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Abstract The pathophysiological mechanisms that underlie the generation and
maintenance of tinnitus are being unraveled progressively. Based on this knowledge,
a large variety of different neuromodulatory interventions have been developed and
are still being designed, adapting to the progressive mechanistic insights in
the pathophysiology of tinnitus. rTMS targeting the temporal, temporoparietal, and
the frontal cortex has been the mainstay of non-invasive neuromodulation. Yet, the
evidence is still unclear, and therefore systematic meta-analyses are needed for
drawing conclusions on the effectiveness of rTMS in chronic tinnitus. Different
forms of transcranial electrical stimulation (tDCS, tACS, tRNS), applied over the
frontal and temporal cortex, have been investigated in tinnitus patients, also without
robust evidence for universal efficacy. Cortex and deep brain stimulation with
implanted electrodes have shown benefit, yet there is insufficient data to support
their routine clinical use. Recently, bimodal stimulation approaches have revealed
promising results and it appears that targeting different sensory modalities in tem-
porally combined manners may be more promising than single target approaches.

While most neuromodulatory approaches seem promising, further research is
required to help translating the scientific outcomes into routine clinical practice.
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1 Introduction

Tinnitus can be defined as the conscious awareness of a non-complex sound for
which there is no identifiable corresponding external sound source (Jastreboff 1990).
Tinnitus occurs in 5–15% of the population (Axelsson and Ringdahl 1989; Heller
2003). Whereas most patients (80%) can habituate to this sound, quality of life is
severely disrupted in about 20–25% of the patients who cannot cope with the tinnitus
(Axelsson and Ringdahl 1989; Vanneste et al. 2014). In these patients, tinnitus is
frequently associated with anxiety, depression, cognitive impairment, and sleep
disturbances (Bhatt et al. 2017; Vanneste et al. 2016; Y. Wang et al. 2018b), and
tinnitus becomes a mental disorder. Tinnitus disorder can therefore be diagnosed in
cases of tinnitus with tinnitus-associated suffering.

Although many treatments have been proposed, both pharmacological and
non-pharmacological, some of which are commercially available, evidence for a
successful therapy that benefits everybody with tinnitus is lacking (Dobie 1999;
Langguth et al. 2013). The lack of efficacious treatments for tinnitus likely originates
from the heterogeneity of tinnitus and an incomplete understanding of the patho-
physiology of the different forms of tinnitus (Elgoyhen et al. 2015).

Since 2011 pharmaceutical interest in developing neuropharmacological products
for neurological or psychiatric indications has dramatically declined. Big Pharma has
invested 50% less for brain related disorders (Yokley et al. 2017), because it is too
expensive and too risky. Developing medication for brain disorders has 50% less
chance of making it to the market (6.2% vs 13.3%) (Gribkoff and Kaczmarek 2017),
takes 30% longer to develop (19.3 vs 14.7 months) (Gribkoff and Kaczmarek 2017),
and costs 30% more than heart medication (Gribkoff and Kaczmarek 2017). Eighty
percent of medications fail phase III trials (Kesselheim et al. 2015), predominantly
because they do not outperform placebo (46%) (Kesselheim et al. 2015). Thus,
notwithstanding repurposing of existing medication (Pushpakom et al. 2019), the
likelihood of a pharmaceutical solution for tinnitus and tinnitus disorder is therefore
limited. As such, other treatment options need to be investigated, one of which is brain
stimulation. The history and evolution of the understanding of the pathophysiology of
tinnitus goes hand in hand with the development of brain stimulation approaches.

2 History and Evolution of the Pathophysiology of Tinnitus

Tinnitus is an enigmatic symptom. Even the earliest historic reference, dating back to
the 19th CBC, in the Ebers papyrus, in which tinnitus was considered the conse-
quence of a bewitched ear, is controversial (Dietrich 2004) (Fig. 1). Tinnitus as a
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problem of the ear, caused by hearing loss, predominated until the 1990s, and
consequently treatment focused on improving hearing function and masking of
sound. In 1990 Jastreboff developed a theoretical neurophysiological model imply-
ing that the phantom sound was the consequence of classical conditioning
(Jastreboff 1990). The neurophysiological model focused on the distress
associated with tinnitus, and lead to the development of Tinnitus Retraining Therapy
(TRT). TRT comprises directive counselling and potential use of hearing aids and
sound therapy, not with the goal of complete masking, but to facilitate habituation of
tinnitus reaction and possibly perception. But Jastreboff did not specify which
neuroanatomical structures were involved in this conditioning, so the brain compo-
nents involved remained inside a black box. In 1999 Rodolfo Llinas published the
first paper that specifically proposed a pathophysiological model implying the
interaction between the auditory cortex and thalamus as the generator of tinnitus,
called thalamocortical dysrhythmia (R. R. Llinas et al. 1999). It is based on the
clinical evidence that tinnitus, in most cases, is associated with hearing loss or
abnormalities in the inner ear or the peripheral auditory pathway, which results in
neuroplastic changes in auditory and non-auditory brain networks (De Ridder et al.
2014d). However, some forms of tinnitus exist in which tinnitus is unrelated to
hearing loss, and this seems to be associated with a different underlying pathophys-
iological mechanism (Vanneste et al. 2019; Vanneste and De Ridder 2015), possibly
requiring different neuromodulation targeting. Whether tinnitus without hearing loss
is fundamentally different or a variation of the same underlying pathophysiology still
remains to be proven, as tinnitus without audiometric hearing loss does not imply
that there is no auditory deafferentation (Weisz et al. 2006). The thalamocortical
dysrhythmia model of Llinas states that in the deafferented state, the dominant
resting-state alpha rhythm (8–12 Hz) slows down to theta (4–7 Hz) (R. R. Llinas
et al. 1999) band frequencies. Even though it is called theta, from an electrophysi-
ological point of view it should be considered slowed alpha activity, as the neural
generators of true theta activity are different from the generators of alpha and slowed
alpha activity (Tsanov 2015; Whittington et al. 2018). In the awake state, the
thalamocortical loops within the brain idle around 10 Hz (8–12 Hz), called the
alpha frequency, generated by the thalamus. During light sleep, theta band activity
is predominant, generated by the septal nuclei and hippocampus, and in deep sleep
delta activity (1–3 Hz) predominates (G Buzsaki 2006). The theta that emerges in
thalamocortical dysrhythmia is thalamically generated and therefore more likely
represents alpha activity that is slowed down to the theta frequency range. Concep-
tually, this can be explained as a decrease of the firing rate when less information
needs to be processed (Borst and Theunissen 1999) due to the deafferentation, and
that firing and oscillation rate are coupled at the thalamocortical level (Crunelli et al.
2018; R. Llinas et al. 2005). As a consequence, GABAA mediated lateral inhibition
weakens (R. Llinas et al. 2005), inducing gamma (>30 Hz) band activity
(R. R. Llinas et al. 1999) surrounding the deafferented theta area, also known as
the edge effect (R. Llinas et al. 2005). Confirming the initial studies by Llinas
(R. Llinas et al. 2005; R. R. Llinas et al. 1999) a decrease in alpha power is
associated with an increase in gamma power (Lorenz et al. 2009), and gamma is
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coupled to theta activity (Weisz et al. 2007). Other studies have since demonstrated
the presence of both low (delta or theta) and high frequency activity in the auditory
cortex of tinnitus patients (Adamchic et al. 2012, 2014; Adjamian et al. 2012;
Ramirez et al. 2009), and the theta-gamma cross-frequency coupling has also been
identified on electrode recordings of implanted patients (De Ridder et al. 2011b),
confirming the MEG data.

Theta activity is associated with negative symptoms such as hearing loss (and
hypoesthesia in the somatosensory system), and gamma activity reflects the positive
symptoms, tinnitus (pain in the somatosensory system) in diseases characterized by
thalamocortical dysrhythmia (R. Llinas et al. 2005; R. R. Llinas and Steriade 2006).
Thus negative symptoms (e.g., hearing loss, hypoesthesia) are linked to decreased
information processing and therefore slowed alpha activity, as if the deafferented
thalamocortical columns are “as asleep”(R. Llinas et al. 2005). It has been proposed
that this theta could then act as a long range carrier wave (Freeman 2003, 2005;
Freeman and Rogers 2002) on which the tinnitus information can be nested by
means of high frequency oscillatory activity (De Ridder et al. 2015b; De Ridder et al.
2014d). If this model is universal, then that would imply that all tinnitus patients
could be treated by auditory cortex stimulation, whether non-invasively or
invasively. The first attempts to test this theory were performed with transcranial
magnetic stimulation and brain implants (De Ridder et al. 2004; Eichhammer et al.
2003a; Plewnia et al. 2003).

However, early research of TMS and implants demonstrated that not every person
suffering from tinnitus could be helped with auditory cortex stimulation. Different
explanations were postulated for this including the duration of the tinnitus (De Ridder
et al. 2005; Kleinjung et al. 2007), the gender of the tinnitus patients (De Ridder et al.
2007d), the amount of hearing loss (Kleinjung et al. 2007), the tinnitus pitch
(De Ridder et al. 2007d), the perceived laterality, left or right side, of the tinnitus
(De Ridder et al. 2007d), laterality of the tinnitus generator in the brain (De Ridder
2010; Langguth et al. 2006), and also TMS related aspects such as the delivered dose
(Plewnia et al. 2007). The failure in obtaining predictable and clinically satisfying
results prompted the proposal of a novel pathophysiological model, in which the
tinnitus percept would not be phrenologically limited to the auditory cortex but to a
tinnitus-associated network (Schlee et al. 2009a, b). Even though that network
dynamically changes, adapting to externally and internally generated triggers, on
average it remains fairly stable, so that it could be averaged over 5–20 min recording
intervals, with the current MEG and EEG technology (De Ridder et al. 2011a; Schlee
et al. 2009a, b). Translating theoretical concepts from network science (Albert et al.
2000) to brain stimulation, it was hypothesized that directing stimulation at more
than one target could disrupt the tinnitus network more effectively than one single
target. As the frontal cortex was already a somewhat successful target for
transcranial direct current stimulation (tDCS) (De Ridder and Vanneste 2012;
Frank et al. 2011; Song et al. 2012; To et al. 2017; Vanneste and De Ridder 2011;
Vanneste et al. 2011) and TMS (De Ridder et al. 2012a, c; Vanneste and De Ridder
2012a), the first multitarget stimulations selected the frontal cortex and
temporoparietal junction (auditory cortex) (Kreuzer et al. 2011), but later attempts
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also used auditory cortex and high cervical C2 area (De Ridder and Vanneste 2015),
using the same reasoning. Because the success rate was not high, these network
science based models were modified for tinnitus to employ both random and targeted
modulation on the tinnitus network (Mohan et al. 2017). The restricted benefits of
neurostimulation based on the distributed network model led to investigation of an
alternative model, in which tinnitus was the result of a deficient noise cancelling
mechanism (Leaver et al. 2011; Rauschecker et al. 2010), analogous to pain (Fields
2004; Kong et al. 2010). However, according to this model the subgenual anterior
cingulate cortex was critically involved in tinnitus generation, a difficult neuroana-
tomical target for current brain stimulation technologies. Furthermore, other groups
failed to replicate the imaging data on which the model was based. A further model
was proposed that tinnitus could actually be the result of a Bayesian prediction error
(De Ridder et al. 2014a, c). According to this model tinnitus can be understood as the
result of a mismatch between the predicted sound percept and the actual neural input
from the ear, which is reduced because of hearing loss. It was hoped that the
underlying anatomical and oscillatory correlates could be targeted with brain stim-
ulation. It also theorized that neuroplastic changes involved in tinnitus were
multiphasic, suggesting a theoretical difference between the neural generators of
tinnitus in tinnitus with and without deafferentation. As such, the model attempted to
combine and integrate both the deafferentation based theories and the noise cancel-
ling theories (De Ridder et al. 2014a, c, d).

Using a sliding window analysis method combined with graph theoretical
analyses permitted the development of a dynamical tinnitus network, in which the
tinnitus sound is the consequence of the auditory cortex constantly looking for
missing information, in keeping with the Bayesian tinnitus concept. Distress is
associated with the loss of temporal flexibility (Mohan et al. 2018a, b). This model
has not yet led to novel therapeutic approaches.

In a further attempt to integrate both the deafferentation based and noise cancel-
ling models it has recently been proposed that tinnitus could be the result of an
imbalance between bottom-up and top-down influences (Vanneste et al. 2019),
which would make very clear predictions on what targets to apply which kind of
brain stimulation (Fig. 1).

3 A Theory of Symptom Generation in the Brain

The brain can be seen as a complex adaptive system (Freeman et al. 2001; Sporns
et al. 2004), similar to the world wide web, the climate, the economy, or an ant
society (Holland 2014). In order to qualify as a complex adaptive system, a system
has to fulfill two criteria (Amaral et al. 2004): (1) its structure follows a small world
topology and (2) the system has to embed noise (Amaral et al. 2004). The reason for
these criteria relates to the adaptiveness of the system. Network systems can be
topologically structured in three ways (Bullmore and Sporns 2012). At one extreme,
the network can have a lattice or regular topology, which means that every stimulus
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will always result in exactly the same processing, which is both predictive and
efficient but not adaptive whatsoever (Catania 2009). At the other extreme, a system
can be completely random, which is inefficient and disadvantageous because every
stimulus will always have a completely random response. An intermediate structure
between regular and random has a small world topology, which permits flexibility
and adaptiveness to changing environments through variability. As such, such a
system can learn (Bassett et al. 2006; Karuza et al. 2016). The brain has a small
world structure and thus fulfills the first criterion (Achard et al. 2006; Bassett et al.
2006; Bullmore and Sporns 2009; Eguiluz et al. 2005). The brain is also noisy,
fulfilling the second criterion, but the noise is structured, generally following a
power law distribution (G. Buzsaki and Mizuseki 2014), i.e. a pink (1/f) or brown
(1/f2) noise structure. This structured noise has an advantage that it has memory and
can carry information, in contrast to white noise which is an unstructured completely
random noise (Keshner 1982). Thus, such a system can learn, is flexible, while still
maintaining stability. Since small worlds are adaptive, implanting electrodes in an
adaptive system such as the brain makes intuitive sense as a means to modify its
structure and thus its function. In a regular network or completely random system,
the same concept would make little to no sense: a regular system would respond
identical with or without stimulation and a random system would respond differently
to every stimulus. One of the most important fundamental characteristics of every
complex adaptive system is emergence: the whole is more than the sum of its
components and cannot be predicted from its constituent parts. The whole has new
properties that depend on the very specific connectivity between the parts. A
collection of car parts is not a car. Only when all parts are put together (i.e.,
connected) in a very specific way does a functional car emerge. Yet, a simple car
is complex but non-adaptive. It doesn’t reconfigure itself based on a changing
environment. Bees do, ants do, our brain does and so does the internet. Emergentism
in the philosophy of mind supports the belief that consciousness is an emergent
property of brain function, and by extension, that every thought, feeling, action is the
consequence of specific connectivity patterns resulting from adaptive
neuroplasticity, and every symptom or disease is the result of maladaptive plasticity
(Fornito and Bullmore 2014). Thus, using TMS or transcranial electrical stimulation
(tES), or implanting electrodes on the cortex should change or use the brain’s
connectivity in order to create a change in symptoms (De Ridder et al. 2017).

Neuroplasticity can operationally be defined as the brain’s capacity to modify its
structure and function in order to adjust to a changing environment. However, these
adaptive brain changes can be both adaptive and maladaptive, i.e. can lead to
learning how to adjust to a changing environment but can also lead to symptoms.
Any changes in the external or internal environment lead to neuroplasticity, i.e. both
deprivation of input or increased environmental stimulation. These adaptive changes
can be modulated by adrenal and gonadal hormones, neurotransmitters, growth
factors, certain drugs, and aging (Fuchs and Flugge 2014). This results in adaptive
changes at multiple scales: molecular and neurobiochemical changes, synaptic
adjustments, neurogenesis, connectivity, and network changes (Fuchs and Flugge
2014). From a clinical perspective, neuroplasticity can be visualized by structural
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and functional brain imaging as changes in structure, activity, and connectivity.
Changes in connectivity can be differentiated in structural, functional, and effective
connectivity (Bassett et al. 2006; Lewis et al. 2009). Structural connectivity refers to
anatomical changes in the brain (Hagmann et al. 2008), functional connectivity
refers to co-activation of different brain areas (Friston 2011), and effective connec-
tivity identifies from where to where the information flows in the brain, and can thus
be seen as a form of directional functional connectivity (Friston 2011). This reorga-
nization facilitates stability in constantly changing functional and effective connec-
tivity networks, which results in changing emergent properties, like altered percepts,
thoughts, emotions, actions, symptoms, etc.

3.1 Neuromodulation as Targeted Neuroplasticity

Neuromodulation and neurostimulation or brain stimulation are being used inter-
changeably. Yet, neuromodulation is becoming the preferred term because it doesn’t
carry the connotation of activation, which seems to be inherently implied with
neurostimulation. Indeed, if the electrical or magnetic stimuli reach a brain area in
which GABA receptors predominate, the clinical effect can be inhibitory. And
neuromodulation means influencing brain activity (and connectivity), without
suggesting the influence is excitatory.

Neuromodulation can be operationally defined as the induction of neuroplastic
changes via targeted application of electrical, magnetic, sound (including ultra-
sound), optical or pharmacological stimuli. This is a broader definition than the
one used by the International Neuromodulation Society: “Neuromodulation is tech-
nology that acts directly upon nerves. It is the alteration – or modulation – of nerve
activity by delivering electrical or pharmaceutical agents directly to a target area”
(http://www.neuromodulation.com/about-neuromodulation).

Neuromodulation can be performed on any part of the nervous system, from the
peripheral nerve field, to specific peripheral or autonomic nerves, to the dorsal root
ganglion (DRG), the spinal cord, the brainstem, or the brain. In brain stimulation, a
distinction can be made between cortex stimulation and deep brain stimulation, but
even here the terminology is not always uniform (De Ridder et al. 2017). For
example, wire electrodes have been implanted inside the anterior cingulate gyrus
and this procedure was called deep brain stimulation (DBS) of the anterior cingulate
(Boccard et al. 2014), whereas paddle electrodes have been implanted onto the same
target (De Ridder et al. 2016a, b; Leong et al. 2020) and this qualifies as cortex
stimulation. The same can be said for deep brain stimulation of the subgenual
anterior cingulate cortex (Brodmann area 25) for major depressive disorder. In
essence, it is intracortical stimulation (with wire electrodes) of the subgenual anterior
cingulate cortex, in which the electrodes are inserted inside the cortex rather than
onto the cortex (Mayberg et al. 2005). The same terminological confusion exists for
tinnitus. Whereas in most studies the electrodes are implanted extradurally or
intradurally overlying the primary or secondary auditory cortex, respectively
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(De Ridder et al. 2004, 2006a, 2007a, b, 2008, 2010, 2011b; Friedland et al. 2007;
Litre et al. 2009), some patients have been treated with wire electrodes implanted
inside the auditory cortex (Seidman et al. 2008). We will consider any form of
cortical stimulation, whether intracortical or onto the cortex, as cortex stimulation,
and deep brain stimulation as specifically targeting deep nuclei, rather than cortical
structures.

3.2 Mechanism of Action of Cortex Stimulation

A better understanding of how cortex stimulation exerts its beneficial effect is
essential; this requires a better understanding of the pathophysiological mechanisms
involved in tinnitus generation. Symptoms are emergent properties resulting from
maladaptive network activity, and not phrenological activity of one area in the brain
(Barabasi et al. 2011; Fornito and Bullmore 2014; Fornito et al. 2015). Indeed, when
patients in vegetative state, who have no conscious awareness, are presented with a
sound, their auditory cortex is functionally and metabolically activated, yet there is
no conscious sound perception (Boly et al. 2005). This suggests that activity in the
auditory cortex per se is insufficient for conscious awareness, as has been discussed
and demonstrated in the visual cortex (Crick and Koch 1995; Melloni et al. 2007).
Only if the auditory cortex is functionally connected to a consciousness supporting
network do auditory stimuli become accessible for conscious perception, analogous
to what has been shown for painful stimuli (Demertzi et al. 2012; Laureys et al. 2000,
2002). These consciousness supporting networks consist of the self-representational
default mode network and the attentional frontal parietal network (Akeju et al. 2014).
Therefore it is plausible that the auditory cortex has to be functionally connected to
the default mode network and frontoparietal attention network to permit conscious
awareness of the presented stimulus.

It has been proposed that the presence of functional connections might be an
essential requirement for transmitting the cortically applied stimulus into a wider
network associated with the emergent property, i.e. tinnitus, that requires treatment
(De Ridder et al. 2016a; Fox et al. 2014). When comparing success and failures to
auditory cortex stimulation via implanted electrodes, the functional connectivity
between the auditory cortex and the parahippocampus was critical for obtaining a
beneficial result (De Ridder and Vanneste 2014). The importance of functional
connectivity is similar to what was suggested for anterior cingulate implants
(De Ridder et al. 2016a) and is in keeping with what has been shown for
non-invasive brain stimulation in multiple neurological and psychiatric disorders
(Fox et al. 2014). Indeed, it was shown that a lack of functional connectivity
identified sites where stimulation was ineffective, and the sign of the correlation
related to whether excitatory or inhibitory non-invasive stimulation was found to be
clinically effective. These results suggested that resting-state functional connectivity
may be useful for both optimizing treatment and identifying new stimulation targets
(Fox et al. 2014).
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In summary, if the cortical target is part of a symptom generating network, the
stimulation might be beneficial, whereas stimulation of a cortical target that is not
functionally connected to the symptom generating network might not be beneficial
(De Ridder et al. 2017) (Fig. 2).

3.2.1 Brain Stimulation Techniques in the Treatment of Tinnitus

Brain stimulation can be performed in two ways, non-invasively and invasively, in
other words with or without surgery involved. Non-invasive brain stimulation
encompasses transcranial magnetic stimulation (Barker 1999; Barker et al. 1985)
and transcranial electrical stimulation (Moreno-Duarte et al. 2014; Paulus 2011;
Vanneste et al. 2013a).

3.2.2 TMS for Treating Tinnitus

In 1985 it was demonstrated that it is possible to depolarize neurons in the brain
using external magnetic stimulation (Barker et al. 1985). Unlike electrical stimuli,
magnetic stimuli are not attenuated by the bone of the skull. The skull has 8–15 times
the resistivity of soft tissues (Barker et al. 1985). Indeed, for electrical stimuli it has
been calculated that 75% of the applied current is blocked by the skull (Voroslakos
et al. 2018). Magnetic stimulation of the cortex is particularly effective because of
the ability of the magnetic field to pass through high-resistance structures. TMS

Fig. 2 The hypothesized mechanism of action of cortex stimulation (De Ridder et al. 2017). The
electrode or non-invasive stimulation device has to be positioned at a cortical target where the
symptom generating network reaches the brain surface. The stimulation is thought to change the
functional connectivity of the network, thereby changing its topology and its related emergent
property, i.e. the symptom
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produces a magnetic field of the same size as that of an MRI scanner, i.e. 1–3 Tesla,
but that only lasts for about a millisecond (Walsh and Rushworth 1999). Because the
magnetic field changes very rapidly (from zero to a very high value, then back to
zero again in 1 ms), based on Faraday’s law, it induces electrical currents in the area
of the brain beneath the coil. Effectively, the magnetic field “carries” the electrical
stimulus across the barrier of the skull and scalp into the brain (Ridding and
Rothwell 2007). The induced current pulse lasts for about 200 μs and is similar in
amplitude to that produced by a conventional stimulator applied directly to the
surface of the brain (Ridding and Rothwell 2007). It is thought to activate the
axons of neurons in the cortex and subcortical white matter, rather than the cell
bodies of cortical neurons (which have a much higher threshold) (Ridding and
Rothwell 2007) a longer pulse width (>1,000 μs) is required (Ranck 1975).

There are two important limitations of TMS: (1) the magnetic field falls off
rapidly with distance from the coil surface, limiting direct stimulation to the super-
ficial parts of the cerebral cortex immediately under the skull, and (2) the site of
stimulation is not as focal as direct electrical stimulation of the brain with inserted
electrodes (Ridding and Rothwell 2007), even though a 2 mm precision can be
reached when neuronavigation is used (Schonfeldt-Lecuona et al. 2005), improving
further to 1.3 mm when robotic neuronavigated positioning is used (Goetz et al.
2019). This reaches the intrinsic resolution of the structural and functional imaging
itself: At 3 T, MRI machines can resolve details of the brain as small as 1 mm. That
resolution can be as fine as 0.5 mm in a 7-T machine (Nowogrodzki 2018).

Magnetic coils can have different shapes: round, figure of eight, double cone coil,
and H-coils. Round coils are relatively powerful but less focal. Figure-eight-shaped
coils are more focal with a maximal current at the intersection of the two round
components (Rossini et al. 2015). Double cone coils and H-coils penetrate deeper
and can, for example, reach the anterior and posterior cingulate cortex (Carmi et al.
2019; Hayward et al. 2007). Due to the strong decline of the magnetic field with
increasing distance from the coil, direct stimulation effects are limited to superficial
cortical areas. However, stimulation effects can propagate to functionally connect
remote areas: low frequency TMS can increase functional connectivity, whereas
high frequency TMS can decrease functional connectivity (Fox et al. 2012).

Based on TMS studies of the motor cortex it has been shown through electro-
myographic recordings of the activated muscles that TMS has a double effect. A
single TMS stimulus evokes a burst of activity that can last for 5–10 ms after the
pulse (Day et al. 1987), which is followed by a period lasting 100–200 ms during
which activity is suppressed (Ridding and Rothwell 2007). The effect of the TMS
pulse is brain state dependent, as well as dependent on the position and orientation of
the stimulation coil and the exact site of stimulation (Ridding and Rothwell 2007).
For example, if a TMS stimulus is given during sleep, anesthesia or coma, the
stimulus will only exert a local effect and will not spread through the brain, in
contrast to an awake state (Massimini et al. 2005). Furthermore, TMS efficacy seems
to be dependent on the stimulated person’s genetic polymorphism. Certain genes
such as BDNF and 5-HT(1A) influence the sensitivity to non-invasive stimulation,
both TMS and tDCS (Cheeran et al. 2008; Malaguti et al. 2011). In view of the
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interindividual anatomical variability of the brain, it has been suggested that the
efficacy can be improved by using neuronavigated TMS based on the individual’s
brain structure obtained by structural or functional imaging (Fleming et al. 2012).
The interindividual variability between the location of the sylvian sulcus and
superior temporal sulcus that borders the auditory cortex is 1.5–2 cm (Steinmetz
et al. 1990), suggesting that indeed a navigated approach makes sense. Concomitant
intake of medication such as benzodiazepines (Deppe et al. 2020; Hunter et al.
2019), psychostimulants (Hunter et al. 2019), or neuroleptics (Hebel et al. 2020)
can influence the effect of rTMS, but other medication such as anti-migraine
medication does not seem to influence the treatment effect by TMS (Almaraz et al.
2010). For example, whereas concomitant benzodiazepines decrease the efficacy of
TMS as a treatment for depression (Deppe et al. 2020; Hunter et al. 2019), concom-
itant psychostimulants increase the efficacy (Hunter et al. 2019).

Device related parameters determine the effect and side effects of TMS. The type
of coil used also influences the reliability of the TMS (Fleming et al. 2012).
Stimulation parameters such as stimulation frequency and amplitude influence the
effect of the TMS as well (Speer et al. 2000).

Whereas single magnetic pulses only exert an immediate effect, the application of
multiple pulses repetitively, called repetitive transcranial magnetic stimulation
(rTMS), can have long-lasting effects that outlast the stimulation period.

In summary, many patient-dependent and device-related factors determine the
outcome of transcranial magnetic stimulation (Table 1)

Table 1 Factors influencing TMS and tES effects

TMS influencing factors tES influencing factors

Person/patient
dependent

Brain structure Brain structure

Brain state/function Brain state/function

History of activity in the stimulated
Area

History of activity in the stimu-
lated area

Brain area Brain area

Genetic polymorphism Genetic polymorphism

Medication Medication

Skull-cortex distance Soft tissue and bone structure

Device/protocol
dependent

Coil type Electrodes size

Coil orientation Electrodes positions

Frequency Frequency in tACS/tRNS

Intensity Intensity

Stimulation pattern (burst/tonic) Electrode polarity

Duration Duration

Inter-train interval (intermittent/
continuous)

Number of sessions Number of sessions

Interval between sessions Interval between sessions

Pulse form
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It is assumed that high frequency stimulation (HFS) and low frequency stimula-
tion (LFS) have opposite effects (Table 2), as demonstrated by functional imaging,
with HFS exerting an increased metabolism and LFS a decreased metabolism
(Kimbrell et al. 1999; Speer et al. 2000). The effects on excitability and plasticity
are opposite as well: whereas HFS seems to exert an increase in excitability (Pascual-
Leone et al. 1994) and an LTP-like effect (Wang et al. 1996, 1999), LFS seems to
generate a decrease in excitability (R. Chen et al. 1997) and an LTD-like effect
(Wang et al. 1996, 1999). Furthermore, the effect on oscillatory activity is different
(Brignani et al. 2008; Fuggetta et al. 2008; Paus et al. 2001), as is the effect on
neurotransmitter release (Keck et al. 2001, 2002; Yue et al. 2009) (Table 2).

The widespread effect of TMS is beyond the area of stimulation (Kimbrell et al.
2002). This is mediated by transmission of the stimulus via structural connectivity
(Momi et al. 2020) thereby influencing functional and effective connectivity (Shen
et al. 2015). It has indeed been shown that low and high frequency stimulation exert
a different effect on functional connectivity. Furthermore, TMS changes directional
functional connectivity, in other words effective connectivity (Grefkes et al. 2010).
By altering the functional and effective connectivity TMS can change the emergent
property of the stimulated network and thereby exert its clinical effect.

The Regimen, Parameter, and Efficacy of TMS

rTMS has been used in tinnitus research in two different ways: single and repeated
sessions.

Single Sessions

Single sessions of rTMS have been used for three reasons: (1) Pathophysiology and
anatomy – to evaluate whether cortical areas that are identified on functional imaging
are pathophysiologically involved in the generation of tinnitus, or just spurious
associations. The assumption is that if rTMS can induce transient reductions in
tinnitus perception by targeting the brain areas that are associated with tinnitus,

Table 2 Different effects of high (�5 Hz) and low (1 Hz) frequency transcranial magnetic
stimulation

High frequency TMS Low frequency TMS

Frequency >5 Hz 1 Hz

Excitability Increased Decreased

PET
metabolism

Increased metabolism Decreased metabolism

EEG Upper alpha and beta synchronization Lower alpha and beta synchronization

Molecular GABA and glutamate unchanged GABA and glutamate increased

Plasticity LTP-like LTD-like
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these areas are causally involved in the tinnitus generation. As such the temporal
cortex (De Ridder et al. 2005; Eichhammer et al. 2003a; Plewnia et al. 2003), the
frontal cortex (De Ridder et al. 2012; Vanneste and De Ridder 2012a), the parietal
cortex (Vanneste et al. 2012), and the anterior cingulate cortex (Vanneste and De
Ridder 2012b) have been shown to be implicated in the generation of tinnitus. (2) To
verify if TMS could be a prognostic test to select proper candidates for more invasive
permanent solutions such as cortical brain implants (De Ridder et al. 2004, 2006a,
2011c, 2016a). (3) To delineate optimal stimulation parameters (De Ridder et al.
2005; Schoisswohl et al. 2019; Kreuzer et al. 2017) that can be employed for
multiple rTMS sessions as a possible treatment.

Repeated Sessions

Repeated sessions of low frequency rTMS of the temporal (auditory) cortex have
been proposed as a novel treatment approach for tinnitus based on the assumption
that tinnitus is related to increased neuronal activity in the auditory cortex
(Eichhammer et al. 2003b). A large number of studies have looked at low frequency
TMS for treatment of tinnitus, with inconclusive results (Schoisswohl et al. 2019),
likely due to the high variability and the fact that women respond better than men to
rTMS, as shown in a meta-analysis (Lefebvre-Demers et al. 2020). Whereas most
meta-analyses do show an improvement for tinnitus associated suffering (J. J. Chen
et al. 2020; Lefebvre-Demers et al. 2020; Liang et al. 2020; Soleimani et al. 2016),
other meta-analyses do not (Dong et al. 2020). Comprehensive analyses of the
literature therefore identify a possible therapeutic efficacy in terms of reduction of
tinnitus suffering, but the effect at clinical level is usually partial and temporary
(Lefaucheur et al. 2020), with a THI improvement of about 7–8 points (Liang et al.
2020), which is the minimum for clinical efficacy (Zeman et al. 2011), lasting up to
6 months (Liang et al. 2020). Before the publication of the recent meta-analyses
already a level C recommendation (possible efficacy) using evidence-based guide-
lines was proposed (Lefaucheur et al. 2014), stating that low frequency (1 Hz) rTMS
of the left temporoparietal cortex in tinnitus is possibly efficacious for tinnitus
(Lefaucheur et al. 2014). A more recent follow-up study confirmed these results
(Londero et al. 2018)

Apart from the variability in study design, and the fact that women respond better
than men, also different stimulation parameters are being used. A recent systematic
analysis of the relationship between stimulation parameters and treatment outcome
revealed a higher success rate for lower stimulation intensities (Schoisswohl et al.
2019), confirming the evidence based guidelines (Lefaucheur et al. 2014).

More recently, in an attempt to reduce the individual variability, a personalized
approach has been investigated, taking into account the heterogeneity of tinnitus
generators in the brain, by performing a stimulation protocol tailored to the individ-
ual patient. In a pilot study this concept was explored, by delivering rTMS at various
frequencies over the left and right dorsolateral prefrontal (DLPFC) or
temporoparietal (TPC) cortex in a preliminary test session to select the type of
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protocol subsequently applied for several days (Kreuzer et al. 2017). The personal-
ized protocol yielded a larger benefit than the standard protocol (20 Hz-rTMS over
left DLPFC followed by 1 Hz-rTMS over the left TPC). This suggests that a
"tailored" rTMS protocol may be clinically more beneficial.

In summary, rTMS likely provides benefit in the treatment of tinnitus. However, if
rTMS is to become routine clinical practice, it is essential to look for mechanisms that
may boost or potentiate the therapeutic effect. One such way is to enhance the efficacy
of rTMS pharmacologically, e.g. by adding psychostimulants or ketamine. It has been
shown that psychostimulants improve the benefit of rTMS for depression (Hunter et al.
2019). Another approach could be to test ketamine enhanced rTMS, which in a
preliminary trial in the treatment of depression, a frequent co-morbidity in tinnitus,
shows it is feasible and exerts long-term (2 years) beneficial effect (Best et al. 2019).

Thus, rTMS may benefit especially those patients who severely suffer from the
tinnitus, expressing anxiety or depression.

Reports of side effects were rare. In a meta-analysis of rTMS for tinnitus, side
effects consisted of headache, discomfort at the area of stimulation, muscle
twitching, neck contractions and worsening of tinnitus (Dong et al. 2020). No
seizures were reported. This could be related to the fact that TMS delivered within
published guidelines in individuals without risk factors results in fewer than 1 seizure
per 60,000 sessions (Lerner et al. 2019).

tES for Treating Tinnitus

Three different versions exist of tES, depending on how the current is delivered to
the brain (Fig. 3): transcranial direct current stimulation (tDCS), transcranial alter-
nating current stimulation (tACS), and transcranial random noise stimulation
(tRNS), which is a special version of tACS (Paulus 2011; Vanneste et al. 2013a).

3.2.3 Transcranial Direct Current Stimulation (tDCS)

Conventional tDCS

Medical use of direct electric current to the scalp has a long history. In 43–48 A.D.,
Scribonius Largus (the physician of Roman Emperor Claudius) reported the treat-
ment of pain by placing a live torpedo fish – delivering a strong direct current – over
the scalp (Fodstad and Hariz 2007). In the eleventh century, Ibn-Sidah suggested the
placement of a live electrical catfish on the frontal bone for the treatment of patients
suffering from epilepsy (Kelloway 1946). In the eighteenth century, with the intro-
duction of the electrical battery by Galvani (Galvani 1791, 1797), it was recognized
that electrical stimuli of varying duration can evoke different physiological effects
(Zago et al. 2008). In honor of Galvani, direct current stimulation is often called
Galvanic stimulation. One of the first clinical applications of galvanic currents was
in the nineteenth century when Aldini (Aldini 1804) (Galvani’s nephew) and other
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researchers (Arndt 1869) used transcranial electrical simulation to treat melancholia
and depression. In the 1960s and 1970s, this method had a brief comeback (Lippold
and Redfearn 1964; Redfearn et al. 1964), with a more sustained revival at the turn of
the millennium (Guleyupoglu et al. 2013).

Conventional tDCS uses one anode electrode and one cathode electrode on the
scalp to modulate a particular brain area by inducing a controlled electrical current
which flows from the anode to the cathode. Due to the high electrical resistance of
the skull (Barker et al. 1985), only 25 (to 50%) of the transcranially applied direct
current reaches the brain, the rest being shunted through the extracranial soft tissues,
as demonstrated by calculations on realistic head models, validated both in animal
(Rush and Driscoll 1968; Voroslakos et al. 2018) and human (Dymond et al. 1975;
Voroslakos et al. 2018) experiments.

tDCS modulates the cellular membrane potential facilitating or inhibiting spon-
taneous neuronal activity (Moreno-Duarte et al. 2014; M. A. Nitsche et al. 2008).
Anodal stimulation will produce inward current flow, resulting in depolarization of
pyramidal cortical neurons and apical dendrite hyperpolarization, while cathodal
stimulation will typically produce outward current flow resulting in somatic hyper-
polarization of pyramidal cortical neurons and apical dendrite depolarization
(Radman et al. 2009; Zaghi et al. 2010a). The depolarization under the anode will
result in an increase of firing and excitability under the anode, whereas the firing rate
and excitability are decreased under the cathode (Bindman et al. 1964; M. A. Nitsche
and Paulus 2001).

However, tDCS often results in a delayed clinical effect (Fujiyama et al. 2014;
Stramaccia et al. 2015), which cannot be explained by the immediate effect of tDCS

Fig. 3 Different forms of tES: tDCS delivers direct current, tACS and tRNS deliver alternating
current. tES can be applied with two electrodes or more. When more electrodes are used it is called
high-definition transcranial electrical stimulation (HD-tES)
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on pyramidal or interneuron cell firing. Therefore, two other mechanisms have been
proposed to be involved in tDCS: glial and stem cell modulation. One type of glial
cells, astrocytes are possibly modulated by tDCS (Monai and Hirase 2018;
Ruohonen and Karhu 2012). Astrocytes control the formation, maturation, function
(and elimination) of synapses through various secreted and contact-mediated signals
(Clarke and Barres 2013) and can thereby regulate neural circuit development and
function (Clarke and Barres 2013). Furthermore, another type of glial cell, microglia,
who prune synapses, might also be involved (Mishima et al. 2019). It has indeed
been shown that tDCS activates microglia both under anode and cathode (Rueger
et al. 2012). Thus, glial cells might be modulated by tDCS resulting in synapse
formation and/or elimination, which takes time and can therefore better explain the
delayed effects of tDCS.

Furthermore, microglial and astrocytic activation by tDCS may have a
neuroimmunomodulatory effect (Goerigk et al. 2021) by altering the expression of
immune-mediating genes (Rabenstein et al. 2019).

But apart from modulating neurons, both pyramidal and interneurons and glial
cells, both astrocytes and microglia, tDCS could exert its delayed effects via stem
cell activation. Indeed, tDCS seems to recruit proliferating neural stem cell under the
cathode (Rueger et al. 2012) thereby opening the possibility of regenerative capac-
ities for tDCS and an even more delayed clinical effect of tDCS. The neurogenesis
and improved rehabilitation effects of tDCs have been shown in animal models
(Zhang et al. 2020).

The effects of tDCS depend on a lot of factors, both patient-related and device-
related factors (Table 1). Some factors cannot be controlled, such as the resistance of
several cephalic structures including the skin, skull, blood vessels, and brain tissue
(Brunoni et al. 2012; Medeiros et al. 2012; Moreno-Duarte et al. 2014; Wagner et al.
2007). Device related factors include (1) polarity of the electrodes, (2) size of the
electrodes, (3) the position of the electrodes, (4) the intensity of stimulation or the
amount of current delivered (in mA), and (5) the duration of the stimulation (varies
between 20–40 min in most studies) (Brunoni et al. 2012; Moreno-Duarte et al.
2014; Nitsche et al. 2015; Wagner et al. 2007). By varying these tDCS parameters,
stimulation protocols can be customized to a certain extent to achieve the desired
direction, strength, focality, and duration of effects on cortical activity and excit-
ability (Brunoni et al. 2012; Nitsche et al. 2015).

In general, no serious adverse events are seen by tDCS application, as evaluated
in more than 10,000 subjects investigated in the contemporary tDCS literature
(1998–2014) (A. R. Brunoni et al. 2011; Fregni et al. 2015). The safety of tDCS
depends on the strength of current, the size of the electrodes, the contact media and
the duration of the stimulation (Iyer et al. 2005; Poreisz et al. 2007).

There have been no reports of a serious adverse effect or irreversible injury across
over 33,200 sessions and 1,000 subjects with repeated sessions protocols in human
trials (�40 min, �4 mA, �7.2 C). tDCS has not produced any severe side effects
(Bikson et al. 2016). The threshold for adverse events has been investigated in a
safety study in rats, where the current density needed to induce brain damage in rats
was found to be at least 100-times higher than the current density used in tDCS trials
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(Liebetanz et al. 2009). The most frequent side effects include a tingling sensation
during stimulation, predominantly under the anode (A. R. Brunoni et al. 2011;
Poreisz et al. 2007), an itching sensation (A. R. Brunoni et al. 2011; Fertonani
et al. 2015; Poreisz et al. 2007) right under the electrodes, headache (A. R. Brunoni
et al. 2011; Poreisz et al. 2007), moderate fatigue (Poreisz et al. 2007) and burning
sensation (A. R. Brunoni et al. 2011; Fertonani et al. 2015; Poreisz et al. 2007).

tDCS has been shown to modulate not only the areas underlying anodal and
cathodal stimulation (Antal et al. 2004; Brunoni et al. 2012; Dieckhofer et al. 2006;
Matsunaga et al. 2004; Zaehle et al. 2011), but also functional and effective
connectivity (Alon et al. 2011; Chib et al. 2013; Keeser et al. 2011a, b; Meinzer
et al. 2012, 2013; Pena-Gomez et al. 2012; Polania et al. 2011, 2012b; Stagg et al.
2013; Vanneste and De Ridder 2011; Weber et al. 2014), thereby possibly changing
the emergent property of the symptom-generating network (Luft et al. 2014). These
functional and effective connectivity changes permit modulation of areas beyond the
effects of tDCS under the stimulation electrodes (Lang et al. 2005).

The effect of tDCS has been investigated on the physiology of the motor cortex
(Brunoni et al. 2012), the visual cortex (Antal et al. 2004), the somatosensory cortex
(Dieckhofer et al. 2006; Matsunaga et al. 2004), and the auditory cortex (Zaehle et al.
2011).

Single sessions of tDCS, tACS, and tRNS have been used for elucidating the
involvement of specific brain networks in tinnitus pathophysiology and repeated
sessions have been investigated as a potential therapeutic approach for tinnitus
patients. In comparison with the large number of studies performed by rTMS, tES
has been investigated less frequently and most of these studies focused on the effects
of single sessions of tDCS. The targets for stimulation have been either the auditory
cortex, the temporoparietal cortex or the dorsolateral prefrontal cortex.

Initial studies demonstrated transient tinnitus reduction for anodal, but not cath-
odal tDCS over the temporoparietal cortex, but this effect could not be consistently
replicated by further studies (Yuan et al. 2018). Thus, the most promising
approaches in single session studies over the auditory cortex were left anodal
tDCS and bilateral tRNS. Both approaches were tested as a potential treatment in
controlled studies, in which repeated sessions were applied, but unfortunately the
results were disappointing, as there was no superiority of tDCS over sham stimula-
tion (Lefaucheur et al. 2017) or a control treatment (Kreuzer et al. 2019)
respectively.

In addition to the studies focusing on temporal and temporoparietal areas, several
studies have targeted the DLPFC, mostly by using a bifrontal electrode montage.
A single session of bifrontal anode right/cathode left tDCS reduced tinnitus intensity
or distress in about one third of the patients, whereas anode left/cathode right tDCS
had no effect (Vanneste et al. 2010). In a further study, the same group investigated
whether the efficacy of bifrontal tDCS can be increased, if the electrode polarity is
informed by gamma connectivity in EEG measurements (De Ridder and Vanneste
2012), but this was not the case. The bifrontal tDCS protocol with anode right and
cathode left was also investigated as therapeutic approach with repeated sessions in
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uncontrolled pilot studies, which revealed preliminary promising effects (Frank et al.
2012; Shekhawat and Vanneste 2018).

A meta-analysis demonstrates that tDCS can improve tinnitus distress, but not
loudness perception in tinnitus patients (Wang et al. 2018a), confirming an earlier
meta-analytic study (Song et al. 2012). Yet, another meta-analysis found no benefit
(Lefebvre-Demers et al. 2020). In stark contrast, a recent network meta-analysis
revealed that from all non-invasive neuromodulatory approaches, cathodal tDCS
over the left DLPFC combined with tRNS over the bilateral auditory cortex was
associated with the greatest improvement in tinnitus severity and quality of life
compared with the controls (J. J. Chen et al. 2020)

tDCS has also been combined with different forms of auditory stimulation (Lee
et al. 2017; Shekhawat et al. 2014; Teismann et al. 2014). However tDCS could
enhance neither the therapeutic effects of hearing aids on tinnitus complaints
(Shekhawat et al. 2014) nor the effects of notched music training, a specific form
of individualized auditory stimulation (Teismann et al. 2014).

In summary, tDCS effects on tinnitus are promising but also variable, analogous
to what is seen in rTMS. Due to the many influencing factors this is not surprising,
and further development of the more promising tDCS approaches is mandatory.

High-Definition tDCS

HD-tDCS has been recently introduced to improve the spatial accuracy, by using
arrays of smaller “high-definition” electrodes, instead of the two large pad electrodes
of conventional tDCS (Datta et al. 2009; Dmochowski et al. 2011; Guleyupoglu
et al. 2013; Heimrath et al. 2015; Shekhawat et al. 2015; Villamar et al. 2013) (Fig. 3,
right image). For high-definition tDCS, studies using 4 � 1 ring configuration with
intensities up to 2 mA for up to 20 min have demonstrated its tolerability in both
healthy (Borckardt et al. 2012; Kuo et al. 2013; Nikolin et al. 2015) and patient
populations (Donnell et al. 2015; Villamar et al. 2013). No significant differences
were found between 2 and 3 mA, suggesting the safety limits can be extended to
3 mA (Reckow et al. 2018). High-definition tDCS has a higher spatial resolution
which allows more focal targeting (Borckardt et al. 2012). Furthermore, HD-tDCS
permits simultaneous multifocal stimulation, permitting to develop network stimu-
lation (Ruffini et al. 2014).

HD-tDCS has been used in tinnitus, with higher benefit associated with longer
stimulation duration and higher stimulation intensities (Shekhawat et al. 2015), but
no clinical difference has been noted between the benefit of conventional and
HD-tDCS (Jacquemin et al. 2018).

3.2.4 Transcranial Alternating Current Stimulation (tACS)

The main mechanisms by which tACS influences brain physiology have been
attributed to frequency-specific entrainment, i.e. phase alignment of endogenous
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brain oscillations to externally applied oscillating electric currents (Thut et al. 2011;
Witkowski et al. 2015; Zaehle et al. 2010), and modulation of spike-timing depen-
dent plasticity (Polania et al. 2012a; Vossen et al. 2015). It has been shown that
alpha-tACS enhances the individual alpha frequency (Zaehle et al. 2010), but the
functional effect depends on background activity (Kanai et al. 2008). tACS boosts
motor excitability at 140 Hz (Moliadze et al. 2010) and decreases excitability at
15 Hz (Zaghi et al. 2010b). It has been demonstrated that tACS can influence
perception (Kanai et al. 2008), memory (Marshall et al. 2006), motor function
(Brignani et al. 2013), and higher-order cognition (Santarnecchi et al. 2013).

tACS of the auditory cortex does not seem to improve tinnitus (Vanneste et al.
2013a, b), neither in single nor in multiple sessions (Claes et al. 2014).

3.2.5 Transcranial Random Noise Stimulation (tRNS)

tRNS is a modification of tACS (see Fig. 3). The tRNS device generates alternating
current, which follows a white noise structure, i.e. all frequencies (0.1–640 Hz) have
equal power, with a Gaussian amplitude structure. Low frequency tRNS is defined as
0.1–100 Hz random noise stimulation, whereas high frequency tRNS is limited to
frequencies between 100 and 640 Hz. tRNS has a higher perception threshold than
tDCS (1,200 μA vs 400 μA) (Ambrus et al. 2010).

Importantly, both for tACS and tRNS low and high amplitudes seem to have an
opposite effect. Both tACS and HF-tRNS at 0.4 mA are inhibitory but switch to
excitatory modulation at 1 mA (Moliadze et al. 2012).

High frequency tRNS seems to increase excitability (Terney et al. 2008), and its
mechanisms of action are still unknown. It could theoretically increase excitability
by a stochastic resonance effect mediated through repeated subthreshold stimula-
tions (Terney et al. 2008) that prevent homeostasis of the system (Fertonani et al.
2011). Another possible working mechanism is through desynchronization of (path-
ological) rhythms (Paulus 2011), but none of the abovementioned mechanisms of
action have been proven. tRNS modulates perception (Romanska et al. 2015),
memory (Mulquiney et al. 2011), learning (Herpich et al. 2015; S. Tyler et al.
2015), and other cognitive functions (Cappelletti et al. 2013) possibly by NMDA-
receptor independent but sodium-channel blocker and benzodiazepines sensitive
plasticity (Chaieb et al. 2015).

Low and high frequency tRNS have been clinically used for tinnitus, both with
beneficial results on loudness perception and distress (Joos et al. 2015; Vanneste
et al. 2013a). In a head to head comparison of tDCS, tACS, and tRNS, it was shown
that tRNS was the only efficacious transcranial electrical stimulation for tinnitus
suppression (Vanneste et al. 2013a). Interestingly, both low and high frequency
tRNS were beneficial but the combined low + high frequency tRNS was ineffica-
cious for tinnitus suppression (Joos et al. 2015). In a further pilot study tACS and
tRNS, respectively, were applied bilaterally over the temporal cortices. This study
revealed transient suppression of tinnitus for tRNS, but not for tACS. Furthermore,
repeated sessions were more beneficial than single sessions (Claes et al. 2014).
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Yet, when performing daily sessions of HF-tRNS, in contrast to the more traditional
2–3 weekly sessions, no benefit was obtained (Kreuzer et al. 2019), suggesting that
too much stimulation may be counterproductive. Adding bifrontal DLPFC tDCS to
auditory cortex tRNS was superior to only auditory cortex tRNS (To et al. 2017).
And this multisite tRNS approach has indeed shown promise by confirmatory
studies (Mohsen et al. 2018, 2019).

3.2.6 Vagus Nerve Stimulation (VNS) and Transcutaneous Vagal Nerve
Stimulation (tVNS)

The combination of auditory stimulation with vagal stimulation via implanted
electrodes has demonstrated highly impressive results in an animal model of tinnitus
(Engineer et al. 2011). Based on the rationale that vagal stimulation renders the
simultaneously presented sounds more salient, the combined treatment almost
completely reversed neurophysiological and behavioral signs of tinnitus, which
was not the case with auditory stimulation alone. In subsequent human pilot studies
the efficacy of the invasive VNS + auditory stimulation treatment was confirmed
(De Ridder et al. 2014b, 2015a; R. Tyler et al. 2017) albeit the effects were clearly
less pronounced than in animals. Furthermore, a study in which VNS stimulation
was performed via implanted electrodes to treat epilepsy found equally good tinnitus
attenuating results (Wichova et al. 2018). But since these patients did not receive the
paired auditory stimulation, the relevance of the paired auditory stimulation is yet
unclear.

In these abovementioned studies, vagus nerve stimulation has been performed by
the implantation of a neurostimulation device connected to an electrode located
along the cervical branch of the vagus nerve. However, recently a non-invasive
approach for stimulating the vagus nerve has been developed. This so-called trans-
cutaneous vagus nerve stimulation (tVNS) takes advantage of the fact that the vagus
nerve has an afferent branch that is located medially to the tragus at the entry of the
acoustic meatus and that innervates the external ear canal. For reliable stimulation of
the auricular branch of the vagal nerve specific devices have been developed that
provide electrical stimulation. Analogous to invasive VNS, stimulation of the vagus
with tVNS is typically performed on the left side to minimize potential effects on
cardiac rhythm (Kreuzer et al. 2012). In a pilot study the feasibility and safety of
6 months of tVNS were investigated in patients with tinnitus. The stimulation was
well tolerated, but did not lead to a relevant improvement of tinnitus complaints
(Kreuzer et al. 2014). However, there was a trend towards a reduction of depressive
symptoms in treated patients (Kreuzer et al. 2014). Further support for a tVNS
induced stress attenuation comes from another study (Ylikoski et al. 2017). In this
study the effect of tVNS on heart rate activity was investigated in 173 tinnitus
patients and it was found that tVNS can attenuate the sympathetic activation of
tinnitus patients

In two small pilot studies tVNS was combined with auditory stimulation, and these
studies showed promising effects on tinnitus (Lehtimaki et al. 2012; Shim et al. 2015).
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These findings are in line with the animal data (Engineer et al. 2011), where the
pairing of vagus nerve stimulation with tones excluding the tinnitus frequency was
critical for the reduction of tinnitus, whereas vagal nerve stimulation alone had no
effect on tinnitus related behavior.

But tVNS has also been performed without auditory pairing, also demonstrating
some benefit (Suk et al. 2018), again questioning the relevance of the paired sound
presentation.

3.2.7 Bimodal (Auditory and Sensory) Stimulation

Central auditory circuits are influenced by the somatosensory system, a relationship
that may underlie tinnitus generation (Basura et al. 2015; Dehmel et al. 2008;
Dehmel et al. 2012; Shore 2005; Shore et al. 2008; Stefanescu et al. 2015).

Bi- or multimodal stimulation is presumably more effective for the induction of
neuroplastic effects than unimodal stimulation, as synchronicity of events is an
important criterion for the induction of neuroplastic effects. This was first expressed
by Donald Hebb many decades ago: “Neurons that fire together, wire together”
(Hebb 1949). Unimodal stimulation can induce activity-dependent neuroplastic
changes such as long-term potentiation or long-term depression, whereas bimodal
stimulation provides the additional opportunity to induce alterations of neuronal
activity by the mechanisms of spike-timing dependent plasticity (Basura et al. 2015).
However, the experimental investigation of bimodal stimulation is more challeng-
ing, because of the much larger parameter space.

In recent years different approaches of bi- or multimodal stimulation have been
proposed for the treatment of tinnitus. Apart from the combination of vagal stimu-
lation, tDCS and rTMS with auditory stimulation, the combination of auditory
stimulation and somatosensory stimulation has been investigated. The somatosen-
sory stimulation was either performed via the trigeminal nerve or via C2 afferents.
The combined auditory and somatosensory modulation is motivated by an increasing
understanding of the relevance of the somatosensory system for tinnitus pathophys-
iology (Shore et al. 2016). The clinical phenomenon, that many patients can mod-
ulate their tinnitus by face or neck movements, can be explained by the interaction
between somatosensory and auditory afferents on the level of the dorsal cochlear
nucleus (Levine 1999). This knowledge in turn motivated two different approaches
of combined somatosensory and auditory stimulation.

One approach aims at the modulation of activity in the central auditory pathway
by exerting an inhibitory effect on the level of the dorsal cochlear nucleus. The
somatosensory and auditory stimuli were presented at specific intervals, derived
from basic neurophysiological studies in animals describing stimulus timing depen-
dent plasticity in the dorsal cochlear nucleus (Marks et al. 2018). These findings
were translated into a clinical pilot trial with 20 patients, in which the combination of
sounds with transcutaneous electrical stimulation of the C2 nerve at the level of the
neck was applied over 28 days. The bimodal treatment reduced tinnitus loudness and
intrusiveness, whereas the control condition (auditory stimulation alone) did not
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deliver benefit (Marks et al. 2018). Yet, the effect was short-lasting, especially for
loudness perception, which did not outlast the 3-week bimodal stimulation period,
and the distress improvement only lasted for 3 weeks.

In another approach, sounds are simultaneously applied in combination with
electrical stimulation of the trigeminal nerve at the level of the tongue (Conlon
et al. 2019; D’Arcy et al. 2017). This approach is based on the idea that tinnitus is
caused by auditory deafferentation and that bimodal stimulation might compensate
the auditory deafferentation by providing stimuli over the somatosensory system.
The combined application of sounds and electrical stimulation of the tongue, for a
period of 3 months, was investigated in two large trials (with more than 500 patients)
(Conlon et al. 2020). Similar to other studies the bimodal stimulation resulted in a
clinical benefit for tinnitus distress, but data for loudness improvement were not
provided. In contrast to the C2-auditory bimodal stimulation study, long-lasting
results (1 year) were obtained (Conlon et al. 2020).

3.2.8 Invasive Brain Stimulation for Tinnitus

Auditory Cortex Stimulation

The procedure is based on a pathophysiological model that the auditory cortex is
involved in a pathologically functioning neuronal network that generates tinnitus
and that interference with this network activity by auditory cortex stimulation can
alleviate tinnitus and follows a four-step rationale (De Ridder et al. 2012b):

1. Tinnitus is related to increased activity in the auditory and frontal cortex.
2. The anatomical location of the tinnitus generator can be determined by fMRI

(De Ridder et al. 2011b).
3. The abnormal neuronal activity can be modulated by neuronavigated TMS

resulting in transient tinnitus reduction (De Ridder et al. 2004).
4. If TMS can transiently suppress the tinnitus, electrical stimulation through an

electrode implanted on the same area can provide permanent tinnitus suppression
(De Ridder et al. 2004, 2006a, 2007a, 2011c).

Multiple small and one larger series of patients with auditory cortex electrodes
have been published. A series of 43 patients with severe treatment resistant tinnitus
(grade 3 and 4 tinnitus according to the tinnitus questionnaire (Goebel and Hiller
1994)) were implanted with a cortical electrode overlying the secondary auditory
cortex (De Ridder et al. 2011c). Surgical eligibility was based on 2 positive TMS
sessions. Although all patients reacted to TMS, 1 out of 3 patients did not respond to
the cortical stimulation with tonic stimuli after implantation. Among the responders
to cortical stimulation there was an average decrease in the perceived tinnitus
loudness of 51.3%. There was a significant but weak positive correlation
(r ¼ 0.34, p < 0.05) between the amount of the suppression effect from the test
TMS and cortical stimulation after implantation, even though TMS could not predict
who would and who would not respond to the implant (De Ridder et al. 2011c).
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This may be due to the fact that the mechanism of action of TMS and implanted
electrodes is different.

When switching tonic stimulation to burst stimulation (De Ridder et al. 2010) half
of the non-responding patients demonstrated change, thereby improving the total
response rate from 1 in 3 to 2 out of 3 patients. Burst stimulation was specifically
superior to tonic stimulation for suppressing noise-like tinnitus (De Ridder et al.
2011c), analogous to what has been described for TMS (De Ridder et al. 2007c). In
contrast to TMS, where the suppression effect decreases with longer tinnitus dura-
tion, no correlation was found between the effect of electrical cortical stimulation
and tinnitus duration for the same study population, again suggesting that electrical
cortical stimulation acts on tinnitus by a different mechanism than TMS.

Treatment effects also depended on tinnitus type. Pure tone tinnitus could be
improved more than narrow band noise or the combination of pure tone and narrow
band noise, and unilateral tinnitus better than bilateral tinnitus. This surgical
neuromodulatory approach of the auditory cortex has been repeated by other centers.
A French case study obtained persisting 65% tinnitus reduction in a women using an
fMRI based extradural auditory cortex implant (Litre et al. 2009, 2010). Another
study of eight patients using a similar technique but different hardware found no
permanent tinnitus suppression (Friedland et al. 2007). Temporary effects on tinnitus
perception were observed in six out of the eight patients. However, tinnitus distress
decreased slowly over time, even without suppression of tinnitus intensity. An
electrode with only two contacts was used which limits the way the electrodes can
be programmed.

In four patients an intradural electrode on the primary auditory cortex was
inserted in the Sylvian fissure, stimulating gray matter of the primary auditory cortex
(De Ridder et al. 2004, 2006a). In two patients the purpose was to obtain stabiliza-
tion of tinnitus suppression, because the stimulus parameters had to be
reprogrammed every 2–3 days. In both patients the intradural positioning resulted
in a stabilized suppression of their tinnitus.

Another approach has been proposed, inserting a wire electrode in the white
matter beneath layer 6 of the primary auditory cortex. This has been performed
successfully, using magnetic source imaging for target localization, resulting in
tinnitus suppression (Seidman et al. 2008). Interestingly, in patients with tinnitus,
intracortical stimulation does not generate a sound percept associated with the
delivered current. This is in contrast to patients with epilepsy, in whom intracortical
electrical stimulation within Heschl’s gyrus does generate sound percepts, the
loudness of which correlates with the delivered amplitude (Donovan et al. 2015).

From a mechanistic point of view it was shown that the success of the auditory
cortex implant critically depended on activity in the parahippocampal area, which is
related to auditory memory (De Ridder et al. 2006b). Responders to the implant were
characterized by high beta3 and gamma band activity in the parahippocampal area,
even though the electrodes were overlying the auditory cortex. Only those patients
who had functional connections between the area of the implant, i.e. the auditory
cortex and the parahippocampal area, benefited from the auditory cortex implant
(De Ridder and Vanneste 2014).
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Multisite stimulation may benefit tinnitus perception, analogous to what is noted
in non-invasive neuromodulation. In a partial responder to auditory cortex implan-
tation, complete resolution of the pure tone component of his tinnitus was obtained,
without any beneficial effect on the noise-like component of the tinnitus, even after
switching to burst stimulation (De Ridder and Vanneste 2015). After an initial
successful treatment of his noise-like component with transcutaneus electrical
nerve stimulation, a wire electrode was inserted subcutaneously and connected to
his internal pulse generator. With the dual stimulation his pure tone tinnitus remains
abolished after 5 years of stimulation and his noise-like tinnitus is improved by 50%,
from 8/10 to 4/10. This case report suggested that multitarget stimulation might be
better than single target implantation (De Ridder and Vanneste 2015).

In some case reports implants were also performed on the dorsolateral prefrontal
cortex (De Ridder et al. 2012b), anterior cingulate cortex (De Ridder et al. 2016a)
and parahippocampal area (De Ridder et al. 2012b) following the same 4-step
approach described above. In the two anterior cingulate implants one patient
responded whereas another patient did not benefit from the electrode insertion.
The responder also had increased functional connectivity to a tinnitus distress
network in contrast to the non-responder (De Ridder et al. 2016a). This suggests
that analogous to non-invasive stimulation, brain stimulation via implanted elec-
trodes requires functional connectivity to carry the delivered stimulus throughout the
symptom generating network (Fox et al. 2014).

Deep Brain Stimulation

Deep brain stimulation (DBS) has been performed as well, in an attempt to treat
tinnitus. This was based on a case report of a woman who became tinnitus-free after
a stroke in the locus coeruleus (LC) area of the caudate nucleus while undergoing
DBS for Parkinson’s disease (Larson and Cheung 2013). Initially, tinnitus was
evaluated in patients in whom DBS was performed to alleviate movement disorders.
In a first study, tinnitus loudness reductions were found in 4/7 patients, of which
most clearly by ventral intermediate nucleus (VIM) stimulation for tremor [256]. In
another observational study in six patients with comorbid tinnitus, the concomitant
effect on tinnitus perception was evaluated: In five participants where the DBS lead
tip traversed area LC, tinnitus loudness in both ears was suppressed to a nadir of
level 2 or lower on a 0–10 rating scale. In one subject where the DBS lead was
outside area LC, tinnitus was not modulated (Cheung and Larson 2010; Larson and
Cheung 2011).

A large multicenter study evaluated the clinical impact of DBS on tinnitus in
patients undergoing DBS for movement disorders: the THI tinnitus questionnaire
improved only after subthalamic nucleus stimulation [254], suggesting this target
may be selected to treat tinnitus related distress. After encouraging results from these
observational studies, a phase I study was performed targeting the caudate nucleus as
goal to treat severe intractable tinnitus. Tinnitus distress measures improved for three
of five patients and one patient had a profound loudness suppression (7.8 points
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improvement on NRS). This suggests that the caudate nucleus may be a target
worthwhile of further exploration, using different stimulation designs and different
electrode configurations. Even though the target space may be narrowed down, the
stimulation parameter space for optimal improvement is still large.

4 Conclusion

In the last decades, neuroscientific research has contributed to an increasingly better
understanding of the pathophysiological mechanisms that underlie the generation
and maintenance of tinnitus. Based on this knowledge, a large variety of different
neuromodulatory interventions have been developed.

Most studies for rTMS have targeted the temporal, temporoparietal, and the
frontal cortex. Recent meta-analyses have shown that rTMS may be beneficial for
tinnitus, improving the suffering, but not the loudness perception. The recent rTMS
European guideline (Lefaucheur et al. 2020) recommended that repeated sessions of
low frequency-rTMS of the temporoparietal cortex of the left hemisphere or contra-
lateral to the affected ear have a possible effect in tinnitus. Many questions remain
concerning the use of this technique in everyday practice, such as what could be the
optimal treatment target(s) protocol and what could be the role of individual
susceptibility to auditory cortex stimulation.

Different forms of transcranial electrical stimulation (tDCS, tACS, tRNS),
applied over the frontal and temporal cortex, have been investigated in tinnitus
patients. Recent meta-analysis suggests that also tES may be beneficial in chronic
tinnitus, and that especially the combination of bifrontal tDCS and auditory cortex
tRNS may attenuate tinnitus. Cortex and deep brain stimulation with implanted
electrodes have shown benefit but there is insufficient data to support their routine
clinical use.

Two decades of research in non-invasive neuromodulatory interventions in
tinnitus have yet to result in regular clinical routine use. The most recent meta-
analyses do suggest that a transition from experimental to clinical applications of
non-invasive stimulation may be in view. Furthermore, research has revealed impor-
tant insights in the pathophysiology of tinnitus, in particular in the relevance of
non-auditory brain areas as well in the heterogeneous nature of tinnitus. Recently,
bimodal stimulation approaches have also revealed promising results and it appears
that targeting different sensory modalities in temporally combined manners may also
be a promising avenue.
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