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Abstract Epigenetic mechanisms have been linked to memory formation under
physiological and pathological conditions. Therapeutic strategies that target the
epigenetic machinery have been successfully used in preclinical studies investigat-
ing cognitive phenotypes linked to neuropsychiatric and neurodegenerative diseases.
This chapter will specifically discuss the role of histone modification in the adult
brain with a focus on learning and memory processes in the healthy and diseased
brain. Data on dynamic changes in histone modification during memory processes
as well as the most current knowledge on the corresponding enzymatic machinery
in the adult brain will be summarized and discussed in the context of potential
therapeutic opportunities to treat brain diseases.
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1 Introduction: Neuro-epigenetics
and Histone Modifications

The tight control of gene expression programs is essential for cellular function. In
turn, deregulated gene expression has been implicated with the pathogenesis of
various diseases. In addition to the activity of transcription factors, epigenetic
mechanisms are key processes that control gene expression at a systems level
(Allis et al. 2007a). The term epigenetics has been originally introduced by Conrad
Waddington to describe heritable changes of a phenotype that do not depend on
altered DNA sequence (Waddington 1953). In addition to DNA methylation and
the action of noncoding RNAs, a central epigenetic process is the modifications of
histone proteins. The four core histones (H) build the nucleosome around which
147 bp of DNA is wrapped. The histone tails are subjected to posttranslational
modifications such as acetylation, methylation, phosphorylation, ubiquitination,
sumoylation, ADP-ribosylation, etc. (Vaquero et al. 2003) which are mediated by
the counteracting activities of enzymes that add or remove histone modifications and
are thus called “writers” and “erasers.” For example, histone acetylation is mediated
by histone acetyltransferases (HAT, writers) and histone deacetylases (HDAC,
erasers). The activity of such enzymes is believed to give rise to a combinatorial
pattern of chromatin modifications, the so-called histone code (Strahl and Allis
2000). Such histone modifications are recognized by proteins that subsequently
affect cellular processes such as gene expression and are referred to as chromatin
“readers” (Fischer 2014a). The field of neuro-epigenetics investigates the
abovementioned epigenetic processes in the context of neuronal plasticity, memory
function, and brain diseases (Fischer 2014a; Day and Sweatt 2011; Jakovcevski et al.
2013b).

Various cellular mechanisms have been linked to memory function, and tightly
controlled dynamic changes in gene expression are one requirement to enable the
consolidation of long-term memories (Flexner et al. 1962, 1963; Davis 1984; Igaz
et al. 2002; Frey and Morris 1998; Moncada et al. 2011; Fischer 2014a). In addition,
deregulated gene expression is seen in brain diseases linked to memory impairment
(Lu et al. 2004; Liang et al. 2010; Ginsberg et al. 2010; Twine et al. 2011; Blalock
et al. 2011; Kim et al. 2012a; Arefin et al. 2012; Caldeira et al. 2013; Mills et al.
2013). Understanding the mechanisms that orchestrate gene expression programs in
brain cells is thus of utmost importance, and epigenetic processes have emerged as
key players that enable synaptic plasticity and memory formation.

A number of excellent review articles have discussed the role of epigenetic
processes such as DNA methylation and noncoding RNAs in synaptic plasticity,
memory function, and brain diseases (Day and Sweatt 2010; Fiore et al. 2011;
Fischer 2014a; Jakovcevski and Akbarian 2012; Campbell and Wood 2019). This
chapter will focus on recent findings on the role of histone modifications in memory
formation and cognitive diseases.
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1.1 Histone Modifications and Memory Consolidation
in Health and Disease

First evidence that histone acetylation might play a role in memory consolidation
stems already from 1979. Using C14-labeled acetate, Schmitt and Matthies could
show that acetylation of histones is altered when rats are subjected to a learning
paradigm that leads to the formation of long-term memories (Schmitt and Matthies
1979). Only at the beginning of this century, such studies were followed up, and a
number of labs could demonstrate that memory formation in rodents is correlated to
increased activity of HATs (Swank and Sweatt 2001) and changes in histone
acetylation that were measured by semiquantitative immunoblot analysis using
antibodies specific to acetylated lysine residues of histones (Levenson et al. 2004;
Fischer et al. 2007; Bousiges et al. 2010). These methods are able to detect changes
in bulk levels of histone acetylation but do not allow for any deeper insight to genes
regulated by changes in histone acetylation. Such issues were circumvented when
researchers started to perform chromatin immunoprecipitation (ChIP) followed by
either qPCR or later next-generation sequencing approaches (ChIP-seq) to study
histone acetylation at the single gene or genome-wide level (Peleg et al. 2010). An
important consideration in this context is the complexity of cell types in the brain.
Technological advances now also allow the analysis of histone modifications via
ChIP-seq at the single-cell level, but these methods have not been applied yet to the
neurosciences (Grosselin et al. 2019). Most researchers nowadays perform cell type-
specific analysis of histone acetylation via ChIP-seq using FACS-sorted nuclei that
distinguish at least between neuronal and non-neuronal cells (Shulha et al. 2012;
Benito et al. 2015; Halder et al. 2016), which is of utmost importance for the analysis
of brain diseases characterized by neuronal cell death in combination with inflam-
matory processes.

Thus, there is now substantial evidence confirming the initial observation by
Schmitt and Matthies that changes in histone acetylation but also other histone
modifications are observed in response to learning stimuli or during the pathogenesis
of brain diseases. Moreover, there is now convincing evidence from the analysis of
mutant mice or other model systems that these epigenetic processes play a key role in
cognition. In the following we will discuss these data in detail.

1.2 Histone Acetylation

As discussed above, early findings reported altered histone acetylation in response to
memory training, and in most cases, these changes were linked to active gene
expression, hence an increase of histone marks linked to active gene expression
such as histone acetylation at various lysine residues of H3 and H4 (Levenson et al.
2004; Alarcon et al. 2004; Fischer et al. 2007; Miller et al. 2008; Federman et al.
2009; Peleg et al. 2010; Dagnas and Mons 2013; Fischer 2014a). These data led to
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the hypothesis that inhibition of HDAC proteins might increase memory formation,
which was confirmed in multiple studies (Alarcon et al. 2004; Levenson et al. 2004;
Wood et al. 2005; Fischer et al. 2007; Fischer 2014b). As a consequence HDAC
inhibitors were tested in models for cognitive diseases such as Alzheimer’s disease
but also other cognitive diseases, and indeed administration of HDAC inhibitors was
found to ameliorate memory impairments and cognitive phenotypes in numerous
studies (Fischer 2014a, b). Some of the HDAC inhibitors such as vorinostat are
already used in patients for other indications, and it should be mentioned that oral
administration of vorinostat could ameliorate memory impairment and deregulated
transcriptome plasticity in various mouse models for age-associated memory impair-
ment and Alzheimer’s disease (Kilgore et al. 2010; Benito et al. 2015). Thus, this
drug is currently tested in Alzheimer’s disease patients (https://clinicaltrials.gov/ct2/
show/NCT03056495).

Histone acetylation is generally linked to active gene expression, and thus
initially not much attention was paid to potential difference of, for example,
learning-induced increases in H3K9ac, H4K14ac, or the H4 acetylation sites
H4K5, H4K8, H4K12, and H4K12, and often histone acetylation was assayed
using pan-antibodies that would detect all of the abovementioned H3 and H4
acetylation sites. While this is still a valid approach, there is also evidence that H3
and H4 acetylation sites might serve specific cellular functions. For example, the
onset of cognitive decline during aging was linked to deregulated acetylation of
H4K12 (H4K12ac). While memory training induced a transient increase in various
histone acetylation marks in the hippocampus of young and aged mice, H4K12ac did
not respond anymore to such a stimulus in old animals. When ChIP-Seq was
combined with transcriptome analysis, the data revealed that H4K12ac is critical
for the initiation of a learning-induced gene expression program via a mechanism
that involved transcriptional elongation (Peleg et al. 2010). These data are interesting
since the chromatin reader proteins BRD2 and BRD4, which belong to the BET
(Bromodomain Extraterminal) subfamily of chromatin readers, were found to spe-
cifically recognize H4K12ac. Similar to HDAC inhibitors, the BRD2/BRD4 inhib-
itor JQ1 was found to improve memory function in wild-type mice and in a mouse
model for Alzheimer’s disease (Benito et al. 2017).

All of these data are summarized in a number of excellent review articles
(Fischer 2014a, b; Deussing and Jakovcevski 2013) and inspire the interested to
better understand the enzymatic machinery that controls histone acetylation.

The mammalian genome encodes for at least 18 HATs that are subdivided into the
GNAT (Gcn5 N-acetyltransferases) family, the MYST (MOZ, Ybf2/Sas3, Sas2,
TIP60) family, the p300/CBP family, the SCR family nuclear receptor coactivators,
and the several other HATs that cannot be grouped into a certain family (Lee and
Workman 2007; Allis et al. 2007a). Most of these proteins are expressed in the
mouse and human brain (Table 1). The best-studied HATs in the context of mam-
malian brain function belong to the p300/CBP family. Multiple studies demonstrated
a role for CBP/KAT3A in memory consolidation (Alarcon et al. 2004; Korzus et al.
2004; Wood et al. 2005, 2006; Chen et al. 2010; Barrett et al. 2011). It should be
mentioned at this point that memory function is routinely analyzed in rodents via a
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Table 1 Regulators of histone acetylation and methylation in learning and memory

Enzyme Catalytic action
Linked to memory-related
processes

Histone acetyltransferases

KAT1A (HAT1) Histone acetylation No conclusive data

KAT2A (GCN5) Histone acetylation Yes, loss of KAT2A impairs
memory

KAT2B (PCAF) Histone acetylation Yes, loss of KAT2B impairs
memory

KAT3A (CBP) Histone acetylation Yes, loss of KAT3A impairs
memory

KAT3B (P300) Histone acetylation Yes, loss of KAT3B impairs
memory

KAT4 (TAF1) Histone acetylation No conclusive data

KAT5A (TIP60) Histone acetylation Yes, loss of KAT5A impairs
memory

KAT6a (MYST3) Histone acetylation No conclusive data

KAT6B (MYST4) Histone acetylation No conclusive data, linked to
neurogenesis

KAT7 (MYST2) Histone acetylation No conclusive data

KAT8 (MYST1) Histone acetylation No conclusive data

KAT9 (ELP3) Histone acetylation No conclusive data

KAT12 (GTF3C4) Histone acetylation No conclusive data

KAT13A (NCOA1) Histone acetylation Yes, loss of KAT2B impairs
memory

KAT13B (NCOA3) Histone acetylation No conclusive data

KAT13C (NCOA2) Histone acetylation No conclusive data

KAT13D (CLOCK) Histone acetylation No conclusive data, circadian
rhythm

Histone deacetylases (zinc-dependent, excluding sirtuins)

HDAC1 Histone deacetylation Yes, HDAC1 affects memory

HDAC2 Histone deacetylation Yes, loss of HDAC2 improves
memory

HDAC3 Histone deacetylation Yes, loss of HDAC3 improves
memory

HDAC4 Histone deacetylation Yes, HDAC4 affects memory

HDAC5 Histone deacetylation Yes, loss of HDAC5 impairs
memory

HDAC6 Histone deacetylation Yes, loss of HDAC6 improves
memory

HDAC7 Histone deacetylation No conclusive data

HDAC8 Histone deacetylation No conclusive data

HDAC9 Histone deacetylation No conclusive data

HDAC10 Histone deacetylation No conclusive data

HDAC11 Histone deacetylation No conclusive data

(continued)
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Table 1 (continued)

Enzyme Catalytic action
Linked to memory-related
processes

Histone methyltransferases

KMT2A (Mll1) H3K4 mono-, di-, and
tri-methylation

Yes, loss of KMT2A impairs
memory

KMT2B (Mll2) H3K4 mono-, di-, and
tri-methylation

Yes, loss of KMT2A impairs
memory

KMT2C (Mll3) H3K4 mono-, di-, and
tri-methylation

No conclusive data

KMT2D (Mll4) H3K4 mono-, di-, and
tri-methylation

No conclusive data

SETD1A H3K4 mono-, di-, and
tri-methylation

No conclusive data

SETD1B H3K4 mono-, di-, and
tri-methylation

No conclusive data

KMT1A (SUV39H) H3K9 di- and tri-methylation No conclusive data

KMT1B (SUV39H2) H3K9 di- and tri-methylation No conclusive data

KMT1C (G9A/EHMT2) H3K9 mono- and di-methylation Yes, loss of KMT1C impairs
memory

KMT1D (GLP/EHMT1) H3K9 mono- and di-methylation Yes, inhibition of KMT1D
affected memory

KMT1E (SETDB1) H3K9 mono- and di-methylation No conclusive data

KMT8A (PRDM2) H3K4 mono-, di-, and
tri-methylation

No conclusive data

KMT6A (EZH2) H3K27 mono-, di-, and
tri-methylation

Yes, loss of KMT6A impairs
memory

KMT6B (EZH1) H3K27 mono, di-, and
tri-methylation

No conclusive data

KMT3F H3K4 and H3K27 mono-, di-, and
tri-methylation

No conclusive data

KMT3A (SET2) H3K36 mono- di- and
tri-methylation

No conclusive data

KMT3B (NDS1) H3K36 di- and tri-methylation No conclusive data

KMT3C (SMYD2) H3K36 di- and tri-methylation No conclusive data

KMT4 (Dot1) H3K79 mono-, di-, and
tri-methylation

No conclusive data

KMT5A (SET8) H4K20 mono-methylation No conclusive data

KMT5B (SUV4-20H1) H4K20 mono-, di-, and
tri-methylation

No conclusive data

KMT5C (SUV4-20H2) H4K20 mono-, di-, and
tri-methylation

No conclusive data

Histone demethylases

KDM5A (JARID1A) H3K4 demethylation No conclusive data

KDM5B (JARID1B) H3K4 demethylation No conclusive data

KDM5C (JARIC1C) H3K4 demethylation Yes, loss of KDM5C affects
memory

(continued)
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number of well-established memory tests that assay different cognitive domains such
as spatial reference memory or associative fear learning. Loss of CBP/KAT3A does
not affect all types of memory, and specifically spatial reference learning in the
hippocampus-dependent Morris water maze is only medley affected in mutant mice
(Josselyn 2005). In line with these observations, experiments in which CBP/KAT3A
agonists were administered to mice during spatial reference learning did not improve
the consolidation of memories that was measured 48 h after training but improved
the consolidation of remote memories when analyzed up to 16 days after the training
(Chatterjee et al. 2013). The role of CBP/KAT3A in neuronal plasticity has been
linked to its potential to regulate the expression of specific genes via the modulation
of histone acetylation. For example, its effect on memory consolidation was linked
its ability to induce the expression of nuclear receptor 4a1 (Nr4a1) (Vecsey et al.
2007; McNulty et al. 2012). However, detailed genome-wide analysis of transcrip-
tional networks associated with CBP function in the adult brain is sparse, and gene
array approaches thus far linked CBP function to calcium signaling, transcription
and synaptic plasticity (Chen et al. 2010), and deregulated gene expression in
response to environmental enrichment training (Lopez-Atalaya et al. 2011). Evi-
dence for a role of P300/KAT3B in memory function stems for work showing that
genetic reduction of P300/KAT3B activity in the mouse brain impairs memory
consolidation (Viosca et al. 2010; Oliveira et al. 2007, 2011; Lipinski et al. 2019).
Moreover, CBP/KAT3A and P300/KAT3B are genetically linked to Rubinstein-

Table 1 (continued)

Enzyme Catalytic action
Linked to memory-related
processes

KDM5D (JARID1C) H3K4 demethylation No conclusive data

KDM2A (JHDM2A) H3K9 demethylation No conclusive data

KDM4A (JMJD2A) H3K9/H3K36 demethylation No conclusive data

KDM4B (JMJD2B) H3K9/H3K36 demethylation Yes, loss of KDM5C impairs
memory

KDM4C (JMJD2C) H3K9/H3K36 demethylation No conclusive data

KDM4D (JMJD2D) H3K9/H3K36 demethylation No conclusive data

KDM4E (JMJD2E) H3K9/H3K36 demethylation No conclusive data

KDM1 (LDS1) H3K4 and H3K9 demethylation Yes, inhibition of KDM1
impairs memory

KMD6A (UTX) H3K27 demethylation Yes, loss of KDM6A impairs
memory

KDM6B (JMJD3) H3K27 demethylation No conclusive data

KDM7B H3K27 demethylation No conclusive data

KDM2A (JHDM1A) H3K36 mono- and
di-demethylation

No conclusive data

KDM2B (JHDM1B) H3K36/79 mono- and
di-demethylation

No conclusive data

KDM8 (JMJD5) H3K36 mono- and
di-demethylation

No conclusive data
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Taybi syndrome, an autosomal dominantly inherited form of mental retardation that
affects 1 in 125,000 individuals (Petrij et al. 1995; Oike et al. 1999). It is therefore
important to note that administration of an HDAC inhibitor was able to ameliorate
the phenotypes in KAT3A/CBP mutant mice (Alarcon et al. 2004). KAT3A/CBP
has also been linked to Alzheimer’s disease. For example, it was found that phospho-
CBP levels are downregulated in the 3xAD mice and that viral-mediated
overexpression of CBP was able to ameliorate deficits in phospho-CBP levels and
memory function (Caccamo et al. 2010, CBP gene transfer increases BDNF levels
and ameliorates learning and memory deficits in a mouse model of Alzheimer’s
disease). Moreover, deletion of presenilins 1 and 2 in mice affected CBP-mediated
gene expression (Saura et al. 2004). There is also evidence PCAF/KAT2B is
required for memory formation (Maurice et al. 2008; Duclot et al. 2010; Wei et al.
2012; Mitchnick et al. 2016). PCAF has also been linked to AD pathogenesis. One
study found that mice which lack PCAF (KAT2B) are resistant to the detrimental
effects of amyloid beta peptides that are directly injected into the lateral ventricles of
mice (Duclot et al. 2010). This data is somewhat in conflict with the fact that the
same PCAF mutant mice were found to show impaired memory function (Maurice
et al. 2008), and it remains to be seen if reducing PCAF levels would have similar
effects in more established models for amyloid pathology. Nevertheless, such
findings remind us that the role of histone and protein acetylation in AD is likely
very complex and should not be exclusively reduced to the hypothesis that inhibition
of HDACs and activation of HATs would ameliorate cognitive impairment.

Studies from our laboratory used an unbiased RNA-sequencing approach to
compare the expression of the 18 HATs in the hippocampal CA1 region of adult
mice, a region that is intimately linked to memory formation (Stilling et al. 2014)
(Table 1). These data revealed that GCN5/KAT2A and TIP60/KAT5 are the highest
expressed HATs in this brain region, at least at the mRNA level. Consequently,
deletion of GCN5/KAT2A from excitatory forebrain neurons of the adult brain leads
to severely impaired spatial reference and associative memory consolidation, as well
as impaired hippocampal long-term potentiation (LTP), that is considered to be a
molecular correlate of memory formation (Stilling et al. 2014). Loss of GCN5/
KAT2A also had a profound impact on hippocampal gene expression that was
linked to the acetylation of histone 4 at lysine 12 and histone 3 at lysine 14 and
18 as well as the acetylation of the p65, a co-regulation of the transcription factor
NFkappaB (Stilling et al. 2014). Similarly, unpublished data from our laboratory
suggest that deletion of the other highly expressed HAT in the hippocampus,
namely, KAT5/TIP60, leads to severe memory impairment and a massive deregu-
lation of neuronal gene expression when deleted from excitatory forebrain neurons.
In line with these data, pharmacological inhibition of KAT5A/TIP60 impaired
remote memory retrieval, a finding that was linked to the role of KAT5A/TIP60 in
the acetylation of the histone variant H2A.Z (Narkaj et al. 2018). KAT5A7TIP60 has
also been implicated with Alzheimer’s disease. To this end it was shown that
increased TIP60 activity can rescue amyloid beta-induced neurotoxicity (Pirooznia
et al. 2012) and axonal transport deficits in a Drosophila model (Johnson et al.
2013). In line with the data that KMTs do not exclusively act on histones, loss of
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TIP60 activity in drosophila causes reduced microtubule acetylation (Sarthi and
Elefant 2011). Nevertheless, the protective effect of increasing TIP60 activity is –
at least in part – also linked to the expression of genes that regulate apoptotic cell
death (Pirooznia et al. 2012) and axonal transport (Johnson et al. 2013). A potential
role for TIP60 in Alzheimer’s disease has been furthermore suggested even earlier
since it was found that TIP60 regulates gene expression in a complex with the
amyloid precursor protein intracellular domain (AICD) (Cao et al. 2004; Müller et al.
2013). Moreover TIP60 plays a critical role in orchestrating the cellular response to
DNA damage (Kaidi and Jackson 2013) which is emerging as another critical player
in AD pathogenesis (Mao and Reddy 2011; Herrup et al. 2013).

Comparatively little is known about the role of the other HATs in the adult
brain and memory function. HAT1/KAT1 expression increases in mice treated
with antidepressants, but the functional consequences are not understood (Kocki
et al. 2018). These data are however in line with the observation that neuronal
histone modifications are altered in depression (Sun et al. 2013). Myst4/KAT6B has
(Merson et al. 2006) been linked to adult neurogenesis, a process that has been
linked to cognitive function (Ernst and Frisén 2015), while MYST1/KAT8 has been
linked to Alzheimer’s disease by a recent GWAS study (Marioni et al. 2018). RNAi-
mediated knockdown of NCOA1/KAT13A in the hippocampal CA1 region of mice
impairs spatial reference memory and LTP which was accompanied by reduced
synapse density (Bian et al. 2018). The other HATs have not been linked to memory
function yet, although mutations in TAF1/KAT4 are linked to X-linked dystonia-
parkinsonism (Bragg et al. 2019). It is important to mention that HATs act as part
of larger protein complexes and proteins with HAT activity are also part of the
RNA-pol II complex (Lee and Workman 2007). This is of particular interest since
acetyl-CoA is the main donor of acetyl groups essential for histone acetylation. It
was recently shown that acetyl-CoA synthase 2 (ACSS2) is the main enzyme that
provides acetyl-CoA to histone acetylation in the adult brain and that reduced
ACSS2 levels lead to memory impairment (Mews et al. 2017). This is in line with
previous data suggesting that age-associated memory decline is linked to reduced
hippocampal citrate levels (Peleg et al. 2010), a main donor for acetyl-CoA
synthesis.

The activity of HATs is counteracted by the histone deacetylases (HDAC) that are
grouped into the zinc-dependent HDACs and the non-zinc-dependent sirtuins. A
number of excellent reviews discuss the role of sirtuins and HDACs in various
cellular systems (Haigis and Sinclair 2010; Donmez 2013; Fischer et al. 2010;
Fischer 2014b). Here we will specifically focus on the role of the zinc-dependent
HDACs in memory function. In line with the data that have generally shown that loss
of HAT activity in linked to memory impairment, it was found that pharmacological
inhibition of HDACs enhances the consolidation of memories in rodents (Levenson
et al. 2004; Fischer et al. 2007; Stefanko et al. 2009; Federman et al. 2009; Benito
et al. 2015; Agís-Balboa et al. 2017).

The 11 mammalian zinc-dependent HDACs belong to an ancient protein family
and require a Zn2+ ion as cofactor (Gregoretti et al. 2004; de Ruijter et al. 2003).
Under naïve conditions, all HDAC genes are expressed within the adult rodent brain
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(Broide et al. 2007). Mice that lack HDAC1 or overexpress it in all neurons from
early developmental stages show no impairments in contextual fear learning or
spatial memory formation (Guan et al. 2009), suggesting that HDAC1 has no
obvious role at least in the abovementioned types of memory function. HDAC1
was however found to be essential for fear extinction learning, a process that is
important for the treatment of neuropsychiatric diseases associated with aversive
behaviors as they occur in post-traumatic stress disorder (Bahari-Javan et al. 2012).
Here, the induction of immediate early genes was suppressed via HDAC1-mediated
deacetylation of H3K9 and subsequent H3K9 tri-methylation (Bahari-Javan et al.
2012). Although HDAC1 and HDAC2 are close homologues that derived from gene
duplications, their roles in memory function differ. Overexpression of HDAC2 in
neurons impaired contextual fear learning and spatial memory formation in mice,
while deletion of HDAC2 in neurons from early developmental stages improved
memory function and synaptic plasticity (Guan et al. 2009). Notably, enhanced
learning behavior in HDAC2 knockout mice correlated with increased hippocampal
H4K12 acetylation, while H3K14 acetylation was not affected. Although the authors
measured bulk changes, these data are interesting taking into account that genome-
wide analysis of chromatin in the aging hippocampus suggested a key role for
H4K12 acetylation in age-associated memory impairment (Peleg et al. 2010).
Later studies suggest that the memory enhancing effect of HDAC2 reduction is
linked to the activity of the transcription factor SP1 (Yamakawa et al. 2017). On the
structural level, loss of HDAC2 increased the number of synapses (Guan et al. 2009)
which is in line with a role of HDAC2 – but also HDAC1 – in synapse formation
during development (Akhtar et al. 2009). Loss of HDAC2 was also found to improve
fear extinction learning (Morris et al. 2013) which is opposite to the function of
HDAC1 (Bahari-Javan et al. 2012). HDAC2 was found to bind promoter regions of
genes linked to memory formation, but the precise mechanisms by which HDAC2
acts as a memory repressor are not well understood (Guan et al. 2009). One study
showed that HDAC2 is essential for the survival of adult born neurons in the dentate
gyrus (Jawerka et al. 2010). Since adult neurogenesis has been linked to memory
function, it is clear that the role of HDAC2 in the adult brain awaits a more detailed
analysis. An important next step would be to understand the role of HDAC1 and 2 in
a cell type-specific manner. A recent study suggests that HDAC2 is produced in
many neuronal cell types and in oligodendrocytes but not in astro- or microglia (Yao
et al. 2013), a view that is however not undisputed since recent data point to an
important role of HDAC1 and 2 in glia cells (Wendeln et al. 2018). HDAC1 has been
also linked to neuropsychiatric diseases (Jakovcevski et al. 2013a). For example, a
number of studies have demonstrated a role for HDAC1 in schizophrenia. Thus,
HDAC1 was upregulated in postmortem brain tissue of schizophrenia patients
(Dong et al. 2007; Sharma et al. 2008; Bahari-Javan et al. 2017). In a recent study,
our laboratory was able to show that HDAC1 is increased specifically in schizo-
phrenia patients that encountered early life stress (Bahari-Javan et al. 2017). Inter-
estingly, this upregulation of HDAC1 was linked to DNA methylation-dependent
regulation of the HPA axis and was also prominent in corresponding human blood
samples (Bahari-Javan et al. 2017), suggesting the possibility that HDAC1 might
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serve as a biomarker for stratified therapy of patients with an unfavorable course
of the disease (Bahari-Javan et al. 2017). Similar to the data available for HDAC2,
mice that lack HDAC3 in the adult hippocampus show enhanced memory function
(McQuown et al. 2011) which is mechanistically linked to the regulation of the Nr4a
gene (Kwapis et al. 2019). The function of HDAC8 in adult brain has not been
addressed in detail, but a recent study found that an HDAC inhibitor with some
selectivity toward HDAC8 improves memory function in rats (Yang et al. 2013).
In conclusion, it appears that the class I HDACs act as molecular inhibitors of
memory formation and are thus potential therapeutic targets to ameliorate memory
impairment.

As for the class II HDACs (Table 1), HDAC4 is known to shuttle between
the cytoplasm and the nucleus of cultured hippocampal neurons in response to
calcium signaling and CamKII activity (Chawla et al. 2003; Backs et al. 2006). In
a C. elegans model, deletion of HDAC4 gene increases long-term memory for
thermosensation in a CamKII-dependent manner (Wang et al. 2011). Specific
expression of mammalian HDAC4 in the nucleus was able to revert this phenotype
suggesting that nuclear export of HDAC4 is a critical process for memory formation.
In line with this data, cytoplasmatic expression of HDAC4 increased memory
formation in wild-type worms (Wang et al. 2011), suggesting that during learning
HDAC4 regulates counteracting molecular processes in the nucleus and the cyto-
plasm. In line with these data, another study demonstrated that overexpression of
HDAC4 impairs long-term memory in a Drosophila model (Fitzsimons et al. 2013).
In contrast to such findings, a recent study suggests that HDAC4 is essential for
memory function in mammalian systems. Mice that lack HDAC4 in the adult
forebrain exhibit impaired hippocampus-dependent memory formation and
plasticity (Kim et al. 2012b). This data is in line with findings showing that
haploinsufficiency of HDAC4 is linked to mental retardation in humans (Williams
et al. 2010). Another study confirmed that lack of HDAC4 in the adult brain results
in impaired memory function and synaptic plasticity in mice and could identify
synaptic plasticity genes that are regulated by nuclear HDAC4 (Sando et al. 2012).
There is also evidence that HDAC4 controls genes essential for adult neurogenesis
(Saha et al. 2019) that contribute to the development of psychiatric phenotypes in
response to stressful events (Maddox et al. 2018).

Regarding HDAC5, there is a substantial amount of evidence implicating this
HDAC with the mechanisms linked to drug abuse (Smith and Kenny 2018). Loss of
HDAC5 in the nucleus accumbens renders mice hypersensitive to chronic cocaine
(Renthal et al. 2007) and regulates cocaine-conditioned behaviors (Taniguchi et al.
2017), while 2-month-old mice that lack HDAC5 from the adult forebrain show no
changes in hippocampus-dependent memory formation (Kim et al. 2012b). A role of
HDAC5 in memory formation may not only be brain-region but also age-related. To
this end 10-month-old mice that lack HDAC5 show hippocampus-dependent mem-
ory disturbances (Agis-Balboa et al. 2013).

HDAC6 is best known for its acetylation of tubulin or heat shock protein
90 (Govindarajan et al. 2013). Loss of HDAC6 has mild impact on memory function
in wild-type mice but improves cognition in mouse models for Alzheimer’s disease-
related protein aggregation (Govindarajan et al. 2013; Fan et al. 2018; Selenica et al.
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2014) or Fragile X syndrome (Kozikowski et al. 2019). HDAC7 was found to be
downregulated in response to memory training in mice, which was linked to the
expression of genes essential for long-term memory consolidation (Jing et al. 2017).
Little is known on the role of HDAc9 in the adult brain, but a recent study points to a
role of an HDAC9-dependent circRNA in dementia (Lu et al. 2019). Moreover,
HDAC9 has been linked to dendritic plasticity (Sugo et al. 2010) and is associated
with stroke and schizophrenia (Lang et al. 2011; Markus et al. 2013). Almost
nothing is known about the role of HDAC10 and 11 in the adult brain. In conclusion,
several HATs and HDACs have emerged as key players in memory function. Future
research will be essential to understand how these epigenetic enzymes are regulated
and which gene expression pathways they control. Moreover, it is important to
mention that this enzymatic machinery not only regulates the acetylation state of
specific histone proteins but also affects non-histone proteins such as transcription
factors but also proteins generally linked, for example, to metabolic processes
(Choudhary et al. 2009).

1.3 Histone Methylation: H3K4

In addition to acetylation, another well-studied histone modification is methylation
(Vaquero et al. 2003). Similar to histone acetylation, it is regulated by the
counteracting activity of histone methyltransferases (HMTs) and histone
demethylases (HMDs). However, in contrast to acetylation, the lysine residues of
histones can be either mono-, di-, or tri-methylated which is catalyzed by specific
enzymes. The functional consequences of histone methylation are thus also more
complex and have been either linked to active euchromatin or the formation of
facultative and constitutive heterochromatin that is associated with gene silencing.
As such, there are more HMTs and HDMs than there are HATs and HDACs, and
their general role has been discussed in a number of review articles (Shi 2007; Shi
and Whetstine 2007; Badeaux and Shi 2013). In the context of memory formation,
most data has been generated on the role of histone 3 methylation (H3K4me3) that is
enriched around transcription start site (TSS) regions of actively transcribed and/or
poised genes (Guenther et al. 2006), whereas histone 3 lysine 4 monomethylation
(H3K4me1) is enriched at enhancers (Heintzman et al. 2009). H3K4 methylation is
mediated by SET proteins. Set1 is the only H3K4 methylase in yeast (Roguev et al.
2001), whereas in Drosophila, three different SET proteins – Set1, trithorax (trx),
and trithorax-related (trr) – are expressed (Mohan et al. 2011). Mammals, in turn,
possess six SET-related H3K4 methyltransferases – Kmt2a (Mll1), Kmt2b (Mll2),
Kmt2c (Mll3), Kmt2d (Mll4), Setd1a, and Setd1b – that have been linked to mono-,
di-, and tri-methylation. These proteins are subdivided into three groups, based on
their homology to each other and to the corresponding Drosophila homologues.
Kmt2a/Kmt2b are related to trx, Kmt2c/Kmt2d to trr, and Setd1a/Setd1b to Set1
(Shilatifard 2012). The existence of several homologous histone-modifying enzymes
mediating the same modifications raises the question of redundancy vs. specificity of
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their actions. This is especially true for brain regions such as the hippocampus,
which is intimately linked to memory function and cognitive diseases, where all six
H3K4-KMTs are strongly expressed (Kerimoglu et al. 2017}. It is also important to
note that mutations in any of the six H3K4-KMTs are linked to various rare diseases
that include cognitive phenotypes and intellectual disability (Kleefstra et al. 2014).

In line with this, a number of studies implicated the regulation of H3K4me3 with
memory function. For example, it was found that H3K4me3 correlates with the
expression of glutamate receptors in the human brain (Stadler et al. 2005). Moreover,
bulk levels of hippocampal H3K4me3 were found to increase in response to fear
learning (Gupta et al. 2010), and mice that constitutively lack one allele of the
H3K4-KMT KMT2A display impaired memory formation (Gupta et al. 2010). In
line with this, conditional deletion of KMT2A from neurons of the adult brain
impaired synaptic plasticity and working memory (Jakovcevski et al. 2015). Another
study also demonstrated a role for the H3K4-specific HMTMll2/KMT2B in memory
function. Mice that lack KMT2B in the dorsal dentate gyrus of hippocampal region
show memory impairment that is linked to deregulation of learning-relevant genes
(Kerimoglu et al. 2013). Loss of KMT2B not only affected H3K4me3 at the
promoter regions of learning-regulated genes but also reduced H3K9 acetylation,
while H4K16 acetylation and H3K4me1 were unaffected at the same gene promoters
(Kerimoglu et al. 2013). Such data further confirm the view that histone methylation
and histone acetylation are tightly linked and also demonstrate the need to better
understand the protein complexes that regulate chromatin plasticity in the adult
brain. Especially the latter is in utmost importance since recent data compared the
role of two closely related H3K4me3 KMTs – KMT2A and KMT2B – in excitatory
neurons of the adult brain (Kerimoglu et al. 2017). These data show that loss of
either enzyme leads to the impairment of hippocampus-dependent memories, but it
was somewhat surprising to see that the gene expression pathways controlled by
KMT2A and KMT2B in the hippocampus were entirely different. In fact, loss of
neuronal KTM2A mainly affected gene expression pathways linked to neuronal
identity and synaptic plasticity, while loss of KMT2B was linked to more general
metabolic functions (Kerimoglu et al. 2013, 2017). Preliminary data from our lab
suggest that similar observations are made for other KMTs that regulate H3K4me3.
Mechanistically this phenomenon is presently not understood, but multiple expla-
nations can be considered. Different KMTs could simply occupy different genomic
regions, a hypothesis that is at present difficult to be tested since antibodies that
allow the reliable analysis of KMTs in ChIP-seq experiments are necessary for this
approach. Some evidence for this hypothesis stems however from the finding that in
the neurons of KMT2A mutant mice, the deregulated genes contain different tran-
scription factor binding sites when compared to KMT2B (Kerimoglu et al. 2017).
KMTs may however also occupy similar genomic regions but might be regulated via
different posttranslational modifications that are associated with distinct protein
complexes. This could have different function outcomes. For example, KMT2A
has been also linked to the regulation of higher-order chromatin structure and long-
distance interactions (Bharadwaj et al. 2014). Mechanistic data on the other H3K4
HMTs in memory formation are comparatively rare. Loss of KMT2D in mice leads
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to phenotypes that partially recapitulate the Kabuki syndrome including
hippocampus-dependent memory impairment, which can be rescued by the inhibi-
tion of HDAC inhibitors (Bjornsson et al. 2014) or a ketogenic diet (Benjamin et al.
2017). These data are highly interesting, since they suggest that defects in neural
H3K4me3 can be attenuated by HDAC inhibitors that increase histone acetylation.
While this is in line with other finding suggesting that also in neurons H3K4me3 is
functionally coupled to histone acetylation (Kerimoglu et al. 2013, 2017), data from
T-cells had suggested that genes which do not carry H3K4me3 cannot be regulated
by HDAC inhibitors (Wang et al. 2009). Virtually nothing is known on the role of
SETD1A in the adult brain, but it has been genetically linked to autism and
schizophrenia (Singh et al. 2016; Takata et al. 2016). Also on the role of SET1B
in the adult brain, there is so far little data available. Mutations in the corresponding
genes are also linked to intellectual disability and autism (Labonne et al. 2016;
Hiraide et al. 2018).

Four histone demethylases (KDMs) counteract the activity of the H3K4-KMTs.
These are KDM5A (JARID1A), KDM5B (JARID1B), KDM5C (JARIC1C), and
KDM5D (JARID1C). Little is known on the role of KDM5A and KDM5D. There is
in vitro evidence that reducing the levels of KDM5B might increase neurogenesis in
the subventricular zone of the adult brain (Zhou et al. 2016). Mutations in KDM5C
have been linked to mental retardation (Jensen et al. 2005; Rujirabanjerd et al. 2012)
and to short-term memory deficits in female humans (Simensen et al. 2012). A recent
study analyzed mutant mice that lack one KDM5C allele either constitutively from
early developmental stages and in addition tested mice that lack KDM5C in excit-
atory neurons of the adult brain (Scandaglia et al. 2017). While loss of KMD5C from
developmental stages leads to memory impairment, this effect is less pronounced
when KDM5C is deleted at adult stages. Similar findings are observed when
H3K4me3-dependent gene expression was analyzed. The finding that deletion of
KDM5C from the adult brain has no severe phenotype is interesting taking into
account that reduced H3K4me3 has been linked to adult onset memory impairment
and cognitive disease such as Alzheimer’s disease. These data suggest that inhibition
of KMD5 proteins may ameliorate corresponding disease phenotypes. In line with
this, a study available via bioRxiv shows that the phenotypes including memory
impairment which are linked to the loss of KMT2A are ameliorated when these
mutant mice are crossed with mice that lack KDM5C (Vallianatos et al. 2019). In
conclusion, the current data point to a key role of H3K4 methylation in cognitive
function and suggest that loss of H3K4 methylation in neurons is linked to memory
impairment. In turn, drugs that increase H3K4 methylation could be suitable avenues
for the treatment of cognitive diseases. Whether this could be achieved by the
inhibition of HDAC or KDMs or both needs to be investigated. Also, clearly more
research on the role of the H3K4 regulating enzymes in brain circuitries linked to
memory function is needed.
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1.4 Histone Methylation: H3K9

In addition to H3K4 methylation, there is a substantial amount of data on H3K9
methylation in the adult brain that is a mark for heterochromatin-mediating gene
silencing. Similar to the situation described for H3K4 methylation, a number
of different enzymes that are all expressed in the adult brain mediate H3K9
methylation. These are KMT1A (SUV39H), KMT1B (SUV39H2), KMT1C
(G9A/EHMT2), KMT1D (GLP/EHMT1), KMT1E (SETDB1), and KMT8A
(PRDM2).

While little is known on the role of H3K9 tri-methylase KMT1A in the adult
brain, KMT1B was found to be upregulated in the hippocampus of rats in response
to restraint stress, a procedure that affects memory function (Hunter et al. 2012).
KMT1C and KMT1D have been linked to H3K9 mono- and di-methylation and act
mainly as a complex. Pharmacological compounds affect in most cases both pro-
teins. KMT1C and KMT1D were linked to intellectual disability and autism spec-
trum disorder (Koemans et al. 2018). Mice that lack KMT1C in the adult forebrain
develop mental retardation-like phenotypes (Schaefer et al. 2009). However, loss of
KMT1C in the nucleus accumbens was shown to increase cocaine-induced neuronal
plasticity (Maze et al. 2010). In Drosophila, loss of KMT1C impaired memory
formation (Kramer et al. 2011). Another study found that pharmacological inhibition
of KMT1C/KMT1D in the entorhinal cortex facilitated memory function, while
administration of the same inhibitor into the hippocampus resulted in impaired
memory function in mice (Gupta-Agarwal et al. 2012). Another KMT1C/KMT1D
inhibitor was found to enhance hippocampal LTP (Sharma et al. 2018), while yet
another compound reduced anxiety when administered to adult animals, whereas
administration during development increased anxiety when the animals were adult
(Wang et al. 2018). Another recent study reported that pharmacological inhibition of
KMT1C/KMT1D rescues memory impairment and synaptic function in a mouse
model for amyloid deposition (Zheng et al. 2019). In sum, these data do not leave a
clear picture on the role of KMT1C/KMT1D in the adult brain, but they clearly
demonstrate an important role for these enzymes. One likely explanation to this
could be the different roles of KMT1C/KMT1D in the developing and adult brain.
Thus, timing of KMT1C/KMT1D manipulation appears to be essential for the
interpretation of the resulting phenotypes.

Increased expression of KMT1E in the forebrain of mice reduced depressive-like
behavior via a mechanism that involved regulation of NMDA receptor subunit 2B
(Jiang et al. 2010). KMT1E is linked to H3K9-tri-methylation and was also found to
be an essential regulator chromosomal conformation in mouse neurons of the adult
brain (Bharadwaj et al. 2014; Jiang et al. 2017). KMT8A has been linked to mono-
methylation of H3K9. It has been implicated with the detrimental effect of alcohol
abuse (Barbier et al. 2017).

H3K9 methylation is reversed by the action of H3K9 KDMs that are however
also known to affect other methylation sites such as H3K36. These are KDM2A
(JHDM2A), KDM4A (JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C),
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KDM4D (JMJD2D), and KDM4E (JMJD2E). KDM4A was found in a complex
with HDAC1 and protein phosphatase 1 (PP1) which was required for memory
formation (Koshibu et al. 2009). When KMT4B was deleted from adult forebrain
neurons, the authors observed altered morphology of dendritic spines. Moreover
mutant mice exhibited impaired working memory (Fujiwara et al. 2016). Another
KMD that acts on H3K4 and K3K9 is KMD1 (LSD1). It was shown that pharma-
cological inhibition of LSD1 impairs memory function in mice (Neelamegam et al.
2012). In line with this data, recent data show that deletion of KDM1 from adult
forebrain neurons in mice leads to neurodegeneration and memory impairment and
induces gene expression changes linked to Alzheimer’s disease and frontotemporal
dementia (Christopher et al. 2017).

In conclusion, the current data suggest that H3K4 methylation, as well as the
activity of the corresponding HMTs and HDMs play a role in memory formation, are
heavily linked to intellectual disability disorders and that targeting this machinery
could a suitable approach for the treatment of cognitive diseases.

1.5 Histone Methylation: H3K27

Tri-methylation of H3K27 has been linked to facultative heterochromatin and gene
silencing, while its mono- and di-methylation has been linked to active gene
expression. H3K27me3 counteracts the role of H3K4me3, and both marks are
often present at the same gene promoter which is then called bivalent promoter
since they carry an active and repressive mark. Such genes are often induced by
specific stimuli; hence they are repressed but can be induced rapidly by decreasing,
for example, H3K27me3. Thus, H3K27me3 is associated with facultative hetero-
chromatin. Interestingly, large portions of non-facultative heterochromatin are also
marked by histone H3K9me3 and are thereby tethered to the nuclear lamina and
associate with it in what is called lamina-associated domains (LADs) (van Steensel
and Belmont 2017). Interestingly a recent publication elegantly showed that
mechanical forces derived from tensile loading in human epithelial progenitor cells
resulted in a switch from the constitutive heterochromatin marker H3K9me3 to the
facultative H3K27me3 (Le et al. 2016). Deregulation of H3K27 methylation has
been linked to neurodegenerative diseases. For example, changes in H3K27me3 a
specific form of frontotemporal dementia is caused by mutations in the C9ORF72
genes that result in GGGGCC expanded repeats. It was found that mutant
H3K27me3 level is increased in the mutant C9ORF72 gene and contributes to its
downregulation (Belzil et al. 2013). Mutant C9ORF72 variants are also linked to
translation leading to the generation of dipeptide repeat proteins (DRPs). A recent
study showed that one of these DRPs, namely, proline-arginine (PR)-DRP, causes
heterochromatin abnormalities linked to altered H3K27 methylation (Zheng et al.
2019). H3K27 methylation is mediated by the polycomb repression complex
2 (PRC2) with the essential subunits KMT6A (EZH2) and KMT6B (EZH1).
KMT3F methylates H3K4 and H3K27. Neuronal deletion of KMT6A in mice
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from early developmental stages resulted in hippocampal memory impairment
and reduced adult neurogenesis (Zhang et al. 2014). Another study found that in
response to memory training, KMT6A regulated H3K27me3-dependent expression
of the PTEN gene (Jarome et al. 2018). Ataxia-telangiectasia (A-T), also named
Louis-Bar syndrome, is a rare progressive neurodegenerative disease that leads to
cerebellar ataxia and caused by mutations of the ATM kinase. ATM was found to act
on KMT6A, and the corresponding changes in H3K27 methylation have been linked
to the disease progression (Li et al. 2013). Regarding KMT6B, it was shown that its
expression is regulated by microRNA-132 (Johnstone et al. 2018), a microRNA
intimately linked to memory formation (Fischer 2014a). The same study reports the
microRNA-132-dependent downregulation of KMT6B in mice that were chronically
exposed to antipsychotics (Johnstone et al. 2018). Consequently, knockdown of
KMT6B in the prefrontal cortex affected motivational behavior. Another H3K27
KMT is KMT3F (NSD3) that can however also methylate H3K4. Nothing is known
on the role of this enzyme in the adult brain. Among the H3K27 KDMs, KMD6A
(UTX) and KDM6B (JMJD3) are rather specific to the demethylation of H3K27me2
and HeK27me3. KMD6A is encoded on the X chromosome, and there is indeed
evidence for a sex-specific expression of KMD6A in neurons; more specifically
KMD6A levels are higher in females (Xu et al. 2008). KMD6A has also been linked
to the Kabuki syndrome, and deleting KDM6A from neurons from early develop-
mental stages in mice results in impaired hippocampus-dependent memory forma-
tion and reduced LTP (Tang et al. 2017). Gene expression analysis revealed that
KDM6A control genes linked to serotonergic signaling (Tang et al. 2017). Knock-
down of KDM6B in hippocampal neurons impaired the stimulus-dependent expres-
sion of candidate genes (Wijayatunge et al. 2014). There is also evidence that
KMD6B function is essential to keep neurogenesis genes in a poised state and
thereby regulates neurogenesis in the developing and neurogenic niches of the
adult brain (Park et al. 2014). Moreover, pharmacological inhibition of KMD6A in
mice was shown to impair reinstatement of cocaine reward memory (Zhang et al.
2018). Nothing is known on the role of KDM7B on memory function in the adult
brain.

In sum, although comparatively less studied than H3K4, the current data link
H3K27 methylation and the corresponding enzymatic machinery to cognitive func-
tion and brain diseases.

1.6 Other Histone Methylation Sites

Little is known about the dynamic regulation of H3K36 methylation, a mark linked
to complex regulation of gene expression depending on its mono-, di-, or
tri-methylation, in the adult brain. This histone lysine residue can be methylated
by KMT3A (SET2) that mediates H3K36me3, while KMT3B (NDS1) and KMT3C
(SMYD2) mainly regulate H3K36 mono- and di-methylation. H3K36 demethylation
is catalyzed by KDM2A (JHDM1A), KDM2B (JHDM1B), and KDM8 (JMJD5)
that act on H3K36 mono- and di-methylation. Besides the observation that KDM2B
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has been genetically linked to intellectual disability and neuronal progenitor dys-
function leading to exencephaly (Fukuda et al. 2011; Labonne et al. 2016), nothing is
known on the role of these enzymes in the adult brain. Demethylation of H3K36me3
is mediated by KDM4A–E that have been discussed above. Another histone
modification is H3K79 methylation which has been linked to active gene expression
but is also implicated with more complex regulations depending on the cellular
context. Dynamic changes in H3K79 methylation are involved with neuro-
developmental processes (Büttner et al. 2010) and are reduced in FTLD/ALS
patients that carry mutations in the C9ORF72 gene (Belzil et al. 2013). H3K79
mono-, di-, and tri-methylation is mediated by KMT4 (Dot1) that play a role in
cortical development (Roidl et al. 2016). Demethylation of H3K79 has been linked
to the activity of KDM2B that also acts on H3K36 and has been discussed above.
H4K20 is so far the main methylation site on histone 4. H4K20me1 has been linked
to active transcription, while H4K20me2 occurs during specific cellular processes
such as cell cycle control. In contrast H4K20me3 is linked to repression of gene
expression. Reduced H4K20me3 was observed in FTLD/ALS patients with the
C9ORF72 mutation (Belzil et al. 2013) and in a mouse model for accelerated
aging (Wang et al. 2010). H4K20 methylation is mediated by KMT5A (SET8)
that mediated mono-methylation, while KMT5B (SUV4-20 h1) and KMT5C
(SUV4-20H2) control di- and tri-methylation. While nothing is known on the
role of KMT5A and C in the brain, KMT5B is associated with autism and
developmental-disability biases (Stessman et al. 2017). A very interesting finding
was that LSD1n is a H4K20 demethylase. LSD1n is a neuronal-specific splice
variant of KMT1 (LSD1). Interestingly, while LSD1 affect H3K4 and H3K9,
LSD1n de-methylates H4K20. Genetic ablation of LSD1n caused memory impair-
ment and deregulation of neuronal gene expression (Wang et al. 2015).

1.7 Other Histone Modifications

Histones can also be reversibly ubiquitylated, which is probably the most severe
form of a histone modification considering that a 76-amino-acid polypeptide is
added to a histone tail. Histone ubiquitylation occurs mainly at lysine 119 of H2A
(H2AK119ub) and lysine 120 of histone H2B (H2BK120ub). Both modifications
occur as mono-ubiquitylation are thus not priming histones for degradation but serve
signaling function that are diverse and have been linked to activation and repression
of gene expression depending on the cellular context (Allis et al. 2007b). Early
studies already observed increased H2A and H2B ubiquitylation in the aging mouse
brain (Morimoto et al. 1993) which is in line with more recent data showing that
elevated H2A ubiquitylation is a general marker for aging in a Drosophila model
which is conserved in rodents, primates, and humans and that reduction of
H2AK119ub in Drosophila increases life span (Yang et al. 2019). H2AK119ub
not only increases in aging but also in neurodegenerative disease such as Huntington
chorea (McFarland et al. 2013). Ubiquitination of histones is, for example, mediated
by the E3 ubiquitin ligases RNF20 (BRE1A) and RNF40 (BRE1B) which have been
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linked to astrocyte differentiation (Liang et al. 2018). Histones can also be phos-
phorylated, and a prime example is the phosphorylation of the noncanonical histone
gamma-H2AX that plays an important role in the DNA-damage response (Kinner
et al. 2008). Interestingly, activity-induced DNA damage has been implicated
with synaptic plasticity, memory consolidation, and neurodegenerative disease
(Suberbielle et al. 2013; Madabhushi et al. 2015). Many other histone modifications
have been reported (Vaquero et al. 2003), but their role in the adult brain remains to
be studied. It has also been mentioned that in addition to the comparatively well-
studied acetylation and methylation modifications of histone 3 and 4, proteome
analysis suggests that more sites may exist, which still await to be studied in the
brain (Brunner et al. 2012).

In addition to histone modifications, it is interesting to mention that under certain
conditions, the canonical histones can be replaced by histone variants. A prime
example is the replacement of H2A with H2A.Z that is considered represent a
mechanisms for a transcriptional memory (Buschbeck and Hake 2017). Other
variants are, for example, H3.3 or macroH2A. While in the brain H3 is constantly
replaced by H3.3 along aging, so that older individuals contain almost exclusively to
the replication-independent H3.3, the amount of H2A.Z was initially found to be
rather constant (Piña and Suau 1987). Interestingly, it was shown that memory
training in mice induced the eviction of H2A.Z at selected genes in the hippocampus
and cortex of mice. Moreover H2A.Z levels were found to increase in the hippo-
campus of aging mice, and viral-mediated knockdown of H2A.Z improved memory
function in mice (Zovkic et al. 2013; Stefanelli et al. 2018). Interestingly KAT5/
TIP60 has been implicated with the deposition of H2A.Z, and more recent data
suggest that inhibition of this process can improve memory consolidation in mice
(Narkaj et al. 2018). While H3.3 has been linked to the general aging process (Bano
et al. 2017), little is known on it and other histone variants in the adult brain, and also
the role of reader proteins is only beginning to emerge.

2 Conclusion

Histone modifications are dynamically regulated during memory formation and in
cognitive diseases. Histone acetylation appears to be a prerequisite for neuronal
plasticity, and loss of the corresponding KMTs leads to memory impairments. In
turn, the inhibition of class I HDAC has emerged as a suitable and promising
approach to improve memory function in cognitive diseases. Histone methylation
is also critical for proper neuronal plasticity, but the picture is more complex.
Mutations in many of the enzymes machinery that control the various histone
methylation events are linked to intellectual disability disorders. Best studied is the
role of H3K4 and H3K9. Future research is needed to explore the full spectrum of
histone modifications in the adult brain and understand how these modifications
build a combinatorial code that controls transcriptome plasticity in neuronal
circuitries.
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