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Abstract Electrophysiological recording methods, including electroencephalogra-
phy (EEG) and magnetoencephalography (MEG), have an unparalleled capacity to
provide insights into the timing and frequency (spectral) composition of rapidly
changing neural activity associated with various cognitive processes. The current
chapter provides an overview of EEG studies examining alterations in brain activity
in ADHD, measured both at rest and during cognitive tasks. While EEG resting state
studies of ADHD indicate no universal alterations in the disorder, event-related
studies reveal consistent deficits in attentional and inhibitory control and conse-
quently inform the proposed cognitive models of ADHD. Similar to other neuroim-
aging measures, EEG research indicates alterations in multiple neural circuits and
cognitive functions. EEGmethods – supported by the constant refinement of analytic

G. McLoughlin (*) and Ü. Aydin
Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and
Neuroscience, King’s College London, London, UK
e-mail: grainne.mcloughlin@kcl.ac.uk

M. Gyurkovics
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Curr Topics Behav Neurosci (2022) 57: 415–444
https://doi.org/10.1007/7854_2022_344
Published Online: 31 May 2022

415

http://crossmark.crossref.org/dialog/?doi=10.1007/7854_2022_344&domain=pdf
mailto:grainne.mcloughlin@kcl.ac.uk
https://doi.org/10.1007/7854_2022_344#DOI


strategies – have the potential to contribute to improved diagnostics and interven-
tions for ADHD, underlining their clinical utility.

Keywords Electroencephalography (EEG) · Endophenotype · Error monitoring ·
Event-related potential (ERP) · Inhibitory control · Spectral composition

Abbreviations

ACC Anterior cingulate cortex
ADHD Attention-deficit hyperactivity disorder
ASD Autism spectrum disorder
CEM Cognitive-energetic model
CNV Contingent negative variation
CPT Continuous performance task(s)
DMN Default mode network
DSM Diagnostic and Statistical Manual of Mental Disorders
EEG Electroencephalography (electroencephalogram)
ERN/Ne Error-related negativity
ERP Event-related potentials
fMRI Functional magnetic resonance imaging
IC Independent component(s)
ISI Inter-stimulus interval
MEG Magnetoencephalography
NEBA Neuropsychiatric EEG-based Assessment Aid
NIRS Near infrared spectroscopy
Pe Error positivity
Pre-SMA Pre-supplementary motor area
RDoC Research Domain Criteria
SCL(s) Skin conductance level(s)
SMA Supplementary motor area
TBR Theta-beta ratio
VLF Very low frequency (EEG)

1 Introduction

For almost 100 years, neurophysiological methods have been successfully applied to
understand altered brain function in Attention-Deficit Hyperactivity Disorder
(ADHD) (Jasper et al. 1938). The unparalleled temporal resolution of electroen-
cephalography (EEG) can provide information on the strength, type and timing of
the fast-changing cognitive processes that appear to be central to neurobiological
understanding of the disorder. In this chapter, we introduce EEG methods and
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review core findings related to ADHD. We further examine the evidence in the
context of key neurobiological theories of the disorder. We also consider the impact
of heterogeneity in ADHD on EEG-indexed neural activity and the role of EEG
measures in explaining the heritability of the disorder. Finally, we close the chapter
by discussing future perspectives in research on the neurobiology of ADHD.

2 Electromagnetic Imaging

Neuronal activity in the brain is associated with electrical currents that give rise to
both electrical potentials on the scalp (measurable by means of EEG) and magnetic
fields outside the head (magnetoencephalography/MEG). The EEG signal reflects
the summated post-synaptic potentials of large populations of similarly aligned
cortical pyramidal neurons (Luck and Kappenman 2011). MEG, on the other
hand, records the magnetic field perpendicular to the electric field generated by the
synchronously active neurons (Hari and Puce 2017). Both EEG and MEG measure
the same underlying activity and they can provide information on the brain dynamics
and temporal changes that are pertinent to understanding the abnormalities in
sensory, cognitive and motor processing in ADHD. Both methods measure changes
in synchronised cortical neuronal activity with millisecond precision, thus displaying
the evolution of brain activity in real time. Consequently, they can be used to track
covert, rapidly changing neural computations or changes in the cortex.

Despite measuring the same underlying activity, different sensitivity profiles of
EEG and MEG make them complementary. MEG is mainly sensitive to quasi-
tangential activity in the brain (activity on sulcal walls) while EEG is sensitive to
both quasi-radial (sulci and gyri) and quasi-tangential sources. However, the signal
to noise ratio for tangential sources is usually lower in EEG due to radially oriented
background noise (Hari and Puce 2017). Because of these sensitivity differences,
measurements might differ: e.g., some epileptic spikes could be visible only in EEG
or MEG (Knake et al. 2006). It has been suggested that combined analysis of EEG
and MEG might provide a better overview of the underlying activity and increase
spatial resolution (Aydin et al. 2015; Baillet et al. 1999).

While the time courses of activations are critical in understanding brain function,
it is also useful to know where in the brain signals of interest are generated. Spatial
information from MEG and EEG is measurable in centimetres (especially without
source localisation) and is thus less precise relative to other neuroimaging methods,
such as functional magnetic resonance imaging (fMRI), which has a spatial resolu-
tion in the millimetre range and further has small co-registration errors as functional
images can be superimposed on structural images. In contrast, with EEG and MEG
the location of sources of activity in the brain could be estimated only after applying
source localisation techniques to the sensor measurements. This estimation process
is directly affected by volume conduction, which can create significant uncertainty
regarding the localisation of EEG and MEG signals. One main difference between
EEG and MEG is that the EEG source localisation is highly affected by the blurring
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of the propagating electrical signal in space due to the low conducting skull; thus the
signals measured on electrodes are a larger mixture of different sources, while MEG
is mostly immune to this problem (Wolters et al. 2006; Aydin et al. 2014). However,
recent major advances in computer hardware and signal processing are greatly
increasing the amount of spatially precise information that can be extracted from
EEG data using high-density channel recordings (Hari and Puce 2017; McLoughlin
et al. 2014a).

Despite its importance as a neuroimaging method, MEG studies are compara-
tively rare in the literature due to the substantially higher cost of the method
compared to EEG. In addition to its cost effectiveness, a further advantage of EEG
is its portability and robustness to body movement relative to MEG. The develop-
ment of dry, wireless, wearable, high density EEG systems makes the use of EEG in
most recording locations feasible. Specifically, the lightweight EEG sensors and the
lack of strict head movement constraints imposed by modern EEG recording and
analysis methods allow accessible testing of developmentally young samples, a
desirable approach for studies seeking to enable earlier detection of disorders
(McLoughlin et al. 2014a; Lau-Zhu et al. 2019b). This brings a big advantage of
EEG in comparison with fMRI, which requires restrictions on the movements of the
participants during recording. In addition to the advantages mentioned above, EEG –

and indeed, MEG – also has the benefit of being non-invasive in comparison with
other neuroimaging measures, such as positron emission tomography that requires
injection of radiotracers (McLoughlin et al. 2014a; Lau-Zhu et al. 2019b). These
strengths and the ready accessibility of EEG have led to its proliferation in studies of
neurodevelopmental disorders, including ADHD. Since MEG studies in ADHD are
relatively rare, this chapter focuses on EEG.

3 Methods of Analysis

Due to its superlative temporal resolution, EEG is most commonly used to track the
time course of various cognitive processes. The signal is a rich repository of
temporal, spatial and spectral features that can be extracted using a variety of
different techniques. In Fig. 1 we summarise the most common techniques for
extracting meaningful information from the EEG signal (Tadel et al. 2011; Delorme
and Makeig 2004). This is typically achieved in one of three ways.

First, the spectral composition of EEG signals can be quantified, for instance, by
decomposing them into a set of cyclic waves of different frequencies and quantifying
how much each wave contributes to the original signal. This process results in a
spectrum of amplitude or power (squared amplitude) values across frequencies. This
frequency domain representation of EEG is often investigated in resting-state studies
when a person is not engaged in any specific task. Analyses are then commonly
focused on the magnitude of power in one or more of the following canonical
frequency bands: delta (<4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz)
and gamma (<30 Hz). Such narrowband power is typically interpreted as an
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oscillation at a frequency included in the specific band, although this may not always
be justified and methodological care needs to be taken to ascertain that oscillations
are indeed present (Wen and Liu 2016; Donoghue et al. 2020). In the case of resting-
state data, the power across a range of frequencies is usually calculated at durations
in minutes as opposed to milliseconds. The power in a particular frequency band can
be expressed in absolute or relative terms, with relative power expressed as a
percentage of power relative to all bands.

Secondly, event-related potentials (ERPs) reflect transient time- and phase-locked
neural activity obtained by computing the average of the electrical potential in the
range of milliseconds following or preceding some event. To do this, neural activity
is typically recorded concurrently with a task and the data segments, or epochs,
around task events of interest (e.g., the onset of a given stimulus) are aligned and
averaged (Luck 2005). Activity that is consistently time- and phase-locked to the
event across segments will be reflected in the average waveform, enabling the
investigation of neuronal changes evoked by the event in the time domain. The
functional significance of an ERP component is determined by its eliciting condi-
tions (experimental variables), polarity (positive or negative), timing (latency) and
spatial position (scalp distribution).

Finally, time and frequency domain information can be combined to yield the
aptly named time-frequency domain representation of the data. This domain shows
changes in the spectral composition (frequency domain representation) of neural
activity as a function of time, typically following some task-relevant events, just like
in ERP research (Herrmann et al. 2014; Cohen 2014). Time-frequency data allow
researchers to draw conclusions about the time course of activity in different
frequency bands (purportedly reflecting oscillatory activity). It also indicates how
this activity changes in response to task events, compared to a (typically) pre-event
baseline, showing stimulus- and task-related suppressions and enhancements. This
helps link frequency bands to specific cognitive processes (i.e., those engaged by a
given type of task event) and clarifies their dynamic interactions (Palva et al. 2005;
Gratton 2018) (Fig. 1).

4 Resting State EEG

A body of quantitative EEG research highlights widespread alterations in resting
state EEG in individuals with ADHD. The most consistent finding is an increase in
slow wave, specifically theta, activity when compared with healthy controls, partic-
ularly with respect to frontal and central regions of the brain (Matsuura et al. 1993;
Janzen et al. 1995; Chabot and Serfontein 1996; Lazzaro et al. 1998; Bresnahan et al.
1999) and, to a lesser degree, reduced faster-wave, beta activity (Mann et al. 1992;
Clarke et al. 1998, 2001a, b; Lazzaro et al. 1998; Bresnahan et al. 1999; Bresnahan
and Barry 2002). The combination of increased theta and decreased beta activity is
sometimes quantified as the theta-beta ratio (TBR) and, when originally described by
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Lubar in 1991, it was proposed to inversely index cortical arousal in ADHD (Lubar
1991). Support for the TBR as a biomarker of ADHD comes from multiple reports of
more than 90% sensitivity and specificity (Monastra et al. 2001; Quintana et al.
2007; Snyder et al. 2008) and large effect sizes (>3.08) (Snyder and Hall 2006).

The theoretical link between TBR and cortical hypoarousal in ADHD was called
into question by a series of studies that failed to show a link between TBR and
objective measures of arousal (skin conductance levels, SCLs, Barry et al. 2004) and
manipulations of arousal (caffeine, Barry et al. 2005). The role of TBR in the
cognition of ADHD has, to date, been largely limited to exploration of its relation-
ship to other EEG/ERP measures and its potential role in cognitive efficiency in
ADHD (see below). Despite uncertainty about the theoretical implications of TBR,
the evidence for its link with ADHD was sufficient for it to be approved as the first
EEG biomarker of the disorder in 2013 by the United States Food and Drug
Administration. The Neuropsychiatric EEG-Based Assessment Aid (NEBA) System
(Saad et al. 2018) uses data from single electrodes at central and frontal locations to
aid diagnosis of ADHD.

The announcement of NEBA has stimulated criticisms of the use of TBR in the
diagnosis of ADHD. Studies have emerged that directly contradict its accuracy and
reliability as a diagnostic biomarker in both children (Ogrim et al. 2012) and adults
(Loo et al. 2009; van Dongen-Boomsma et al. 2010). A meta-analysis published in
the same year as the NEBA release showed a significant association between TBR
effect size and year of publication, showing a diminishing effect over time (Arns
et al. 2013). This reduction in effect-size over time may be linked to the increase in
rate of ADHD diagnosis, which the authors linked to false positives in the ADHD
groups (reflecting overdiagnosis of the disorder in the population) (Snyder et al.
2015).

It is, however, important to note here that TBR in ADHD has remained stable
over time and the diminishing effect size reflects an increase in TBR in the control
samples (Arns et al. 2013). The largest study of the TBR in ADHD to date further
failed to show an association between TBR and ADHD (Loo et al. 2013). The
researchers behind NEBA propose that it should not be used as a standalone
diagnostic tool but in conjunction with conventional diagnostic practices (Stein
et al. 2016). This caveat notwithstanding, as growing numbers of practitioners
incorporate its use into their patient assessments, further well-powered validation
studies of the NEBA are required.

A critical point in resting state EEG studies of ADHD is the effect of age. Indeed,
studies found that TBR was more effective at predicting age (up to 96.5% accuracy)
than ADHD (up to 55% accuracy) (Buyck and Wiersema 2014; Liechti et al. 2013).
The link between age and EEG variables is well-established: in general, slow wave
EEG (i.e., delta, theta) decreases and fast wave EEG (i.e., alpha, beta) increases with
increasing age (Benninger et al. 1984). A shift towards normalisation of beta activity
in adult ADHD (Bresnahan et al. 1999, 2006; Bresnahan and Barry 2002; Hermens
et al. 2004) was tentatively suggested to be related to the reduction in hyperactive-
impulsive symptoms reported in adults with the disorder (Biederman et al. 2000);
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however, a direct test of this hypothesis indicated that increased beta power is
associated with a reduction in both attention and hyperactivity-impulsivity symptom
domains (Loo et al. 2004).

Heterogeneity in ADHD, in Diagnostic and Statistical Manual (DSM) subtype/
presentation, sex, age of onset and behavioural severity may also translate to
variability in EEG profiles in ADHD. In contrast to decreases in higher-frequency
activity (alpha and beta ranges) (Lazzaro et al. 1998; El-Sayed et al. 2002; Loo et al.
2009), other studies have found no differences (Bresnahan et al. 1999; Clarke et al.
2001a, b; Koehler et al. 2009; van Dongen-Boomsma et al. 2010) or even increases
in these frequency bands (Chabot and Serfontein 1996; Clarke et al. 2011). Elevated
beta activity was proposed as an EEG subtype of ADHD most common in the
DSM-IV combined subtype (identical to DSM-5 combined presentation),
representing 15–20% of this group (Clarke et al. 2001a, 2011).

A recent study by Loo et al. (2018) using a statistical method similar to cluster
analytic techniques, called latent class analysis in a large sample, suggests five
resting state subgroups in ADHD with differing patterns of associated behaviours
and cognitive functioning. While the EEG subtypes loosely aligned with additional
measures of behaviour, cognitive dysfunction, age and gender, crucially, the EEG
subgroups were distributed in the same way across both ADHD and typically
developing groups (Loo et al. 2018). This suggests that heterogeneity in brain
function exists at the population level, rather than solely among children with
psychiatric disorders, which is consistent with findings in ADHD using other
neuroimaging methods and neuropsychological measures (Fair et al. 2012; Gates
et al. 2014) and is furthermore in line with the dimensional approach of the Research
Domain Criteria (RDoC) (Insel et al. 2010).

While there is limited evidence for consistent spectral differences between
ADHD patients and non-affected individuals using resting EEG, these measures
can be useful in tracking treatment response (Arns and Olbrich 2014), developmen-
tal outcomes (Clarke et al. 2011) and psychiatric comorbidities (Loo et al. 2018).
Future research may need to consider individual differences in peak frequencies and
thus the limitations of fixed frequency bands (Saad et al. 2018). A further consider-
ation is the confounding effect of aperiodic, or in other words, non-oscillatory,
background EEG activity on oscillatory measures, given emerging evidence linking
the aperiodic component of EEG to ADHD and medication status (Robertson et al.
2019). Unless this aperiodic component is somehow accounted for, EEG ratio
measures (including TBR), based on predefined frequency bands, could reflect
changes in oscillations, the aperiodic component only, or a combination of both.
This would create confusion about the meaning of the measured effect or, indeed, if
the same effect is being measured across different studies. Further refinement of
resting state EEG measures in combination with comprehensively described large
samples is likely to lead to improvements in the understanding of the neurobiology
of ADHD and also in the potential use of EEG in clinical settings.
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5 Event-Related EEG

Event-related designs in EEG studies enable researchers to directly link spectral or
amplitude changes in the recorded signal to cognitive processes. This can be done by
using different cognitive tasks that tap into different domains of cognition: e.g.,
inhibitory control, working memory, cognitive flexibility. These tasks typically
contain trials (or events), which engage the specific cognitive process or processes,
and other trials that do not, or to a lesser extent. Electrophysiological changes that are
unique to the former class of trials are then considered correlates of the cognitive
process(es) in question. A common strategy for the understanding of brain patho-
physiology across psychiatry, using all cognitive neuroscience methodologies, is to
examine cognitive and neural dysfunction that is closely related to the core
behavioural symptoms. Accordingly, the majority of event-related studies in
ADHD aim to address questions focused on selective or sustained attention, inhib-
itory control and effort allocation (Johnstone et al. 2013), typically using variations
of stop signal, flanker, go/no-go and continuous performance tasks (CPT) (Lau-Zhu
et al. 2019a).

6 Inhibitory Control

One of the most established ERP findings in children and adults is that the P3, also
known as the P300, in multiple contexts has been associated with the disorder
(Kaiser et al. 2020). The P3 component is a positive voltage deflection occurring
around 300 ms after a stimulus. When the P3 ERP is elicited by a stop signal or
no-go stimulus, where a participant must refrain from making a prepotent or
automated response, it is called the inhibition-related or no-go P3, and projects to
frontal regions of the scalp (Fallgatter et al. 2002). A particularly robust finding is
that ADHD is associated with a reduced amplitude and longer latency of the
inhibition-related frontal P3 component (Lau-Zhu et al. 2019a; Kaiser et al. 2020).
In the visual go/no-go task, a participant responds to a continuous stream of go
stimuli (go trials), by pressing a button, but has to withhold a response when a no-go
target appears (no-go trials). The go trials typically outnumber no-go trials to induce
the prepotency of the go-response. Similarly, in the Stop Signal Task, a subject is
asked to respond as quickly as possible to a stimulus but not to respond when a stop-
signal (visual or auditory) follows the target stimulus.

These conditions elicit robust inhibitory processing and, in addition to the no-go
P3, the no-go and stop stimuli evoke the frontal-midline N200 or N2, often together
referred to as the N2/P3-complex (de Jong et al. 1990). The frontocentrally distrib-
uted N2 is a negative voltage deflection that peaks approximately 200–350 ms after a
stimulus (Larson et al. 2014). However, in contrast to the no-go P3, the N2 is not
consistently associated with ADHD (Kaiser et al. 2020). While the N2 was altered in
ADHD patients in several studies (Pliszka et al. 2000; Barry et al. 2003; Albrecht
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et al. 2008; Johnstone and Clarke 2009; McLoughlin et al. 2009; Wild-Wall et al.
2009; Rommel et al. 2019), there are exceptions (Overtoom et al. 1998;
Banaschewski et al. 2004; Fallgatter et al. 2004; Spronk et al. 2008; Fisher et al.
2011; Tye et al. 2014). This discrepancy may relate to the respective functions of the
N2 and the P3. Even though both have been described uniformly as indices of
inhibition, it is now widely accepted that the N2 in fact reflects conflict detection and
monitoring, ‘the process of monitoring performance for simultaneously competing
response options’ (Groom and Cragg 2015; Hong et al. 2017). The inhibitory P3 is
thought to reflect a ‘braking’ mechanism when inhibiting automated or prepotent
response tendencies (Huster et al. 2013). Thus, while the N2 is elicited by these
inhibitory conditions, unlike the no-go P3, it is not related to response inhibition per
se, but rather reflects the conflict between the prepotent response tendency and the
infrequent requirement to inhibit the response. In support of this, N2 amplitude for
go trials increases when the ratio of go/no-go trials is reversed: an inversion that is
not observed for the P3 (e.g., Enriquez-Geppert et al. 2010).

7 Error Processing

An ERP related to the N2 is the error-related negativity (ERN/Ne): a response-
locked ERP occurring after the commission of errors. It has a strong negative
frontocentral deflection that peaks 50–120 ms after erroneous responses (Falkenstein
et al. 1990; Gehring et al. 1993). Source localisation and EEG-fMRI studies also
suggest that the ERN and the N2 share common neural substrates in the medial
frontal cortex, specifically the anterior cingulate cortex (ACC) and the
pre-supplementary motor area (pre-SMA), despite their temporally distinct appear-
ance in the processing of information, either prior to correct responses or after
erroneous responses (Van Veen and Carter 2002; Yeung et al. 2004; Iannaccone
et al. 2015).

EEG-indexed error monitoring has been found to be deficient in ADHD (Albrecht
et al. 2008; Skirrow et al. 2009; McLoughlin et al. 2009; Geburek et al. 2013;
Marquardt et al. 2018; Rommel et al. 2019; Michelini et al. 2021) although not in
every study (Zhang et al. 2009; Wild-Wall et al. 2009; Groom et al. 2010) and a
recent meta-analysis could not confirm an altered ERN in ADHD (Kaiser et al.
2020). The inconsistency in results could be explained by evidence that the N2 and
ERN may be related to heterogeneity within samples in terms of age, IQ, ADHD
presentation, medication status or comorbidities (Kaiser et al. 2020). Inconsistencies
may also partially be due to differences in the type or degree of conflict engendered
by tasks used in different studies (Brandeis et al. 2018). For instance, a large portion
of studies that do find group differences in ERN magnitude use classic conflict tasks,
such as the flanker task, whereas studies yielding null findings tend to use variants of
the go/no-go task. Conflict stems from different stimuli priming incompatible
responses simultaneously or quasi-simultaneously in the former, while it comes
from the need to unexpectedly withhold a prepotent response tendency in the latter
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task. While an early meta-analysis of the literature found evidence for a reduced
ERN in ADHD using both tasks, this was based on a smaller set of studies (Geburek
et al. 2013).

Nevertheless, a systematic investigation of how conflict type or task difficulty
interacts with group differences in the magnitude of performance monitoring com-
ponents is needed to address whether or not task design factors contribute to the
heterogeneity of findings. Indeed, a recent study showed an interaction between the
affective valence of task stimuli and the ERN in adult ADHD (Balogh et al. 2017).
Furthermore, it is possible that time-frequency domain measures such as post-error
phase and power dynamics, especially in the theta range, are more sensitive mea-
sures of performance monitoring than time-domain ERPs (Groom et al. 2010; Keute
et al. 2019), leading to less stable findings in ERP studies. All in all, it appears that
components related to performance monitoring (N2, ERN) are not reliably different
in individuals with ADHD compared to healthy controls, or may be different only in
a subgroup of these individuals.

Similar to the N2, the ERN is followed by a positive potential peaking at around
200-500 ms, known as the error positivity or ‘Pe’ (Falkenstein et al. 1990). The ERN
is consistently observed when a mismatch occurs between representations of antic-
ipated and actual responses, whereas the Pe appears to reflect error awareness
(Falkenstein et al. 2000; Klein et al. 2007), reflecting conscious error processing
or updating of the error context (Nieuwenhuis et al. 2001; Mathewson et al. 2005).
Pe amplitudes are typically reduced in participants with ADHD compared to healthy
controls and this finding is more consistent than the reduction in ERN (Kaiser et al.
2020). The Pe has been proposed to represent a P3-like facilitation of information
processing modulated by sub-cortical arousal systems (O'Connell et al. 2007), which
links with general deficits in P3 components in ADHD that may be modulated by
arousal state (Wiersema et al. 2005, 2006).

8 Cognitive Models of ADHD

A highly influential theory places behavioural inhibition at the centre of cognitive
dysfunction in ADHD (Barkley 1997). The model integrates neuropsychological and
behavioural levels and proposes that inhibitory control is at the top of a hierarchy of
self-regulatory behaviour in the disorder. In Barkley’s model, the inability to inhibit
or stop prepotent or on-going behavioural output interferes with normal functioning.
This interference results in the development of further neuropsychological deficits in
ADHD, specifically working memory, internalisation of speech and behavioural
self-regulation of motivation, arousal and motor control (Barkley 1997).

Studies of inhibitory control in ADHD have typically operationalised this cogni-
tive construct as the withholding of a prepotent or on-going response. Here, prepo-
tent responses are actions that have previously been useful or reinforced, but that are
not useful in the current situation owing to changes in the context, and on-going
responses are behaviours that are already being executed and require interruption

What Has Been Learned from Using EEG Methods in Research of ADHD? 425



(Barkley 1997). This operationalisation captures a form of cognitive control called
reactive control, as it refers to situations where control processes are engaged
following the onset of the target stimulus that requires a response. However, the
evidence points towards this being too limited a model to explain the complex
behaviours and altered brain function of ADHD. Poor inhibitory control can emerge
due to dysfunctions in a number of processing stages: i.e., from the perceptual and
attentional selection stage (Ocklenburg et al. 2011; Lackner et al. 2013; Grunewald
et al. 2015) to the response selection stage (for a review, see Bari and Robbins 2013).
This is because both perceptual processes (e.g., deficient attention) and response-
related mechanisms (e.g., deficient inhibition) are crucial for adequate response
inhibition. Rather than a central deficit of inhibitory control, event-related research
in ADHD suggests that deficits exist on a number of these stages of action. In
addition to the no-go P3, convincing and consistent evidence indicates reduced P3
amplitude to both go and cue stimuli within go/no-go and continuous performance
tasks. In contrast to the anterior projection of the no-go P3 described above, these
P3s are maximal over posterior scalp electrodes and reflect stimulus evaluation and
response selection (P3b, Polich 2007). The ‘go P3’ is reduced in both children and
adults with ADHD (Szuromi et al. 2011; Johnstone et al. 2013). Similarly, the P3 in
response to predictive cues, which is maximal at posterior scalp sites, is also
attenuated in ADHD in both children (Banaschewski et al. 2003) and adults
(McLoughlin et al. 2010). A recent meta-analysis concluded that P3 components
to all stimuli are the most sensitive ERP biomarkers of ADHD (Kaiser et al. 2020).

Additional cue processing deficits in ADHD are seen in the contingent negative
variation (CNV), a frontocentral slow negative potential observed during the antic-
ipatory interval after a cue stimulus. The same meta-analysis showed that reduced
amplitudes of CNV were a consistent finding in over 52 studies of the disorder
(Kaiser et al. 2020). Furthermore, cue-related deficits in ADHD are also indicated by
a lack of cue-related suppression of alpha-band activity, which has been found in
both children and adults with the disorder across a variety of tasks (for a review, see
Lenartowicz et al. 2018). Suppression of alpha reflects increased control for
processing upcoming stimuli via inhibition of irrelevant input (De Loof et al.
2019). In ADHD, these findings have been interpreted as deficient processing of
the cue information prior to target onset, which may translate into impaired
behavioural performance as well (Mazaheri et al. 2010).

The additional event-related deficits in ADHD, particularly for cue processing
that precede the need for reactive control, indicate that a breakdown of inhibitory
control is unlikely to be the central deficit in ADHD. Specifically, these findings
suggest additional deficits in proactive control or the preparation of a reactive
cognitive control network when it seems likely that reactive control may be required
(de Zeeuw and Durston 2017). A recent study manipulated cues to either carry
information about subsequent stimuli (e.g. to attend to a shape) or to simply alert the
participant to a stimulus (with no task information). The aim was to tease apart
whether reduced preparation in ADHD reflects proactive control impairments or is
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the result of reduced general alerting in the disorder, as in general cues may both
convey advance information about the task and also have a general alerting property.
ADHD participants displayed alterations in the usage of informative cues to prepare
for an upcoming task, indicative of a deficit in proactive control as opposed to
general alerting (Sidlauskaite et al. 2020).

While these findings undoubtedly advance our understanding of the neurobiology
of ADHD, alternative explanations remain possible in the context of the proposed
cognitive models of ADHD. The dysregulation of downstream attention and per-
ceptual systems in ADHD is consistent with another influential theory of ADHD, the
cognitive-energetic model (CEM), which proposes that abnormalities in the regula-
tion of basic information-processing may explain higher-order deficits in ADHD
(Sergeant 2000). A central hypothesis of the CEM is that individuals with ADHD
have difficulty in mobilising energetic resources and that this may be manipulated by
specific task properties, including task difficulty and rewards. It is not clear if
deficient alpha suppression in ADHD reflects a fundamental dysfunction in
top-down frontoparietal circuitry or if this is a downstream problem with arousal
(Lenartowicz et al. 2018). Consistent with the latter interpretation, reduced
desynchronisation of alpha in ADHD is particularly pronounced during low working
memory load conditions compared to high-load conditions (Lenartowicz et al.
2014). Similarly, larger effect-sizes are found for mean reaction-time, reaction-
time variability and response accuracy in slower tasks (with long inter-stimulus
intervals, ISIs) (Metin et al. 2012, 2016).

The periodic lapses of attention that are evident in ADHD during tasks with low
event rates have alternatively been related to intrusions of the default mode network
(DMN), known as the DMN interference model (Sonuga-Barke and Castellanos
2007). The DMN is typically deactivated during cognitive tasks and its activity is
associated with mind-wandering and self-referential processing (Gusnard et al.
2001; Fox et al. 2015) and, as such, may interfere with appropriate task performance.
While there is an inevitable degree of incongruence between hemodynamic and
electrophysiological signals, researchers have proposed to examine DMN activity in
ADHD using very low frequency (VLF) EEG (<0.2 Hz). VLF-EEG is increased in
individuals with ADHD during the CPT and is associated with omission errors, an
index of attention (Cooper et al. 2014). However, it has also been found to be
decreased, though mainly during resting state (Helps et al. 2008, 2010). It is likely
that EEG research has more to contribute to investigations of DMN interference in
ADHD but, to date, has been bound by the observed weak to moderate correlations
between EEG frequency domain features and regions associated with the DMN.
Future research would benefit from an EEG-specific approach to identify correspon-
dence between EEG features and known functional processes ascribed to the DMN
(e.g., self-referential thought) and early work in this area is showing some promise
(e.g., Bozhilova et al. 2020).
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9 Heterogeneity in ADHD

As indicated in this chapter, and indeed, in this volume, the population of those
affected by ADHD is heterogeneous, in terms of age, symptomatology,
comorbidities and outcomes.

Defined according to the DSM-IV or DSM-5 (DSM), ADHD is also heterogeneous
at the diagnostic level with three subtypes or presentations: primarily hyperactive-
impulsive, primarily inattentive or a combination of both (combined presentation) (see
Chapter “ADHD in Children and Adults: Diagnosis and Prognosis”). To date, limited
evidence exists that the clinical presentations align with distinct neurobiological
underpinnings. Early research taking this approach relied heavily on resting state
EEG, which would provide clear potential benefits in ease of use in a clinical setting.
The findings were often variable and lacked replication (for a review, see Loo et al.
2018). That limitation has justified an approach that extends beyond the clinical
presentations of ADHD, using statistical clustering methods (e.g., latent class analysis,
Loo et al. 2018), to derive subgroups based on neural activity (see Sect. 4, above:
Resting State).

Recent work using event-related EEG measures hold more promise for
uncovering differences between existing diagnostic presentations. For example,
Mazaheri et al. (2014) provided some evidence that impaired suppression of alpha
activity in task-relevant regions of the brain may be more typical of the inattentive
presentation of ADHD, whereas those showing both inattentive and hyperactive
symptoms displayed impaired suppression in the beta range, possibly suggesting
poor motor planning during the preparatory period. Both groups, however, showed
weakened functional connectivity between midfrontal theta activity and posterior
alpha activity, which suggests a deficit in the top-down attentional control of
perceptual processes after the cue across all subtypes/presentations of ADHD
(Mazaheri et al. 2014).

Similarly, a series of studies examining differences in developmental outcomes in
ADHD has indicated clear differences between those who persist with the diagnosis
into adulthood and those who experience remission. Specifically, event-related theta
power and phase was lower in those who have persistent ADHD while no differ-
ences in alpha suppression emerged between those in remission and those who
retained the diagnosis (Vainieri et al. 2020). Event-related EEG data has also
highlighted key differences in those with a single diagnosis of ADHD versus those
who have a comorbid diagnosis. Investigations by Tye and colleagues indicate that
those with ADHD have a different ERP profile compared with those who have a dual
diagnosis of ADHD and autism spectrum disorder (ASD) with abnormalities in P3
amplitudes to cue and no-go stimuli evident in those with ADHD only (Tye et al.
2014).

The objective nature of EEG measurements and its ready availability in the clinic
have led to work that aims to identify EEG subgroups. This work could lead to a
personalised treatment approach based, in almost all cases, on the spectral contents
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of resting state EEG recordings. Some of this work has indicated that EEG measures
may be useful in predicting medication response. A 2014 review identified four
different EEG subgroups based on their response to different medications (Arns and
Olbrich 2014). Two subgroups (excess theta and high beta activity) were proposed to
respond well to stimulant medication (Clarke et al. 2003b; Arns et al. 2008) whereas
children with a slow individual alpha peak frequency were reported to be resistant to
stimulant medication with poor outcomes (Arns et al. 2008). Another group was
identified as having paroxysmal and epileptiform EEG, without the existence of
seizures, and thus was suggested to have a good response to anticonvulsant medi-
cation (Silva et al. 1996). These findings suggest the potential for using EEG
parameters for personalised medication in ADHD, but further research is required
to confirm if, in practice, EEG subgroups could predict treatment outcome.

Event-related EEG approaches may hold more promise for tracking treatment
response in ADHD. For example, in a large sample of medication naïve children
with ADHD, Ogrim et al. (2014) conducted follow-up assessments after 4 weeks
based on 23 parameters related to demography, IQ, DSM-IV subtype, as well as
behavioural, ERP and EEG spectra parameters of a visual go/no-go task. They found
that only three EEG parameters (amplitude of independent components
(IC) representing cue P3 and no-go P3, and theta power) independently predicted
a medication response as rated by clinicians blind to all EEG measures. Furthermore,
in another study of IC amplitudes of the CNV, an early visual ERP as well as
reaction-time were reported to predict side effects of medication (methylphenidate,
Ogrim et al. 2013). Longer term neural changes have also been indicated by resting
state EEG studies. Isiten et al. (2017) reported an increase in beta power after
continuous use of methylphenidate for 1.5 years, in comparison with the EEG data
prior to the treatment, and Clarke et al. (2003a) reported normalisation of theta, alpha
and beta band EEG after 6 months of stimulant medication. Further work is required
to investigate the long-term EEG correlates of medication use, including whether the
reported effects are sustained after medication is ceased.

10 Endophenotypes: The Role of EEG in Explaining
Heritability in ADHD

The heritability of EEG has long been investigated in twin and family studies (Vogel
1970). Consistent evidence indicates that the impact of genetic influences on EEG
measures is moderate to high, similar to behaviour and brain structure measures, and
surpassing heritability estimates found in twin and family studies of fMRI data (van
Baal et al. 1998; Anokhin et al. 2004; Smit et al. 2005; Anokhin et al. 2006, 2008;
Blokland et al. 2012). A meta-analysis in 2002 confirmed high heritability (50–80%)
for frequency and ERP measures (van Beijsterveldt and van Baal 2002) indicating
that they may have value as endophenotypes. An endophenotype is defined as a
quantitative, subclinical and biological phenotype that is intermediate between the
behavioural symptoms and genetic variation associated with the disorder.
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Endophenotype studies aim to map neurobiological processes that mediate the
relationship between behaviour, symptoms and genes (Ishii and Naito 2020).

Many studies have indicated that EEG/ERP variables share genetic or environ-
mental variance with ADHD (Loo and Smalley 2008; Tye et al. 2012). A major
requirement for an endophenotype is that it shows familial clustering with the
disorder so that it is evident even in unaffected family members thus covarying
with genetic vulnerability for the disorder even in the absence of symptoms
(Gottesman and Gould 2003; Durston et al. 2009). In ERP studies of ADHD,
familial segregation has been shown. Moreover, unaffected siblings or parents of
individuals with ADHD display similar performance to those with the diagnosis
across a range of executive control tasks (Albrecht et al. 2008; McLoughlin et al.
2009, 2011; Albrecht et al. 2013). For example, Michelini and colleagues investi-
gated a large sample of adolescents and young adults with ADHD, their affected and
unaffected siblings and controls on a range of tasks: familial influences on ADHD
overlapped strongly with the ERN and the no-go P3 (Michelini et al. 2021).

Endophenotype investigations adopting strategies for advanced EEG analysis
have had mixed results. A recent investigation aimed to predict ADHD symptoms
using machine learning of connectivity signals across all canonical frequency bands
(resting state EEG) in adults with the disorder, first degree relatives and healthy
controls. While they found that EEG connectivity in specific frequency bands
predicted hyperactive-impulsive and inattentive symptoms, separately, they failed
to show a difference in any type of EEG connectivity measures between first degree
relatives and healthy controls, thereby showing no familial clustering between the
EEG measures and ADHD symptoms (Kiiski et al. 2020). Thus, the findings do not
support network alterations as potential endophenotypes of ADHD. However, this
may be because functional connectivity was analysed between electrodes (sensors)
in this study, as opposed to between potential cortical sources of neural activity
(Kiiski et al. 2020). In support of this notion, a study indicated that spatially-resolved
cortical source measures of frontal-midline theta may share more genetic variance
with the disorder than traditional scalp-based measures (McLoughlin et al. 2014b).
The authors proposed that the improved signal-to-noise ratio of source imaging
measures in EEG may provide a better representation of the underlying cortical
activity and therefore may improve the ability to detect genetic effects on brain
function measures and their overlap with the disorder. This approach was supported
by a study showing an association between dopaminergic candidate genes and the go
and no-go P3 in the source space, but not at the electrode (sensor) level (McLoughlin
et al. 2018).

A key feature for any endophenotype, EEG-based or otherwise, is reliability in
measurement and, in turn, statistical power to identify an association between the
disorders and potential genetic causal factors (Iacono et al. 2017). ADHD, in
common with all psychiatric disorders, is heterogeneous even at the genetic level
and so the extraction of a common genetic background is a challenge (Faraone and
Larsson 2019; McLoughlin et al. 2014a). Large studies are required to parse the
neurobiological pathways, but these are potentially enabled by the use of advanced
analysis methods and genetic approaches.
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11 Future Directions

Future studies of the neurophysiology of ADHD could consider adopting novel
methodologies and analytic approaches. In terms of methods, improvements in
neuroimaging techniques provide powerful new tools for the investigation of the
neural bases of ADHD. Recent advancements in MEG technology, such as optically
pumped magnetometers that allow MEG sensors to be placed on the scalp, much like
the EEG, improve the portability and resilience to movement (Boto et al. 2018;
Hironaga et al. 2020). MEG is more sensitive to higher-frequency signals (i.e.,
gamma band activity) in the brain and these signals may be sensitive to alterations
in emotional regulation in the disorder (Dor-Ziderman et al. 2021). Increasing
evidence points towards emotional symptoms as a potential core feature of the
ADHD diagnosis (Faraone et al. 2019; Biederman et al. 2020).

Further advantages arise from the use of optical techniques, such as near infrared
spectroscopy (NIRS), which can be used to obtain hemodynamic information and
has several clear advantages for studying children with developmental disorders,
such as ADHD (Scholkmann et al. 2014). However, unlike fMRI, it measures both
relative oxygenated and deoxygenated haemoglobin changes by measuring changes
to the absorption of infrared light (Scholkmann et al. 2014). Furthermore, unlike
fMRI, NIRS is silent and the acquisition environment is not intrusive, so it is a
practical method for children with hyperactive symptoms. Although limited in
number, to date, NIRS studies in ADHD have contributed to the understanding of
the neurobiology of ADHD by pointing to hypo-metabolism in frontal brain regions
during the go/no-go and Stroop tasks (Mauri et al. 2018). Furthermore, pharmaco-
therapy increased oxyhemoglobin in the prefrontal cortex (Nagashima et al. 2014;
Ishii-Takahashi et al. 2015; Dolu et al. 2019; Grazioli et al. 2019). However, another
study found increased prefrontal activity after treatment with atomoxetine, but not
methylphenidate, even though participants receiving either medication showed a
reduction of ADHD symptoms (Nakanishi et al. 2017). These studies included fewer
than 60 participants and therefore studies with larger sample sizes are still needed.
Perhaps one of the most important prospects is that EEG and NIRS could be
measured simultaneously; analysing both sets of data would bring information on
both direct neuronal activity and hemodynamics and so improve precision (Fazli
et al. 2012; Shin et al. 2018; Dolu et al. 2019).

While resting state EEG investigations of ADHD have contributed to our under-
standing of the disorder, the interpretation of spectral changes is substantially more
straightforward in event-related designs that target various, specific cognitive pro-
cesses. Furthermore, event-related designs often permit researchers to link directly
trial-to-trial fluctuations in neural activity with moment-to-moment variability in
behaviour (e.g., accuracy or reaction-time) through single trial analyses
(McLoughlin et al. 2014b). Such methodological, analytic and design considerations
could help further uncover details of the neural basis of ADHD that have hitherto
remained hidden or unclear. On-going advances in signal processing and visualisa-
tion of EEG activity could provide novel insights and/or more sensitive measures of
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underlying cognitive processes in ADHD (McLoughlin et al. 2014a). Time-
frequency decomposition of neural signals, particularly in the context of distinct
cortical source activities, take advantage of the ability of EEG measures to both
spatially and temporally characterise fast-changing events in the brain that are key to
understanding the pathophysiology of ADHD.

The study of brain activity from EEG (and MEG) has benefited from the
development of techniques that aim to characterise the degree of functional or
effective brain connectivity between time series, in which cognitive functions are
no longer associated to specific brain areas, but to networks of synchronously
activated areas (Friston 2011). This approach reflects a shift from understanding
the neurobiological basis of neurodevelopmental disorders, as focal brain abnormal-
ities affecting specific systems, towards an overall pattern of brain reorganisation.
While this research is still relatively underexplored in ADHD, initial investigations
using this approach indicate disruptions in interrelated networks in ADHD (e.g.,
Pereda et al. 2018).

Together with machine-learning methods, these approaches can improve the
predictive power of the proposed neurobiological models of ADHD and, conse-
quently, may contribute to the development of screening and diagnostic tools. The
importance of large sample sizes for such research is highlighted by a recent meta-
analysis, which indicated that classification accuracies for ADHD appear to be
inflated by small sample sizes that do not account for the heterogeneity in the
disorder (Pulini et al. 2019). Furthermore, to achieve clinical benefits, machine-
learning classifiers need to achieve good performance in independent samples: i.e.,
individuals not included in the original study. Brain connectivity research in fMRI
has led the way in the validation of models in independent samples by indicating the
value of validating all predictive models across independent data sets to identify a
potential tool to assess attention independent of ADHD diagnosis (Yoo et al. 2018).

Although symptom-based diagnoses are the ‘gold-standard’ for clinical outcomes
of ADHD, symptoms may be distinct from the actual burden of the conditions.
Individuals with ADHD are at higher risk of experiencing a range of behavioural and
functional problems, such as mood disorders, sleep problems and unfavourable
psychosocial outcomes, including poorer academic performance and lower employ-
ment levels (Davidson 2008). Even individuals who no longer have the diagnosis but
retain some symptoms have been shown to have lower work productivity, quality of
life, functioning and self-esteem (Pawaskar et al. 2020). The role of cognitive
dysfunction in the burden of ADHD over and above diagnosis has to date been
under-researched. The use of cognitive biomarkers to predict and track outcomes –
e.g., education, physical health, emotional and adaptive functioning – may have
greater clinical impact than a focus on diagnosis alone by advancing the potential for
personalised interventions. Such an approach could directly improve the lives of
those affected by the disorder by improving wellbeing and quality of life.
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12 Conclusions

As with other neuroimaging investigations of ADHD, EEG research has not been
able to identify a final common pathway to the disorder. Nevertheless, this large
body of research does show that, although there is limited evidence for universal
alterations in ADHD, there are robust and consistent patterns emerging that incor-
porate these deficits in broader neurobiological frameworks: this applies particularly
for P3 measures in multiple contexts and indices of proactive control, such as alpha
suppression. Heterogeneity in ADHD and evidence that multiple neural circuits and
cognitive functions are affected in the disorder have led to a preference for multiple
pathway theories of the disorder that propose deficits in multiple, partially separable
brain systems (Castellanos et al. 2006). Further insight into the neurobiology of
ADHD is likely to be gained by large studies that take into account this heterogeneity
and also take advantage of the rich information about cortical function provided by
EEG data.
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