009; O'Dell et al. 2004;
Roberts et al. 1996, 2000). Further, employing progressive ratio schedules, it was
demonstrated that the amount of work rats were willing to expend in order to receive
alcohol reinforcement was significantly increased following repeated cycles of CIE
exposure (Brown et al. 1998). Another study reported that CIE-exposed rats
displayed greater resistance to extinction of responding to alcohol reward, perhaps
reflecting greater persistence in alcohol seeking behavior despite the fact that alcohol
was no longer available (Gass et al. 2017). Also, animals with a history of CIE
exposure were shown to exhibit exaggerated sensitivity to events that trigger alcohol
relapse, i.e., presentation of alcohol-related cues and stress exposure (Funk et al.
2019; Gehlert et al. 2007; Liu and Weiss 2002; Sommer et al. 2008). These findings
suggest that the reinforcing value of alcohol may be enhanced, and subjects may be
rendered more vulnerable to relapse as a consequence of experiencing repeated
opportunities to self-administer alcohol in the context of chronic intermittent expo-
sure to the drug.

At the same time, another factor that could contribute to excessive drinking is the
development of tolerance to the aversive effects of alcohol. Tolerance has long been
viewed as playing an important role in the regulation of alcohol self-administration
behavior (Deitrich et al. 1996; Elvig et al. 2021; Kalant 1996, 1998; Rigter and
Crabbe 1980; Suwaki et al. 2001). In this vein, the development of tolerance to the
aversive effects of alcohol (which ordinarily temper the amount consumed) may
serve as a permissive factor, enabling higher levels of drinking. Recent evidence
indicates that repeated cycles of CIE exposure in mice not only produces escalation
of voluntary drinking but also reduced sensitivity (tolerance) to the aversive effects
of alcohol in the same subjects, as determined by a conditioned taste aversion
procedure (Lopez et al. 2012). This reduced sensitivity to alcohol-induced condi-
tioned taste aversion could not be attributed to pharmacokinetic factors, and it could
not simply be explained by a general learning deficit since both dependent and
non-dependent mice exhibited a similar learned aversion to a non-alcohol noxious
stimulus (lithium chloride). In another study, rats with a history of repeated cycles of
CIE exposure were reported to exhibit long-lasting tolerance to the sedative/hypnotic
effects of alcohol (Rimondini et al. 2008). Additionally, using operant discrimina-
tion procedures, it was found that the ability to detect (perceive) the subjective cues
associated with alcohol intoxication was diminished during withdrawal from chronic
alcohol exposure, and this tolerance effect was greater in mice that experienced
multiple withdrawals during the course of the chronic alcohol treatment (Becker and
Baros 2006). Thus, reduced sensitivity to feedback about the intoxicating effects of
alcohol along with reduced sensitivity to the aversive effects of the drug may serve a
permissive role in enabling greater alcohol consumption associated with
dependence.
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Another important mechanism to consider is the shift from goal-directed to
habitual responding/drinking that could underlie higher levels of consumption in
alcohol-dependent subjects (Vandaele and Janak 2018). Several studies have eval-
uated this possibility using different procedures. In some studies, alcohol reward was
devalued using contingency degradation (Barker et al. 2020), satiation (Renteria
et al. 2020), or associating alcohol reward with an aversive unconditioned stimulus
(Lopez et al. 2014). Using these diverse strategies, it has been shown that alcohol-
dependent mice are more resistant to the devaluation of alcohol reward, as indicated
by persistence in working (responding) to obtain the drug. Other studies have
evaluated the habitual or “compulsive” nature of alcohol drinking by adding quinine
to the alcohol solution (den Hartog et al. 2016; Gioia and Woodward 2021; Russo
et al. 2018) or by contingently delivering foot shock along with alcohol as a
reinforcer (Radke et al. 2017). In these studies, mice that experienced repeated
CIE exposure were more resistant to these manipulations demonstrating more
habitual alcohol seeking and drinking. Collectively, these data support the notion
that with prolonged alcohol exposure, the relative balance between rewarding/
reinforcing and aversive properties of alcohol is shifted away from aversion in
favor of reward/reinforcement. Thus, the combination of enhanced rewarding effects
(through both positive and negative reinforcement) along with reduced sensitivity
(tolerance) to the aversive qualities of alcohol intoxication may, in large part, drive
excessive drinking associated with dependence. Elucidating neurobiological mech-
anisms underlying changes in sensitivity to both the rewarding and the aversive
effects of alcohol is key to understanding motivational processes that are critical for
regulating and controlling alcohol consumption, as well as adaptations in such
processes that mediate transition to uncontrolled, harmful levels of drinking charac-
teristic of dependence.

Finally, compromised cognitive function may be an important contributing factor
that promotes increased vulnerability to relapse and impaired ability to exert control
over drinking (Le Berre et al. 2017). Indeed, repeated cycles of chronic alcohol
exposure and withdrawal experience have been shown to produce significant cog-
nitive deficits. For example, CIE-exposed mice that displayed elevated alcohol
consumption also exhibited deficits in performance in attention set-shifting and
novel object recognition tasks (Hu et al. 2015; Pradhan et al. 2018). Similarly,
studies conducted in mice (Badanich et al. 2011) and rats (Meinhardt et al. 2021)
indicate that CIE exposure leads to deficits in behaviors mediated by the prefrontal
cortex such as reversal learning and delay discounting. These studies open future
avenues of investigation that probe mechanisms and circuits that link alcohol-
induced alterations in cognition and motivation, which ultimately govern decision-
making and behavioral control regarding alcohol consumption.
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8 Summary and Future Challenges

This chapter reviews a number of animal models that have been established to study
excessive alcohol consumption in rodents. In all cases, the common experimental
strategy has been focused on utilizing procedures that effectively overcome the
natural tendency of rodents to either avoid alcohol or consume it in limited amounts
that typically do not produce overt signs of intoxication. A corollary to this is the
increased recognition that recording blood alcohol levels achieved following alcohol
consumption in each of the models is critical for validation of their physiological
(and clinical) relevance. This point cannot be overstated. In many instances, exper-
imental manipulations have been shown to produce statistically significant changes
in drinking behavior, but physiological and behavioral relevance can best be realized
when consumption yields significant changes in circulating alcohol concentrations.

The six models described in this chapter incorporate several procedural variables
that engender excessive levels of alcohol intake along with resultant blood alcohol
concentrations that exceed the legal limit of intoxication (0.08 g/dL) (Table 1). This
includes manipulating scheduled access to alcohol (time of day, duration, fre-
quency), periods of time when access to alcohol is withheld, and history of alcohol
exposure. As detailed above, each model possesses unique experimental character-
istics that confer both advantages and disadvantages. Of course, no single approach
can claim to capture all the complexities that define problem drinking in humans.
Nevertheless, development of these rodent models of excessive alcohol drinking has
proven to be extremely valuable in advancing our knowledge about the biological
and environmental contingencies that bear on this complex behavior.

At the same time, there is the opportunity and a need to further optimize the
translational impact of these animal models. In updating this body of work since our
last review (Becker 2013), we have not only emphasized findings from more recent
studies but also highlight aspects of the studies that bear on relevance to drinking in
humans. For example, most studies described in this chapter focused on experimen-
tal manipulations that minimize variance in study outcomes, with reliance on group
averages for alcohol intake. This is understandable from the standpoint of wanting to
utilize a model that produces an overall robust and reliable phenotype to probe
mechanisms with sophisticated neurobiological tools and approaches. However, this
is done at the expense of highlighting factors that contribute to individual differences
in drinking (amount and pattern). Given the known heterogeneity of AUD and the
burgeoning area of personalized medicine in relation to treatment strategies, this
point has been more greatly appreciated in recent years. This is a subject that is
deserving of more attention in studies on animal models of excessive alcohol
drinking.

A related issue regards the influence of genetic factors. It is well known that
genetic background has a significant effect on alcohol consumption in various rodent
models. As described above, genotype (species, strain) and genetic factors related to
selective breeding procedures have been shown to influence alcohol intake under
some conditions. Additional investigations into the modulating effects of genetic
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Table 1 Advantages and disadvantages of models that engender excessive levels of alcohol

consumption
Model Advantages Disadvantages
Continuous » Easy to implement » Difficult to determine whether

free choice

» Simple method for assessing pro-
pensity to voluntarily drink

* Provides measures of general
preference for and consumption of
alcohol

» Extensively used for investigating
genetic determinants of alcohol prefer-
ence and consumption

alcohol consumption results in
intoxication (significant elevation in
blood alcohol levels)

* Temporal pattern of alcohol
intake is typically not ascertained

» Limited utility for studies
probing mechanisms underlying
motivational aspects of drinking

Scheduled
limited access

*  Mimics “binge-like” pattern of
intake when access is appropriately
scheduled

» Engenders high levels of alcohol
consumption

» Affords opportunity to more
accurately correlate intake with resultant
blood alcohol levels

* Enables examination of relation-
ship between alcohol intake and mea-
sures of intoxication

» High levels of drinking during
limited access conditions may not
predict high drinking when access is
not restricted

» Limited utility for studies
probing mechanisms underlying
motivational aspects of drinking

Scheduled * Models alcohol relapse and crav- » Lack of specificity: Exagger-
deprivation ing ated intake following deprivation

» Can be studied using home-cage | observed for other rewards (e.g.,
drinking and operant self-administration | sucrose)
procedures » High propensity for alcohol

* Translational value as repeated preference/intake may not predict
cycles of deprivation lead to more robust expression of alcohol depri-
robust and durable effect vation effect

* Increased intake following
deprivation periods may be transient
Intermittent » Home-cage drinking procedure * Genetic models of high alco-
access easy to implement hol preference/intake may limit

» Escalation of alcohol intake escalation effect
observed in home-cage drinking and » Observation of escalated alco-
operant self-administration procedures | hol intake highly dependent on vari-

ous biological and experimental
factors (e.g., age, sex, housing
conditions)
Schedule- » Leads to high levels of intake that » Lack of specificity: same pro-
induced can result in alcohol dependence cedure leads to excessive intake of
polydipsia (evidenced by withdrawal signs) any fluid (including water)

» Effectively used in nonhuman * Requires food deprivation,
primates to produce long-lasting ele- clouding interpretation of motivation
vated alcohol intake * Once schedule is relaxed,

alcohol intake reverts to control

levels (in rodent models)
Alcohol » Leads to escalation of voluntary » Requires unique setup for
dependence intake that results in significant elevated | delivery of alcohol vapor

(continued)
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Table 1 (continued)

Model Advantages Disadvantages
and blood and brain alcohol levels * Induction of alcohol depen-
withdrawal * Can be employed to study both dence involves experimenter-
physical signs of withdrawal and moti- | administered alcohol
vational factors that influence alcohol * Some unique methodological
consumption issues need to be considered in
» Escalation of alcohol intake studies involving rats vs. mice

observed in home-cage drinking and
operant self-administration procedures

* Increased intake is specific to
alcohol (consumption of other palatable
substances not altered)

factors on regulation of alcohol drinking in these models are certainly warranted.
Extending this work to focus on genetically based risk factors that are predictive of
excessive drinking phenotypes in these models has important clinical relevance. The
emerging interest and evidence of epigenetic factors that influence alcohol consump-
tion may be of importance to this area of research.

Most studies described in this chapter have been predominantly conducted using
male subjects. In recent years, a growing body of evidence indicates sex-related
differences in alcohol consumption and the mechanisms that regulate this behavior.
Thus, there is a critical need for these models of excessive drinking to incorporate
females in the study designs. Filling this relative void in information will enhance
our understanding of potential sex-related differences in mechanisms that govern the
amount and pattern of drinking. This, in turn, may have important implications for
tailored treatment strategies for tempering excessive levels of alcohol intake in males
and females.

In the quest to further improve the relevance of these preclinical models in
relation to the human condition, other contributing factors that deserve more con-
sideration in these models include the role of initial sensitivity to alcohol as well as
acute and chronic tolerance (i.e., changes in response to alcohol as the subject gains
more experience and exposure to the drug). This includes procedures that enable
assessment of changes in the positive reinforcing (rewarding) effects of alcohol as
well as the emergence of motivation to drink to alleviate a negative emotional state
associated with chronic alcohol exposure (negative reinforcing effects of alcohol).
Further, additional work is needed to probe cognitive (learning/memory) factors that
guide decisions about initiating and terminating drinking behavior, as well as studies
focused on distinguishing circumstances in which environmental factors such as
cues, stress, and timing and predictability of access exert different effects on
propensity to drink. Through increased refinement and more detailed characteriza-
tion of procedures and factors that engender excessive alcohol drinking, the overall
goal in developing these animal models is to advance our understanding of biolog-
ical underpinnings and environmental influences that drive increased motivation for
alcohol seeking and consumption. This enhances the translational value of this
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preclinical work and facilitates the ability of the models to better inform the clinical
condition (AUD). Ultimately, the validity and utility of these models will lie in their
ability to aid in the discovery of new and novel potential therapeutic targets as well
as serve as a platform to evaluate treatment strategies that effectively reduce exces-
sive levels of alcohol consumption.
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