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Abstract Sleep is a phenomenon in animal behavior as enigmatic as it is ubiquitous,
and one deeply tied to endocrine function. Though there are still many unanswered
questions about the neurochemical basis of sleep and its functions, extensive inter-
actions have been identified between sleep and the endocrine system, in both the
endocrine system’s effect on sleep and sleep’s effect on the endocrine system.
Unfortunately, until recent years, much research on sleep behavior largely
disregarded its connections with the endocrine system. Use of both clinical studies
and rodent models to investigate interactions between neuroendocrine function,
including biological sex, and sleep therefore presents a promising area of further
exploration. Further investigation of the neurobiological and neuroendocrine basis
of sleep could have wide impact on a number of clinical and basic science fields. In
this review, we summarize the state of basic sleep biology and its connections to the
field of neuroendocrine biology, as well as suggest key future directions for the
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neuroendocrine regulation of sleep that may significantly impact new therapies for
sleep disorders in women and men.

Keywords Endocrine · Sex differences · Sleep

Despite being among life’s most common behavioral states, sleep remains a phe-
nomenon that resists easy explanation. Sleep is generally defined as being charac-
terized by an increased threshold for response to sensory input, a decrease in motor
function, and a lack of consciousness. Though humans spend on average a third of
their lifespan in the sleep state (Aminoff et al. 2011), there are still many unanswered
questions about the neurochemical basis of sleep and its functions. Extensive
interactions have been identified between sleep and the endocrine system, in both
the endocrine system’s effect on sleep and sleep’s effect on the endocrine system.
Numerous endocrine factors can affect sleep quantity and quality, while studies have
shown a profound effect of sleep behavior on overall endocrine function and stability
(Morgan and Tsai 2015; Spiegel et al. 1999). Further investigation of the neurobi-
ological and neuroendocrine basis of sleep could have wide impact on a number of
clinical and basic science fields, from treatment of insomnia to exploration of
sex-distinct sleep differences to investigation of the pathogenesis of neurodegener-
ative diseases. In this review, we summarize the state of basic sleep biology and its
connections to the field of neuroendocrine biology, as well as suggest key future
directions for the neuroendocrine regulation of sleep that may significantly impact
new therapies for sleep disorders in women and men.

1 Sleep Behavior Consists of Multiple Distinguishable
States

Sleep consists of several distinct states, which can be distinguished by their patterns
of brain activity (Saper et al. 2010). The most important distinction between sleep
states is between Rapid Eye Movement (REM) and non-Rapid Eye Movement
(non-REM) sleep. Non-REM sleep predominates at the outset of a particular sleep
bout, and is distinguished by an ordering and synchronizing of brain activity (Mong
and Cusmano 2016). This synchronization leads to a decrease in the frequency and
increase in the amplitude of brain waves, causing waves in the delta (0–4 Hz) range
to predominate; those waves are considered synonymous with slow wave activity
(SWA) (Lanquart et al. 2018). During non-REM sleep, muscle activity is decreased
relative to the wake state, but paralysis of skeletal muscles is not present (Mong and
Cusmano 2016). In humans, further refinement of non-REM sleep can be achieved
by separating it into distinct stages, numbered 1–3 in order of increasing depth of
sleep. Stage 3 (redefined in 2007 from the prior stages 3 and 4) (Moser et al. 2009) is
referred to as slow-wave sleep and represents the deepest sleep states.
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In contrast, REM sleep, also known as paradoxical sleep, consists of highly
disordered brain activity that somewhat mimics brain activity in the wake state. In
this state, waves in the theta (4–8 Hz) range dominate (Hutchison and Rathore 2015),
and skeletal muscles are paralyzed. REM sleep does not occur at the onset of a sleep
bout in healthy animals, instead appearing later in the sleep bout after a period of
slow-wave sleep has been completed (Saper et al. 2010). The differing functions of
REM and non-REM sleep are poorly understood, and to date many sleep studies
have focused on the aggregate time spent in sleep versus wake as their main metric.
However, methods do exist for isolating REM or non-REM sleep. For example, the
flowerpot method, in which an experimental animal is allowed to sleep on a small
shelf, such as an upside down flowerpot, above a pool of water, selectively deprives
the experimental subject of REM sleep only by prohibiting sleep during periods of
muscle paralysis (Aalto and Kiianmaa 1984). These methods may become more
prominent as further differences between the two states are elucidated.

2 The Circadian and Homeostatic Systems Drive Sleep
Pressure

The biological circuitry of sleep is an area of intense inquiry, with many questions
remaining on both the neuroanatomy and neurochemistry of the relevant pathways.
This question is complicated by the existence of two distinct systems governing
aspects of sleep regulation. These systems’ net output is generally described as sleep
pressure. Sleep pressure has been defined as the intrinsic need for sleep of a given
animal at a given time (Eban-Rothschild et al. 2017). Beyond the familiar intrinsic
feeling of sleepiness as a manifestation of sleep pressure, quantitative markers
derived from EEG outputs exist that can approximate sleep pressure in a reproduc-
ible fashion (Mong and Cusmano 2016). The two sleep-pressure systems, known as
the circadian wake system and the homeostatic sleep-pressure system, operate in
parallel and in concert to generate an overall sleep pressure that is responsive to both
the animal’s intrinsic homeostatic needs as well as external factors such as the light–
dark cycle.

The better-understood of the two systems which combine to govern sleep pres-
sure is the circadian wake system. The circadian system orients sleep to the light and
dark cycle, as well as consolidates sleep and wake into larger blocks. Circadian
timing has two key properties. First, it has an endogenous rhythm with a period of
approximately (though not exactly) 24 h (Abbott et al. 2015). Second, that rhythm
can be shifted in response to external cues (Abbott et al. 2015). Light–dark cycles are
both the most prevalent and potent of these cues, but other factors such as exercise,
feeding, temperature, and certain pharmacological agents have been shown to
entrain the system as well, in some cases maladaptively (Abbott et al. 2015). The
key neurobiological regulator of the circadian sleep system is the suprachiasmatic
nucleus (SCN) of the hypothalamus. Animals with lesions of the SCN have been
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shown to have as much total sleep time as controls, but sleep in unconsolidated
random bouts unrelated to the light–dark cycle (Mouret et al. 1978). Transplantation
of a donor SCN has been shown to rescue a normal phenotype in that regard (Sawaki
et al. 1984). Additionally, studies of humans isolated from the natural light–dark
cycle and left to sleep ad libitum show that those humans settle into a diurnal sleep
pattern that approximates, but does not exactly mimic, the 24-h day, showing the
intrinsic rhythmicity of the SCN. The SCN receives its principal entraining inputs
from environmental light cues through specialized photosensitive ganglion cells in
the retina. Importantly, the photoreceptors and cortical areas responsible for con-
scious vision are not involved, meaning that the circadian rhythm is reasonably well
entrained in most blind animals (Squarcini et al. 2013). Importantly for the endocrine
system, the circadian system serves to create “biological day” and “biological night”.
Hormones and other biological properties have been shown to fluctuate on a
24-h cycle according to stereotypical patterns; lesions of the circadian system have
been shown to disrupt the daily fluctuation of hormone levels such as growth
hormone (Steyn and Ngo 2017), cortisol (Challet 2015), and leptin (Challet 2015),
among others (see Sect. 6).

The second sleep system, quite distinct from the circadian system, is the homeo-
static pressure system. As the name suggests, the homeostatic sleep system governs
the amount of sleep needed after a given period of wake to maintain homeostasis
(Allada et al. 2017). The total amount of sleep needed for an animal in a given period
of time tends to be quite consistent, and independent of both the circadian system
and the light–dark cycle (Donlea 2017). This phenomenon is further exemplified by
the need for recovery sleep, which is nearly always necessary after periods of sleep
deprivation (Donlea 2017). Similarly, to other homeostatic systems such as temper-
ature, extreme loss of homeostasis (such as through prolonged sleep deprivation) is
fatal (Greene and Siegel 2004). Homeostatic sleep pressure increases roughly
linearly with increasing wake time, reaching a maximum at the onset of the sleep
state, and then decreases roughly linearly with time spent asleep (Donlea 2017).
There is debate over whether homeostatic sleep pressure has a measurable biological
correlate, though studies have shown correlations with both molecular markers such
as adenosine (Reichert et al. 2016; Zeitzer et al. 2006) and behavioral markers such
as delta power during recovery non-REM sleep (Alam et al. 2014).

The two pathways, circadian and homeostatic, work in concert to generate an
overall sleep pressure (Fig. 1). Homeostatic sleep pressure increases monotonically
throughout the day; however, during the daylight hours in humans, circadian wake
drive is also high and increasing. By the onset of the dark phase of the cycle, both
homeostatic sleep drive and circadian wake drive are high, canceling the effect of
either. However, after the onset of the dark phase, circadian wake drive begins to
decrease, while homeostatic sleep drive remains high, stimulating the onset of the
sleep state. By the end of the sleep state in the early morning hours, circadian wake
drive is still low, but homeostatic sleep drive is low enough to compensate, causing
the switch to flip again and the onset of the wake state to commence. This dual cycle
has important impacts on situations where sleep occurs outside of the normal
rhythm; for example, in shift workers, falling asleep in the early morning is not a
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problem as circadian wake drive is low and sleep pressure is high (Wagner 1999).
However, remaining asleep through the day can be difficult as circadian wake drive
increases while sleep pressure falls.

3 Diverse Chemical Mechanisms and Circuitry Govern
Sleep-Pressure Systems

The circadian system is highly centralized, with the SCN being the key center of its
action. The SCN exerts circadian control in myriad ways, both neurologically and
hormonally. Neurons in the SCN are home to a set of clock transcription factors that
stimulate their own repressors (Aryal et al. 2017), forming a daily oscillating cycle of
gene expression. By a mechanism not fully understood, this mechanism governs the
differing release of neurotransmitters depending on the time of the cycle (Golombek
and Rosenstein 2010). Thus, the SCN releases different waves of neurotransmitters,
such as glutamate, GABA, and vasopressin (Shinohara et al. 1998). The main
neurological projections of the SCN radiate to the medial hypothalamus, but for
hormonal control, the epithalamus is a key site of SCN effects. The pineal gland of
the epithalamus releases melatonin, perhaps the best-known hormonal circadian
modulator. Release of melatonin is dependent on environmental inputs, most notably
the light cycle; melatonin increases several hours after the onset of the dark phase of
the light cycle, and remains high until the restoration of the light phase the next day
(Bedrosian et al. 2013). While melatonin is not required for the initiation or
maintenance of circadian rhythms overall (Gandhi et al. 2015), it serves as a key
link to entrain biological circadian processes to light cues (Sack et al. 2000), and may
stimulate sleep in humans and some animal species, possibly through adenosine
signaling (Gandhi et al. 2015; Zhdanova et al. 2001). In humans, melatonin’s effects
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Fig. 1 Schematic of the circadian and homeostatic systems. The homeostatic sleep process (blue)
creates sleep pressure roughly linearly in response to time awake, and decreases with time asleep.
The circadian wake process (red) is most active during the daylight hours and provides a method of
maintaining wake. After sunset, melatonin stimulates a breakdown in the circadian process, which
allows the pro-sleep homeostatic process to become dominant, stimulating the sleep state. After a
period of sleep, homeostatic pressure has lowered enough that even a low circadian wake drive
becomes dominant, stimulating the wake state
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are the principal mediator for normal sleep onset several hours into the dark phase of
the diurnal cycle. Melatonin receptors have been shown to exist in myriad tissues
(Morgan et al. 1994), potentially providing a system-wide mechanism for circadian
synchronicity that drives an acute need for sleep at a stereotypical time each day.

Unlike the circadian system, which is largely dependent on environmental inputs
via the specialized retinal ganglion cells, the homeostatic system appears to have
multiple inputs. An entire class of molecules known as somnogens have been
identified that appear to increase homeostatic sleep pressure. Among the most
important of these molecules is the nucleoside adenosine (Lazarus et al. 2017;
Huang et al. 2014), produced in the brain both purposefully as a neurotransmitter
and as a waste product of ATP metabolism. Indeed, many laypersons are familiar
with the hypnogenic effects of adenosine through the widespread use of the
non-specific adenosine receptor antagonist caffeine (Yanik et al. 1987). Adenosine
has been shown to accumulate in the brain, particularly in the basal forebrain
(Blanco-Centurion et al. 2006), with increasing wake time and decrease in the
sleep state (Blanco-Centurion et al. 2006). Additionally, low (nanomolar) concen-
trations of adenosine have been shown to enhance wake neurotransmission due to
activation of the inhibitory A1 receptor in the preoptic hypothalamus, while high
(micromolar) adenosine concentrations have been shown to inhibit wake neurotrans-
mission through activation of stimulatory A2A receptors in the same nuclei
(Methippara et al. 2005; Kumar et al. 2013). Several other molecules, such as
prostaglandin D2 (Zhang et al. 2017), IL-1 (Obal et al. 1990), and TNF-alpha
(Kapás et al. 1992), have been hypothesized to act in similar fashions to stimulate
the sleep-pressure homeostat. Additionally, an emerging area of research in mech-
anisms of the homeostatic sleep-pressure system may be through the process of
protein phosphorylation. A family of proteins, sleep need index phosphorylation
proteins (SNIPPs), have been found to become steadily phosphorylated during wake
time and dephosphorylated during sleep (Wang et al. 2018). The kinase Sik3 has
been shown to aid in this phosphorylation; a constitutively active mutant of this
kinase has been shown to induce sleep pressure artificially, resulting in mice with
higher sleep times and delta power during their non-REM sleep (Honda et al. 2018).

Downstream of these somnogen initiators, the homeostatic sleep-pressure system
contains multiple neurotransmitters, including orexin, acetylcholine, monoamines,
and glutamate (Stenberg 2007). The sleep circuitry is a complex and multi-faceted
system from a neuroanatomical perspective, with separate wake-promoting and
sleep-promoting networks. Studies of wake-promoting systems historically focused
on monoaminergic and cholinergic neurons of the upper brainstem, including
noradrenaline from the locus coeruleus, 5HT from the raphe, and acetyl choline
from the tegmentum, among others (Saper and Fuller 2017). These systems project
broadly to the cortex by way of the thalamus, ventral portions of hypothalamus,
and basal forebrain. This system is also augmented by peptidergic orexin inputs
joining at the hypothalamus. Paradoxically though, lesions of these pathways
had little effect on total sleep and wake time (Fuller et al. 2011). Thus, in recent
years, the importance of glutamatergic and GABAergic networks on the wake-
promoting circuitry has grown. GABAergic inputs from the basal forebrain, lateral

358 P. C. Smith and J. A. Mong



hypothalamus, and supramammillary nucleus have been shown to promote
wake, as have glutamatergic inputs from the supramammillary, parabrachial, and
pedunculopontine nuclei (Saper and Fuller 2017).

Several nuclei are thought to stimulate sleep in the homeostatic sleep-pressure
system, with two nuclei of the preoptic hypothalamus of key importance. The ventral
lateral preoptic nucleus (VLPO) (Wagner 1999) and median preoptic nucleus
(MnPN) (Mong and Cusmano 2016) are thought to be key originators of this
pathway. These nuclei send GABAergic projections to key mediators of the wake
state, particularly nuclei in the lateral hypothalamus governing the orexinergic wake
system (Mong and Cusmano 2016). A feed-forward loop has been identified in
which the MnPN both inhibits the orexinergic wake system and stimulates the
VLPO, which itself serves as an inhibitor of the orexinergic wake nuclei in the
lateral hypothalamus (Szymusiak and McGinty 2008). Orexinergic wake nuclei have
widespread projections to the cortex and brainstem and are primarily active during
the wake phase (Fulcher et al. 2014); lesions of these nuclei have been shown to
induce a narcoleptic-like phenotype (Ocampo-Garcés et al. 2011). The orexin system
is important from an endocrine perspective in its dual importance to both sleep–wake
circuitry and feeding behavior. Orexin projections from the lateral hypothalamus
project broadly across the brain to centers important for feeding, such as the
paraventricular nucleus, and centers important for maintenance of wake, such as
the locus coeruleus (Grafe and Bhatnagar 2018). However, the exact structure and
function relationship of these pathways, and what neuronal pathways may exist
connecting between feeding and sleep behavior, is incompletely known. Beyond the
orexinergic system, the MnPN and VLPO send broad GABAergic inhibitory pro-
jections to many of the same nuclei involved in the wake system, including the
supramammillary, tuberomammillary, and parabrachial nuclei, as well as monoam-
inergic nuclei such as the raphe and locus coeruleus. Additionally, projections from
the MnPN and VLPO stimulate sleep by way of other brainstem nuclei such as the
ventral periaqueductal gray (Saper and Fuller 2017). The MnPN and VLPO have
been shown to receive circadian inputs from the SCN by indirect projections via the
dorsal medial hypothalamus and/or supraventricular zone, suggesting a potential
pathway for the integration of the circadian and homeostatic systems (Deurveilher
and Semba 2003; Sun et al. 2001).

4 Several Hypotheses Exist as to the Functions of Sleep

Despite its ubiquitous nature, very little is known about why sleep is necessary; from
an evolutionary standpoint, the necessity for an animal to spend such a large portion
of its lifespan in a position both vulnerable and seemingly of little use to the animal
would seem a poor adaptation. The question of sleep’s function in animal physiology
is a hotly debated one, with several working hypotheses. In particular, three well-
developed hypotheses have formed of key sleep functions: as a method of brain
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microenvironmental homeostasis, a mechanism for memory consolidation and cog-
nition, and as a regulator of metabolism and energy balance.

The evidence for sleep as a homeostatic process is well-established. Like other
homeostatic systems, sleep pressure responds in an analog fashion to the relative
distance from its homeostatic mean; in essence, sleep pressure directly increases
with wake time. The recently identified glymphatic system may provide a mecha-
nism for control of brain microenvironmental homeostasis that is sleep-dependent.
The glymphatic system is a fluid-dynamic model of cerebrospinal (CSF) and inter-
stitial (ISF) fluid flow around the brain and through the brain parenchyma. This flow
has been shown to be important for clearance of metabolites and other waste
products, including amyloid beta (Xie et al. 2013) from the brain. Additionally,
glymphatic flow has been shown to be upregulated by as much as a factor of ten in
the sleep state (Xie et al. 2013). Thus, a model has emerged in which waste products
of metabolism and brain activity build up in the wake state due to inadequate
glymphatic flow, but are cleared from the parenchyma in the sleep state when flow
is increased (Plog and Nedergaard 2018). These findings could suggest that brain
clearance is a key function of the sleep state and a key purpose of the homeostatic
sleep function.

Another hypothesis for the function of sleep involves the process of memory
consolidation (Cellini 2017). Multiple studies have shown that memories are
enhanced during sleep; in particular, declarative memories have been shown to be
enhanced after non-REM sleep (Krause et al. 2017; Ackermann and Rasch 2014),
while non-declarative or emotional memories have shown enhancement after REM
sleep (Sun et al. 2001). Sleep has also been shown to be important for synaptic
downscaling, in which synapses are uniformly lessened in strength during sleep
(Raven et al. 2018). This uniform downscaling prevents or relieves the saturation of
synapse receptor patches. Relief of saturation allows for further long-term potenti-
ation and depression at the same synapses, in order for more differentiation of
synaptic strength (and thus memory formation) to proceed.

Perhaps most importantly from an endocrine perspective, sleep has been hypoth-
esized as an important mechanism for the regulation of metabolism and systemic
energy balance. Overall metabolism declines only modestly in sleep (Fraser and
Nordin 1955), suggesting that energy conservation per se is not a key function of the
sleep state. One working hypothesis for the purpose of slower metabolism is that it
may allow free radical scavengers more freedom to reduce reactive molecules that
can damage the brain (Villafuerte et al. 2015). More broadly though, sleep has been
shown to induce the fluctuation of hormones important for the regulation of normal
metabolism. Sleep disruption has been shown to enhance ghrelin (Copinschi et al.
2014) and decrease leptin (Allada et al. 2017) levels, stimulating appetite; it is also
associated with a state similar to insulin resistance, possibly due to dysregulation of
growth hormone (GH) levels (Rasmussen et al. 2008). As a result, disruptions in
sleep have been shown to be a risk factor and exacerbating factor for metabolic
syndrome and related disorders (Rasmussen et al. 2008).
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5 Sleep Disorders Have a Broad Clinical Impact

Sleep disorders are both quite prevalent and generally thought to be underdiagnosed.
While we will not attempt to give an exhaustive overview of all sleep disorders here,
this section will profile some common conditions to illustrate the myriad interactions
with the endocrine system. Sleep disorders can take two forms: disorders of sleep
quantity and quality per se, and related comorbidities which can be introduced or
exacerbated by sleep disruption.

Insomnia is the most common sleep disorder; it is defined as the persistent
inability to sleep despite the opportunity to do so. It has been estimated that insomnia
is clinically present in 6% of the population, and as many as a third of individuals
may show some symptoms (Ohayon 2002). Insomnia may be a primary condition, or
secondary to a multitude of other neurological, psychiatric, and physical disorders. A
multitude of pharmaceutical and non-pharmaceutical interventions exists to combat
insomnia, of varying effectiveness. Importantly for the endocrine field, insomnia
shows a sex difference, as it is significantly more common in women than men
(Mong and Cusmano 2016). Additionally, insomnia pharmacology is an arena where
sex differences have become a prominent issue. One of the most common anti-
insomnia medications, the benzodiazepine-like drug zolpidem (popularly known by
the brand name Ambien), was also the first major drug to show a strong interaction
with the patient’s biological sex, as in 2013 the FDA reduced the recommended dose
for women to half that of men. Though the case of zolpidem sexual interaction was
due to differing rates of liver metabolism (Greenblatt et al. 2014), the brain has
shown an interaction between pharmacology and biological sex in the context of
insomnia as well. A study administering olanzapine (a second-generation anti-
psychotic) showed sex differences in its effect on sleep, as slow-wave sleep
increased in women and decreased in men (Giménez et al. 2011).

Another prominent sleep disorder is restless legs syndrome (RLS). RLS is the
uncontrollable urge to move one’s legs when at rest, which leads to an inhibition of
deep sleep states (Gamaldo and Earley 2006). RLS is quite common, with estimates
of between 2 and 15% of the population displaying symptoms. The causes are
unclear, but several underlying diseases and medication side-effects, most notably
iron deficiency (Trotti and Becker 2019), have been speculated as potential causes.
Similar to insomnia, RLS is far more prevalent in women than men, for reasons that
remain unclear (Berger et al. 2004).

A prominent sleep disorder about which more is known surrounding the etiology
is obstructive sleep apnea (OSA). OSA is marked by closure of the airway during the
night, leading to periods of cessation or attenuation of breathing and hypoxia (White
2017). OSA is often underdiagnosed, as it presents with very non-specific symp-
toms, such as daytime sleepiness, fatigue, and impaired cognition, to the sufferer. As
such, it is often only noticed by bed partners due to nighttime snoring (Punjabi
2008). OSA is often a comorbidity of obesity, due to the presence of additional fatty
tissue in structures surrounding the airway (Schwab et al. 2015). Unlike many sleep
disorders, OSA is more commonly diagnosed in males (Punjabi 2008), though there
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is speculation that it may simply be underdiagnosed in women. OSA is usually
managed mechanically through the use of continuous positive airway pressure
(CPAP) machines or mandibular splint devices, which both physically open the
airway (Bratton et al. 2015).

Disorders of circadian regulation are also widespread. Delayed sleep phase
disorder (DSPD) is a chronic circadian dysregulation that pushes the onset of sleep
and the onset of wake much later relative to societal norms (Pavlova 2017), often due
to genetics (Matheson and Hainer 2017). It is a form of “social jet lag”, a broader
term that also encompasses a delayed circadian phase due to behavioral and envi-
ronmental factors (Kayaba et al. 2018). DSPD and social jet lag are relatively rare in
adults, with a prevalence of under 2 in 1000, but are common in adolescents, with
studies showing a prevalence of 5% (Danielsson et al. 2016) and some estimates
being even higher. Treatments of DSPD with melatonin (Auld et al. 2017) and
analogues have shown some success in combating the symptoms, though relapse can
be a concern (Micic et al. 2016). The converse of this condition, advanced sleep
phase disorder, is significantly rarer, though more common in the elderly. Both
DSPD and ASPD have shown a strong genetic component in familial studies
(Matheson and Hainer 2017).

Mood disruptions have shown a sleep and circadian component. Disruption of the
circadian rhythms of melatonin has been linked to seasonal affective disorder (SAD),
a common form of depression. SAD is prevalent in the winter months, when daylight
cycles are shorter and cause disruption of melatonin secretion (Wirz-Justice 2018);
some SAD patients experience melatonin secretion well into the morning hours,
when levels should be low. Morning bright-light therapy to resynchronize melatonin
levels has been shown to mitigate some effects of SAD (Wirz-Justice 2018). Major
depression has also been linked to melatonin release, and some melatonin receptor
agonists have been approved to treat depression (Hickie and Rogers 2011).

Sleep disruption has been shown to be tied to many serious pathologies, both
cognitive and physical. Sleep changes have been shown to be correlated with
Alzheimer’s pathology as well as a potential leading sign of the disease (Peter-
Derex et al. 2015). Alzheimer’s patients have shown decreased sleep at night and
increased sleep during the day, as well as an overall loss of REM sleep (Pase et al.
2017). Additionally, self-reported sleep problems, most notably sleep fragmentation,
have been associated with a higher risk of Alzheimer’s years later (Macedo et al.
2017). The loss of sleep-dependent microenvironmental homeostasis may be a
contributing factor to the accumulation of brain metabolites in such dementia.
Amyloid Beta, the key protein which aggregates in Alzheimer’s, has been shown
to display a diurnal rhythm that increases during wake time and decreases during
sleep (Lucey and Bateman 2014). The impact of sleep on memory formation and
consolidation may also explain portions of this connection.

The strong endocrine connections between sleep and metabolism also present a
possible explanation for population-level correlations between sleep disruption and
the key public health issue of metabolic syndrome. Obesity is a key public health
concern, and sleep has been shown by multiple studies to both impact and have an
impact on metabolic and feeding behaviors. Most notably, obesity is a major risk
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factor for OSA (Schwab et al. 2015) as described above. Conversely, sleep loss has
been shown to have a stimulating effect on appetite (Schmid et al. 2015) and has
been correlated with increased obesity. However, the molecular mechanisms of these
interactions, particularly the connections between clinical phenotypes and neuroen-
docrine mechanisms, are still ill defined and multi-faceted. Sleep disruption has
been shown to increase oxidative stress (Villafuerte et al. 2015), enhance
pro-inflammatory mediators such as IL-1 and TNF-alpha (Obal et al. 1990; Kapás
et al. 1992), activate the sympathetic nervous system (Schlaich et al. 2015), and
stimulate cortisol secretion (Wright et al. 2015). Activation of these pathways has
been shown to be risk factors for obesity, metabolic syndrome, and sequelae such as
type 2 diabetes.

6 Sleep Behavior and Circadian Timing Impact Multiple
Hormonal Functions

Multiple different hormones have been shown to be impacted by the sleep–wake
cycle, though it remains something of an open question what roles the intrinsic
circadian timekeeper and sleep behavioral cycle play in governing the differential
release. Indeed, there is evidence to suggest that different hormones may display
different mechanisms of diurnal entrainment vis-à-vis homeostatic sleep pressure,
circadian timing, and sleep behavior (Pietrowsky et al. 1994).

Among the most important hormonal pathways regulated by sleep is the
hypothalamic–pituitary–adrenal (HPA) axis (Fig. 2). The SCN sends projections to
the pituitary, which result in an oscillating hormone secretion rhythm in line with the
diurnal cycle. The SCN also sends direct neuronal projections to the pituitary, further

Fig. 2 Schematic of sleep
impacts on the HPA axis.
Slow-wave sleep is an
inhibitor of the HPA axis
stress pathway, while REM
sleep stimulates cortisol
production. Corticotropin
releasing hormone (CRH)
has been shown to stimulate
wake, while exogenous
glucocorticoids have been
shown to counteract this
effect and stimulate sleep by
feedback inhibition
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entraining the release of glucocorticoids in a stereotypical diurnal rhythm. In
humans, cortisol levels peak in the early morning just after the onset of the wake
phase (Allada et al. 2017), a phenomenon thought adapted to prepare the body for
wake-time activity. This cortisol rhythm is light-entrained, meaning that significant
disruptions have been shown in shift workers and others with circadian rhythm
disruption (Allada et al. 2017; James et al. 2004).

The HPA axis and cortisol play a major role in regulation of the stress response,
and sleep has long been shown to have a potent inhibitory influence on this pathway.
Sympathetic nervous activity and its downstream effects, including cardiovascular
function, display a dependence on sleep state (Miki and Yoshimoto 2013). Slow-
wave sleep in particular is an inhibitor of HPA axis activity; consequently, cortisol is
elevated in the later portions of a sleep bout and during REM sleep (Born and
Wagner 2004). Furthermore, sleep displays a modulation of the adrenal response of
cortisol production to the action of adrenocorticotropic hormone; adrenal ACTH
sensitivity has also been shown to vary with the diurnal cycle (Späth-Schwalbe et al.
1991). Further downstream, cortisol rhythms have been shown to affect the immune
system; as cortisol is a potent immune and inflammatory suppressor, circadian
disruption has been shown to increase inflammatory cytokines and inflammatory
pathologies, including cancers (Schlaich et al. 2015; Born and Wagner 2004).

Insulin is another hormone entrained rhythmically. Insulin, a pancreatic hormone,
has a principal function of promoting the absorption of glucose from the blood.
However, in experiments of clamping glucose concentration, insulin still rises in the
late phase of the sleep cycle (Copinschi et al. 2014), most likely to restrain hepatic
glucose production in order to prevent a glycemic peak. This rhythm appears to be
SCN-based by studies of dysregulated feeding in SCN-lesioned rats (Marchant and
Mistlberger 1997); however, there is also evidence that the pancreatic beta cells
responsible for insulin secretion have their own set of clock transcription factors that
may operate independently (Perelis et al. 2016). Insulin response is also circadian-
modulated, with insulin sensitivity in adipose tissue being significantly higher in
daytime hours (Carrasco-Benso et al. 2016). Sleep deprivation has been shown to be
sufficient to induce insulin resistance by multiple pathways (Donga et al. 2010).

Similarly, another key hormone for metabolism, growth hormone (GH), which
promotes lipolysis and muscle growth, displays cycles entrained to sleep activity
(Steyn and Ngo 2017). GH is elevated in the earlier portions of a sleep bout,
particularly in slow-wave sleep, and decreases in later sleep phases (van Cauter
and Plat 1996). These hormonal changes, as well as similar sleep-dependent fluctu-
ation in the appetite stimulating and repressing hormones ghrelin (Rasmussen et al.
2008) and leptin (Challet 2015), may in part explain the correlation between sleep
disruption and obesity and metabolic syndrome.

Circadian factors have also been shown to have an effect on reproductive
hormones. However, studies of the circadian cycle and reproductive-related hor-
mones have been complicated by the fact that the connection appears much stronger
in rodents than in humans (Mong and Cusmano 2016). For example, in rodents, the
surge of luteinizing hormone occurs just before the onset of the dark phase (and thus
mating activity), a surge that is mediated by the SCN (Ramírez et al. 2017). Thus,
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circadian rhythms are very stereotypical in rodent mating behaviors; however,
humans do not display any equivalent circadian rhythm in mating activity. Despite
that phenomenon, there is clinical evidence to suggest that sleep–wake and circadian
disruption may play a role in certain human reproductive disorders. For example,
shiftwork in pregnant women may be associated with a greater risk of preterm birth
(Nurminen 1998), though other analyses dispute this conclusion (van Melick et al.
2014).

Sleep has also been shown to have an effect on sex hormones, particularly
testosterone. Testosterone secretion is linked to sleep cycles, with peak levels
occurring in the middle of the sleep cycle, often near the time of REM sleep onset
(Wittert 2014). Insufficient or fragmented sleep, which reduces the amount of REM,
blocks the nocturnal increase in testosterone. Therefore, sleep disruption could be a
risk factor for low testosterone levels (Wittert 2014).

7 Non-gonadal Endocrine Factors Impact Sleep

Amultitude of different hormones have been shown to impact the sleep state, as well
as the quantity and quality of sleep achieved. The key circadian mediator melatonin
is one of the best-known and most directly sleep-impacting hormones; it is classi-
cally low during the daytime and increases after the onset of darkness, stimulating
sleep in humans (Saper and Fuller 2017). Melatonin administration, which is
available as an over-the-counter pharmaceutical, has been shown to increase total
sleep time and sleep maintenance (White 2017). Though melatonin may be sedative
in some species such as zebrafish (Zhdanova et al. 2001), it appears to not have direct
sedative effects in humans (Azeez et al. 2018). Instead, melatonin in humans appears
to be a link between environmental cues, most notably light cues, and the circadian
synchronization of biological processes (Gandhi et al. 2015). This effect can be
recapitulated pharmacologically, as exogenous melatonin has also been shown to
replicate EEG changes from the circadian pacemaker (Dijk and Cajochen 1997).

Beyond melatonin, the HPA axis has been shown to have an impact on sleep.
Administration of corticotropin releasing hormone (CRH), the first hormone in the
HPA axis, increases wake time (Held et al. 2005), and conversely, administration of
a specific CRH receptor blockade decreases wake time (Chang and Opp 1999).
Similarly, insomnia has been associated with an all-day increase in HPA axis activity
and cortisol secretion (D’Aurea et al. 2015). However, paradoxically, exogenous
glucocorticoids have been shown to be stimulators of slow-wave sleep and inhibitors
of REM sleep, particularly in the context of the very high cortisol levels of late
pregnancy (Santiago et al. 2001). It has been hypothesized that this effect is due to
feedback inhibition by cortisol of CRH release (Steiger 2002).
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8 Biological Sex Differences and Ovarian Steroids Impact
Sleep Behavior

As sleep is highly evolutionarily conserved, the suggestion of biological sex differ-
ences may be counterintuitive, but reproductive and sex hormones have also been
shown to interact with the sleep–wake system. Women and men have long been
clinically shown to have differing sleep patterns (Mong and Cusmano 2016). In
particular, women paradoxically sleep longer than men, but generally self-report a
lower sleep quality (Mong and Cusmano 2016). Objective data suggest that women
should have higher sleep quality than men; women have longer total sleep time and
less total wake time, a shorter latency to sleep onset, and higher sleep efficiency than
men (Bixler et al. 2009; Goel et al. 2005). EEG studies have also shown a higher
proportion of deep slow-wave sleep (stage 3) and less light sleep (stage 1 and 2) in
women than men (Redline et al. 2004). However, clinical evidence is not in
agreement with those findings, showing that women have been consistently diag-
nosed with insomnia and other sleep disorders, including RLS, at a markedly higher
rate than men (Mong and Cusmano 2016; Berger et al. 2004). It is unclear if male sex
steroids, mainly testosterone, affect sleep in men, as paradoxically both low testos-
terone levels and testosterone replacement have been shown to be risk factors for
sleep deprivation (Wittert 2014). In animal studies, castration does not significantly
change sleep time in male rodents, suggesting little impact of testosterone levels on
male sleep (Cusmano et al. 2014). However, there is a larger complement of
scientific literature suggesting an impact of female hormones on sleep behavior.

Overall sex differences in sleep patterns may be due to sleep-independent factors,
including psychosocial ones, which may be tied to a higher presence of anxiety in
females (Mong and Cusmano 2016); inversely, sleep loss may also be more potently
anxiogenic in females as well (Goldstein-Piekarski et al. 2018). However, there is
strong evidence that hormonal complement plays a role; most strikingly, the sex
difference in sleep quality emerges in females with puberty (Johnson et al. 2006) and
disappears at menopause. There are specific distinctions in the circadian timing of
sleep with biological sex and female hormonal state as well. The endogenous
circadian rhythmmay have an interaction with biological sex, though the mechanism
has not been fully explored (Eastman et al. 2017). However, there is clinical
evidence for a sex difference in circadian timing. Premenopausal women go to bed
earlier than men and have much earlier melatonin peaks (Cain et al. 2010) until
menopause, when the sex difference in sleep onset disappears but melatonin peaks
become even earlier (Mong and Cusmano 2016). The mechanisms of these circadian
differences are incompletely understood.

There is little evidence to suggest major primary changes in sleep patterns in
women between the different phases of the menstrual cycle (Baker and Lee 2018).
However, there are some minor cyclic differences in sleep attributable to differing
hormone levels; for example, a specific type of non-REM sleep waveform, sleep
spindles, is elevated in the post-ovulatory luteal phase of the menstrual cycle (Baker
and Lee 2018). High progesterone and estrogen levels also correlate with a lower
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amount of REM sleep (Lancel et al. 1996). Clinically, the luteal phase has also been
shown to be a time of particularly pronounced sleep disruption during menopause
(De Zambotti et al. 2015). Finally, another sexually differentiated hormone, prolac-
tin, has also been shown to increase slow-wave sleep based on limited studies of
patients with hyperprolactinemia (Frieboes et al. 1998). The broader significance of
these changes in humans has not fully been established.

Sleep disorders have also been shown to be particularly prevalent in women at
times of hormonal flux, including puberty, pregnancy, and menopause. Exogenous
hormones, most notably oral contraception, have been shown to affect sleep in
young women; oral contraceptive use increases REM sleep and light sleep, while
reducing deep slow-wave sleep (Baker et al. 2001; Burdick et al. 2002); the
mechanism for this change is unclear. Pregnancy has been shown to be a time of
high levels of sleep change and disruption, though it is difficult to differentiate direct
effects of hormonal change from physiological changes due to growth and develop-
ment of the fetus. While there appear to be few changes in melatonin levels or
circadian rhythms during pregnancy (Santiago et al. 2001), changes in the levels of
estrogen, progesterone, cortisol, and oxytocin may contribute to disruption in sleep,
particularly the consistent finding of lower REM sleep times in the third trimester
(Santiago et al. 2001). Many women report sleep disruption in the perimenopausal
period. Studies on using hormone replacement therapies to combat sleep disruption
in menopause have shown improvement in self-reporting of subjective sleep quality.
There is evidence that hormones play a role in consolidating sleep at night (Mong
and Cusmano 2016), possibly leading to increased sleep quality with their replace-
ment. However, more objective metrics have shown differing effects, with incon-
sistent findings in objective sleep quality measures with hormonal therapy (Cintron
et al. 2017). These situations may be due to differing hormonal formulations
between studies; alternatively, hormone therapy may exert its main impact in
relieving the non-sleep symptoms of menopause, particularly vasomotor symptoms
(Cintron et al. 2017), making women more comfortable and sleep easier to obtain.

Apart from the clinical finding that sex steroids may affect sleep behavior and
architecture, the mechanisms underlying how sex steroids influence the sleep cir-
cuitry remain a significant gap in our knowledge. The use of animal models is critical
for advancing our understanding of the potential endocrine–sleep nexus.

9 Diverse Models Exist for the Investigation of Endocrine
Regulation of Sleep Behavior

As with many investigations of neurobiological behavior phenomena, animal
models are a key tool in the sleep field. Rats are the most commonly used model
of sleep behavior, with mice as a secondary rodent organism. Rats are widespread
models for sleep studies as the circuitry and neurochemistry of sleep share similar-
ities with humans, and pharmacologic manipulation and EEG measurement of sleep
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states are both feasible. Use of mice in the sleep field is generally limited to
exploration of sleep in the context of specific genetic backgrounds (Mong and
Cusmano 2016), which are more readily available in mice than rats. A key consid-
eration in the use of models for sleep is the different patterns of sleep between
animals. Sleep is generally entrained to the light–dark cycle through the circadian
sleep system, but the specific pattern of sleep differs dramatically between species.
Under normal conditions, humans are monophasic sleepers, with a single consoli-
dated period of 7–8 h per day, concentrated in the dark portion of the light/dark
cycle. Conversely, however, rodents are polyphasic sleepers, with many periods of
sleep and wake throughout the day (Acerbi et al. 2008). While rodents do have some
periods of consolidated wake or sleep of an hour or more, they can also experience
bouts as short as a few seconds in duration (Simasko and Mukherjee 2009).
Additionally, while rodents do preferentially sleep during the light period of the
light–dark cycle, they exhibit significant periods of both wake and sleep throughout
the entire light–dark cycle. Unlike rodents, the other major animal model system for
sleep, drosophila, are largely monophasic sleepers, with a single consolidated period
of sleep entrained to the dark portion of the cycle (Dubowy and Sehgal 2017). As a
result, drosophila may be a more useful model of some aspects of the circadian
system where light–dark dependence and sleep consolidation are key points of
experimental investigation.

Historically, the majority of sleep studies have been performed in men or male
animals (Mong and Cusmano 2016), a deeply unfortunate occurrence that has led the
impact female animal models can have on illuminating ties between ovarian steroids
and sleep. The paucity of basic studies investigating sex differences in sleep has
resulted in an unclear picture on the nature of those differences. Gonadally intact
female rodents generally spend less time in sleep states compared with males (Paul
et al. 2006), but females, despite accumulating less total sleep, have more consoli-
dated sleep bouts, consisting of longer bout durations with less state transitions and
fewer arousals (Paul et al. 2006). Moreover, delta power, a quantitative measure of
sleep intensity, is higher in females during baseline sleep as well as in recovery sleep
following deprivation, a finding in agreement with human clinical data (Paul et al.
2006).

Perhaps more striking is that in the absence of circulating sex steroids, these sex
differences in sleep behavior and architecture are eliminated, suggesting that sex
differences in sleep are in part dependent on sex steroids. Sleep patterns in female
rats are exquisitely sensitive to the natural fluctuations of ovarian steroids (Paul et al.
2006; Koehl et al. 2006). Multiple studies in rats show that during proestrus, when
estrogen and progesterone are elevated, sleep time is significantly reduced compared
with other phases of the estrous cycle (Schwartz and Mong 2013; Schwierin et al.
1998). Exogenous hormone replacement is observed to recapitulate this phenotype
(Cusmano et al. 2014) in both rats and mice. In these studies, estrogen predominately
suppresses dark phase sleep and has little or no effect in the light phase. Thus, a key
paradigm for studies of hormonal modulation of sleep has been the use of hormone
replacement in oophorectomized rodents (Mong and Cusmano 2016) which can
provide hormonal stability that bypasses the rapid hormonal changes inherent to the
4-day menstrual cycle in rats.
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10 Animal Studies Illuminate Mechanisms Connecting
Female Gonadal Hormones and Sleep

In rodents, estrogens have been broadly shown to increase wake and decrease
spontaneous sleep, particularly in the active phase of the light–dark cycle; exoge-
nous replacement of estrogen in females decreases dark phase sleep by 55% (Mong
and Cusmano 2016). Furthermore, estrogens have been shown to consolidate wake
and fragment sleep. However, estrogen-treated rats also have more consolidated
slow-wave sleep following sleep deprivation by gentle handling (Schwartz and
Mong 2013), and thus estrogen may be acting to facilitate recovery from sleep
deprivation. Estradiol, the most potent estrogen, may interact with the circadian
system, as it is shown to have a time-of-day-dependent effect; estradiol has been
shown to decrease sleep in the active phase and increase it following deprivation in
the stereotypical sleep phase (Mong and Cusmano 2016; Cusmano et al. 2014).
Thus, hormonal impact may be to improve circadian fealty. Supporting that conten-
tion, aromatase knockout mice, which are deficient in the formation of estrogen from
testosterone, have similar duration of sleep but sleep that is more fragmented and less
entrained to the stereotypical (light) phase of the light–dark cycle (Vyazovskiy et al.
2006).

The molecular mechanisms of hormone impact on sleep are poorly understood,
and studies investigating where and how female steroids act on the brain are only an
emerging area of investigation. Sexual differentiation of the rodent brain occurs
during a brief window of early development. Exposure to sex steroids around the day
of birth results in the masculinization and defeminization of the rodent brain, while
absence of sex steroids leads to a feminization process (Nugent et al. 2015; Sato et al.
2004). Production of sex steroids in adults cements appropriate behaviors specific to
the sex of the animals. Studies in rats have suggested that estradiol effects on sleep
are established by the first phase of this process, the early programming effects of sex
steroids (Cusmano et al. 2014). Female rats exposed to a masculinizing dose of
testosterone during the sensitive window for brain sexual differentiation exhibit
male-like responsivity to estradiol and testosterone in adulthood and exhibited
male signatures in the sleep-active VLPO nucleus (Saper et al. 2010).

Steroid receptors, particularly for estrogen and progesterone, are present through-
out the brain and prevalent on multiple sleep-regulating nuclei such as the hypo-
thalamus (Rønnekleiv and Kelly 2005) and basal forebrain (Donahue et al. 2000).
Previous work in rodents implicates the VLPO in particular as a key site of
mediating estradiol actions over sleep. In adult oophorectomized females, estradiol
decreases activation of sleep-active VLPO neurons (Hadjimarkou et al. 2008) and
downregulates levels of lipocalin-type prostaglandin D synthase (L-PGDS), the
enzyme responsible for the production of prostaglandin D2 that potently promotes
sleep (Devidze et al. 2010; Mong et al. 2003). Estrogens also decrease expression of
wake-inhibiting adenosine 2A receptors (Ribeiro et al. 2009), suggesting a potential
alternate mechanism for an inhibitory impact on homeostatic sleep pressure. How-
ever, these findings are complicated by studies showing that the VLPO is not a major

Neuroendocrine Control of Sleep 369



site of estrogen sensitivity (Bailey and Silver 2014). Instead, it is an upstream
nucleus, the median preoptic (MnPN), which may be most responsible for mediating
estradiol action over homeostatic sleep pressure. Blocking estradiol action directly in
the median preoptic nucleus of female rats attenuates estradiol suppression of sleep
(Hadjimarkou et al. 2008). Downstream, the orexinergic wake-promoting system of
the lateral hypothalamus receives inputs from the MnPN and VLPO and is highly
sensitive to fluctuations in endogenous and exogenous ovarian steroids (Mong and
Cusmano 2016), suggesting that this section of the homeostatic sleep/wake circuitry
may be a key site for estrogen action.

While estrogen receptors are present in the key circadian nucleus of the SCN
(Vida et al. 2008), there is not a great deal of evidence suggesting an important
function for estrogen in circadian rhythms. By contrast, androgens appear to be
important to the activity of the SCN, increasing the fealty of certain behaviors to the
circadian clock by mediating its response to light (Karatsoreos et al. 2011; Model
et al. 2015). Finally, it is important to note that certain sex differences may be more
impacted by chromosomal complement than hormonal status. Female mice had a
higher level of slow-wave activity in their active phase than male mice when both
were ovariectomized or gonadectomized, respectively (Ehlen et al. 2013). Addition-
ally, anatomically female mice engineered to have an XY chromosomal compliment
in the “four core genotypes” model acquire more sleep during their active phase and
have higher NREM delta power than XX females, suggesting processes mediating
recovery from sleep loss are partially dependent on sex chromosomes (Arnold
2004).

11 Conclusion

Sleep behavior demonstrates myriad neuroendocrine interactions and has broad
implications for human health. While there is much that is unknown about the
reasons for sleep, evidence exists that it is important for homeostasis of a diverse
array of biological functions, including memory process, brain microenvironment
homeostasis, and systemic metabolic function. Disorders of sleep regulation are
extremely prevalent and are both a major cause of primary morbidity and an
exacerbating factor to many health conditions. Sleep and the endocrine system
exhibit a bi-directional interaction, with sleep behavior having a strong influence
on endocrine factors and endocrine factors reciprocally influencing sleep behavior.
In particular, biological sex and sex hormones have been shown to have a significant
impact on sleep function. Unfortunately, until recent years much research on sleep
behavior largely disregarded its connections with the endocrine system. Use of both
clinical studies and rodent models to investigate interactions between neuroendo-
crine function, including biological sex, and sleep therefore presents a promising
area of further exploration.
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