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Abstract Multiple sclerosis (MS) is a disease with a resilient inflammatory com-
ponent caused by accumulation into the CNS of inflammatory infiltrates and mac-
rophage/microglia contributing to severe demyelination and neurodegeneration.
While the causes are still in part unclear, key pathogenic mechanisms are the direct
loss of myelin-producing cells and/or their impairment caused by the immune
system. Proposed etiology includes genetic and environmental factors triggered by
viral infections. Although several diagnostic methods and new treatments are under
development, there is no curative but only palliative care against the relapsing-
remitting or progressive forms of MS. In recent times, there has been a boost of
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awareness on the role of histamine signaling in physiological and pathological
functions of the nervous system. Particularly in MS, evidence is raising that hista-
mine might be directly implicated in the disease by acting at different cellular and
molecular levels. For instance, constitutively active histamine regulates the differ-
entiation of oligodendrocyte precursors, thus playing a central role in the
remyelination process; histamine reduces the ability of myelin-autoreactive T cells
to adhere to inflamed brain vessels, a crucial step in the development of MS;
histamine levels are found increased in the cerebrospinal fluid of MS patients. The
aim of the present work is to present further proofs about the alliance of histamine
with MS and to introduce the most recent and innovative histamine paradigms for
therapy. We will report on how a long-standing molecule with previously recognized
immunomodulatory and neuroprotective functions, histamine, might still provide a
renewed and far-reaching role in MS.

Keywords Clinical trials · Demyelination · Drug therapy · Experimental
autoimmune encephalomyelitis · Histamine · Multiple sclerosis

Abbreviations

BBB Blood brain barrier
CNS Central nervous system
CSF Cerebrospinal fluid
DAO Diamine oxidase
EAE Experimental autoimmune encephalomyelitis
HDC l-Histidine decarboxylase
HNMT Histamine-N-methyltransferase
MS Multiple sclerosis
OPC Oligodendrocyte precursor cells

1 The Histamine System

Heterogeneous genetic and molecular mechanisms contribute to multiple sclerosis
(MS), a disabling central nervous system (CNS) disease causing permanent deteri-
oration of axons. These gradually lose their myelin ensheathment because of an
autoimmune reaction to myelin, caused by T lymphocytes entering the brain after
blood-brain-barrier (BBB) injury. Signs and symptoms of MS are very variable and
depend on the extent and exact location of axonal damage. While there is no cure for
MS, pharmacological treatments can modulate disease progression, manage the
symptoms, and accelerate recovery (Derdelinckx et al. 2021; McGinley et al. 2021).

The potent physiological actions of the hydrophilic vasoactive histamine have
been identified a while ago by Sir Henry Dale and Patrick Laidlaw (Dale and

218 C. Volonté et al.



Laidlaw 1910). Over the years, histamine has proven to be a master molecule in
pharmacology and immunology, with two Nobel Prizes awarded for the identifica-
tion of anti-H1R and anti-H2R antagonists. In addition to their use for allergic,
gastric, and immune disorders, histamine drugs have entered clinical testing for
obesity, neurological disorders, and memory [for reviews (Hu and Chen 2017;
Ghamari et al. 2019; Volonté et al. 2019; Provensi et al. 2020a, b)].

Histamine is obtained exclusively from decarboxylation of the amino acid histi-
dine, a reaction catalyzed by l-histidine decarboxylase (HDC, encoded in humans by
HDC gene, generating an active homodimer of 54 kDa per unit), which is localized
in the intracellular compartment of specific cell phenotypes. Major histamine pro-
ducing cells are: (1) mast cells (resident cells of connective tissue that contain many
histamine and heparin granules, a sort of granulocytes derived from myeloid stem
cells and part of the immune and neuroimmune systems); (2) basophil (the least
common type of granulocyte, representing about 0.5% to 1% of circulating white
blood cells); (3) enterochromaffin-like cells (a type of neuroendocrine cell found
beneath the epithelium of gastric mucosa gland cells and contributing to the pro-
duction of gastric acid via the release of histamine); (4) and histaminergic neurons
(histamine releasing neurons present exclusively in the tuberomammillary nucleus of
the posterior hypothalamus, and involved in the control of arousal, learning, mem-
ory, sleep, and energy balance). Minor histamine producing cells are also dendritic,
T cells, macrophages/microglia, neutrophils, monocytes, platelets, and epithelial
cells (Huang et al. 2018; Thangam et al. 2018).

Once synthetized intracellularly, histamine can be stored in intracellular granules/
vesicles, released extracellularly, and/or rapidly metabolized by its primary degra-
dative enzymes. The vesicular monoamine transporter-2 is responsible for loading
monoamines, among them also histamine, into secretory vesicles (Schafer et al.
2013). Histamine degrading enzymes are histamine-N-methyltransferase (HNMT,
encoded by HNMT gene in humans, generating a 33 kDa protein) catalyzing the
methylation of histamine, and diamine oxidase (DAO, encoded in humans by AOC1
gene, generating a homodimer of theoretical 73 kDa per unit) catalyzing oxidative
deamination, an enzyme whose shortage in the human body causes allergy or
histamine intolerance (Comas-Basté et al. 2020). The HNMT enzyme resides in
the cytosol, whereas DAO metabolizes extracellular free histamine. Synthesis,
storage in granules/vesicles, degradation, and release of histamine are highly regu-
lated mechanisms, under the control of a plethora of different extracellular and
intracellular signals among them trophic factors, hormones, transmitters, and various
stressors, thus rendering the histaminergic system a complex sensor and effector of
cellular and environmental modifications (Haas et al. 2008).

Active extracellular release of histamine from granules/vesicles occurs mainly by
wide diffusion through a concentration gradient and slow transmission mechanisms,
being mediated: (1) by IgE/antigen crosslinking, complement activation, or the
presence of allergens in mast cells and basophils (Borriello et al. 2017); (2) by
somatostatin- or gastrin-dependent activation in enterochromaffin-like cells
(Barocelli and Ballabeni 2003); (3) by activation of N-methyl-D-aspartate, U opioid,
D2 dopamine, or serotonin receptors in histaminergic neurons (Haas et al. 2008).
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The actions of released histamine are terminated not only by DAO (see above), but
also by the cellular reuptake system through specific monoamine transporters such as
serotonin, dopamine, and norepinephrine transporters, i.e. Na+- and Cl�-dependent
high affinity transporters, defined as uptake-1 system, and through Na+- and Cl�-
independent low affinity, high-capacity uptake-2 system transporters (Slamet
Soetanto et al. 2019).

In the extracellular space, histamine exerts its effects by primarily binding to the
7-transmembrane rhodopsin-like family of G protein-coupled receptors classified as
H1R, H2R, H3R, and H4R, respectively, encoded in humans by HRH1, HRH2,
HRH3, and HRH4 genes (Haas et al. 2008). Recently, histamine was also shown to
activate ligand-gated chloride channels in the brain and intestinal epithelium (Panula
et al. 2015).

In eukaryotic cells, H1R is found in smooth and cardiac muscles, vascular
endothelial cells, and in the CNS. The downstream pathways activated after binding
of histamine to H1R are Gq protein, phospholipase C leading to inositol
triphosphate-dependent release of calcium from intracellular stores, and
diacylglycerol formation with modulation of voltage-dependent calcium channels
(Leurs et al. 2002). As a key regulator of inflammatory processes, NF-κB expression
and downstream pathways are tightly controlled by activation or constitutive activity
of H1R in target cells, to the point that H1R antagonists were shown to mitigate
inflammation through NF-κB modulation (Apolloni et al. 2016). The class of
molecules commonly known as H1R antihistamines and generally used to treat
allergies can function as either receptor antagonists or inverse agonists at H1R,
although only limited H1 antihistamines act as inverse agonists (H1 receptor.
IUPHAR/BPS Guide to Pharmacology, http://www.guidetopharmacology.org). In
the CNS, H1R activation induces excitatory stimulation, moreover controls nutri-
tional state and wake–sleep cycles, and also regulates neuroinflammatory processes
(Fukui et al. 2017).

H2R is present in vascular smooth muscles, where it controls muscle relaxation
and vasodilation; in neutrophils, it prevents activation and chemotaxis; in T and B
cells, it modulates proliferation and antigen-specific responses as antibody synthesis
and cytokine production; in gastric gland cells, it stimulates gastric acid secretion
(Thangam et al. 2018); not last, in mast cells enriched in histamine granules. In the
CNS, the receptor is found in cerebral cortex, caudate-putamen, hippocampus, and
dentate nucleus of cerebellum, playing a role in neuronal plasticity, synaptic trans-
mission, and cognitive performance (Haas et al. 2008). H2R is positively coupled to
adenylate cyclase through activation of Gs protein that induces cyclic adenosine
monophosphate production, protein kinase A activation, and phosphorylation of
target proteins.

H3R is mainly expressed in cortical and subcortical areas of the CNS (being
involved in cognitive processes, wakefulness, and eating behaviors) and, to a lesser
extent, in the peripheral nervous system (Nieto-Alamilla et al. 2016), other than in
the heart, lung, and gastrointestinal tract and endothelial cells. H3R shows very little
sequence homology with H1R and H2R. Differently from the other histamine
receptors, H3R has the peculiarity to act as autoreceptor in presynaptic histaminergic
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neurons and to feedback regulate the turnover of histamine by inhibiting its synthesis
and release. This inhibitory activity is exerted also on presynaptic dopamine,
gamma-aminobutyric acid, glutamate, noradrenaline, serotonin, and acetylcholine
receptors, thus H3R also behaves as inhibitory heteroreceptor (Panula et al. 2015).
Consequent to histamine binding to H3R, the first downstream effector to become
activated is Gi protein, causing inhibition of cyclic AMP production. Through
inhibition of N-type voltage-gated Ca2+ channels mediated by β and γ subunits of
G proteins, H3R also inhibits Ca2+ uptake mediated by action potentials, thus further
reducing neurotransmitter release.

In humans, H4R is a receptor subtype mainly present peripherally in oral epithe-
lium, bone marrow, and leukocytes, where it regulates neutrophils release from bone
marrow, eosinophil shape change, and mast cells chemotaxis, through modulation of
actin polymerization and cytoskeleton stability. It operates through Gαi-dependent
inhibition of adenylate cyclase and Gβγ-dependent stimulation of phospholipase C,
leading to inositol triphosphate and diacylglycerol formation, Ca2+ mobilization
from intracellular stores, and activation of protein kinase C (Thurmond 2015).

Histamine is an important pleiotropic factor actively participating in multiple
physiological functions such as neurotransmission, circadian rhythms, sleep–wake
cycle, mood, learning, appetite, and eating behavior. Moreover, histamine levels are
modulated in the CNS as a function of age, sex, and disease insurgence and
progression. Histamine deficiency is related to narcolepsy, food intake and sleep
disorders, and to neuropsychiatric conditions comprising schizophrenia and several
different neurodegenerative/neuroinflammatory diseases (Cacabelos et al. 2016a, b).
Several studies have described the histaminergic system as directly involved in
various pathological conditions of the CNS, among them ischemia, traumatic brain
and spinal cord injury, Alzheimer’s, Huntington’s, Parkinson’s diseases, Wernicke’s
encephalopathy, Tourette syndrome and, of course, MS. The pathophysiological
relevance of central histamine signaling has thus accelerated several attempts to
pharmacologically manipulate brain histamine concentrations for the treatment of
various neurological disorders (Naganuma et al. 2017). We believe that further
research will certainly stimulate a deeper comprehension of disease-related hista-
minergic mechanisms, with potential identification of histamine-dependent thera-
peutic opportunities.

2 From Central and Peripheral Inflammation
to Myelination Defects in MS

MS is a chronic autoimmune, inflammatory, and neurodegenerative disease that
affects both white and gray matter of the CNS, although historically identified as a
predominantly affecting white matter disease. MS occurs within various stages and
evolves as a continuum from a clinically isolated acute syndrome to a secondary-
progressive disease through relapsing-remitting phases. MS is very heterogeneous
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indeed: in approximately 85% of patients the disease exhibits a relapsing-remitting
course characterized by acute attacks followed by partial or complete recovery. Over
time, many relapsing-remitting patients switch to the secondary-progressive phase,
where neurological lesions and disabilities gradually accumulate even without
further relapses. On the other hand, about 10–15% of patients have a progressive
primary course, characterized by a continuous accumulation of neurological lesions
and disabilities that already start at the insurgence of the disease (Milo and Kahana
2010).

Pathological studies described the presence of cerebral and cerebellar cortical
demyelination in MS patients and led to the identification of three types of lesions:
subpial, intracortical, and leukocortical (Bö et al. 2006). Cortical demyelination also
present in early MS phases is topographically associated with conspicuous menin-
geal inflammation and may precede white matter plaques formation in MS patients,
and be associated with irreversible disability and cognitive impairment (Popescu and
Lucchinetti 2012). The pathogenic events that characterize MS are various and
include lymphocytes infiltration through the BBB, inflammation, microglia activa-
tion, and astrocyte proliferation with consequent nerve conduction impairment,
demyelination, axonal transection, and neuronal injury. These causally related
events lead to plaques formation (Ciccarelli et al. 2014).

Although MS can be considered as a primary autoimmune disease [“outside-in”
hypothesis (Lucchinetti et al. 2011; Malpass 2012; Baecher-Allan et al. 2018)],
many scientists now doubt that inflammation and/or autoimmunity are really the
unique promoters of the disease and have proposed that MS originates as a neuro-
degenerative disease [the “inside-out” hypothesis (Stys et al. 2012; Duffy et al.
2014)]. Although the exact etiology remains unknown, the debate on whether the
immune or the nervous system initiates the disease is certainly open, and now
scientists tend to consider MS a neuroimmune system disease, initiated when
multiple biochemical signals triggered by neurotransmitters, neurohormones, cyto-
kines, chemokines, and growth factors in neurons, glia and immune cells lose their
homeostasis. With no doubt, MS is a disease with critically altered communication
between the nervous and immune systems.

Clear evidence now suggests that the contribution of the immune system is less in
the progressive than in the initial acute forms of the disease. In the progressive form,
CNS resident cells as microglia and astrocytes indeed sustain a low-grade inflam-
mation that leads to oligodendrocyte damage and neurodegeneration (Correale and
Farez 2015; das Neves et al. 2020; Prinz et al. 2021).

In particular, the astrocytes highly contribute to inflammation and play a dual role
in MS, characterized by both pathogenic alterations and beneficial repair, depending
on the stage of the disease, the type and microenvironment of the lesion, the
interaction with other cell phenotypes and several exogenous factors (Williams
et al. 2007; Nair et al. 2008; Correale and Farez 2015; Amadio et al. 2017; Rao
et al. 2019; das Neves et al. 2020). This dual function is documented by means of
RNA sequencing, electron microscopy, immunohistochemistry, and imaging tech-
niques that have recognized also high degrees of astrocyte heterogeneity. Indeed,
astrocytes are a diversified population of cells possessing specific properties and

222 C. Volonté et al.



functions according to their localization and pathophysiological state (Khakh and
Deneen 2019; Linnerbauer et al. 2020; Escartin et al. 2021; Schirmer et al. 2021;
Werkman et al. 2021).

In addition, the brain-resident immune cells, microglia, exhibit high heterogene-
ity in MS, contributing to both damage and repair events (Tsouki and Williams
2021). Not surprisingly, one of the pathological hallmarks of MS is the infiltration of
microglia into CNS lesions, where they become the first responders and remain
within the lesions until they heal the damaged tissue, or until the damage becomes
irreversible and the lesion inactive. As for astrocytes, microglia are conditioned by
the microenvironment, the anatomical location of the lesion, and the presence or
absence of remyelination during the different stages of MS (Guerrero and Sicotte
2020; Pons and Rivest 2020; Zia et al. 2020).

Also mast cells generally associated with allergic reactions are crucial players of
the innate immune system and involved in autoimmune diseases and particularly
MS. First of all, brain mast cells are located in the perivascular space where they can
secrete various pro-inflammatory and vasoactive molecules able to further weaken
an already damaged BBB during MS. Second, several neural factors including
substance P, myelin basic protein, and corticotropin-releasing hormone can induce
mast cells to release inflammatory mediators during MS. Finally, mast cells can
directly participate to inflammation and demyelination in MS by presenting myelin
antigens to T cells and permitting inflammatory cells and cytokines to enter through
the BBB. Not surprisingly, compounds blocking mast cells can reduce T cell
stimulation and EAE (Theoharides et al. 2008; Conti and Kempuraj 2016; Elieh-
Ali-Komi and Cao 2017).

3 An Overview of Histamine Preclinical Studies

Different features of MS among them inflammation, demyelination, remyelination,
and neurodegeneration have been studied using different animal models, none of
which, however, covers the full spectrum of clinical, pathological, or immunological
characteristics of the disease. So, the right model for MS research needs to be
selected at each time, depending on the specific aspects to be addressed (Lassmann
and Bradl 2017). The experimental autoimmune encephalomyelitis (EAE) mouse
model and the cuprizone/rapamycin toxic demyelination (useful to investigate only
mechanisms of protection and repair, but not inflammation) are among the most
frequently used models to study MS. However, EAE can be induced in all verte-
brates with different degrees of efficacy, frequently using mice, rats, and primates.
Because the EAE models share several histopathological and immunological fea-
tures with MS, their use has allowed to dissect the pathogenic mechanisms of
relapsing-remitting and progressive forms of the disease, proving to be excellent
systems for preclinical experimentation as well (Schreiner et al. 2009).

As described above, histamine is a ubiquitous inflammatory mediator involved in
the pathogenesis of various allergic, autoimmune, inflammatory, and
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neurodegenerative diseases (Hu and Chen 2017; Branco et al. 2018). For this reason,
numerous studies were conducted also on the involvement of histamine in EAE,
overall demonstrating that the histaminergic system indeed plays a significant role in
MS pathogenesis (Panula and Nuutinen 2013). However, the interaction of hista-
mine with its cell surface receptors can induce either detrimental or beneficial actions
in the context of EAE, often with multiple and contrasting effects depending on the
specifically activated receptors and target tissues (Passani and Ballerini 2012). For
instance, histamine can modify the BBB permeability and increase the number of
infiltrated cells in the CNS, therefore inducing a process of deleterious
neuroinflammation. On the other hand, histamine can sustain a protective role in
MS and EAE by reducing demyelination and improving remyelination (Jadidi-
Niaragh and Mirshafiey 2010). Through the years, thanks to the use of genetically
modified mice deprived of histaminergic enzymes or receptors, and the availability
of relatively selective agonists and antagonists, scientists have identified and char-
acterized the direct involvement of histamine and its receptors in EAE/MS (Fig. 1).

3.1 Targeting H1 Receptor

A key mechanism in the development of EAE and MS is the breakdown of the BBB.
Sensitization of the endothelium by environmental factors such as Bordetella per-
tussis or biogenic amines such as histamine is believed to lead to increased perme-
ability of the BBB. Pertussis-induced histamine sensitization is an intermediate
phenotype of EAE controlled by the histamine receptor H1R. Ma and collaborators
have shown that susceptibility to pertussis-induced histamine sensitization and EAE
needs expression of Hrh1, the gene encoding H1R. Indeed, the authors observed a
decreased EAE susceptibility in H1R-KO mice (Ma et al. 2002), while the expres-
sion of H1R in T cells is instead disease promoting (Noubade et al. 2007).

To highlight the cell-specific effects of the Hrh1 in the pathogenesis of EAE and
to optimize any cell phenotype-specific therapeutic intervention, Saligrama and
collaborators re-expressed H1R in CD11b+ cells of H1R-KO mice, in order to test
the hypothesis that H1R signaling in CD11b+ monocytes, macrophages/microglia,
and natural killer cells might contribute to EAE susceptibility. Unpredictably, the
re-expression of H1R exclusively in CD11b+ cells did not restore EAE severity and
affect T cell responses in H1R-KO mice (Saligrama et al. 2012b). The propathogenic
role of H1R was also confirmed in additional work in which drug treatment with the
H1R antagonist hydroxyzine (known to block mast cells) or pyrilamine reduced
clinical severity and pathology in EAE rats and mice, respectively (Dimitriadou et al.
2000; Pedotti et al. 2003).

In contrast, the selective transgenic overexpression of H1R in endothelial cells of
Hrh1-KO mice demonstrated that these mice were resistant to Bordetella pertussis-
induced histamine sensitization, also having reduced permeability of the BBB and
greater protection from EAE than H1R-KO mice. This suggested that endothelial
H1R may be important for sustaining cerebrovascular integrity (Lu et al. 2010).
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3.2 Targeting H2 Receptor

Gene targeting studies established that also H2R plays significant roles in EAE/MS
pathogenesis and vulnerability. Similarly to H1R, H2R appears to have a
propathogenic role, but in addition H2R induces a beneficial restraint of the auto-
immune response, thus assuming a concomitant antipathogenic action. In particular,
in H2R-KO mice the attenuation of Th1 effector cells with decreased susceptibility
to acute early-phase EAE compared to wild-type mice is due to dysregulation of
cytokine production by antigen presenting cells (Teuscher et al. 2004). By breeding
transgenic mice expressing H2R exclusively in T cells, Saligrama and collaborators
(Saligrama et al. 2014) have extended the previous study determining that T-cell

Fig. 1 The dual effect of histamine in improving or worsening EAE pathological features is due to
several properties of four histamine receptors. Genetic or pharmacological inhibition (HR-), as well
as presence or activation (HR+) of H1-4R receptors can induce different courses of the disease. H3R
is the only receptor playing an overall antipathogenic role
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intrinsic H2R signaling is necessary and sufficient to re-establish EAE susceptibility
as in wild-type control mice, as previously observed also with H1R (Noubade et al.
2007). Furthermore, the results demonstrated that EAE severity and neuropathology
in H2R-KO mice expressing H2R exclusively in T cells become the same as in wild-
type mice, only when adjuvant pertussis toxin modeling environmental factors and
susceptibility to disease is used to induce EAE (Saligrama et al. 2014). This proves
that unlike H1R, the H2R is also linked to inhibition of inflammatory states, thus
possessing also an antipathogenic role. H2R was previously found on monocytes
and associated with the suppression of superoxide formation via inhibition of
NADPH oxidase (Burde et al. 1990), an enzyme highly involved in the development
of EAE (van der Veen et al. 2000). A second possible mechanism for the
antipathogenic role of H2R is the inhibition of the production of pro-inflammatory
cytokines involved in EAE insurgence. Activation of H2R decreases TNF-α pro-
duction by inflammatory cells and suppresses IL-12 expression (Vannier et al. 1991;
Azuma et al. 2001). For these reasons, treatment with the H2R agonist dimaprit
reduces clinical severity and pathology associated with EAE in both C57BL/6 and
iNOS deficient EAE mice (Emerson et al. 2002).

3.3 Targeting H3 Receptor

The H3R, unlike the other histaminergic receptors, is not present on hematopoietic
cells, but mainly in the CNS (Passani et al. 2011). In 1983, Arrang and collaborators
identified the H3R as an autoreceptor that controls the activities of histaminergic
neurons such as histamine production, release and electrophysiological response
(Arrang et al. 1983). In addition, behaving as a presynaptic heteroreceptor, H3R
regulates the release of a variety of other neurotransmitters (Passani and Blandina
2011), thus rendering this receptor a fundamental player at the crossover of central
neurotransmission.

Teuscher and co-workers established the antipathogenic role of H3R in EAE
pathology (Teuscher et al. 2007). H3R-KO mice develop more severe EAE and
neuroinflammation. This result is associated with dysregulation of BBB permeability
and increased expression of chemokines/chemokine receptors on peripheral T cells
facilitating their entrance into the CNS. H3R effects on EAE seemed to be related
both to neurogenic control of cerebrovascular tone and to alterations of immune cells
that however do not express H3R. The authors suggested that the lack of presynaptic
inhibition in H3R-KO mice leads to increased release of neurotransmitters and
augmented postsynaptic activity that performs a neurogenic control of BBB perme-
ability and T cell chemokine profile (Teuscher et al. 2007). Consequently, activation
of H3R may be a potential strategy to treat MS/EAE. Indeed, further studies proved
that a strong and highly selective histamine H3R agonist, immethridine, could
alleviate the severity of EAE when used in EAE mouse model (Shi et al. 2017).
EAE mice treated with immethridine showed lower clinical scores and reduced
pathology with respect to control EAE mice. Fewer inflammatory infiltrates and
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decreased demyelination in spinal cord were also reported. In addition, reduced
levels of inflammatory cytokines such as TNFα, IFN-γ, and IL-17A were observed
in splenocytes isolated from EAE mice treated with immethridine, thus suggesting a
widespread action of this agonist in improving the severity of EAE. Later studies
reported that in immethridine-treated EAE mice compared to control EAE the
percentage of Th1 and Th17 cells were decreased, and surface molecules such as
CD40, CD86, and MHCII were downregulated on dendritic cells thus inhibiting
their function (Shi et al. 2017).

Furthermore, an antipathogenic role of H3R has been confirmed in a very recent
work in which two new soluble piperidine derivatives acting as histamine H3R
antagonists/inverse agonists reduce the lymphocyte numbers and diminish disease
symptoms in EAE (Imeri et al. 2021).

3.4 Targeting H4 Receptor

Expression of H4R is mostly restricted to T and B cells, monocytes, eosinophils,
dendritic and natural killer cells, therefore playing an important role in the modula-
tion of the immune system. Not surprisingly, this selective localization suggested
therapeutic use in inflammatory disorders and autoimmune diseases (Zampeli and
Tiligada 2009). However, evidence also demonstrated the topological and functional
localization of H4R in human and rodent CNS (Strakhova et al. 2009).

In light of these findings, del Rio and collaborators investigated the potential role
of H4R in MS, by inducing EAE in H4R-KO mice and demonstrating that the
presence of H4R elicits an antipathogenic role and modulates EAE severity. In
addition, H4R signaling exerts control over the abundance of regulatory T cells in
secondary lymphoid tissues, regulates their chemotaxis and suppressive ability.
H4R-KO mice exhibit augmented neuroinflammation, increased BBB permeability,
and more severe EAE compared with wild-type mice. Consistent with this, H4R
deficiency leads to lower infiltration of regulatory T cells into the CNS during the
acute phase of the disease, causing impairment of anti-inflammatory responses in
association with increased encephalitogenic Th17 cells (del Rio et al. 2012).

These data were corroborated by Ballerini and co-authors, which demonstrated
that the H4R antagonist JNJ7777120 administrated to EAE mice caused increased
inflammation and demyelination in spinal cord, augmented expression of IFN-γ and
suppression of IL-4 and IL-10 in lymph nodes, with a general worsening of disease
symptoms, thus suggesting a protective role of this receptor in the context of EAE
(Ballerini et al. 2013). Despite this antipathogenic action, conflicting results were
reported on its propatogenic/antipathogenic role during immune and allergic
responses, with a growing interest in the therapeutic anti-inflammatory potential of
H4R antagonists in the immune system, where the H4R is ubiquitous. In light of
these results, there is urgent need to further investigate this receptor to anticipate
potential clinical benefits and/or predict possible deleterious effects (Passani and
Ballerini 2012).

The Histamine and Multiple Sclerosis Alliance: Pleiotropic Actions and. . . 227



3.5 Targeting HDC

Due to the overlapping but often opposite functions played by the different histamine
receptors in the presence of endogenous histamine, single receptor-blocking strate-
gies cannot always attain complete elimination of histamine signaling in vitro;
similarly, it is difficult to achieve complete and long-lasting inhibition of histamine
receptors using pharmacological or genetic approaches in vivo (Ohtsu et al. 2001).
Therefore, HDC-deficient mice were generated to provide a more exhaustive model
in which to ablate endogenous histamine synthesis and study biological responses in
the CNS.

In particular, Musio and co-workers using HDC-KO mice investigated the effect
of endogenous histamine removal in the insurgence and progression of EAE. They
established that EAE pathology is significantly more severe in histamine-deficient
mice, showing diffuse inflammatory infiltrates with a prevalent granulocytic com-
ponent in the brain and cerebellum. In particular, splenocytes from HDC-KO mice
do not produce histamine in response to myelin antigen immunization, but secrete
increased amounts of pro-inflammatory cytokines, such as IFN-γ, TNF, and leptin.
Therefore, endogenous histamine notably restrains the harmful autoimmune
response against myelin and immune impairment in the CNS (Musio et al. 2006).

These results were confirmed by Saligrama and collaborators, who studied the
function of endogenous histamine on EAE susceptibility in H1-4R-KO and
HDC-KO mice, both deficient in histamine signaling. Surprisingly, H1-4R-KO
mice were found to be significantly resistant to EAE, whereas HDC-KO mice
were highly susceptible. H1-4R-KO mice develop less severe neuropathological
conditions and EAE symptoms than wild-type and HDC-KO mice. Furthermore,
splenocytes from immunized H1-4R-KO mice produce lower amounts of Th1/Th17
effector cytokines. Overall, these findings suggest that histamine can mediate
increased resistance to EAE also acting through mechanisms independent from its
known receptors (Saligrama et al. 2013).

3.6 Combinatorial Histamine Receptor Actions

The previous results, in addition to the pleiotropism of histamine, created some
difficulties in the comprehension of the exact pathophysiological roles of histamine
in EAE, further complicated by the simultaneous recruitment on the same cell of
different histamine receptors that sometimes play different, or even opposite, func-
tions. While the selective combinatorial expression of different receptors subtypes
on a given cell can contribute to explain diverse pathological conditions (Volonté
et al. 2006, 2008), a similar mechanism can also apply to EAE/MS. In trying to
explain the accurate and peculiar alliance between histamine and MS, a study indeed
suggested that combinatorial targeting of histamine receptors may be an effective
disease-modifying therapy in MS. H3H4R-KO EAE mice developed a significantly
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more severe clinical disease course than control or H1H2R-KO EAE mice. Further-
more, histopathological analysis demonstrated increased inflammation and pathol-
ogy in the brain, but not spinal cord, of H3H4R-KO mice that moreover exhibited
augmented BBB permeability during the acute early phase of the disease, compared
to H1H2R-KO mice. These data indicate that the joined effect of deleting H1R
and H2R signaling becomes antipathogenic in EAE, whereas the combined H3R and
H4R ablation is propathogenic. It’s important to notice that EAE severity and
pathology in H1H2R-KO and H3H4R-KO mirrors that of the single HR-KO mice,
where EAE is less severe in H1R-KO and H2R-KO mice, but more pronounced in
H3R-KO and H4R-KO mice. This might occur because of a compensatory
upregulation of residual HRs in single HR-KO, H1H2R-KO, and H3H4R-KO
mice. As a consequence, simultaneous treatment with H1R and H2R antagonists
may be protective in the CNS, perhaps due to the upregulation of the antipathogenic
H3R and H4R. On the other hand, the absence of H3R or H4R signaling has a
negative effect on EAE susceptibility and encephalitogenic T-cell activity,
suggesting that H3R and H4R agonists might have a beneficial impact in the
treatment of CNS diseases by intervening on histamine signaling through the
propathogenic H1R and H2R subtypes (Saligrama et al. 2012a).

So far, we have reported that genetically modified mice lacking single or different
combinations of histaminergic enzymes or receptors, together with fairly selective
histamine receptor agonists and antagonists, have greatly contributed to identify and
in part characterize the involvement of histaminergic signaling in EAE/MS. To allow
more successful preclinical development of therapeutic strategies against MS, it is
mandatory to have access to more extensive data on the disease progression in
animal models, to broader understanding of disease pathology, and to more robust
outcome measures that can be used to assess treatment efficacy. We are confident
that renewed experimental interest and research on histaminergic axis and mecha-
nisms in EAE/MS will contribute to fill this gap.

4 Histamine Markers in Biological Fluids and CNS Tissues
from MS Patients

Discovering reliable and early biomarkers is of fundamental importance in neuro-
logical disorders where the diagnosis often occurs after the onset of symptoms,
mainly due to lack of specific markers that allow discriminative diagnosis for
different pathologies. Significant variations in the peripheral and central levels of
histamine have been detected in patients with neurological diseases (Cacabelos et al.
2016a) and histamine levels have been extensively investigated in biological fluids
of MS patients as well.

The first study aimed to evaluate histamine-related changes in MS reported that in
the cerebrospinal fluid (CSF) of a small cohort of patients with remitting and
progressive forms of the disease, histamine levels were about 60% higher than in
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controls, and the patients showed a concomitant decrease in histamine-degrading
enzyme HNMT, indicating an altered histamine metabolism in the CNS during MS
(Tuomisto et al. 1983). Furthermore, a significant increase of the mast cell-specific
proteolytic enzyme tryptase (an enzyme released with histamine when mast cells are
activated as part of immune responses or allergic hypersensitivity) was found in the
CSF of MS patients with respect to control subjects or patients affected by other
neurological diseases, suggesting that the activation of mast cell was a pathological
feature of MS (Rozniecki et al. 1995). In accordance with these observations, in a
recent trial enrolling 36 MS patients and 19 age- and gender-matched healthy
volunteers, histamine content was found significantly higher in the CSF of MS
patients. Remarkably, the authors demonstrated that histamine levels further
increased with age in the CSF of patients (Kallweit et al. 2013). Finally, gene-
microarray analysis has shown that H1R expression is upregulated in acute MS
lesions (Lock et al. 2002). Independently from the relative up or down values of
expression, the overall modulated levels of central histamine found in MS patients
could be correlated with enhanced inflammatory response known to contribute to the
onset and progression of the disease.

Interestingly, in the serum of MS patients histamine shows an opposite trend with
respect to the CNS (Cacabelos et al. 2016b). In particular, the levels of both
histamine and the enzyme responsible for its degradation, DAO, have been found
decreased in the serum of relapsing-remitting MS patients compared to healthy
individuals (Rafiee Zadeh et al. 2018). Moreover, a recent study has shown that
the levels of histamine precursor histidine are lower in the serum of MS women with
disabling and persistently perceived fatigue, suggesting a strong involvement of
histamine also in MS-associated symptoms (Loy et al. 2019).

Finally, by analyzing the expression of HRH1, HRH2, and HRH4 genes in
peripheral blood mononuclear cells derived from patients with different forms of
MS, i.e. relapsing-remitting, primary-progressive, and secondary-progressive,
Costanza and co-authors demonstrated that H1R transcript was significantly
decreased in secondary-progressive-MS patients compared to healthy individuals
and, conversely, H4R was increased in secondary-progressive-MS compared to
controls and relapsing-remitting-MS, indicating a distinct involvement of histamine
receptors in the different forms of the disease (Costanza et al. 2014). A synoptic view
on the modulation of histamine-related markers in biospecimen from MS patients is
reported in Table 1.

5 Toward a Histamine-Based Pharmacology in MS Patients

As discussed above, MS is a complex disease requiring different approaches for
investigation such as prevention strategies, disease-modifying drugs, and symptom-
atic treatments. Recently, histamine-based pharmacology has been confirmed as a
new avenue in the field of neurodegenerative diseases, especially those associated
with a strong neuroinflammatory component. Particularly in MS, histamine-related
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molecules are getting to the root causes of the disease and are emerging as potential
therapeutic strategies.

Actually, transdermal application of histamine was adopted more than 20 years
ago to treat the symptoms of both relapsing-remitting and progressive MS, demon-
strating efficacy in improving extremity strength, balance, fatigue in daily activities
and cognitive abilities. The authors linked these effects to a rise of histamine in the
CNS, leading to improved cerebral blood flow, decreased autoimmune responses,
and augmented remyelination of demyelinating fibers (Gillson et al. 1999, 2000).
Accordingly, as measured by the Modified Fatigue Impact Scale, the feeling of
fatigue was moreover reduced in a small cohort of MS patients compared to placebo
group in a 12-week trial with the therapeutic mixture Prokarin, a blend of histamine
and caffeine (Gillson et al. 2002).

Regarding H1R, the antagonist hydroxyzine has shown efficacy in reducing
mood symptoms in a pilot open-label clinical trial with relapsing-remitting or
relapsing-progressive MS patients (Logothetis et al. 2005). Moreover, the compound
AVN-101, a BBB-permeable 5-HT7 receptor antagonist with anxiolytic and anti-
depressive efficacy in animal models of CNS diseases, also exhibiting high affinity
for H1R, demonstrated good tolerability in a phase I MS study, thus suggesting its
potential use in alleviating mood symptoms in MS (Ivachtchenko et al. 2016).

Finally, an epidemiological study aimed to associate the risk of developing MS to
environmental, lifestyle factors and former pharmacological treatments demon-
strated a reduced incidence of MS in patients exposed to sedating H1R antagonists,
thus confirming the involvement of H1R in MS and suggesting the use of these drugs
as potential targets to prevent MS (Yong et al. 2018).

H2R as well was investigated for its potential involvement in MS. In particular,
H2R drugs used to treat gastric disorders were suggested to affect the activation state
of the immune system (Atabati et al. 2021). In particular, activation of H2R could
serve as anti-inflammatory strategy and, conversely, inhibition of H2R by

Table 1 Modulation of histamine-related markers in MS patients

Marker CSF Serum Brain

Histamine " (Tuomisto et al. 1983;
Kallweit et al. 2013)

# (Cacabelos et al. 2016a, b;
Rafiee Zadeh et al. 2018)

ND

Histidine ND # (Loy et al. 2019) ND

HNMT # (Tuomisto et al. 1983) ND ND

DAO ND # (Rafiee Zadeh et al. 2018) ND

H1R ND # (Costanza et al. 2014) " (Lock et al.
2002)

H3R ND ND " (Chen et al.
2017)

H4R ND ND " (Costanza
et al. 2014)

Tryptase " (Rozniecki et al. 1995) ND ND

CSF cerebrospinal fluid, HNMT histamine N-methyltransferase, DAO diamine oxidase, H1R
histamine H1 receptor, H3R histamine H3 receptor, H4R histamine H4 receptor, ND not detected
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antagonists commonly adopted as standard therapy for gastritis could become
pro-inflammatory by over-stimulating the immune system. In line with this hypoth-
esis, studies on MS animal models demonstrated that H2R blockers often used as
antacids for treating corticosteroid-dependent dyspeptic pain in MS patients have
damaging effects in accelerating the disease (Biswas et al. 2012). In addition, H2R
antagonists and additional antacid drugs as proton pump inhibitors could also
modify the intestinal microbiota, which may in turn activate immune responses.
Confirming this hypothesis, an interesting issue concerns the activation of intestinal
H2R as one of the mechanisms proposed for the beneficial effects of probiotics on
the immune system during several multisystemic inflammatory diseases among them
MS (Liu et al. 2018).

The finding that an exonic single nucleotide polymorphism in the HRH3 gene
was linked to higher susceptibility to develop MS (Chen et al. 2017) demonstrated
the strategy of directly targeting H3R as promising for improving remyelination. In
particular, high expression of H3R was detected in oligodendrocytes present in
demyelinated lesions of MS patients, and H3R antagonists/inverse agonists were
soon identified by high-content screening assays as compounds able to stimulate the
differentiation of oligodendrocyte precursor cells (OPC). Interestingly, the authors
demonstrated that the expression of H3R was first upregulated and then
downregulated during OPC differentiation. Remarkably, while the knockdown of
HRH3 gene in OPC augmented the expression of differentiation markers and the
number of mature oligodendrocytes, its overexpression exerted opposite effects, by
decreasing both differentiation markers and the number of mature oligodendrocytes
(Chen et al. 2017).

Furthermore, the BBB-permeable H3R inverse agonist GSK247246 reduced
intracellular cyclic AMP and cAMP response element-binding protein phosphory-
lation in vitro, leading to improved remyelination and axonal integrity in a mouse
model of demyelination induced by cuprizone/rapamycin. This result strengthens the
role of H3R in promoting remyelination during MS (Chen et al. 2017). Finally, the
high H3R expression in oligodendroglial cells from patients with MS presenting
demyelinating lesions has validated a genetic association between an exonic single
nucleotide polymorphism in HRH3 and the susceptibility to MS (Chen et al. 2017).
Following this evidence, the efficacy, safety, and pharmacokinetics of another potent
and brain penetrant H3R inverse agonist, GSK239512, were evaluated in patients
with relapsing-remitting MS in a phase II, randomized, parallel-group, placebo-
controlled, double-blind, multicenter study (NCT01772199). As measured by the
magnetization transfer ratio, i.e. by magnetic resonance imaging for myelination
markers, the once-daily oral dose of GSK239512, along with interferon-β1a or
glatiramer acetate, demonstrated a small but positive effect on lesion remyelinating
activity, with an incidence of adverse events in patients very similar to that found in
the placebo group (Schwartzbach et al. 2017).
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6 Concluding Remarks

Ever since the achievement of the human genome sequence, clinicians and scientists
through molecular and phenotypic analysis characterizing genetic keystones of
many common and rare diseases and introducing transformative-targeted therapies
have obtained more refined diagnoses, rational treatments, and prevention of dis-
eases. We are just beginning to see the fruits of these efforts also in MS. Thanks to
the use of genetically modified mouse models deprived of histaminergic enzymes or
receptors, and the availability of relatively selective agonists and antagonists, scien-
tists have now recognized and started to dissect the role of histamine and its receptors
in EAE/MS, as we have described in this work. However, successful clinical
translation depends on the quality of preclinical findings and on the predictive
value of the experimental models used in the initial drug development. Further
research on the pleiotropic actions and functional validation of histaminergic sig-
naling in the various EAE models of MS will certainly help to shed further light on
the disease. Ultimately, we have also presented a bulk of information that highlights
the use of histamine biomarkers to trace MS pathology and the pitfalls of success-
fully moving a histaminergic therapeutic strategy to the clinic.

In our quest in understanding MS, providing essential evidence for innovative
treatments, and designing successful clinical trials, we trust that the data we
described about the histamine alliance in MS will become an invaluable source for
inspiring further research and approaches to modify the disease course.
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