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Abstract Externalizing problems generally refer to a constellation of behaviors
and/or disorders characterized by impulsive action and behavioral disinhibition.
Phenotypes on the externalizing spectrum include psychiatric disorders, nonclinical
behaviors, and personality characteristics (e.g. alcohol use disorders, other illicit
substance use, antisocial behaviors, risky sex, sensation seeking, among others).
Research using genetic designs including latent designs from twin and family data
and more recent designs using genome-wide data reveal that these behaviors and
problems are genetically influenced and largely share a common genetic etiology.
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Large-scale gene-identification efforts have started to identify robust associations
between genetic variants and these phenotypes. However, there is still considerable
work to be done. This chapter provides an overview of the current state of research
into the genetics of behaviors and disorders on the externalizing spectrum.

Keywords Externalizing - Genetics - GWAS - Polygenic scores

1 Introduction

Externalizing problems refer to a constellation of behaviors and/or disorders char-
acterized by impulsive action and/or behavioral undercontrol. Externalizing prob-
lems can be contrasted with internalizing problems in that they typically reflect
actions in the external world, rather than internalized processes within the self, such
as anxiety, depression, or negative affect. Externalizing problems include a variety
of behaviors such as alcohol or substance misuse, antisocial behaviors, aggression,
and risk taking (Krueger et al. 2002; Salvatore and Dick 2018; Young et al. 2000).

Problems associated with externalizing behaviors have high social costs. Substance
misuse remains one of the leading contributors to preventable mortality and morbidity
worldwide. In 2016, alcohol use contributed 4.2% of the total global burden of
disease; other drug use contributed to 1.3% of the total global disease burden; and
smoking contributed to approximately 12% of all deaths (Degenhardt et al. 2013;
Reitsma et al. 2017). In 2017, over 47,000 Americans died as the result of an opioid
overdose (Center for Disease Control and Prevention 2019). In addition to the health
consequences, these behaviors have significant financial costs. Each year, excessive
alcohol use is estimated to cost the United States $250 billion (Sacks et al. 2015). Ilicit
drugs cost the United States approximately $190 billion (National Drug Intelligence
Center 2011) annually, of which $78.5 billion is due to opioid use alone (Florence
etal. 2016). And while difficult to calculate, the total cost of crime in the United States
is estimated between $690 billion to $3.41 trillion annually (Maurer 2017). Under-
standing the etiology of these behaviors is of utmost importance for practitioners and
policy makers to effectively design prevention and intervention efforts.

2 Epidemiology of Externalizing Behaviors/Disorders

Behaviors and disorders across the externalizing spectrum are highly prevalent. The
12-month prevalence for substance use disorders (SUD) in the United States is
approximately 14% for alcohol use disorders (AUD) and 4% for other substance
use disorders (SUD), while the lifetime prevalence is much higher (~29% for AUD
and ~10% for SUD) (Grant et al. 2015, 2016). These disorders typically manifest
during young adulthood, with mean ages of onset ranging from 23.9 for SUD to 26.2
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for AUD (Grant et al. 2015, 2016). The lifetime prevalence for other psychiatric
disorders related to impulse control, such as attention hyperactivity deficit disorder
(ADHD) and conduct disorder (CD), are 5.1% and 9.5%, respectively, and these
appear at earlier ages (7 and 13 years old, respectively) (Kessler et al. 2005a;
Polanczyk et al. 2007). Taken together, the prevalence for any disorder related to
impulse control is high: 24.8%, with a median age of onset = 11 years old (Kessler
et al. 2005a). Importantly, substance use and impulse control disorders do not
manifest in isolation and show strong comorbidity in past 12-month diagnoses
(Grant et al. 2015, 2016; Kessler et al. 2005b). Longitudinal analyses reveal that
many externalizing problems, including heavy alcohol use (Chen and Jacobson
2012), illicit drug use (Chen and Jacobson 2012), and antisocial behaviors (Powell
et al. 2010), increase across adolescence into young adulthood, followed by a steady
decline. Overall, behaviors on the externalizing spectrum are common, with signif-
icant variation across the life course.

2.1 Genetic Epidemiology of the Externalizing Spectrum

Twin and family designs use information from close relatives to estimate the
heritability’ of a trait. Twin studies allow researchers to decompose the variance in
a trait into additive genetic, shared environmental, and unique environmental influ-
ences by comparing the phenotypic correlations of monozygotic (MZ) and dizygotic
(DZ) twin pairs. We can estimate these variances due to the fact that MZ twins share
all of their genetic variation, while DZ twins share half of their genetic variation, on
average. Shared environmental influences, which refer to environments that make
twins more similar, include conditions such as neighborhood context, family socio-
economic status, and religion. Unique environmental influences refer to experiences
that have the effect of making twins more different from each other than expected
based on their genetic sharing, for example, if one twin experiences a trauma, or has
a different peer group. When the within-pair MZ correlation for a phenotype is larger
than the within-pair DZ correlation, this suggests the importance of genetic influ-
ences on the trait under study. When the DZ correlation for a phenotype is more than
half of the MZ correlation, this suggests the presence of shared environmental
influences. When the MZ correlation is less than unity, unique environmental
influences are inferred (measurement error is also confounded with unique environ-
mental influences) (Neale and Cardon 2013).

Many of the individual phenotypes on the externalizing spectrum demonstrate
modest to considerable heritability (hz). SUD have moderate genetic influences, with

"Heritability (h*) generally refers to broad sense heritability, or the proportion of variance in a
population that is the result of genetic influences. Twin and family models generally divide variance
in a phenotype into additive genetic (A), shared environmental (C), and unique environmental
(E) variance. Unique environmental influences also include measurement error.
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~50% of the variance in AUD (Verhulst et al. 2015), 50-60% of the variance in
problematic cannabis use (Verweij et al. 2010), ~40-80% of the variance in cocaine
use disorders (Kendler et al. 2000, 2003a), 20-50% of the variation in opioid
dependence (Kendler et al. 2003a; van den Bree et al. 1998), and ~60% of the
variance in nicotine dependence (Maes et al. 2004) being due to genetic influences
(hz). Related psychiatric and behavioral outcomes, such as ADHD (h2 = 74%),
antisocial behavior (h* = 32%), rule breaking (h* = 48%), and aggression
(h* = 65%), are moderately-to-strongly heritable (Burt 2009; Faraone and Larsson
2019; Rhee and Waldman 2002).

Importantly, while the heritability for each of these individual phenotypes is
moderate-to-strong, the genetic variation impacting each of these disorders appears
to be largely shared. Each of these phenotypes load onto a single highly heritable (4*
~80%) externalizing factor (Kendler et al. 2003b; Krueger et al. 2002; Young et al.
2000), which explains a large proportion of the genetic variance in each individual
trait. For example, a general externalizing factor explains 74—80% of genetic influ-
ences for AUD, 62-74% for other SUD, and 57-92% for antisocial personality
disorder (Kendler and Myers 2013). Other nonclinical risky behaviors that load on to
this genetic factor for externalizing include driving while drunk, earlier age at first
sex, and riskier sex (Harden et al. 2008b; Quinn and Harden 2013; Samek et al.
2014). Finally, in addition to behaviors, personality traits of novelty seeking,
sensation seeking, lack of agreeableness, and lack of conscientiousness also load
strongly on this externalizing factor (Kendler and Myers 2013; Krueger et al. 2002;
Mann et al. 2015; Young et al. 2000). Overall, twin and family studies indicate that
common genetic influences impact multiple traits on the externalizing spectrum.

2.2 Changes in the Etiology of Externalizing Problems
Across Development

Like many other complex traits, genetic influences on externalizing problems change
across the life course. Genetic influences generally become more important as
individuals age and begin to achieve more independence (Dick 2011a; Kendler
et al. 2008; Long et al. 2017). This is especially true for traits on the externalizing
spectrum. Twin studies repeatedly show that shared environment has important
effects on substance use/misuse in early life, whereas genetic influences become
more important as individuals reach early adulthood (Dick 2011a; Kendler et al.
2008; Long et al. 2017). Figure 1 provides an overview of the changing relative
influence of genetic and shared environmental variance over adolescence (Dick
2011a).

While the importance of genetic influences appears to increase over the early life
course, there is evidence that the source of genetic influences is relatively stable over
time. Multivariate twin models find that the majority of genetic influence on exter-
nalizing is attributable to a single factor that explains a large portion of the variance
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Fig. 1 Relative importance of additive genetic (A) and shared environmental (C) influences on
alcohol initiation and frequency of use across adolescence (data reported in Dick 2011a). Across
adolescence additive genetic influences (A) become more important, while shared environmental
influences (C) become less important

across development (Wichers et al. 2013). Longitudinal models demonstrate that the
genetic influences on initial levels of externalizing mostly overlap with the genetic
influences on change over time (Hatoum et al. 2018). In other words, the genetic
influences that influence externalizing problems in early development also affect
behaviors during adolescence. These patterns are similar when we look at specific
behaviors on the externalizing spectrum, including alcohol use (Long et al. 2017)
and problematic alcohol use (van Beek et al. 2012): the sources of genetic influences
are fairly stable across time. Stability in the source of genetic influences over
development also occurs with the personality correlates of externalizing problems
(Briley and Tucker-Drob 2017). Longitudinal analyses of lab-based tasks related to
both impulsivity and delay discounting reveal developmentally stable, genetic
influences on these measures meant to assess dimensions of personality (Anokhin
et al. 2011; Niv et al. 2012). Overall, it appears that while genetic influences may
become more important over time, the same genetic influences act across
development.

Despite the evidence that genetic influences on externalizing are stable over
development, there is some evidence that the specificity of genetic influences can
change for certain phenotypes on the externalizing spectrum. This is especially
apparent in regards to alcohol misuse. Genetic risk for broader externalizing prob-
lems and genetic risk for AUD both independently predict alcohol misuse across
early development. However, the effect size for each form of genetic risk changes
over time. In adolescence, broader externalizing risk has a stronger effect on alcohol
misuse, while alcohol specific risk becomes important during adulthood (see Fig. 2)
(Kendler et al. 2011; Meyers et al. 2014). For other drug use, common genetic
influences explain approximately half of the correlation between externalizing
problems in childhood and drug initiation in late adolescence (Korhonen et al. 2012).
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Fig. 2 Genetic risk and alcohol phenotypes from Kendler et al. (2011) and Meyers et al. (2014).
Regression coefficients between genetic risk specific to AUD (AUD) or broader externalizing
disorders (EXT) and alcohol consumption across age in the Virginia Adult Twin Study of Psychi-
atric and Substance Use Disorders (VATSPUD, left) and the Finnish Twin Cohort (FinnTwinl12,
right). Genetic risk for broader externalizing problems and genetic risk specific to AUD both
independently predict alcohol misuse across development, though the effect sizes for each changes
over time. In adolescence, EXT has a stronger effect on alcohol misuse, while AUD becomes
important during adulthood

2.3 Gene-Environment Interactions in Externalizing
Problems

Environmental conditions can alter the importance of genetic influences on exter-
nalizing behaviors. This phenomenon is referred to as gene-environment interaction,
or GxE (Dick 2011b). Researchers have put forth a variety of theoretical models of
GxE. For externalizing phenotypes, we see consistent evidence for two primary
theoretical paradigms of GxE: the social control/opportunity model and the social
distinction model (Boardman et al. 2013; Shanahan and Hofer 2005). Under the
social control/opportunity model of GXE, genetic influences become more important
under conditions of reduced social control or increased social opportunity (Shanahan
and Hofer 2005). For example, environmental conditions related to low social
control/increased social opportunity, such as peer deviance (Cooke et al. 2015;
Harden et al. 2008a; Mann et al. 2016; Samek et al. 2016) or high neighborhood
turnover rate (Dick et al. 2009), are associated with increases in genetic influences on
various externalizing traits. On the opposite side, environmental conditions associ-
ated with greater social control/reduced social opportunity, such as greater parental
monitoring (Cooke et al. 2015; Dick et al. 2007) or involvement in a committed
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relationship (Barr et al. 2017; Heath et al. 1989), are associated with reduced genetic
influences on these phenotypes. It is important to note that this model of GXE spans
various externalizing phenotypes including alcohol use, smoking, behavior prob-
lems, and delinquency (Cooke et al. 2015; Harden et al. 2008a; Mann et al. 2016;
Samek et al. 2016).

Under the social distinction model of GXE (Boardman et al. 2013), certain social
conditions “push” the phenotype and increase the importance of environmental
influences on a trait at one end of the environmental spectrum. This increase in the
importance of environmental variance reduces the importance of genetic influences
on that same end of the spectrum. For externalizing problems, childhood socioeco-
nomic status (SES) has consistently fit this model of GXE. Childhood SES moderates
the effect of genetic variation on externalizing problems, such that under conditions
of lower SES, environmental sources of variance are more important than genetic
influences (Middeldorp et al. 2014; Tuvblad et al. 2006). Family SES moderates
genetic liability for externalizing whereby higher SES and higher genetic risk are
associated with a steeper increase in alcohol problems across adolescence (Barr et al.
2018). Neighborhood-level SES, moderates genetic risk on delinquency (Beaver
2011) and non-violent conduct problems (Burt et al. 2016) in the same direction as
family-level SES, such that environmental influences are stronger under conditions
of low neighborhood SES. Overall, GXE findings for the social distinction model and
social control/opportunity model demonstrate the ways in which the importance
genetic influences can shift across environmental conditions.

3 Molecular Genetic Studies of Externalizing Problems

While twin and family data provide valuable insight into the genetics of externaliz-
ing problems and other complex traits, they use a latent approach that does not
provide information about the specific genetic variants associated with a given trait.
Over the past 20 years, the growth in research examining measured genetic variants
has rapidly expanded. Much of the early work focused on candidate genes, which
were proposed to be associated with a trait because of a hypothesized biological
mechanism. Research in this tradition largely focused on genes or single nucleotide
polymorphisms (SNPs) in the serotonergic or dopaminergic region. However, can-
didate gene research has been plagued by false positives, publication bias, and low
powered studies (Duncan and Keller 2011). Recent large-scale meta-analyses reveal
no support for much of the early work on candidate gene analyses (Border et al.
2019), suggesting that our “best guesses” for genes involved in the underlying
biology were not very good. Importantly, candidate gene studies do not fit with
our current polygenic understanding of complex traits, whereby phenotypes are
influenced by many variants (in the hundreds, if not thousands) of very small effect
(Visscher et al. 2017).

With the mapping of the human genome, the focus on candidate gene research has
given way to agnostic methods of gene identification that scan the entire genome for
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SNPs associated with a given trait. Rather than focusing on a single variant with
some hypothesized biological mechanism, genome-wide association studies, or
GWAS, test the association between a phenotype and SNPs spanning the entire
genome. Because of the large number of tests (the typical p-value for genome-wide
significance, or GWS, is p < 5 x 107® to correct for approximately one million
independent tests) and small effect sizes associated with individual variants, ade-
quate sample sizes for discovery GWAS likely require hundreds of thousands to
millions of individuals. Fortunately, with the growth of cheaply available
genotyping arrays, large-scale biobanks that genotype large numbers of individuals,
and direct-to-consumer genetic testing companies that amass genotypic information
on large samples, the sample sizes for these GWAS have been rapidly increasing
(Mills and Rahal 2019).

3.1 Current GWAS of Externalizing Phenotypes

Table 1 provides a sampling of the current GWAS for externalizing traits. To date,
these GWAS have predominantly focused on single phenotypes that would be
considered part of the externalizing spectrum, mostly substance use outcomes. The
majority of GWAS on substance use have focused on alcohol-related phenotypes,
including alcohol dependence (Walters et al. 2018) (3 GWS SNPs), alcohol use
disorder (Kranzler et al. 2019) (10 GWS SNPs), number of alcoholic drinks per week
(Liu et al. 2019) (156 GWS SNPs), and maximum alcohol intake (Gelernter et al.
2019) (6 GWS SNPs). A SNP in the ADHIB gene region (rs1229984) responsible
for alcohol metabolism is the most consistently associated SNP across these alcohol
GWAS (Gelernter et al. 2019; Kranzler et al. 2019; Liu et al. 2019; Walters et al.
2018); however, other genome-wide significant variants have also begun to emerge,
such as those in GCKR which is involved in sugar metabolism in the liver and
pancreas (Gelernter et al. 2019; Kranzler et al. 2019; Liu et al. 2019). Sample sizes
for these alcohol phenotypes have ranged from moderately to extremely well
powered (N’s ~50k — one million). Interestingly, these GWAS reveal that genetic
influences on alcohol consumption only partially overlap with variants that impact
alcohol-related problems (Sanchez-Roige et al. 2018; Walters et al. 2018).

GWAS of some illicit drugs, especially cannabis phenotypes, are beginning to
reach sample sizes that have adequate power for detection of genetic effects. A
recent GWAS of lifetime cannabis use (Pasman et al. 2018) (N ~180K) identified
eight GWS SNPs. Three of these loci were in the CADM?2, which has also shown up
in GWAS of impulsivity (Sanchez-Roige et al. 2019), alcohol consumption (Clarke
et al. 2017), number of offspring (Day et al. 2016), and risk-taking behavior (Day
et al. 2016; Karlsson Linnér et al. 2019). A GWAS of cannabis use disorder
(Demontis et al. 2019a) in ~50K individuals identified a single GWS SNP that is a
strong expression quantitative trait locus (eQTL, a variant that influences the expres-
sion of a gene or genes) for CHRNA2, a nicotine receptor gene related to smoking
behavior (Liu et al. 2019). GWAS of other illicit substance use disorders, including
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Phenotype Domain N Publication

Alcohol dependence® Substance use 52,848 | Walters et al. (2018)

Alcohol use disorders® Substance use 274,424 | Kranzler et al. (2019)

Alcohol consumption Substance use 941,280 |Liu et al. (2019)

Maximum alcohol intake® Substance use 143,965 | Gelernter et al. (2019)

Cannabis use disorder Substance use 51,372 | Demontis et al. (2019a, b)

Lifetime Cannabis use Substance use 184,765 | Pasman et al. (2018)

Ever smoker Substance use 1,232,091 | Liu et al. (2019)

Drug experimentation Substance use 22,861 | Sanchez-Roige et al.

(2019)

Broad antisocial behavior Risky/problem 16,400 | Tielbeek et al. (2017)
behaviors

Risky behaviors Risky/problem 315,894 | Karlsson Linnér et al.
behaviors (2019)

Number of sexual partners Risky/problem 370,711 | Karlsson Linnér et al.
behaviors (2019)

ADHD Other psychiatric 53,293 | Demontis et al. (2019a, b)
disorders

Barratt impulsiveness scale | Personality 22,861 | Sanchez-Roige et al.
characteristics (2019)

UPPS-P impulsive behavior | Personality 22,861 | Sanchez-Roige et al.

scale characteristics (2019)

Delay discounting Personality 23,217 | Sanchez-Roige et al.
characteristics (2019)

General risk tolerance Personality 939,908 | Karlsson Linnér et al.
characteristics (2019)

“Multi-ancestry sample

cocaine dependence (Gelernter et al. 2014) and opioid dependence (Cheng et al.
2018), are currently underpowered due to extremely small sample sizes
(N ~2,500-7,500). Overall, larger sample sizes are needed across illicit substance
use to better detect variants associated with these phenotypes.

Beyond substance use, GWAS have focused on other disorders and personality
traits related to the externalizing spectrum. A recent GWAS of ADHD (Demontis
et al. 2019b) (N ~55K) identified 12 GWS loci. Several of the loci associated with
ADHD are located in or near genes implicated in neurodevelopmental processes,
including FOXP2, SORCS3, and DUSP6 (Demontis et al. 2019b). For other behav-
ioral phenotypes, a GWAS of antisocial behaviors in ~16k individuals using a broad
variety of behaviors (including conduct disorder, behavior check lists, and other
scales of antisocial behaviors) did not identify any genome-wide significant loci.
GWAS of impulsivity scales including the Barratt Impulsiveness Scale, or BIS
(Sanchez-Roige et al. 2019), the composite UPPS-P scale (urgency, premeditation,
perseverance, sensation seeking, and positive urgency), and its subscales identified
GWAS SNPs in the CADM?2 gene region for the sensation seeking subscale of the
UPPS-P and CACNAII (which encodes for a protein thought to be involved in
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calcium signaling in neurons) gene region for the negative urgency subscale
(Sanchez-Roige et al. 2019).

Recently, a GWAS of general risk tolerance in approximately 940K individuals
identified 124 independent GWS loci (Karlsson Linnér et al. 2019). This study also
examined a composite index of risky behaviors (defined as the first principal
component of ever smoking, drinks per week, automobile speeding, and number
of sexual partners, N = 315,894) identifying 106 GWS SNPs. The top variants in
this GWAS were in the MAPT, CADM2, and FOXP1 gene regions, again implicating
genes thought to be involved in neurodevelopmental processes (Karlsson Linnér
et al. 2019).

Overall, current gene identification efforts for externalizing traits have begun to
detect robust associations with individual disorders/phenotypes on the externalizing
spectrum, and more recently, with general externalizing behavior. However, much
remains to be discovered as to the biological mechanisms through which these
variants influence behavior. While some variants have well-known biological func-
tion (such as alcohol metabolism or nicotine receptor genes), others (such as those
related to neurodevelopmental processes and brain function) need further scrutiny.
Future research will need to move beyond simple associations. Integrating data from
human GWAS into model organisms will allow us to directly test the biological
function of genes identified in GWAS and whether or not these genes exert some
causal influence on externalizing problems (Baker et al. 2011; Jay 2012). As the cost
of whole genome sequencing comes down, we will also be better able to examine the
impact of rare variants, which are largely excluded from current methods (which
focus primarily on common variants). Finally, as we begin to think of genes and
variants as parts of dense networks, we may better understand the underlying
biological mechanisms between genotype and phenotype (Visscher et al. 2017).

3.2 Genetic Correlations and Multivariate Genomic Methods

Perhaps the most interesting finding to emerge from all of these GWAS of pheno-
types on the externalizing spectrum is the strong genetic overlap between traits,
confirming earlier results from twin and family studies. Alcohol use disorder,
alcohol consumption, smoking status, lifetime cannabis use, risky behaviors, general
risk tolerance, and polysubstance use all have significant genetic correlations with
one another (Kranzler et al. 2019; Liu et al. 2019; Meyers et al. 2014; Sanchez-Roige
et al. 2019; Walters et al. 2018). These externalizing phenotypes also overlap
genetically with other socio-demographic outcomes related to externalizing, includ-
ing age at first birth, number of children, and educational attainment (Kranzler et al.
2019; Sanchez-Roige et al. 2019; Walters et al. 2018). Figure 3* shows the genetic

>We would like to thank Richard Karlsson-Linnér for his work gathering these GWAS summary
statistics, cleaning the data, and running bivariate LDSC.
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Fig. 3 Genetic correlations calculated from published GWAS of externalizing phenotypes (using
bivariate LD score regression). Heatmap of genetic correlation using effect sizes from currently
published GWAS, with correlation estimates denoted in the cells. There is a strong pattern of
significant genetic overlap between clinically relevant phenotypes (Problematic Alcohol Use,
ADHD), other substance use (Lifetime Cannabis Use, Ever Smoker), risky sexual behaviors (Age
at First Sex, Number of Sexual Partners), and personality (General Risk Tolerance). The results in
the heatmap demonstrate a potential shared genetic influence across these phenotypes. All genetic
correlations are significant after correcting for multiple testing (p < 0.0024)

correlations between a subset of externalizing phenotypes, estimated using GWAS
summary statistics (Demontis et al. 2019b; Karlsson Linnér et al. 2019; Liu et al.
2019; Pasman et al. 2018; Sanchez-Roige et al. 2018; Walters et al. 2018). Genetic
correlations were calculated using bivariate LD score regression (Bulik-Sullivan
et al. 2015).

There are now concerted efforts to use information from these and other GWAS
to move beyond univariate analyses and model the multivariate genetic architecture
of externalizing problems identified in twin and family studies. One such ongoing
project is the Externalizing Consortium (Dick et al. 2018). New multivariate gene
identification methods such as Genomic Structural Equation Modeling, or Genomic
SEM (Grotzinger et al. 2019), utilize genetic correlations to model the underlying
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/_ Summary Statistics from \ / Independent Sample (no sample \

Discovery GWAS overlap with discovery GWAS)
SNP ID Beta | Risk Allele Person | SNP 1| SNP 2 | SNP 3| PRS
SNP1 | 0.874 A » 1 AA | AT | CG |1.889
SNP2 | -0.007 T 2. AT AT GG |1.163
\ SNP3 | 0.148 G / \ 3 AA AA CC |1.748 /

Fig. 4 Hypothetical example for calculating polygenic risk scores. Example of using GWAS
summary statistics (left) to calculate polygenic risk scores (PRS) in an independent sample.
GWAS provides the effect sizes (Beta) and Risk allele to calculate the weighted sum of risk alleles
that an individual in the target sample carries. For example, Person 1 carries two risk alleles (A) at
SNP 1, a single risk allele (T) at SNP 2, and a single risk allele (G) at SNP 3. Therefore, there PRS
would be 2%0.874 + 1x—0.007 + 1x0.148 = 1.889. This process occurs across all SNPs included for
calculating a given PRS for each person in the independent target sample

factor structure of a set of phenotypes using GWAS summary statistics. While
traditional SEM models the phenotypic covariance to measure a latent factor,
Genomic SEM models a latent genetic factor based on the genetic covariance.
Utilizing these new multivariate methods allows one to boost power to identify
genetic variants by harnessing existing GWAS of genetically correlated phenotypes.
This type of multivariate analysis illustrates the advantage of combining information
across externalizing traits to detect genetic variants associated with a range of
externalizing outcomes. As more well-powered GWAS of externalizing phenotypes
become available, we will be able to model the underlying externalizing spectrum
with even more power and precision.

3.3 Research Using PRS for Externalizing Phenotypes

Beyond identifying associations between individual variants and a phenotype,
GWAS results can be used to create polygenic risk scores (PRS) that index an
individual’s overall liability for the outcomes, in order to study associations between
these aggregate measures of genetic risk and phenotypes in external samples. An
important component of using PRS is that the sample in which they are used must be
independent of the discovery GWAS sample. Figure 4 provides an overview of how
PRS are constructed. PRS are computed as the average of the number of “risk”
alleles that an individual carries weighted by the parameter estimates (e.g., betas,
odds ratios, and Z-scores) identified in a GWAS. Because SNPs that are close to one
another in the genome correlated (referred to as linkage disequilibrium, or LD), PRS
are generally constructed from a subset of independent SNPs. These SNPs can be
selected using a variety of methods including “pruning and thresholding,” where
SNPs below a certain GWAS p-value and LD threshold (using %) are included
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(International Schizophrenia Consortium 2009); or LDpred, which uses a Bayesian
approach to model SNP effect sizes while accounting for LD from an external
reference panel (Vilhjalmsson et al. 2015).

PRS provide a flexible way of taking results from large-scale GWAS into samples
with extensive phenotyping or longitudinal data to answer more nuanced questions
about how genetic liability unfolds over time or how it changes across the specific
environments. Extending the twin-family literature, research that uses PRS for
externalizing problems has also found evidence of GxE. Following the social
control/social opportunity model of GXE from the twin literature, recent work
using PRS has found evidence of romantic partnerships moderating the association
between PRS and alcohol misuse (Barr et al. 2019); peer deviance and parental
monitoring moderating the association between PRS and externalizing disorders
(Salvatore et al. 2014); and neighborhood social cohesion moderating the association
between PRS and nicotine use (Meyers et al. 2013). In each of the listed PRS
analyses, the association between the PRS and the corresponding phenotype was
stronger under conditions of reduced social control (e.g., not in a relationship,
association with deviant peers, low parental monitoring, and low neighborhood
social cohesion) compared to the conditions of increased control/reduced
opportunity.

PRS derived from GWAS of other outcomes that are genetically correlated to
externalizing problems can also be used as proxies for PRS of externalizing prob-
lems. For example, PRS derived from a GWAS of educational attainment (Lee et al.
2018) predict antisocial behaviors across the life course, from early adolescence into
adulthood (Wertz et al. 2018). PRS derived from GWAS of schizophrenia (Schizo-
phrenia Working Group of the Psychiatric Genomics Consortium 2014) also predict
childhood behavior problems (Jansen et al. 2018). Finally, PRS derived from a
GWAS of educational attainment predict a variety of substance use disorders,
including alcohol, tobacco, and cannabis use disorders (Salvatore et al. 2019).
These analyses demonstrate that in the absence of well-powered GWAS of exter-
nalizing problems, PRS derived from large GWAS of genetically correlated pheno-
types provide information as to how these forms of genetic liability unfold over time
and relate to multiple externalizing phenotypes.

It is important to note that even though PRS have proven to be a useful tool for
understanding genetic liability, even in large cohorts, PRS continue to predict only
small portions of the variance in independent samples. For example, PRS from a
recent GWAS approximately one million explained ~2.5% of variance in alcohol
consumption (Liu et al. 2019). Additionally, PRS aggregate information from across
the genome without regards to the biological function of the variants included.
Future methods that can incorporate additional information from biological annota-
tions or functional enrichment may improve our ability to predict these disorders
from PRS (Marquez-Luna et al. 2019).
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3.4 Increasing Diversity in Genetic Research

Concerted efforts to increase the diversity of participants in genomic research are
vital. To date, large scale GWAS are composed almost entirely of individuals of
European ancestry (Mills and Rahal 2019). Inclusion of individuals of diverse
ancestries is scientifically important because including diverse ancestries increases
the discovery power in GWAS (Dick et al. 2017; Wojcik et al. 2019) and differences
in LD structure across allow us to get closer to causal variants (Bigdeli et al. 2019).
Creating more diverse samples is also important for ethical reasons. PRS derived
from ancestral populations that differ from the target sample perform poorly (Martin
et al. 2017). In the push towards precision medicine, the current GWAS will likely
exacerbate health disparities rather than help solve them (Martin et al. 2019).
Therefore, greater diversity in genomic research is both a moral and scientific
imperative.

4 Conclusion

Research into the etiology of externalizing problems has found that each of the
psychiatric disorders, nonclinical behaviors, and personality characteristics on the
externalizing spectrum are heritable to varying degrees. Overall, these externalizing
problems share a common genetic etiology that accounts for a large share of the
genetic variance in each of the corresponding phenotypes. However, the importance
of these genetic influences can change across developmental and environmental
context, typically becoming more influential as individuals reach young adulthood
and under conditions in which social control is limited. Recent work has moved
beyond the latent genetic designs of twin and family research into designs using
measure genome-wide data. While we have begun to robustly detect variants
associated with these traits, there is still considerable work to be done on elucidating
biological mechanisms of risk. Future multivariate GWAS efforts will help to better
understand the underlying genetic architecture shared across individual phenotypes.
As we better understand the genetic architecture, we will be able to use results to
create more powerful PRS in independent samples to further explore the ways in
which risk unfolds across time and environmental context. And as we move towards
the era of precision medicine, we will need to ensure that we have even larger
discovery samples of diverse ancestries so that our results are able to be used to
improve the health of all individuals in the population.
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