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Abstract The GABAB receptors are metabotropic G protein-coupled receptors
(GPCRs) that mediate the actions of the primary inhibitory neurotransmitter,
γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in
behavior, learning and memory, cognition, and stress. GABA is also located
throughout the gastrointestinal (GI) tract and is involved in the autonomic control
of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor
signaling is associated with neurological, mental health, and gastrointestinal disor-
ders; hence, these receptors have been identified as key therapeutic targets and are
the focus of multiple drug discovery efforts for indications such as muscle spasticity
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disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease
(GERD). Numerous agonists, antagonists, and allosteric modulators of the
GABAB receptor have been described; however, Lioresal® (Baclofen;
β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selec-
tively targets GABAB receptors in clinical use; undesirable side effects, such as
sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and poten-
tial for abuse, limit their therapeutic use. Here, we review GABAB receptor chem-
istry and pharmacology, presenting orthosteric agonists, antagonists, and positive
and negative allosteric modulators, and highlight the therapeutic potential of
targeting GABAB receptor modulation for the treatment of various CNS and periph-
eral disorders.

Keywords GABAB receptor pharmacology · Orthosteric and allosteric modulators ·
Therapeutic target

1 Introduction

γ-aminobutyric acid (GABA) is one of the most widely distributed amino acid
neurotransmitters in the central nervous system (CNS), acting as the primary neu-
rotransmitter responsible for neuronal inhibition. GABA activities are mediated
through two distinct classes of receptors; ionotropic GABAA and GABAA-ρ (for-
merly known as GABAC, and prominently expressed in the retina (Naffaa et al.
2017)) and metabotropic GABAB receptors (Bowery et al. 2004). GABAA and
GABAA-ρ ionotropic receptor subunits form ion channels that are selectively per-
meable to anions like chloride and are responsible for the transient and rapid
component of inhibitory postsynaptic potentials (Sigel and Steinmann 2012).
Whereas, the metabotropic GABAB receptors belong to the superfamily of G-
protein-coupled receptors (GPCRs) and mediate the slow and prolonged component
of synaptic inhibition via indirect gating of neuronal K+ and Ca2+ channels and
lowering levels of other second messenger targets like cAMP (Bowery et al. 2002).

GABAB receptors are broadly expressed and distributed in the CNS. They are
located pre- and postsynaptically; activation of presynaptic GABAB receptors by
GABA located on GABAergic terminals (autoreceptors) inhibits the release of
GABA, while activation of presynaptic GABAB receptors located on other nerve
terminals (heteroreceptors) inhibits the release of several other neurotransmitters
such as glutamate and bioactive peptides. In contrast, activation of postsynaptic
receptors activate K+ channels and induce slow inhibitory postsynaptic potentials
(Benarroch 2012). GABAB receptors are also located in the periphery along the
gastrointestinal (GI) tract where they regulate intestinal motility, gastric emptying,
gastric acid secretion, and esophageal sphincter relaxation (Clarke et al. 2018;
Lehmann et al. 2010; Ong and Kerr 1984). Dysregulated GABAB receptor function
has been implicated in a variety of neurodegenerative diseases and
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pathophysiological disorders, including Parkinson’s disease (Nambu 2012; Tyagi
et al. 2015), Alzheimer’s disease (Rice et al. 2019; Sun et al. 2020), Huntington’s
disease (Kim and Seo 2014), epilepsy (Billinton et al. 2001a; Teichgräber et al.
2009), spasticity (Francisco et al. 2001; Basmajian 1975; Korsgaard 1976), pain
(Neto et al. 2006; Enna and McCarson 2006; Murai et al. 2019), anxiety (Kalinichev
et al. 2017; Li et al. 2015) and depression (Cryan and Kaupmann 2005; Felice et al.
2012; Jacobson et al. 2018), schizophrenia (Glausier and Lewis 2017; Nair et al.
2020), narcolepsy (Black et al. 2014; Szabadi 2015), and addiction (Agabio and
Colombo 2014, 2015; Agabio et al. 2018; Maccioni and Colombo 2019; Ranson
et al. 2020). Owing to their presence in the gastrointestinal tract these receptors are
also implicated in a variety of GI disorders such as gastroesophageal reflux disease
(GERD) (Clarke et al. 2018; Lehmann et al. 2010; Ong and Kerr 1984; Lehmann
2009; Symonds et al. 2003).

2 Brief History

While GABA was discovered in the mammalian brain in 1950 (Awapara 1950;
Roberts and Frankel 1950), it was not recognized as an inhibitory neurotransmitter
until 1967 (Krnjević and Schwartz 1966; Dreifuss et al. 1969). Early attempts to
interrogate the GABA system led to the development of the synthetic agonist,
β-(4-chlorophenyl)-γ-aminobutyric acid, a poorly brain penetrant derivative of
GABA better known as baclofen (Keberle et al. 1969). In 1968 the identification
of the first GABA receptor antagonist “bicuculline”was reported (Curtis et al. 1970),
and in 1987, bicuculline and GABA receptor agonists such as isoguvacine facilitated
the cloning of the ionotropic GABAA receptor, a pentameric ligand gated ion
channel (Schofield et al. 1987).

The existence of the GABAB receptors (so named to distinguish it from the
GABAA receptor) first emerged in 1979. Dr. Norman Bowery and colleagues
discovered that GABA blocks the release of neurotransmitters such as norepineph-
rine from nerve terminals but this effect was not blocked by bicuculline, instead it
mimicked the effects of baclofen. It was also discovered that baclofen does not
interact with the GABAA site (Bowery et al. 1979, 1980, 1981). A third GABA
receptor with pharmacology distinct from GABAA and GABAB was identified in
1986 by virtue of the GABA response, “Cl-current blocked by picrotoxin,” being
both bicuculline and baclofen insensitive (Johnston 1986). This receptor was named
GABAC (now referred to as GABAA-ρ) and was later cloned in 1991 (Polenzani
et al. 1991). However, it was almost 20 years since being identified that the GABAB

receptor was cloned using expression cloning and radioligand binding of a high
affinity antagonist (1997) by the Bettler group (Kaupmann et al. 1997). Thus,
reagents that modulate the GABA receptors facilitated the cloning of, and have
since defined those receptors; the ionotropic receptors GABAA and GABAA-ρ are
defined as “bicuculline-sensitive, isoguvacine-sensitive” and

GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and. . . 83



“bicuculline-insensitive, baclofen-insensitive” respectively, and the metabotropic
GABAB receptor is defined as “bicuculline-insensitive, baclofen-sensitive.”

3 Structure and Signaling

In common with other GPCRs, the GABAB receptor is an integral membrane protein
that spans the cellular membrane with seven helices that are linked by three
extracellular loops and three intracellular loops and possesses an extracellular
N-terminus and an intracellular C-terminus. GABAB receptors are structurally
related to metabotropic glutamate receptors (mGluRs), and together with the
calcium-sensing receptor (CaSR), some pheromone and taste receptors, and orphan
GPCRs (receptors with no known ligands), belong to the family C (or family III) of
GPCRs (Bowery et al. 2002). Common to the members of family C GPCRs is the
large extracellular N-terminus that contains a domain homologous to the periplasmic
amino acid binding proteins (PBPs) found in bacteria. The X-ray structure of
GABAB receptor PBP-like domains revealed an orthosteric ligand binding pocket
that is made up of two globular lobes separated by a hinge region. The two lobes
(LB1 and LB2) close upon ligand binding, much like a Venus flytrap does when
touched by an insect, hence the globular domains in family C GPCRs are also
referred to as “Venus flytrap” (VFT) domains (Galvez et al. 1999); an agonist
binds and stabilizes the closed (active) conformation of the VFT, whereas an
antagonist stabilizes and retains the VFT subunit in the open (inactive)
configuration.

To date molecular cloning has identified two main GABAB receptor subunits,
namely GABAB1 and GABAB2 which arise from distinct genes (Kaupmann et al.
1997, 1998). At the protein level GABAB1 and GABAB2 receptors share 35%
identity and 54% similarity over their approximate length of 950 amino acid residues
and both subunits are highly conserved across mammalian species, sharing 90–95%
sequence homology between human, pig, rat, and mouse (Kaupmann et al. 1997).
An active functional GABAB receptor with high affinity for agonist ligands depends
upon the formation of a heterodimer between GABAB1 and GABAB2 receptor
subunits (Kaupmann et al. 1998; Marshall et al. 1999; Jones et al. 1998). The
association of the receptor subunits occurs, at least in part, through a coiled-coil
motif found in the respective carboxyl termini of GABAB1 and GABAB2 subunits. It
has been demonstrated in recombinant systems that GABAB1 is unable to reach the
cell surface in the absence of the GABAB2 subunit because GABAB1 contains
endoplasmic retention motifs in its carboxy tail that are masked only upon
heterodimerization with GABAB2 subunit (Couve et al. 1998; Pagano et al. 2001).
Interestingly, all orthosteric agonists and antagonists bind to the GABAB1VFT and
not to the GABAB2 subunit VFT. Upon binding, an agonist induces conformational
changes in the GABAB1 subunit which by virtue of its physical interaction with the
GABAB2 subunit promotes conformational changes in the latter subunit allowing it
to couple to its cognate G-protein promoting functional responses within the cell
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(Galvez et al. 2001; Margeta-Mitrovic et al. 2001; Robbins et al. 2001; Duthey et al.
2002).

GABAB receptors provide a crucial component of inhibitory neurotransmission
mainly via coupling to heterotrimeric Gi/o type G-proteins, activation of which
results in a Gα-mediated inhibition of cAMP production and a Gβγ-mediated
modulation of the activity of ion channels such as high voltage-activated Ca2+

(Cav) channels and G protein-coupled inwardly rectifying Kir3-type potassium
channels (GIRKs) (Morishita et al. 1990; Nishikawa et al. 1997). In rare cases and
non-neuronal cells, GABAB receptor activation can promote increases in intracellu-
lar calcium either via activation of phospholipase C and store-operated channels or
by inducing Ca2+ release from internal stores (Meier et al. 2008; New et al. 2006).
Furthermore, GABAB receptor activation has been reported to induce phosphoryla-
tion of the Extracellular-signal Regulated protein Kinase 1/2 (ERK1/2) in cerebellar
neurons, as well as in the CA1 field of the mouse hippocampus (Tu et al. 2007;
Vanhoose et al. 2002). Thus, GABAB receptor couples to multiple intracellular
signal transduction pathways (Fig. 1) regulating ion homeostasis as well as MAPK

Inactive Active

B1 B2

VFT

Sushi 
Domains

Fig. 1 Molecular diversity and signaling capacity of the GABAB receptor
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signaling leading to downstream effects that include blocked neurotransmitter
release and hyperpolarization of neurons (Bowery et al. 2002; Bettler et al. 2004),
and the modulation of autonomic control of the intestine and esophageal reflex
(Clarke et al. 2018; Ong and Kerr 1984; Lehmann 2009; Symonds et al. 2003).

4 Molecular Diversity and Complexity

Molecular diversity in the GABAB receptor system arises from expression of
multiple GABAB1 subunit isoforms of which 14 mammalian isoforms (GABAB

(1a-1n)) exist between various animal species and are generated by differential
transcription or splicing (Bettler et al. 2004), whereas the GABAB2 receptor encodes
a singular form of the receptor (Bettler et al. 2004; Billinton et al. 2001b). The two
predominant GABAB1 isoforms, termed GABAB(1a) and GABAB(1b), are generated
by use of alternative transcription start sites, whereas other less abundant isoforms
such as GABAB(1c), and GABAB(1e) are generated by alternative splicing. Only the
GABAB(1a) and GABAB(1b) variants have been identified as components of the
native receptor GABAB1/GABAB2 complex. Although the identification of these
variants is suggestive of pharmacologically distinct GABAB receptors, Ng and
colleagues reported that the anticonvulsant gabapentin acts as an agonist at
GABAB(1a) but not GABAB(1b) (Bertrand et al. 2001; Ng et al. 2001), this has
been widely disputed as heterodimers comprised of either GABAB(1a)/GABAB2 or
GABAB(1b)/GABAB2 are pharmacologically indistinguishable in heterologous sys-
tems (Jensen et al. 2002; Lanneau et al. 2001) and to date, no GABAB receptor
ligand differentiates between these molecular variants. However, studies facilitated
by the generation of GABAB1 isoform-specific knockout mice (Vigot et al. 2006)
demonstrated that GABAB1a- and GABAB1b-containing receptors have distinct
functions owing to their different locations within neurons, where GABAB1a recep-
tors are predominantly located presynaptically on axonal terminals and GABAB1b

postsynaptically on dendritic spines. Consequently, global GABAB1 receptor iso-
form knockout mice exhibit a wide spectrum of isoform-specific behaviors. For
example, using the isoform-specific knockout mice, Vigot et al. showed that
GABAB1a and not GABAB1b receptor was involved in impaired synaptic plasticity
in hippocampus long-term potentiation (Vigot et al. 2006). It was also shown by
Perez-Garci and colleagues that GABA B1b was responsible for mediating postsyn-
aptic inhibition of Ca2+ spikes, whereas presynaptic inhibition of GABA release was
mediated by GABAB1a (Pérez-Garci et al. 2006). Hence, based on numerous in vivo
findings, the existence of pharmacologically distinct GABAB receptors has been
proposed (Pinard et al. 2010).

GABAB(1a) and GABAB(1b) differ primarily in their extracellular amino-terminal
domains by a pair of sushi domains only present in the GABAB(1a) subunit of the
GABAB1(a)/GABAB2 heteromer (Bettler et al. 2004; Hawrot et al. 1998). Sushi
domains, or short consensus repeats, are conserved protein domains commonly
involved in protein–protein interactions mostly found in proteins involved in cell–
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cell adhesion. In the context of the GABAB receptor, the sushi domains have been
shown to play a role in targeting the GABAB(1a) receptor to specific subcellular
regions by means of interaction of these motifs with proteins in the extracellular
matrix or on the surface of neighboring cells (Hannan et al. 2012). The diversity in
GABAB1 isoforms may therefore provide a means for targeted subcellular localiza-
tion and/or coupling to distinct intracellular signaling pathways while also provid-
ing, in part, an explanation for the complex and diverse physiology effects of the
GABA/GABAB receptor axis observed in neuronal tissue and in vivo (Bettler and
Tiao 2006).

The molecular complexity of the GABAB receptor is further enhanced through
association of the receptor with numerous trafficking, effector, and regulatory pro-
teins, as well as other membrane-bound receptors. For example, the extracellular
matrix protein, fibulin-2, has been shown to bind to the first sushi domain of the
GABAB(1a) and target this receptor to axon terminals of excitatory synapses (Blein
et al. 2004). Likewise, amyloid precursor protein (APP), amyloid precursor protein-
like 2 (APLP2), and adherence junction associated protein-1 (AJAP1) interact with
the sushi domains and are also anticipated to direct axonal subcellular localization of
the GABAB(1a)/GABAB2 receptor complex (Dinamarca et al. 2019). Whereas
GABAB(1b)-containing heteromers more frequently show dendritic localization
(Vigot et al. 2006).

Furthermore, a subfamily of the potassium channel tetramerization domain
(KCTD) proteins (KCTD 8, 12, 12b, and 16) has been shown to exclusively and
constitutively interact with the GABAB2 carboxy-terminus acting as auxiliary sub-
units of the receptor to regulate the kinetics and outcome of G-protein signaling
(Bartoi et al. 2010; Schwenk et al. 2010). For example, the KCTD12 and 12b
subunits mediate desensitization of the receptor, whereas KCTD8 and 16 regulate
non-desensitizing activities. The receptor, KCTD subunits, and G-protein combined
form the core receptor signaling complex required for normal function of inhibitory
brain circuits. Recently, Zuo et al., reported a high-resolution crystal structure of the
KCTD16 oligomerization domain in complex with a GABAB2 C-terminal peptide
and together with mutational analysis defined the interface between KCTD16 and
GABAB2 revealing a potential regulatory site that modulates GABAB receptor
activity (Zuo et al. 2019).

Other proteins have been reported to transiently associate with the GABAB

receptor either directly through GABAB1 or GABAB2 carboxy terminal domains,
which include transcription factors (i.e., ATF-4 (CREB2) and CHOP (Gadd153)
(Nehring et al. 2000; Ritter et al. 2004; Sauter et al. 2005)) and scaffolding and
adaptor proteins (i.e., MUPP1, 14-3-3 protein, and NSF (Balasubramanian et al.
2007; Couve et al. 2001; Pontier et al. 2006)) or indirectly through multiprotein
complexes, which include neuroligin-3, synaptotagmin-11, and calnexin (Schwenk
et al. 2016). Novel functions of the GABAB receptor also arise through crosstalk
with other membrane receptors such as GABAA, mGluR1, NMDA, IGF-1, and TrkB
receptors. For a more comprehensive description of the GABAB receptor
interactome, see (Benke 2013; Fritzius and Bettler 2020).
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Recent biophysical and structural studies have demonstrated that GABAB recep-
tors can form higher-order multimeric receptor complexes and this has been shown
to occur in both heterologous systems and in brain membranes. These multimers
comprise oligomers of GABAB1 and GABAB2 heteromers that self-assemble
through association of their GABAB1 subunits into tetramers (dimers of dimers)
and octamers (dimers of tetramers) (Comps-Agrar et al. 2011, 2012; Maurel et al.
2008). Tetramers were found to decrease Gαi-protein coupling efficiency suggesting
that the multimers exhibit negative cooperativity between heterodimers (Calebiro
et al. 2013; Stewart et al. 2018). It has emerged that the core GABAB1/B2 receptor not
only assembles with itself (oligomerization) but can also form supercomplexes with
other multiprotein complexes that are likely spatiotemporally regulated in response
to neuronal and developmental cues (Fritzius and Bettler 2020). The role of higher-
order receptor complexes in GABAB receptor function and physiology requires
further investigation to determine the functional relevance of GABAB receptor
oligomerization in native tissue.

5 Agonists

As mentioned previously, the synthesis of the GABA analogue baclofen (-
β-(4-chlorophenyl)-GABA; Fig. 2) in 1962 as the prototypical GABAB receptor
agonist (Keberle et al. 1964) has greatly facilitated the molecular and biochemical
characterization of this receptor. Indeed, baclofen has served as an invaluable tool in
elucidating the electrophysiological and behavioral responses linked to the GABAB

receptor system revealing its versatility as a drug target to treat a wide variety of
diseases (Bowery 1993; Froestl et al. 1995a, b). Owing to its extensive therapeutic
potential, numerous attempts to improve baclofen’s pharmacokinetic properties and

Fig. 2 Exemplar chemical structures of GABAB receptor full agonists
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potency while maintaining selectivity have been pursued, but flat structure-activity
relationships (SAR) around baclofen have resulted in very limited success. Of the
217 GABAB receptor-associated molecules reported in ChemBL Database
(CHEMBL n.d.; Mendez et al. 2019), 55 compounds (42 agonists and 13 antago-
nists) are identified as being active at the GABAB receptor, most of which are
chemically classified as analogues of either GABA or baclofen. However, the
SAR investigations and the pharmacological properties of the resulting baclofen
analogues have revealed important information regarding the chemical characteris-
tics that endow baclofen with its activity at the GABAB receptor.

Following the resolution of baclofen in 1978 into the two enantiomers, (R)-(�)-
baclofen and (S)-(+)-baclofen (Olpe et al. 1978; Weatherby et al. 1984)
(CGP11973A and CGP11974A, respectively), in 1995, Froestl et al., demonstrated
that the observed physiological effects of baclofen are stereoselective. They showed
that the pharmacological action of baclofen is mediated by the R-(�)-enantiomer as
R-(�)-baclofen (also known as Arbaclofen; Fig. 2) inhibits the binding of [3H]-
baclofen to GABAB receptors in cat cerebellum with an IC50 of 15 nM, while the
S-(+)-enantiomer and racemic mixture display >100-fold and 3-fold higher IC50,
respectively (Froestl et al. 1995a). Many analogues of (R)-(�)-baclofen have been
generated to interrogate the role of the carboxylic acid, amine, and p-chlorophenyl
groups in attempts to increase potency and improve pharmacokinetic properties; as a
consequence, more agonists, partial agonists, and antagonists have been discovered
(Froestl 2010).

The first analogues that proved to be more potent than baclofen were generated by
replacing the carboxylic acid portion of GABA with phosphinic acid residues to
generate full agonists, CGP35024 (SKF97541) (Froestl et al. 1995a) and CGP27492
(Chapman et al. 1993) (Fig. 2), which have greater or equal affinity than baclofen for
the GABAB receptor and IC50s of 2 nM and 5 nM (Froestl et al. 1995a; Patel et al.
2001; Bon and Galvan 1996; Seabrook et al. 1990), respectively. Later SAR efforts
investigated the replacement of the p-chlorophenyl group of baclofen with hetero-
cycles. The absence of the chlorine atom from baclofen produces another potent
GABAB receptor agonist, phenibut, and like baclofen, the majority of the agonist
activity at the GABAB receptor is attributed to (R)-phenibut. Substitution with a
2-chlorothienyl group also provides an active albeit weaker agonist (IC50 ~ 0.6 μM)
(Example 2c; Fig. 2) as determined in the [3H] baclofen displacement assay (Bolser
et al. 1995). Further SAR and molecular modeling studies strongly implicated the
p-chlorophenyl group (and its heteroaromatic substituents) as critical in the binding
of baclofen and its analogues to the GABAB receptor (Costantino et al. 2001).

The phosphonous acid derivative, [(2R)-3-amino-2-fluoropropyl]phosphinic acid
(AZD3355; Fig. 2) is a high affinity, non-brain penetrant analogue of baclofen that
was developed by AstraZeneca and recently evaluated in clinical trials for the
treatment of gastroesophageal reflux disease (GERD) under the generic name
Lesogaberan® (Bredenoord 2009). AZD3355 has an EC50 of 9 nM compared to
GABA’s EC50 of 160 nM, and an increased binding affinity with a Ki of 5 nM versus
GABA’s 110 nM for inhibition of [3H]-GABA binding in rat brain (Niazi et al.
2011).

GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and. . . 89



It has been suggested that the low structural diversity of the existing orthosteric
GABAB receptor ligands may be due to the conformational space having not been
fully explored (Evenseth et al. 2019). In the early 2000s extensive mutagenesis
studies on the extracellular domain of the GABAB1 receptor subunit identified
critical residues in LB1 and LB2 that are key for both agonist and antagonist binding
(Galvez et al. 1999, 2000; Kniazeff et al. 2002). More recently, the first X-ray crystal
structures of the GABAB receptor heterodimeric complex between the extracellular
VFT domains of GABAB1 and GABAB2, alone and in complex with bound agonists
and antagonists were reported by Zuo et al., providing a more detailed understanding
of how ligands act on the receptor (Geng et al. 2013). They demonstrated that in the
inactive “apo” state and antagonist-bound state the VFT domains of both subunits
adopt an open conformation whereas in the active “agonist-bound” state only the
GABAB1 subunit binds agonist and on doing so adopts a closed conformation.

Knowledge gained from these studies has since facilitated the development of a
novel class of compounds that bind the orthosteric site of this receptor. In 2013,
Colby et al. reported the discovery of GABAB receptor agonists comprised of
β-hydroxy difluoromethyl ketones that represent the only structurally distinct
GABAB receptor agonists as they lack the carboxylic acid or amino group of
GABA (Example 10; Fig. 2) (Han et al. 2013). Additional analogues of the
β-hydroxy difluoromethyl ketones have since been analyzed by the Colby labora-
tory, and docking models using the X-ray structures solved by Zuo et al. strongly
suggest that these difluoromethyl ketones have similar binding modes to the
orthosteric agonists (Sowaileh et al. 2018). Although some preliminary in vivo
data suggest these compounds warrant further investigation as potential anxiolytic
drugs (Han et al. 2013), their clinical utility has yet to be explored.

More recently, Mao and colleagues reported on Cryo-EM structures of the full-
length inactive antagonist-bound and active agonist-bound in complex with Gαi
protein of the GABAB receptor. This work further supports the findings that agonist
binding stabilizes the closure of the GABAB1 VFT domain (Geng et al. 2013). The
Cryo-EM studies further revealed that agonist binding to GABAB1 VFT domain
induces rearrangement of the transmembrane (TM) interface between the GABAB

subunits and this in turn promotes opening of the third intracellular loop in the
GABAB2 subunit allowing it to bind Gαi (Mao et al. 2020). Collectively, the
structural studies of Zuo et al. and Mao et al. provide a deeper insight into
GABAB receptor activation that will greatly assist in the design of novel modulators
of the receptor.

6 Partial Agonists

Partial agonists are ligands that have varying degrees of intrinsic activities and
affinity at their cognate receptors. They bind to and activate the receptor but elicit
submaximal cell/tissue responses of the system relative to that produced by a full
agonist. The naturally occurring GABA metabolite, γ-hydroxybutyric acid (GHB)
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(Fig. 3), exhibits partial agonism at the GABAB receptor and is used clinically to
treat symptoms of narcolepsy, alcohol dependence and withdrawal, and also used
illicitly as a drug of abuse. However, experiments performed in GABAB1 receptor
null mice clearly show that not all the in vivo effects of GHB are GABAB receptor-
mediated (Wellendorph et al. 2005). GHB has both low and high affinity receptor
targets in the brain. The high affinity binding site is well characterized but has yet to
be incontrovertibly identified. Whereas, it is well established that the GABAB

receptor is the low affinity binding site where GHB acts as a partial agonist (Wong
et al. 2004). Several studies demonstrated this finding including those of Mathivet
et al. (1997); using binding experiments GHB was shown to have Ki ~ 100 μM
compared to baclofen Ki ~ 5 μM (Mathivet et al. 1997); and Lingenhoehl et al.
(1999); using recombinant systems expressing GABAB1/GABAB2 heteromer
together with Kir3 channels in xenopus oocytes showed that GHB activated these
receptors with an EC50 ~ 5 mM and a maximal stimulation of 69% relative to
baclofen. Furthermore, three GABAB receptor competitive antagonists,
CGP5426A, 2-hydroxysaclofen, and CGP35348 each completely blocked the
GHB-evoked response further supporting GHB is a weak, partial agonist
(Lingenhoehl et al. 1999).

Returning to the baclofen analogues, as mentioned CGP35024/SKF97541 (-
γ-aminopropyl(methyl)phosphinic acid) is a potent agonist harboring a methyl
substituent on the phosphinic acid moiety. Exchanging the methyl group for a
difluoromethyl group produces CGP47656 (γ-aminopropyl(difluoromethyl)-
phosphinic acid) (Fig. 3), rendering the molecule a partial agonist at the GABAB

receptor as demonstrated by measuring binding affinities (Urwyler et al. 2005), the
release of GABA from rat cortex (Froestl et al. 1995a; Gemignani et al. 1994), or the
cholinergic twitch contraction in guinea pig ileum (Marcoli et al. 2000). Replacing
the aromatic substituent at the 3-position of baclofen with a hydroxyl group also
produces partial agonistic activity as seen in 4-amino-3-hydroxybutanoic acid
(GABOB) (Fig. 3), with (R)-(�)-GABOB being tenfold less potent than racemic
baclofen in binding experiments from rat brain isolates (Hinton et al. 2008).

As noted above, CGP35348 (Fig. 4) and 2-hydroxysaclofen (Fig. 3) (Kerr et al.
1988) have previously been described as GABAB receptor neutral competitive

*Originally described as an antagonist.

Fig. 3 Exemplar structures of GABAB receptor partial agonists
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antagonists, having no intrinsic activity of their own and accordingly do not stim-
ulate [35S]-GTPγS-binding to membranes derived from CHO cells stably expressing
the GABAB receptor. However, in the presence of CGP7930 or GS39783 (positive
allosteric modulators, PAMs, of GABAB receptor) each “antagonist” stimulated
[35S]-GTPγS-binding to GABAB receptors with maximum efficiency of 31% and
35% of maximum GABA effect, respectively (Urwyler et al. 2005). A more sensitive
assay measuring GABA/GABAB receptor-mediated inhibition of forskolin-
stimulated cAMP accumulation revealed that CGP35348 and 2-hydroxysaclofen
can have intrinsic partial agonistic activity in certain assay conditions that is
enhanced by the PAMs. Thus, the PAMs revealed partial agonistic activity of
compounds that otherwise appear to be devoid of intrinsic activity. Furthermore,
the same experiments revealed that CGP7930 and GS39783 also possess intrinsic,
low partial agonistic activity (Urwyler et al. 2005), an observation also reported by
Binet et al. (Binet et al. 2004).

7 Antagonists

Following the 1979 discovery of a “bicuculline-insensitive, baclofen-sensitive”
GABA receptor, efforts were immediately undertaken to design antagonists for
this receptor. It was in the late 1980s that the first GABAB receptor antagonists
were described. (R)-Phaclofen (Fig. 4), the phosphonic acid analogue of baclofen,

Fig. 4 Exemplar chemical structures of GABAB receptor antagonists
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was one of the first discovered antagonists and was shown to block the slow
inhibitory postsynaptic potential in the rat hippocampus establishing the physiolog-
ical importance of this receptor (Dutar and Nicoll 1988). This discovery was closely
followed by the discovery of saclofen and (S)-2-hydroxysaclofen (Fig. 3), sulphonic
analogues of baclofen (Kerr et al. 1987). (R)-Phaclofen has a low affinity (~130 μM)
for the receptor in radioligand binding experiments using rat brain membranes (Kerr
et al. 1987), whereas (S)-2-hydroxysaclofen is tenfold more potent an antagonist at
the GABAB receptor than (R)-phaclofen in this assay.

In addition to their significant contributions in interrogating GABAB receptor
function and pharmacological activity, as with agonists, preclinical studies strongly
support GABAB receptor antagonists having clinical importance in the treatment of
various CNS disorders. GABAB receptor antagonists have been shown to suppress
absence seizures in preclinical animal models of epilepsy (Bernasconi et al. 1992;
Ostojić et al. 2013; Marescaux et al. 1992; Snead 3rd 1992), improve learning and
memory (Bianchi and Panerai 1993; Lasarge et al. 2009; Mondadori et al. 1993) and
have also been widely shown to have antidepressant-like activity in animal models
(Cryan and Kaupmann 2005; Felice et al. 2012; Jacobson et al. 2018; Cryan and
Slattery 2010; Frankowska et al. 2007; Mombereau et al. 2004; Nowak et al. 2006)
along with a rescue of withdrawal from drugs of abuse-induced stress (Vlachou et al.
2011). Anhedonia, a common symptom of both psychostimulant withdrawal and
depression, appears to be the key to the role of GABAB receptor in these disorders,
as previously described by Markou and colleagues (Markou et al. 1992, 1998).
Furthermore, the GABAB receptor has been shown to play a role in the regulation of
glucose homeostasis in vivo (Bonaventura et al. 2012), GABAB receptor antagonism
as well as receptor knockout mice shows improved glucose-stimulated insulin
secretion (Bonaventura et al. 2008; Braun et al. 2004).

Following the discovery of phaclofen and 2-hydroxysaclofen, additional antago-
nists were discovered leading to CGP35348 (3-aminopropyl(diethoxymethyl)-
phosphinic acid), a potent GABAB receptor antagonist and the first shown to
penetrate the blood-brain barrier; CGP36742 (3-aminopropyl(n-butyl)phosphinic
acid), the first orally bioavailable antagonist; and CGP46381, the phosphinic acid
bearing a methylcyclohexyl group. However, like their predecessors, these com-
pounds have low affinity (high μM range) for the GABAB receptor as does the
chemically distinct SCH50911 (Bolser et al. 1995) (Fig. 5). As a result of SAR
studies during the generation of these compounds, it was discovered that the nature
of the alkyl substituent on the phosphinic acid plays a critical role in ligand activity.
For example, a methyl substituent is present on the potent agonist CGP35024
(Fig. 2); when this is replaced with the difluoromethyl group of CGP47656
(3-aminopropyl(difluoromethyl)phosphinic acid), a decrease in activity at the
GABAB receptor is observed with CGP47656 (Fig. 3) acting as a partial agonist
(Froestl et al. 1995a; Urwyler et al. 2005; Gemignani et al. 1994; Marcoli et al.
2000). Increases in size of the substituent as with the butyl group in CGP36742
(Fig. 4) result in a derivative that displays antagonist activity at the GABAB receptor.
Hence, very modest structural modifications to the baclofen core can lead to
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significant changes in ligand activity ranging from potent agonism to partial agonism
to antagonism at the GABAB receptor (Pirard et al. 1995).

More potent antagonists have been developed since, displaying IC50 values in the
nanomolar range. The radical shift in potency was achieved by substituting the
amino group of existing GABAB modulators with benzyl substituents
(3,4-dichlorobenzyl or 3-carboxybenzyl) as in CGP55845 and CGP56433, respec-
tively. Other representatives of this generation of antagonists include CGP54626
(Fig. 4), and CGP62349, CGP52432, CGP56999, CGP54626, CGP64213 (Fig. 5);
all highly potent antagonists and all demonstrating learning and memory-improving
effects (Lasarge et al. 2009; Getova and Dimitrova 2007). These antagonists may
also have significant clinical potential in absence epilepsy (Bernasconi et al. 1992;
Marescaux et al. 1992; Snead 3rd 1992) as mice overexpressing the GABAB1a

isoform exhibit characteristics associated with atypical absence epilepsy (Stewart
et al. 2009).

8 Inverse Agonists

Given that GPCRs are believed to exist in equilibrium between inactive and active
conformational states in which there is a continuum of structural conformations
ranging from having no activity to being maximally active, these receptors have the
potential to be active in the absence of an activating ligand, a phenomenon termed
“constitutive activity.” Ligands that stabilize the fully “inactive” conformation,
thereby eliminating any intrinsic/constitutive activity the receptor may have, are
referred to as “inverse agonists” (Berg and Clarke 2018; Kenakin 2004). Many
GPCR-targeted drugs were initially characterized as “neutral” or “silent” antagonists
as their discovery predated inverse agonism as a pharmacological concept. It is now
estimated that at least 15% of compounds classified as antagonists have some

* Originally described as antagonists   # Originally described as a NAM

Fig. 5 Exemplar chemical structures of GABAB receptor inverse agonists
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intrinsic activity and that these drugs confer their therapeutic efficacy by reducing
constitutive receptor activity (Urwyler et al. 2005; Grunewald et al. 2002; Hirst et al.
2003; Mukherjee et al. 2006).

In the context of the GABAB receptor, constitutive receptor activity has been
demonstrated to modulate neurotransmitter release and neuronal excitability in the
absence of GABA. For example, in cerebellar Purkinje cells, GABAB receptor has
been shown to interact with extracellular calcium ions to increase the sensitivity of
the glutamate receptor 1 (mGluR1) to its endogenous ligand, glutamate, by forming
a complex with the mGlu1R (Tabata et al. 2004). The use of a selective GABAB

receptor inverse agonist could serve to eliminate enhanced glutamate mediated
mGluR1 activity which has been identified as an avenue with therapeutic potential
for the treatment of fragile X syndrome (Niswender and Conn 2010).

As noted, compounds CGP52432, CGP54626, CGP56999, CGP62349 (Fig. 5)
are closely related, sharing the same core structure, and were originally identified as
competitive antagonists at the GABAB receptor. As antagonists, these compounds
have the ability to block GABA/GABAB receptor-mediated inhibition of forskolin-
stimulated cAMP in GABAB receptor expressing recombinant systems. However,
following receptor desensitization resulting from sustained exposure to GABA, the
activity of this family of compounds switches from antagonism to inverse agonism
as demonstrated by the CGP54626-promoted increase in cAMP production. The
atypical SCH50911 antagonist that lacks large hydrophobic substituents behaved in
a similar manner (Gjoni and Urwyler 2009). Likewise, the structurally distinct
CLH304a previously reported as a negative allosteric modulator (NAM; Fig. 5)
(Chen et al. 2014) has also since been reported to exhibit inverse agonist properties
in the absence of an agonist (Sun et al. 2016).

9 Allosteric Modulators

While endogenous neurotransmitter GABA agonists (i.e., baclofen) and antagonists
(i.e., phaclofen) bind to the orthosteric site (VFT domain) in the GABAB1 subunit, it
is now widely accepted that the GABAB receptor modulators identified so far act at
allosteric sites (binding sites topographically distinct from the orthosteric ligand
binding site) and bind the transmembrane region of the GABAB2 subunit. Allosteric
modulators (AMs) are basically classified as either positive allosteric modulators
(PAMs) or negative allosteric modulators (NAMs). PAMs that possess intrinsic
agonist activity are referred to as “ago-PAMs.” A third class of allosteric ligand
has been described that binds to the receptor but has no intrinsic activity and no
apparent effect on endogenous ligand activity, hence it is referred to as a “silent
allosteric modulator” (SAM) (Burford et al. 2013). Importantly, since orthosteric and
allosteric ligands bind to topographically distinct sites of the receptor, both ligands
can interact with the receptor simultaneously and thus, each ligand can affect the
binding (binding cooperativity) and the intrinsic activity (activation cooperativity) of
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the other. Theoretical models describing these interactions have been discussed
extensively elsewhere (Keov et al. 2011; May et al. 2004).

Allosteric sites are attractive therapeutic targets because molecules that bind to
these sites can act in concert with an orthosteric ligand, and in doing so are believed
to offer several advantages over the use of orthosteric ligands alone (Kenakin and
Miller 2010). As allosteric modulators typically rely on the presence of the endog-
enous ligand, they have the ability to modify receptor activity in a spatial and
temporal manner by acting in concert with the endogenous receptor ligand (Kenakin
and Miller 2010). Therefore, allosteric modulators are believed to have the potential
to induce fewer side effects, as they simply modulate endogenous ligand-mediated
receptor activation. In addition, upon prolonged exposure, allosteric modulators are
less likely to induce GPCR desensitization compared to an orthosteric agonist, and
as such, are less likely to induce drug tolerance.

Allosteric modulators of the GABAB receptor have generated significant attention
for their therapeutic potential in the treatment of alcohol and drug addiction, anxiety,
depression, muscle spasticity, epilepsy, pain, and gastrointestinal disorders (Urwyler
2011). It is postulated that the use of a PAM (or ago-PAM) will achieve a more
desirable pharmacological signaling profiling and physiological responses by
enhancing GABA-mediated receptor signaling rather than artificially stimulating
the receptor with an exogenous agonist such as baclofen. Furthermore, GABAB

receptor allosteric modulators hold the promise of more favorable pharmacokinetics
compared to baclofen including improved bioavalability and brain exposure as well
as cytotoxicity. Hence, the potential advantages of GABAB receptor allosteric
modulation have led to the development of numerous small molecule allosteric
modulators, the majority of which are PAMs.

While many of the described GABAB receptor PAMs are structurally distinct,
based on the core structure they can be sorted into several groups (Fig. 6; each row
representing a distinct structural class). The discovery of GABAB receptor PAMs
was pioneered and first reported by Novartis scientists, Urwyler and colleagues, in
2001. These researchers demonstrated that small molecule CGP7930 (2,6-di-tert-
butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol; discovered in a high throughput
screening campaign) (Urwyler et al. 2001) potentiated GABA-stimulated [35S]-
GTPγS-accumulation in membrane preparations derived from CHO cells stably
expressing the GABAB receptor. Using various combinations of wildtype and
mutant GABAB subunits, Binet and colleagues investigated the mode of action of
CGP7930, determining that the heptahelical domain (HD) of GABAB2 was an
absolute requirement for CGP7930 PAM action and that CGP7930 could also
activate a truncated GABAB2 subunit corresponding to the HD only (Binet et al.
2004).

In 2003, Novartis reported on another group of structurally distinct GABAB

receptor PAMs, centered around GS39783 (N,N0-dicyclopentyl1–2-
methylsulfanyl-5-nitro-pyrimidine-4,6-diamine). Like CGP7930, GS39783 was
found to potentiate both affinity and maximal effects of GABA in biochemical and
electrophysiological assay systems (Urwyler et al. 2003). Dupuis et al. studied point
mutations in the TM region of GABAB2 to identify the residues within the HD that
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interact with GS39783 and found that mutations G706T and A708P in TM6 were
necessary and sufficient for GS39783 mediated agonist activation (Dupuis et al.
2006). Hence, both CGP7930 and GS39783 were found to bind to sites distinct from
known agonist and antagonist receptor binding sites, and to require the presence of
the GABAB2 receptor subunit.

*NAM CLH304a; an example of how subtle structural changes can change ligand activity

Fig. 6 Exemplar chemical structures of GABAB receptor allosteric modulators
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These findings prompted the pursuit of other molecules with similar PAM
activities and consequently, numerous GABAB receptor allosteric modulators have
been reported in the scientific and patent literature (accessible in SciFinder and
Espacenet) over the past two decades. Roche scientists further developed the
Novartis compounds by generating systematic modifications of CGP7930 structure
and arrived at the bicyclic structure of rac-BHFF (Malherbe et al. 2008). Interest-
ingly, it was found that both CGP7930 and rac-BHFF have intrinsic agonist activity,
and distinct and differentiating ligand-induced signaling profiles compared to bac-
lofen (Koek et al. 2013). Optimization of the genotoxic lead structure of the
pyrimidine derivative of GS39783 led to the development of non-toxic GABAB

receptor PAMs, such as BHF177 (N-[(1R,2R,4S)-bicyclo[2.2.1]heptan-2-yl]-2-
methyl-5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine) reported by Novartis in
2006 (Floersheim et al. 2006). A decade later additional analogs from this series
were reported by Porcu et al. (SSD114) (Porcu et al. 2016) and by our research group
and collaborators Li et al. (KK-92A and approximately 100 additional analogs)
(Li et al. 2017).

Substituted 5-membered heterocycles represent a substantial group of GABAB

receptor PAMs, with the first examples of structurally novel modulators reported by
AstraZeneca in patents aiming at the development of drugs for the treatment of
gastrointestinal diseases (Bauer et al. 2005). Specific examples presented in the
patents initially focused on imidazole derivatives that expanded in scope by scaffold
hopping to cover other five-membered core heterocycles such as pyrazoles,
oxazoles, and thiazoles. In 2011, a group led by Corelli identified COR627,
COR628 (Castelli et al. 2012), and COR659 (Mugnaini et al. 2013) as GABAB

receptor PAMs that displayed significant activity in vitro as GABAB receptor PAMs
by potentiating [35S]-GTPγS-binding induced by GABA while failing to exhibit
intrinsic agonist activity. While the thiophene-based core of the active molecule
differs from those reported by AstraZeneca, the substitution pattern resembles other
representative molecules in this group.

Extensive work of Hoffman-La Roche resulted in the identification of additional
classes of GABAB receptor PAMs disclosed in a series of patents published in 2006.
The reported active molecules are based on a quinoline (Malherbe et al. 2006) or
thieno[2,3-b]pyridine (Malherbe et al. 2007) as core heterocycles. A closely related
set of GABAB receptor PAMs was reported in 2009 in an AstraZeneca patent
(Cheng and Karle 2008). A separate group of GABAB receptor modulators represent
a series of substituted triazinediones developed by Addex Pharma (Riguet et al.
2007). The Addex lead compound, ADX71441, is an orally available small molecule
that demonstrated excellent preclinical efficacy and tolerability in several rodent
models of pain, addiction, and overactive bladder (OAB) and has also proven
efficacy in a genetic model of Charcot-Marie-Tooth Type 1A disease (CMT1A)
(Cao and Zhang 2020).

In patents from 2008 and 2009 AstraZeneca scientists disclosed a new group of
GABAB receptor PAMs based on bicyclic pyrimidinedione core, namely xanthines
(Cheng et al. 2008a) and pteridine-2,4(1H,3H)-diones (Cheng et al. 2008b). Related
structures were disclosed in 2015 by Orion Corporation (Prusis et al. 2015) and
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Abbvie in 2017. In 2011, GlaxoSmithKline reported CMPPE, a novel moiety that
positively modulated GABA-evoked in vitro [35S]-GTPγS-binding signal with an
EC50 value of 2.57 μM. The compound showed mild efficacy in a food consumption
test in rats, modest in vivo potentiation of baclofen-induced muscle relaxation in
mice, and poor metabolic stability in liver microsomal systems (Perdona et al. 2011).
Other companies followed the CMPPE track with a range of modulators containing a
modified core structure as the substitution pattern. Astellas Pharma reported a series
of thieno[2,3-d]pyrimidines in 2015 (Shiraishi et al. 2014), whereas Abbvie (Faghih
et al. 2016) and Richter Gedeon maintained pyrazolo[1,5-a]pyrimidinyl core in their
series (WO 2018167630). In a single patent Taisho Pharmaceutical (Borza et al.
2018) covered analogs with the core heterocycle replaced by pyrazolo[1,5-a][1,3,5]
triazine in addition to substituted pyrazolo[1,5-a]pyrimidines. ORM-27669, reported
by Orion Pharma in 2017, with its tricyclic core structure containing [1,2,4]triazolo
[4,3-a]pyrimidin-7(8H)-one represents a more original scaffold (de Miguel et al.
2019). Pretreatment with ORM-27669 reversed ethanol-induced neuroplasticity and
attenuated ethanol drinking but had no effects on cocaine-induced neuroplasticity or
self-administration.

Fendiline (Fig. 6) and its related arylalkylamines represent another unique struc-
tural class reported to be potential GABAB receptor PAMs. First reported as a
non-selective calcium channel blocker and as a positive allosteric modulator of
extracellular Ca2+ sensing receptors (CaSRs) (Nemeth et al. 1998), Fendiline is an
FDA-approved (albeit obsolete) drug used in the treatment of coronary heart disease.
Although not GABAB receptor specific, this compound is noteworthy as Ong and
Kerr evaluated activity of Fendiline and its analogues as PAMs of GABAB receptors
(Kerr et al. 2002, 2006) and demonstrated that the most potent analogue, (+)-N-1-
(3-chloro-4-methoxyphenyl)ethyl-3,3-diphenylpropylamine) exhibited an EC50 of
30 nM in modulating baclofen-mediated function using grease gap recording in rat
neocortical slices (Ong et al. 2005). However, direct action of Fendiline on GABAB

receptor activity has been disputed (Urwyler et al. 2004) and further investigations
are needed to determine the mechanism by which arylalkylamines enhance GABAB

receptor-mediated responses.
GABAB receptor negative allosteric modulators (NAMs) have also been pro-

posed as potential lead compounds for development into therapeutics for disorders
such as CNS hyperexcitability-related disorders including epilepsy, anxiety, nerve
damage, and low cognitive ability. Interestingly, modifications of GABAB receptor
PAM CGP7930 (Fig. 6) led to discovery of the first GABAB receptor NAM,
CLH304a, reported by Chen and colleagues in 2014 (Chen et al. 2014; Sun et al.
2016). CLH304a decreased agonist GABA-induced maximal effect of IP3 produc-
tion in HEK293 cells overexpressing GABAB receptor and Gαqi9 proteins without
changing the EC50. Moreover, it inhibited baclofen-induced ERK1/2 phosphorylation
and also blocked CGP7930-induced ERK1/2 phosphorylation in HEK293 cells
overexpressing GABAB receptor. This indicated that CLH304a (and some ana-
logues) may be allosteric modulators, as orthosteric antagonists like CPG54626
are unable to attenuate PAM mediated signaling. Indeed, it was demonstrated that
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the compounds of interest bound to an allosteric site, negatively regulating
orthosteric agonist mediated signaling (Chen et al. 2014).

10 Probe Dependency

An important aspect of allosteric modulation to be taken into consideration is that the
extent and direction (positive or negative) of the interaction between the orthosteric
and allosteric ligands depends on which orthosteric ligand is present; a phenomenon
known as “probe-dependency,” this is important as many individual GPCRs respond
to multiple endogenous ligands (May et al. 2004; Kenakin 2005). For the GABAB

receptor, only having one known endogenous ligand, probe-dependency might be
considered irrelevant. However, the potential combination of an allosteric modulator
with a synthetic therapeutic such as baclofen must also consider the possibility of
probe-dependent effects on receptor signaling and function.

Indeed, it has been demonstrated that baclofen shows improved efficacy and an
increased therapeutic window when administered in combination with GABAB

receptor PAMs (Maccioni et al. 2012). In preclinical studies, treatment with
GABAB receptor PAMs GS39783 and rac-BHFF potentiated the activity of low
doses of baclofen in relation to alcohol seeking behaviors (Maccioni et al. 2015).
Hence, the ability of PAMs to reduce the effective dose of baclofen not only has the
potential to improve efficacy in disease relevant measures, but also to expand the
therapeutic window of this drug by reducing the accompanying adverse side effects.
Thus, leveraging the probe-dependent effects of treatment with multiple receptor
ligands has the potential to “fine-tune” receptor signaling and facilitate the develop-
ment of improved strategies to target the GABAB receptor.

11 Biased Agonism/Functional Selectivity

It is well established that any given ligand for a GPCR does not simply possess a
single defined efficacy; rather, a ligand possesses multiple efficacies, depending on
the specific downstream signal transduction pathway being investigated. This diver-
sity is believed to be the result of conformational changes induced in the GPCR that
are ligand-specific and hence receptors can adopt various conformations that pref-
erentially activate/modulate one signaling pathway to the exclusion of others; a
phenomenon referred to as “functional selectivity” or “ligand bias” (Kenakin
2017; Smith et al. 2018; Spangler and Bruchas 2017). Conceptually, as with
allosteric modulation, functional selectivity is an appealing mechanism of therapeu-
tic intervention, as modulating only a select subset receptor signaling pathway may
allow for the development of drugs that demonstrate therapeutic efficacy without
recruiting pathways that lead to downstream adverse side effects (Kenakin and
Miller 2010).
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Functional selectivity can be achieved by modulating the receptor with a single
ligand or with multiple ligands. Our own studies identified a PAM, namely KK-92A
(4-(cycloheptylamino)-5-(4-(trifluoromethyl) phenyl)pyrimidin-2-yl) methanol) that
exhibits pathway-selective differential modulation of GABAB receptor signaling
when compared to the structurally related allosteric modulator BHF177 (Sturchler
et al. 2017). Using recombinant cell-based systems overexpressing the GABAB

receptor, KK-92A exhibited similar activity to BHF177 in potentiating GABA-
induced GABAB receptor-mediated inhibition of forskolin-stimulated cAMP pro-
duction and GABA-induced increase in intracellular Ca2+ levels. However, in
contrast to BHF177, in the absence of GABA, KK-92A exhibited intrinsic activity
with regard to ERK1/2 phosphorylation achieving ~70% maximum efficacy relative
to GABA maximum efficacy (Li et al. 2017), demonstrating ago-PAM activity and
pathway-selective effects.

12 GABAB Receptor-Targeted Pharmaceuticals

The presence of functional GABAB receptors in mammalian brain and the gastroin-
testinal tract has been known for more than 30 years. Given the widespread distri-
bution of GABA and the GABAB receptor in the CNS and periphery, it is not
surprising that activation of the GABAB receptor provokes a host of physiological
responses, and as a consequence, dysregulation of GABAB receptor activity was
proposed to be associated with various CNS diseases such as mood disorders
(Kalinichev et al. 2017; Li et al. 2015; Felice et al. 2012; Jacobson et al. 2018;
Cryan and Slattery 2010), epilepsy (Billinton et al. 2001a; Teichgräber et al. 2009),
addiction (Agabio and Colombo 2014, 2015; Agabio et al. 2018; Ranson et al. 2020;
Maccioni et al. 2015), Parkinson’s disease (Nambu 2012; Tyagi et al. 2015),
Alzheimer’s disease (Rice et al. 2019; Sun et al. 2020), Huntington’s disease (Kim
and Seo 2014) as well as peripheral diseases such as gastroesophageal reflux disease
(GERD) (Clarke et al. 2018; Lehmann et al. 2010). More recently, GABA has
emerged as a tumor signaling molecule in the periphery that controls tumor cell
proliferation (Young and Bordey 2009; Zhang et al. 2014; Jiang et al. 2012), and
stimulation of GABAB receptor signaling has been proposed as a novel target for the
treatment and prevention of pancreatic cancer (Schuller et al. 2008; Schuller 2018;
Al-Wadei et al. 2012). Numerous studies have shown potential clinical benefit of
targeting the GABAB receptor in the treatment of various CNS and peripheral
disorders, yet there is still only one therapeutic agent used clinically that selectively
activates the GABAB receptor, namely baclofen (Lioresal®).

As discussed, baclofen was originally synthesized in 1962 by chemists at Ciba,
Switzerland in an attempt to generate a more lipophilic, brain penetrant GABA
mimetic (Keberle et al. 1964). It was assessed in the treatment of epilepsy but failed
to show sufficient efficacy in the clinic. However, as a consequence of an incidental
finding in that it had positive effects on muscle spasticity (Hudgson and Weightman
1971), baclofen (Lioresal®) has been in clinical use since 1972, gaining FDA
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approval in 1977; long before its molecular target, the GABAB receptor was
discovered and its mechanism of action identified. As previously mentioned, it has
also shown therapeutic utility in a wide range of other off-label indications including
addiction and was recently approved in Europe and Australia for the treatment of
alcoholism (Agabio et al. 2018) but side effects such as sedation, nausea, muscle
weakness, and rapid onset of tolerance limit its use (Kent et al. 2020).

With baclofen, an improvement over GABA regarding blood-brain barrier per-
meability was achieved, however, baclofen still has low brain penetration attributed
to rapid efflux via the organic anion transporter (OAT3) (Ohtsuki et al. 2002). In
parallel to Ciba’s efforts in the 1960s to synthesize a GABAmimetic, a Russian team
(Perekalin et al) synthesized a phenyl derivative of GABA, namely phenibut (-
β-phenyl-γ-aminobutyric acid) that exhibits improved brain penetration over baclo-
fen. Phenibut (Cirocard®) has been in clinical use in Russia and some Eastern
European countries (not FDA-approved in USA) as a tranquilizer and cognition
enhancer (nootropic) since the 1960s and is still used for these indications as well as
for the treatment of mood and sleep disorders, PTSD, and a variety of neuropsychi-
atric diseases (Lapin 2001). However, phenibut suffers from many of the same
liabilities as baclofen; sedation, muscle weakness, nausea, tolerance, and more
recently has gained attention for its abuse potential (Jouney 2019).

Although baclofen has been in clinical use since 1972, it is far from an “ideal”
drug; in addition to the unwanted side effects mentioned above, it also suffers from
poor pharmacokinetic properties, including low brain penetration, limited absorp-
tion, short duration of action, rapid clearance from the blood, and narrow therapeutic
window (Kent et al. 2020). Despite the lack of good “drug-like” qualities, the clinical
success of baclofen has prompted numerous campaigns towards the identification
and development of new and improved compounds that modulate the GABAB

receptor and significant advances have been made. In 2009, XenoPort (now Arbor
Pharmaceuticals) introduced Arbaclofen Placaril (XP19986), a transported prodrug
of (R)-(�)-baclofen designed to possess a more favorable pharmacokinetic profile.
Arbaclofen is absorbed throughout the intestinal tract and is rapidly converted to (R)-
(�)-baclofen in tissues. It has been evaluated in Phase III clinical trials for GERD
and multiple sclerosis, but these trials were discontinued in 2011 and 2013, respec-
tively, due to lack of efficacy. It also reached Phase III trials in fragile X syndrome
(FXS) but did not meet the primary outcome of improved social avoidance in FXS
(Berry-Kravis et al. 2017). However, an extended release formula of Arbaclofen
(Arbaclofen-ER; Ontinua®) developed by Osmotica is under FDA review as of July
2020 for the treatment of spasticity in multiple sclerosis. Also, two independent
clinical trials evaluating benefit of Arbaclofen in children and adults with autism
spectrum disorder (ASD) were initiated in 2019 (NCT03682978 and NCT03887676,
respectively).

While XenoPort reported on Arbaclofen Placaril, AstraZeneca reported
AZD3355 (Lesogaberan®; Fig. 2), a high affinity analogue of baclofen that was
developed and evaluated in clinical trials for the treatment of GERD (Bredenoord
2009). AZD3355 is restricted peripherally and has a half-life of ~11 h in blood
(Niazi et al. 2011). Unfortunately, Phase IIb clinical trials were terminated owing to
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lack of efficacy in GERD patients. As AZD3355 is not brain penetrant and devoid of
unwanted CNS effects, with no other adverse effects reported, indicating that it is
safe in humans, it has been proposed that Lesogaberan® could be repurposed for the
treatment of type 1 diabetes; targeting the GABAB receptor in β cells to promote
β-cell survival (Tian et al. 2017).

GHB (γ-hydroxybutyric acid) is approved in some countries and used clinically
for the treatment of narcolepsy-related catalepsy (Xyrem®) (Szabadi 2015) and
rarely alcoholism (Alcover®) (Keating 2014). GHB also has the potential for
abuse and is used illicitly as a recreational drug and intoxicant (Busardò and Jones
2015). Although GHB itself is not FDA-approved for medical use, the first generic
version of Xyrem®, sodium oxybate (the sodium salt of GHB), recently (2017)
received FDA approval to treat symptoms of narcolepsy including excessive day-
time sleepiness and narcolepsy with cataplexy.

The first (and only to the best of our knowledge) clinical investigation of GABAB

receptor antagonists was an open trial with SGS742 (CGP36742; Fig. 4) (Bullock
2005) (Froestl et al. 2004). Even though its potency is low (IC50 � 40 μM (Froestl
et al. 1995b)), many preclinical studies showed benefit with SGS742 for spatial
memory improvement (Helm et al. 2005), the treatment of depression (Nowak et al.
2006), and arrest of cortical seizures (Mares and Kubova 2008). The initial Phase II
clinical trial, conducted in mild cognitive impairment patients, showed that SGS742
significantly improved attention, in particular choice reaction time and visual infor-
mation processing as well as working memory (Froestl et al. 2004). However, a
second Phase II trial was undertaken in mild to moderate Alzheimer’s disease
patients and no statistically significant improvement was detected prompting the
termination of the development program. The clinical implications of modulating the
GABAB receptor are outlined in Table 1.

13 Concluding Remarks

The GABAB receptor and its physiological roles are extremely complex, conse-
quently, dysregulation of this receptor is involved in a broad range of diseases, and
as such the GABAB receptor is considered a highly attractive therapeutic target for
the development of new anti-epileptic, antidepressant, analgesic, and anxiolytic
drugs, as well as for the treatment of cognitive disorders, drug addiction, and
depression. However, at present only one compound that targets the orthosteric
site of GABAB receptor is in clinical use, namely baclofen (Lioresal™); used to
treat muscle spasticity in multiple sclerosis, and more recently used off-label for
alcohol addiction. Unfortunately, side effects such as sedation, muscle weakness,
nausea, and the lack of efficacy observed in other indications, i.e., fragile X
syndrome, limit its therapeutic use. In addition to unwanted side effects baclofen
also suffers from low brain penetration, limited absorption, rapid tolerance, short
duration of action, and narrow therapeutic window. As described earlier, numerous
small molecule agonists, antagonists, and allosteric modulators of the GABAB
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Table 1 Current therapeutic use and potential clinical utility of GABAB receptor modulators

Pharmacology

aTherapeutic
use/bclinical potential

Approved
drug/cclinical trial References

Agonists/posi-
tive allosteric
modulators

aMuscle rigidity and
spasticity

Baclofen
(Lioresal®)
Arbaclofen-ER
(Ontinua®)

(Francisco et al. 2001; Basmajian
1975; Korsgaard 1976; Coffey
et al. 1993)

aGERD Baclofen
(Lioresal®)

(Clarke et al. 2018; Lehmann
et al. 2010; Ong and Kerr 1984;
Lehmann 2009; Symonds et al.
2003)

aCharcot-Marie tooth
type 1A

(Cao and Zhang 2020; Dyer
2013)

aPTSD/tranquilizer/
nootropic

Phenibut
(Cirocard®)
(Eastern Europe
only)

(Lapin 2001; Drake et al. 2003)

aCough suppression (Chung 2015; Martvon et al.
2020)

aAlcoholism and
addiction

Sodium oxybate/
GHB/(Alcover®),
Baclofen
(Lioresal®)

(Agabio and Colombo 2014,
2015; Agabio et al. 2018;
Maccioni and Colombo 2019;
Ranson et al. 2020)

bAnxiety (Kalinichev et al. 2017; Li et al.
2015)

bEpilepsy (Billinton et al. 2001a;
Teichgräber et al. 2009)

bCataplexy Sodium oxybate/
GHB (Xyrem®)

(Black et al. 2014; Szabadi 2015)

bBinge eating
disorder

(Broft et al. 2007; Tsunekawa
et al. 2019)

bParkinson’s disease (Nambu 2012; Tyagi et al. 2015)
bSchizophrenia (Glausier and Lewis 2017; Nair

et al. 2020)
bHuntington’s
disease

(Kim and Seo 2014; Kleppner
and Tobin 2001)

bSpatial learning and
memory

(Modaberi et al. 2019; Sahraei
et al. 2019)

bAutism spectrum
disorder (ASD)

Arbaclofen
cNCT03682978,
cNCT03887676

(Veenstra-VanderWeele et al.
2017; Frye 2014)

bFragile X syndrome
(FXS)

(Berry-Kravis et al. 2017; Zhang
et al. 2015)

bAlzheimer’s disease (Rice et al. 2019; Sun et al. 2020)
bAnalgesic
(fibromyalgia)

cNCT03092726 (Neto et al. 2006; Enna and
McCarson 2006; Murai et al.
2019)

bPancreatic cancer (Young and Bordey 2009; Zhang
et al. 2014; Jiang et al. 2012;

(continued)
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receptor have been described in the scientific and patent literature that have been
developed for their therapeutic potential; positive allosteric modulators, for example,
have been proposed to mitigate the unwanted side effects and reduce tolerance but
have yet to be approved for clinical use. Hence, identification of novel drugs
targeting the GABAB receptor that display improved efficacy and pharmacokinetic
properties and with a safer side effect profile is the subject of intense research and
many industrial scale drug discovery efforts.

As mentioned, the multifaceted GABAB receptor is extremely complex. How-
ever, the same complexity that has historically hindered development of GABAB

receptor-targeted therapeutics now provides the potential for discovery of GABAB

receptor disease-specific therapeutics. For example, GABAB receptor subtype-
selective ligands are highly desirable not only to dissect the physiological role of
the predominant receptor subtypes, GABAB1(a)/2 and GABAB1(b)/2, but also to
facilitate the development of more finely-tuned mode-of-action drugs to treat various
diseases. From a drug discovery perspective, it may be possible to selectively
modulate GABAB(1a) containing heteroreceptors by targeting their sushi domains,
case in point; amyloid precursor protein (APP) binds to the N-terminal sushi domain
of GABAB(1a) and acts as an axonal trafficking factor for GABAB receptors, it has
been proposed that prevention of APP binding to this domain may interfere with
GABAB receptor-mediated inhibition of glutamate release and thereby enhance
cognitive function in patients with Alzheimer’s disease and intellectual disabilities.
Likewise, the discovery of functionally selective ligands for the different GABAB

receptor effectors would provide powerful tools to identify a unique signaling profile
that results in the desired in vivo effects without recruiting the adverse side effects.

Table 1 (continued)

Pharmacology

aTherapeutic
use/bclinical potential

Approved
drug/cclinical trial References

Schuller et al. 2008; Schuller
2018; Al-Wadei et al. 2012)

bType 1 diabetes (Tian et al. 2017)

Antagonists/
negative allo-
steric
modulators

bDepression/mood
disorders

(Cryan and Kaupmann 2005;
Felice et al. 2012; Jacobson et al.
2018)

bType 2 diabetes (Bonaventura et al. 2008, 2012;
Braun et al. 2004)

bAbsence epilepsy/
seizures

(Bernasconi et al. 1992; Ostojić
et al. 2013)

bMild cognitive
impairment and
memory

(Lasarge et al. 2009; Mondadori
et al. 1993)

bSuccinic semi-
aldehyde dehydroge-
nase (SSADH)
deficiency

cNCT02019667 (Cortez et al. 2004; Didiášová
et al. 2020)

aTherapeutic use
bClinical potential
cClinical trail
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Alternatively, recent biophysical and structural studies have greatly improved our
understanding of the structural basis of GABAB receptor activation and modulation,
and proteomic studies have identified receptor-associated proteins that work in
concert with the receptor to orchestrate a variety of molecularly and functionally
distinct multiprotein “signalosome” complexes, while providing spatiotemporal
control of receptor activity. These findings also present new opportunities for drug
discovery, modulating specific protein:protein interactions mediated through sushi
domains of GABAB1(a) (as outlined above), C-terminal domain of GABAB1 and/or
GABAB2; or KCTD subunits, all present potential target sites for designing drugs
that selectively interfere with receptor function for disease-specific therapeutic
intervention.

Thus, the successful collaboration between medicinal chemistry and pharmacol-
ogy together with significant advances in our understanding of GABAB receptor
structure and activation mechanisms has drug hunters well-poised for the discovery
and development of chemically and mechanistically novel therapeutics targeting the
multi-tasking GABAB receptor for the treatment of a wide variety of disease states.
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