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Abstract The hypothesis that the neuroimmune system plays a role in the patho-
genesis of different psychiatric disorders, including schizophrenia, depression, and
bipolar disease, has attained increasing interest over the past years. Previously
thought to have the sole purpose of protecting the central nervous system (CNS)
from harmful stimuli, it is now known that the central immune system is critically
involved in regulating physiological processes including neurodevelopment, synap-
tic plasticity, and circuit maintenance. Hence, alterations in microglia – the main
immune cell of the CNS – and/or inflammatory factors do not unequivocally connote
ongoing neuroinflammation or neuroinflammatory processes per se but rather might
signify changes in brain homoeostasis. Despite this, psychiatric research tends to
equate functional changes in microglia or alterations in other immune mediators
with neuroinflammation. It is the main impetus of this chapter to overcome some of
the current misconceptions and possible oversimplifications with respect to
neuroinflammation and microglia activity in psychiatry. In order to do so, we will
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first provide an overview of the basic concepts of neuroinflammation and
neuroinflammatory processes. We will then focus on microglia with respect to
their ontogeny and immunological and non-immunological functions presenting
novel insights on how microglia communicate with other cell types of the central
nervous system to ensure proper brain functioning. And lastly, we will delineate the
non-immunological functions of inflammatory cytokines in order to address the
possible misconception of equating alterations in central cytokine levels with ongo-
ing central inflammation. We hereby hope to help unravel the functional relevance of
neuroimmune dysfunctions in psychiatric illnesses and provide future research
directions in the field of psychoneuroimmunology.

Keywords Cytokines · Microglia · Microglia Sensome · Neuroinflammation ·
Psychiatry · Schizophrenia

1 Introduction

The neuroimmune hypothesis in schizophrenia has experienced a reappraisal.
The possible role of inflammatory processes in psychiatric disorders, which in
the context of the central nervous system (CNS) is frequently referred to as
neuroinflammation, has attained increasing interest over the past decade (Graeber
2014; Masgrau et al. 2017). In particular, functional abnormalities in microglia – the
resident, myeloid immune cell of the CNS – have attained increasing interest in
psychiatry in general and schizophrenia in particular (Laskaris et al. 2016).
Microglia act as the first line of defence against invading pathogens and play a key
role in central infections and central inflammation (Kettenmann et al. 2011). Similar
to monocytes/macrophages in the periphery, they constantly survey the CNS and
rapidly respond to invading pathogens, changes in the physiological microenviron-
ment, and CNS injury (Gomez-Nicola and Perry 2015; Hanisch and Kettenmann
2007). Upon activation by pathological insults, microglia can rapidly alter their
transcriptional profiles and morphological appearance, increase their motility and
phagocytic activity, and produce and secrete various factors that are integral for
combating pathogens and/or initiating and promoting tissue remodelling and repair
(Gomez-Nicola and Perry 2015; Graeber and Streit 1990; Lawson et al. 1992;
Ransohoff and Engelhardt 2012; Svahn et al. 2014; Wolf et al. 2017). The functional
diversity and dynamics of microglia are enormous, and their activation is hetero-
geneous and critically depends on the nature of the pathological insult (Gomez-
Nicola and Perry 2015; Graeber and Streit 1990; Lawson et al. 1992; Ransohoff and
Engelhardt 2012; Svahn et al. 2014; Wolf et al. 2017). However, while microglia
play a key role in inflammatory processes, their activation does not equal
neuroinflammation per se (Graeber 2014; Masgrau et al. 2017). In fact, microglia
can detect, process, and respond to signals in an entirely noninflammatory way
(Salter and Beggs 2014). Comparative to peripheral macrophages, microglia support
normal tissue function, which in the case of the CNS is neuronal integrity (Hanisch
and Kettenmann 2007; Kettenmann et al. 2011; Nimmerjahn et al. 2005; Ransohoff
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and Perry 2009; Scheffel et al. 2012). We now know that microglia are involved in
the regulation of neuronal development, synaptic plasticity, and circuit maintenance
(Arnold and Betsholtz 2013; Bilimoria and Stevens 2015; Reemst et al. 2016; Salter
and Beggs 2014). As discussed in detail below, there is substantial commonality in
the molecular signalling cascades used by microglia to exert its different functions.
Thus, alterations in microglia and inflammatory factors do not unequivocally convey
ongoing neuroinflammation or neuroinflammatory processes but might instead sig-
nify changes in brain homoeostasis (Estes and McAllister 2014; Reemst et al. 2016;
Salter and Beggs 2014; Thion and Garel 2017). These novel findings critically
challenge the concept that disorders involving changes in microglia or inflammatory
mediators are de facto neuroinflammatory disorders (Estes and McAllister 2014;
Salter and Beggs 2014). Despite this, psychiatric research tends to equate changes in
microglia activity with neuroinflammation (Biesmans et al. 2013; Brites and
Fernandes 2015; Doorduin et al. 2009; Gracia-Rubio et al. 2016; Haarman et al.
2014, 2016; Kenk et al. 2015; Monji et al. 2013; Na et al. 2014; Najjar and Pearlman
2015; Nakatomi et al. 2014; Setiawan et al. 2015; Suridjan et al. 2014). Such
oversimplifications could obscure the functional complexity of immune cells and
molecules in physiological brain processes beyond that of their classically defined
roles in inflammation resulting in possible misconceptions of disease aetiology.

In the spirit of John Maynard Keynes: ‘The difficulty lies not in the new ideas,
but in escaping the old ones’. The main incentive for writing this chapter was to
overcome some of the current misconceptions and oversimplifications with respect
to neuroinflammation and microglia activity in psychiatry. In the first sections, we
will provide an overview of the basic concepts of neuroinflammation and microglia.
We will then present key immunological and non-immunological functions of
microglia and inflammatory mediators in order to increase the awareness of the
complexity and difficulty to interpret changes in microglia and immune mediators in
psychiatric disorders.

2 Basic Concept of Neuroinflammation
and Neuroinflammatory Processes in Relation
to Psychiatry

Associations between psychiatric diseases and immune system dysfunctions have
been postulated more than 100 years ago (Kraepelin 1890; Menninger 1919) and
have remained a matter of discussion ever since. With the reconceptualization of the
‘immune privilege’ of the CNS, the field of psychoimmunology has experienced a
reappraisal. Advances in the fields of immunology and genetics, as well as the
increasing understanding of how immunological processes can influence brain
development and functions (Reemst et al. 2016; Thion and Garel 2017), have further
contributed to the growing interest and recognition of immune system dysfunction in
psychiatry. Indeed, abnormal neuroimmune functions have been implicated in the
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aetiology and pathophysiology of a number of psychiatric disorders, including
depression (Dantzer et al. 2008; Du Preez et al. 2016; Miller and Raison 2016;
Muller and Schwarz 2007), schizophrenia (Horvath and Mirnics 2014; Khandaker
et al. 2015; Muller et al. 2000; Yolken and Torrey 2008), autism spectrum disorders
(Ashwood et al. 2006; Estes and McAllister 2015; Meltzer and Van de Water 2017),
and bipolar disorder (Isgren et al. 2017; Wang and Miller 2017; Watkins et al. 2014).

The possible role of aberrant immune functions involving altered inflammatory
and neuroinflammatory processes is currently among the timeliest topics in psychi-
atry. In this field, however, immunological changes that are being revealed in the
CNS are frequently (and often misleadingly) referred to as neuroinflammation
(Graeber 2014; Masgrau et al. 2017). The extent to which the brain is considered
to be ‘inflamed’ is typically evaluated against the background of altered expression
of secreted inflammatory mediators (including cytokines and chemokines) together
with numerical, morphological, and/or functional abnormalities of astrocytes and
microglia (Graeber 2014; Masgrau et al. 2017).

The word inflammation was coined by the ancients and is derived from the Latin
word inflammare (‘to set on fire’) (Scott et al. 2004). The Roman Celsus is consid-
ered the first to have described the four cardinal signs of inflammation more than
2,000 years ago: rubor et tumor cum calore et dolore (redness and swelling with heat
and pain) (Rocha e Silva 1978). In the late nineteenth century, the German pathol-
ogist Rudolf Virchow added the fifth cardinal sign: loss of function (Scott et al.
2004). This early definition was based on the assumption that inflammation repre-
sents a purely pathological process, which was later revised to acknowledge that it
encompasses concomitant beneficial effects on tissue healing. Hence, inflammation
denotes a complex cascade of concurrent processes that cause both tissue damage
and repair (Schwartz and Baruch 2014; Serhan and Savill 2005).

Today, inflammation is considered an integral part of the body’s homoeostatic
repair and defence mechanisms and engages physiological interactions between
resident and recruited immune cells, soluble factors, and tissue-specific elements
(Schwartz and Baruch 2014; Serhan and Savill 2005). Upon initiation and proper
orchestration, it limits the spread of infection and/or tissue damage and is typically
followed by a resolution phase. The latter ensures that the affected tissues are
structurally and functionally restored and that the immunological components attain
their original functional state (Schwartz and Baruch 2014; Serhan and Savill 2005).

In general, the processes of classical inflammation can occur in the CNS like in
any other organ and show largely the same characteristics on the cellular and
molecular level (Denes et al. 2010; Filiou et al. 2014; Graeber 2014; Masgrau
et al. 2017; Schwartz and Baruch 2014). Illustrative examples of neurological
conditions where this occurs are multiple sclerosis, stroke, traumatic brain injury,
and CNS infections (Filiou et al. 2014; Graeber 2014; Masgrau et al. 2017). The
immune-driven CNS responses underlying these pathologies have been the
cornerstones of defining ‘neuroinflammation’ and involve (1) initiation of a local
immune response by CNS-resident immune cells, (2) increased production of
pro-inflammatory cytokines and chemokines, (3) additional recruitment of
CNS-resident immune cells to the primary site of trauma or infection, (4) blood-
brain barrier (BBB) leak and infiltration of blood-derived leucocytes into the brain
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parenchyma, and (5) resolution of inflammation and tissue remodelling. Hence, the
term ‘neuroinflammation’ was historically well defined and mirrored the hallmarks
of classical inflammation in the periphery (Estes and McAllister 2014; Masgrau et al.
2017). Over the past decade, however, the term ‘neuroinflammation’ has been
frequently used to describe isolated aspects of neuroinflammatory processes with
no known causative insult or overt changes in the BBB integrity (Graeber 2014;
Masgrau et al. 2017). This has led to the oversimplified assumption that a wide range
of psychiatric and neurodegenerative disorders underlie neuroinflammatory dys-
functions. The increasing understanding of how microglia and inflammatory medi-
ators exert regulatory functions in brain development and maturation independent of
inflammation adds another level of complexity on how to interpret central immune
dysfunction in these different disorders (Reemst et al. 2016; Thion and Garel 2017).

As suggested by Estes and McAllister (2014), we therefore propose that the
denotation ‘neuroinflammation’ should only be applied when all five signs of
pathological inflammation – increased cytokines and chemokines, activated
microglia and astrocytes, disturbance in BBB integrity and blood leucocyte infiltra-
tion, degenerative tissue damage, and resolution of inflammation and tissue
remodelling – are present. For alterations in isolated inflammatory mediators within
the CNS, we suggest to refer to the terms ‘changes in neuroinflammatory mediators
or processes’ or ‘changes in microglia activity states’ and specify them separately.
Clarifying the term ‘neuroinflammation’ is warranted in order to prevent oversim-
plifications, which in turn could result in the false assumption that various psychi-
atric and neurodegenerative diseases involve the same or similar pathologies. Such
oversimplifications may, in fact, impede scientific progress regarding the under-
standing of disease-specific aetiologies and, consequently, developing adequate
interventions with maximal therapeutic benefits.

3 Microglia: Historical Perspective

Microglia were first described by the German psychiatrist and neuropathologist
Franz Nissl in the late nineteenth century as ‘Stäbchenzellen’ (rod cells) that
represent reactive glial elements with migratory, phagocytic, and proliferative
potential (Ginhoux et al. 2013). During the same time, W. Ford Robertson intro-
duced the term ‘mesoglia’, which attempted to denote phagocytic elements with
mesodermal origin. In 1913, Santiago Ramón y Cajal introduced the classification of
central elements as ‘the first element’ (neurons), ‘the second element’ (neuroglia, a
term introduced by Rudolf Virchow, which comprise astrocytes and oligodendro-
cytes), and ‘the third element of the nervous system’ (cells with small round nuclei),
whereby he too stated that cells of the latter were probable to have a mesodermal
origin (Ginhoux et al. 2013; Ransohoff and Cardona 2010). In 1920, the Spanish
neuroscientist, and student of Ramón y Cajal, Pio del Rio Hortega, coined the term
‘microglia’ (Perez-Cerda et al. 2015). del Rio Hortega’s early observations and
descriptions were of tremendous accuracy. He observed the invasion of amoeboid
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microglia into the developing brain during early embryonic development and
hypothesized that they originated from meningeal macrophages and/or peripheral
monocytes penetrating the CNS (Ginhoux et al. 2013; Kettenmann et al. 2011). He
also described that microglia change their appearance during brain maturation into
ramified cells, with a small round soma and an intricate network of fine ramifica-
tions. Furthermore, he reported that in the mature brain, microglia are present
throughout the entire brain parenchyma occupying defined, non-overlapping terri-
tories (Kettenmann et al. 2011). Upon pathological events, he observed that they
were able to retract their processes, become amoeboid, and display migratory and
phagocytic functions (Ginhoux et al. 2013; Kettenmann et al. 2011). Astonishingly,
most of these early observations and interpretation from Rio Hortega largely hold
true until today (Kettenmann et al. 2011).

4 Microglia: Ontogeny and General Facts

Although the ontogeny of microglia has been the subject of debates for decades, their
origin – primitive yolk sac (YS) macrophages – was only fully established in 2010
(Ginhoux et al. 2010). By applying an inducible lineage-tracing model using the
runt-related transcription factor 1 (Runx1) to label YS progenitors, including YS
macrophages, Ginhoux et al. could show that adult microglia arise unequivocally
from YS macrophages that invade the developing CNS at embryonic day (E) 9.5
through the bloodstream, where they proliferate in situ and are maintained through-
out adulthood (Ginhoux et al. 2010, 2013; Salter and Stevens 2017). The lack of
foetal monocyte contribution to the microglia progenitor pool could be explained by
the inaccessibility of foetal monocytes to the developing brain, as embryonic tissue
colonization of foetal monocytes starts at around E13.5, which coincides with the
formation of the BBB (Daneman et al. 2010).

YS macrophages represent an independent lineage and arise before the develop-
ment of other myeloid cells that differentiate from definitive haematopoietic stem
cells (Hoeffel et al. 2015; Orkin and Zon 2008). In contrast to other macrophage
populations, they have a unique development in the sense that they can bypass the
monocyte stage (Hoeffel et al. 2015; Takahashi et al. 1989). Hence, although
microglia may be considered to be similar to tissue-resident macrophages in periph-
eral tissues, they are the only ‘myeloid’ cells that are derived solely from yolk sac
precursors under ‘normal’ conditions (Hoeffel et al. 2015; Sheng et al. 2015).

Recent genome-wide chromatin and expression profiling coupled with single-cell
transcriptomic analyses throughout development revealed that microglia undergo
three distinct developmental stages along with brain development: early, pre-, and
adult microglia, which were shown to underlie distinct regulatory circuits
(Matcovitch-Natan et al. 2016). Morphologically, microglia undergo maturational
changes as well. While microglia during early brain development display an amoe-
boid cell morphology, they mature into ramified cells with numerous thin processes
at around postnatal day 15 (Cunningham et al. 2013; Harry 2013; Salter and Beggs
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2014). In a healthy mouse brain, depending on the region analysed, microglia
account for 10–15% of all brain parenchymal cells (Gomez-Nicola and Perry
2015; Graeber and Streit 1990; Lawson et al. 1990; Ransohoff and Engelhardt
2012; Svahn et al. 2014; Wolf et al. 2017). In contrast to this, their density shows
marked regional differences in the non-diseased adult human brain parenchyma,
ranging from approximately 0.5 to 16% of all cells (Mittelbronn et al. 2001).

The unique ontogeny of microglia with no contribution of foetal monocytes
suggests that microglia population persist in the brain parenchyma through self-
renewal of resident microglia. Previous estimates based on [3H]thymidine,
5-ethynyl-20-deoxyuridine (EdU), or 5-bromo-20-deoxyuridine (BrdU) incorporation
suggested that 0.05–1.04% of microglia in adult healthy mice of different strains and
2.35% of microglia in the young adult healthy macaque were entering cell cycle each
day (Lawson et al. 1992; Shankaran et al. 2007; Tonchev et al. 2003). A recent report
in humans using C14 retrospective birth dating of microglia isolated from postmor-
tem brains of adults born across six decades estimated that 0.08% of microglia
entered cell cycle per day in the healthy human brain, confirming the slow rate in
microglia renewal (Reu et al. 2017). However, more recent studies performed in
mice challenged the assumption that microglia are long-lived cells with slow pro-
liferation rates. Using a multicolour fluorescence fate mapping system approach, Tay
et al. revealed that microglia displayed higher and heterogeneous turnover rates in
different brain compartments that occurred in a context-dependent manner (Tay et al.
2017). Another recent report confirmed a high region-dependent turnover rate for
murine microglia revealing that proliferation is temporally and spatially coupled to
intrinsic apoptosis (Askew et al. 2017). In this study, on average 0.69% of the total
microglial cells were estimated to be proliferating, suggesting that the whole popu-
lation is renewed several times during a lifetime.

In the healthy brain, microglia form a near-regular three-dimensional lattice in
which each microglial cell occupies a unique territory. For decades, ramified
microglia have been mistakenly denoted as ‘resting’ cells. Recent studies, however,
revealed ramified microglia to be the opposite of resting: They constantly scan the
brain parenchyma for potential insults (Davalos et al. 2005; Hristovska and Pascual
2015; Nimmerjahn et al. 2005). Estimates suggest that microglia scan the entire brain
volume within a few hours (Nimmerjahn et al. 2005). While scanning the brain, the
fine microglial processes continuously contact neurons, axons, and dendritic spines
(Salter and Stevens 2017; Sierra et al. 2013; Tremblay et al. 2011). Furthermore,
process motility was shown to dramatically change in response to adenosine tri-
phosphate (ATP), neuronal activity, and neurotransmitters, whereas the latter is
partly indirectly mediated through ATP (Davalos et al. 2005; Dissing-Olesen et al.
2014; Eyo et al. 2014; Fontainhas et al. 2011; Li et al. 2012). Although microglia
process motility and interaction with neuronal synaptic elements is an established
phenomenon, the functional implications remain to be discovered.
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5 Microglia: The CNS Immune Cell

Microglia represent the central immune cell with the potential to sense and initiate
active immune defence in the CNS (Gomez-Nicola and Perry 2015; Graeber and
Streit 1990; Ransohoff and Engelhardt 2012; Svahn et al. 2014; Wolf et al. 2017).
They express numerous cell surface and intracellular receptors including pattern
recognition receptors (PRRs) that recognize pathogen-associated molecular patterns
(PAMPs) as well as damage-associated molecular patterns (DAMPs) (Kettenmann
et al. 2011; Santoni et al. 2015) through which they can virtually sense any
pathological event or changes in homoeostatic conditions and respond accordingly
(Kettenmann et al. 2011; Ransohoff and Cardona 2010; Ransohoff and Perry 2009).

Upon sensing a pathological insult, microglia rapidly alter their morphological
appearance and transcriptional programme in a context-dependent manner. In vivo
two-photon microscopy studies revealed that upon brain injury, microglial processes
rapidly and autonomously assemble on the site of injury without cell body move-
ment, establishing a potential barrier and thereby protecting the surrounding, healthy
tissue (Davalos et al. 2005; Hines et al. 2009; Szalay et al. 2016). This process
assembly was shown to be mediated by ATP (released either by damaged cells or in
a more regulated manner by astrocytes) and the microglia purinoreceptor P2Y12

(Haynes et al. 2006). Subsequent to this immediate barrier formation, microglia are
known to retract the processes adopting a more amoeboid-like morphology. These
morphological changes were found to be associated with a downregulation of P2Y12,
a conversion of ATP to adenosine by microglia ectoenzymes CD73 and CD39, and
an increase in expression of adenosine A2A receptors (Orr et al. 2009). At the end of
the range of morphological changes upon ‘activation’, microglia display a rounded
cell body with an increase in soma size and only sparse processes, which is termed
‘amoeboid’ (Kettenmann et al. 2011). Similar to peripheral immune responses, the
density of microglia increases at the site of an insult in order to provide more
immune cells to fight invading pathogens, as well as to assure the protection and
restoration of tissue homoeostasis. Microglia can become motile and actively
migrate to the sight of insult following chemotactic gradients as well as increase
their density through local proliferation (Kettenmann et al. 2011). As tissue macro-
phages, microglia increase their phagocytic activity to engulf invading pathogens
and toxic molecules as well as to promote and regulate tissue remodelling and repair
by phagocytizing apoptotic cells and cellular debris (Kettenmann et al. 2011).
During neuroinflammation, microglia can also act as antigen-presenting cells
(APCs) to activate invading lymphocytes of the adaptive immune system
(Kettenmann et al. 2011). Lastly, microglia produce and secrete various immune-
mediating factors, including pro- and anti-inflammatory cytokines and chemokines,
as well as neurotrophic factors, that are crucial for coordinating the combat against
pathogens and/or initiating and promoting tissue remodelling and repair (Gomez-
Nicola and Perry 2015; Graeber and Streit 1990; Kettenmann et al. 2011; Ransohoff
and Cardona 2010; Ransohoff and Engelhardt 2012; Svahn et al. 2014; Wolf et al.
2017).
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Descriptive studies of microglia morphology in a variety of different diseases and
animal models suggested that their ‘activation’ pattern follows a linear range (Perry
et al. 2010). This hypothesis, however, has been replaced by the macrophage-
derived polarization terminology (Perry et al. 2010). This concept of activation
was based on findings in peripheral macrophages where different stimuli could
induce different activation states termed M1 (classically activated) and M2 (alterna-
tively activated), whereby M2 phenotypes were further refined into M2a, M2b, and
M2c (Martinez and Gordon 2014). The classically activated M1 macrophages are
designated to specialize in pathogen elimination, whereas alternatively activated M2
macrophages are involved in tissue remodelling and repair (Geissmann et al. 2010;
Mantovani et al. 2005). However, this schema of activation has several limitations
(as explained by Martinez and Gordon 2014), which undermines the possibility of
applying the M1/M2 framework to microglia (Ransohoff 2016). Despite this, there
are numerous publications that employ M1/M2 terminology in order to characterize
microglia ‘activation’ states.

We now know that the functional diversity and dynamics of microglia are
enormous, and their activation is heterogeneous and critically dependent on the
nature of the pathological insult (Gomez-Nicola and Perry 2015; Graeber and Streit
1990; Ransohoff and Engelhardt 2012; Svahn et al. 2014; Wolf et al. 2017). Thus,
identifying the diverse phenotypes and functions they can adopt in response to an
insult or in different diseases remains to be a major challenge. Novel technologies
including two-photon imaging, whole-genome transcriptomic and epigenomic anal-
ysis with complementary bioinformatics and unbiased proteomics, and cytometry by
time of flight (CyTOF; Fluidigm) have been able to shed light into the complex
world of microglia and microglia ‘activation’ (Ransohoff 2016). Despite these major
advances and exciting new insights, most of the research published today still relies
on morphological analyses and measurements of specific cellular markers in order to
identify microglia-specific phenotypes. While these measures can, to a certain
extent, detect alterations in microglia activation states, they fail to adequately
identify all the diverse phenotypes and functions that these cells can adopt
(Gomez-Nicola and Perry 2015; Graeber and Streit 1990; Perry et al. 2010;
Ransohoff 2016; Ransohoff and Engelhardt 2012; Svahn et al. 2014; Wolf et al.
2017).

6 Microglia Function: Beyond Central Immune Cell

For decades, microglia were regarded as the brain-resident immune cells having the
sole purpose to sense and protect the brain from harmful stimuli. In the past years,
however, the functional roles of microglia have been extended to non-immunological
functions, including the regulation of neurogenesis, myelination, angiogenesis, and
synaptic pruning (Arnold and Betsholtz 2013; Bilimoria and Stevens 2015; Reemst
et al. 2016; Salter and Beggs 2014; Thion and Garel 2017). A large body of evidence
accumulated suggest that microglia are critically involved in neurodevelopmental
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processes throughout prenatal stages up to postnatal maturation of the CNS
(Paolicelli and Ferretti 2017; Reemst et al. 2016).

During embryonic development, microglia were shown to regulate the size of the
neural precursor cell (NPC) pool through phagocytosis of NPCs in the
subventricular zone (SVZ) of the developing cerebral cortex (Cunningham et al.
2013). Besides controlling the neuronal progenitor cell pool, microglia were impli-
cated in regulating the wiring of forebrain circuits during embryonic development
(Squarzoni et al. 2014). In utero perturbations of microglia activity resulted in
impaired outgrowth of dopaminergic axons in the forebrain and affected the laminar
positioning of subsets of neocortical interneurons (Squarzoni et al. 2014). Further-
more, in utero microglia depletion resulted in defective fasciculation of the axonal
tracts in the dorsal corpus callosum (Pont-Lezica et al. 2014).

In postnatal developmental periods, microglia were shown to continue regulating
the NPC pool in the SVZ. Besides microglia-dependent regulation of NPC numbers
through phagocytosis, microglia were shown to promote neurogenesis and
oligodendrogenesis through the production and release of pro-inflammatory cyto-
kines, including IL-1β, IL-6, TNF-α, and IFN-γ (Shigemoto-Mogami et al. 2014).
Microglia were further shown to control developmental cell death in the hippocam-
pus during early postnatal development in mice by means of phagocytosis of
apoptotic neurons (Wakselman et al. 2008). Moreover, microglia were implicated
to support the survival of layer V cortical neurons during postnatal development
(Ueno et al. 2013).

Besides regulating survival and death, migration, and positioning, as well as
axonal guidance of neurons, microglia are now known to actively participate in
synaptic pruning in a complement-dependent manner (Schafer et al. 2012; Wu et al.
2015). The complement system is a major effector of the innate immune system and
an adjuvant for the adaptive immunity (Parkin and Cohen 2001). It consists of
numerous soluble and cell-surface proteins that can recognize endogenous and
foreign materials (Mayilyan et al. 2008; Parkin and Cohen 2001). In the context of
CNS circuit refinement, the complement system is critical for the tagging, recogni-
tion, and elimination of synapses (Orsini et al. 2014; Presumey et al. 2017; Stephan
et al. 2012). As of today, microglia-dependent synaptic pruning has been best
studied in the mouse retinogeniculate system. This system has proven to be an
excellent model system for studying developmental CNS synapse elimination as it
involves the removal of excess synapses in the dorsal lateral geniculate nucleus
(dLGN) of the thalamus in an activity-dependent manner (Stephan et al. 2012;
Stevens et al. 2007). The findings from these studies suggest that microglia-
dependent pruning is mediated by the synaptic deposition of the complement
component C1q, which initiates the proteolytic cascade of the complement system
ultimately resulting in the deposition of the activated C3 fragment on synapses,
which itself is recognized by the complement receptor 3 (CR3) expressed by
microglia inducing phagocytosis (Schafer et al. 2012; Stevens et al. 2007). Intrigu-
ingly, this process is not random but has been shown to be activity-dependent, as
microglia cells engulf weaker, less active synapses only and sparing the strong ones
(Schafer et al. 2012).
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Besides the complement system, fractalkine (CX3CL1) has been implicated to
regulate microglia-dependent synaptic pruning (Arnoux and Audinat 2015;
Paolicelli et al. 2011). CX3CL1 is produced by neurons and astrocytes and present
in a membrane-bound (‘do-not-eat-me’ signal) or soluble (‘find-me’ signal) form
and the ligand for the microglia-specific receptor CX3CR1 (Table 1). Findings in
CX3CR1 knock-out mice demonstrated that the lack of fractalkine-mediated
chemoattraction resulted in delayed recruitment of microglia and impaired synapse
formation of pyramidal cells of the CA1 region of the hippocampus (Paolicelli et al.
2011), resulting in long-term alterations of hippocampal functional connectivity
(Zhan et al. 2014), and the impaired functional development of thalamocortical
synapses of the barrel cortex (Hoshiko et al. 2012).

Glia-dependent pruning of excess or weak synapses has been proposed to con-
tribute to synapse elimination during two distinct phases of postnatal development:
the first phase including the first 3 weeks after births in rodents and approximately
the first 5 postnatal years in human infants (Johnson 2001; Neniskyte and Gross
2017) and a second phase spanning week 3–8 in rodent development, which
represents adolescence in humans (Blakemore 2012; Konrad et al. 2013; Neniskyte
and Gross 2017). During the first phase, sensory circuits along with circuits associ-
ated with cognition and behaviour are being refined (Johnson 2001; Neniskyte and
Gross 2017). The second phase of refinement is crucial for the establishments of
circuits involved in goal-directed behaviour, planning, and impulse control in
associated brain regions such as the medial prefrontal cortex (mPFC) (Blakemore
2012; Konrad et al. 2013; Neniskyte and Gross 2017). In support of the notion that
microglia-dependent synaptic pruning is involved in later postnatal development and
maturation are recent findings where transient microglia depletion in mice at post-
natal day 19 or 30 altered the development and fine-tuning of synapses necessary for
proper learning and memory tasks (Parkhurst et al. 2013).

In the healthy adult brain, microglia have been primarily studied with regard to
their role as immune cell of the CNS. However, the few studies assessing the
non-immunological function of microglia have shown that microglia continue to
participate in the regulation of the NPC pool in regions with adult neurogenesis
(Sierra et al. 2010, 2014). The extent to which microglia regulate synaptic pruning
and remodelling in the adult brain, on the other hand, remains ill defined. However,
recent findings suggest that microglia are involved in regulation of behaviour.
Temporal microglia depletion in the hippocampus of adult mice resulted in cognitive
deficits and impaired social behaviour (Torres et al. 2016). Furthermore, microglia
processes have been shown to make temporary contacts with elements of the
neuropil, including dendritic spines and axonal terminals (Salter and Stevens
2017; Sierra et al. 2013; Tremblay 2011). Confocal and immuno-gold electron
microscopy studies have identified both pre- and postsynaptic elements within
microglia processes following such brief contacts with synapses, suggesting that
microglia could actively participate in synaptic remodelling and pruning (Linnartz
et al. 2012; Paolicelli et al. 2011; Tremblay et al. 2010).

Against this background, it becomes evident that the neuroimmune system, and
microglia in particular, critically regulates proper neuronal development and
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Table 1 Overview of the regulatory signals based on their response they evoke in microglia

Ligands/signals Expression
Microglia
receptor Reference

‘Do-not-eat-me’

CD47 (integrin-associated
protein)

Various cell
types includ-
ing neurons
and myelin

Signal regulatory
protein-alpha
(SIRP-a)

Zhang et al. (2015)

Polysialic acid residues Neuronal
glycocalyx

Sialic acid-
binding immuno-
globulin-like
lectins (SIGLECs)

Brown and Neher (2014),
Claude et al. (2013), and
Wang and Neumann (2010)

Membrane-bound
fractalkine ligand
(CX3CL1)

Neurons CX3CR1 Brown and Neher (2014),
Paolicelli et al. (2014), and
Cardona et al. (2006)

‘Find-me’/’help-me’

Adenosine triphosphate
(ATP) (‘find-me’)

Released by
neurons and
astrocytes

P2Y12 Dissing-Olesen et al. (2014),
Haynes et al. (2006),
Hristovska and Pascual
(2015), and Eyo et al. (2014)

Soluble CX3CL1
(‘find-me’)

Released by
neurons

CX3CR1 Garton et al. (2001), Noda
et al. (2011), Maciejewski-
Lenoir et al. (1999), Liang
et al. (2009), and Zhang
et al. (2012)

Interleukin-34 (IL-34)
(find-me/help-me)

Released by
neurons

Colony-stimulat-
ing factor-1
receptor
(CSFR-1)

Xing and Lo (2017),
Mizuno et al. (2011), and
Luo et al. (2013)

Fibroblast growth factor-2
(FGF-2) (find-me/help-me)

Released by
neurons

Fibroblast growth
factor-3 (FGFR3)
(chemotaxis)
FGFR1 (restor-
ative microglia
phenotype)

Noda et al. (2014) and Xing
and Lo (2017)

‘Eat-me’

Phospholipid
phosphatidylserine

Exposed on
cell surface of
neurons

Brain-specific
angiogenesis
inhibitor-1
(BAI-1)

Brown and Neher (2014),
Wakatsuki and Araki
(2017), Marker et al. (2012),
and Mazaheri et al. (2014)

Opsonin (milk fat globule
factor-E8 (MFG-E8)-
tagged phospholipid
phosphatidylserine

Released by
microglia and
astrocytes

Vitronectin recep-
tors (VNRs)

Cardona et al. (2006),
Fricker et al. (2012), and
Neniskyte and Brown
(2013)

Membrane debris Apoptotic
cells

Triggering recep-
tor expressed on
myeloid cells-2
(TREM2)

Fu et al. (2014) and
Takahashi et al. (2005)

Complement component
C1q-tagged glycoproteins

Neuronal
surface

Complement
receptor 3 (CR3)

Schafer et al. (2012),
Linnartz et al. (2012),
Stephan et al. (2012), and
Brown and Neher (2014)

20 D. Mattei and T. Notter



refinement of brain circuitry during embryonic and postnatal development and
possibly as well in the adult brain (Arnold and Betsholtz 2013; Bilimoria and
Stevens 2015; Reemst et al. 2016; Thion and Garel 2017; Wu et al. 2015). It is
therefore conceivable that alterations in the neuroimmune system could impact
neurodevelopment and therefore play an important role in the aetiology of
neurodevelopmental psychiatric disorders. To what extent dysfunctions in the
neuroimmune system and microglia contribute to the pathogenesis of
neurodevelopmental disorders, however, warrants further examination.

7 The Microglia ‘Sensome’

A crucial prerequisite for the functions of microglia is its proper communication with
CNS cells, in particular neurons. Diverse microglia receptors have been identified
that recognize and respond to specific neuronal ligands (both soluble and membrane-
bound). The set of receptors expressed by microglia in order to enable them to sense
brain environment and neuronal states and respond accordingly is highly complex
and can be referred to as the ‘microglia sensome’ (Brown and Neher 2014;
Diaz-Aparicio et al. 2016). The microglia sensome is not stable but rather has
been shown to adapt to changing brain environments such as present during the
development of the CNS (Hickman et al. 2013; Matcovitch-Natan et al. 2016). The
regulatory signals (ligands), on the other hand, can be classified based on the
response they evoke in microglia (Table 1). These include ‘do-not-eat-me’ signals
presented by healthy neurons to prevent microglial phagocytosis, ‘find-me’/
‘help-me’ signals from neurons that induce microglial chemotaxis and adhesion to
neuronal components (e.g. dendritic spines), and ‘eat-me’ signals that initiate
phagocytosis (Brown and Neher 2014; Sierra et al. 2013).

Phagocytosis is not only important for the physiological maintenance of the CNS,
but it is also a crucial mechanism during inflammation to engulf invading pathogens,
injured neurons, and cellular debris (Rosales and Uribe-Querol 2017). Although
triggered by different signals that induce different intracellular signalling cascades,
the phagocytic cascades under noninflammatory or inflammatory conditions both
depend on the activation of small GTPases including Rac and Rho, which catalyse
cytoskeletal rearrangement in order to enable the formation of a phagocytic cup and
eventually (Gumienny et al. 2001; Lee et al. 2007; Patel et al. 2011; Rosales and
Uribe-Querol 2017; Sierra et al. 2013; Underhill and Goodridge 2012).

Neurotransmitter receptors expressed by microglia have been suggested to be an
integral part of the ‘microglia sensome’ to mediate the bidirectional communication
between neurons and microglia (Liu et al. 2016). Indeed, evidence suggests that
neurotransmitter signalling can modulate ‘microglia activation’, phagocytic clear-
ance, and phenotypic polarization (Liu et al. 2016). For example, microglia express
both ionotropic and metabotropic glutamate receptors, which were shown to alter
cytokine release (Noda et al. 2000), chemotaxis (Liu et al. 2009), as well as process
motility (Fontainhas et al. 2011) in an ATP-dependent and ATP-independent
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manner. Furthermore, microglia express both ionotropic GABA(A) and
metabotropic GABA(B) receptors (Liu et al. 2016), which were both shown to
decrease the release of pro-inflammatory cytokines upon an inflammatory stimulus
(Kuhn et al. 2004; Lee et al. 2011). Microglia also express both α-1/2 and as β-1/2
adrenergic receptors (Liu et al. 2016). Depending on the receptors expressed,
noradrenaline (NA) was shown to regulate the microglia immune profile in response
to an inflammatory stimulus (Johnson et al. 2013; Liu et al. 2016), chemotaxis, and
phagocytosis (Heneka et al. 2010), as well as ATP-dependent process motility and
cell mobility (Gyoneva and Traynelis 2013). Moreover, microglia were shown
to express functional serotonin receptors, which promote injury-induced and
ATP-mediated microglia process motility and cell mobility, as well as inhibit
phagocytosis (Krabbe et al. 2012). Lastly, histamine was also identified as a regu-
lator of microglia motility, migration, and cytokine release (Ferreira et al. 2012), as
well as modifying their morphological appearance and immune response in specific
brain regions (Frick et al. 2016).

Considering the above, we are only now starting to appreciate the complexity of
neuron-microglia interactions and how neuronal activity governs microglia activity
and vice versa. Neurotransmitters otherwise designated to regulate our mood,
wakefulness, and cognitive processes are now known to directly or indirectly
interact with brain-resident immune cells and thereby modulate a broad array of
microglia functions including chemotaxis, process motility, phagocytosis, and cyto-
kine release. The latter is of particular interest, as changes in cytokine levels
measured in the brain or cerebral spinal fluid (CSF) of psychiatric patients are
often interpreted as ongoing inflammatory processes or neuroinflammation. It is,
however, only now becoming clear that inflammatory cytokines in the brain are
constantly produced at low levels in a region-specific and diurnal manner whereby
they exert various physiological tasks independent of immunological processes
(Cearley et al. 2003; Krueger et al. 2011).

8 The Role of Central Cytokines Beyond Inflammation

Besides orchestrating and controlling the function of immune cells (Parkin and
Cohen 2001), cytokines have been increasingly recognized to be involved in the
regulation of various physiological processes of the CNS including sleep, learning,
memory, neural plasticity, and neurogenesis (Cearley et al. 2003; Donzis and
Tronson 2014; Krueger et al. 2011; Yirmiya and Goshen 2011).

The two prototypical pro-inflammatory cytokines IL1β and TNFα were found to
be constitutively expressed in the healthy adult rat brain following a diurnal expres-
sion pattern in specific brain regions (Cearley et al. 2003) and were shown to
stimulate non-rapid eye movement (NREM) sleep (Krueger 2008). Furthermore,
hippocampal IL1β gene expression was shown to regulate contextual fear memory
formation (Goshen et al. 2007). Hippocampal IL-1β levels were shown to increase
24 h after contextual fear conditioning and that interfering with IL-1 signalling
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(excess or blocking the IL-1 signalling pathway) could impede hippocampus-
dependent memory formation (Goshen et al. 2007). Intriguingly, sleep deprivation,
which is associated with cognitive decline, was shown to cause an increase in central
IL-1β and TNF-α levels, which was suggested to contribute to the cognitive deficits
evident after excessive lack of sleep (Krueger et al. 2011). The notion that IL-1β is
involved in regulating cognitive processes was further strengthened by a study that
found hippocampal IL-1β to be increased in an ATP- and microglia-dependent
manner after a spatial recognition task (Labrousse et al. 2009). ATP was identified
as a key regulator of central IL-1 induction through binding to the microglia-specific
purinergic receptor P2X7 (Ferrari et al. 2006; Mingam et al. 2008). Indeed, mice
lacking the P2X7 receptor showed no task-dependent IL-1β induction, which was
associated with impaired spatial learning (Labrousse et al. 2009). These findings are
in line with previous studies showing that impaired IL-1 signalling impeded
hippocampus-dependent learning and memory processes, including long-term
potentiation (LTP) (Avital et al. 2003; Yirmiya et al. 2002). The chemokine
fractalkine (CX3CL1) was also suggested to be involved in learning and memory
processing, more specifically to play a role in the protective plasticity process of
synaptic scaling (Sheridan et al. 2014). CX3CL1 was shown to be upregulated in the
rat hippocampus during a brief temporal window following spatial learning and
LTP-inducing stimulation of the dentate gyrus. Furthermore, physiologically rele-
vant levels of CX3CL1 inhibited LTP maintenance and were shown to dampen
glutamate-mediated calcium increase in both neurons and microglia (Sheridan et al.
2014). The cytokine TNF-α, on the other hand, was implicated in regulating the NPC
pool in adult neurogenesis (Chen and Palmer 2013). NPCs were shown to express
TNF receptors (TNFR) 1 and 2, which differentially regulate NPC cell fate, whereby
TNFR1 signalling favours proliferation and TNFR2 signalling favours apoptosis
(Chen and Palmer 2013).

In light of this book chapter and the presented physiological functions of
cytokines described above, there is a need to carefully consider how to
interpret alterations in cytokine levels measured between patient groups and con-
trols. Indeed, numerous studies have identified significant changes in cytokine levels
both in brain tissue and CSF of psychiatric patients (Miller and Raison 2016; van
Kesteren et al. 2017; Wang and Miller 2017). However, although significant, the
observed changes are very small in comparison to the neurological conditions that
underlie neuroinflammation: For example, a significant increase of CSF IL-6 levels
was detected in a subgroup of schizophrenic patients where the levels in healthy
controls were found to be at 3 pg/mL and that of patients 4.5 pg/mL (Garver et al.
2003). Also in chronic schizophrenic patients, CSF IL-6 levels were significantly
increased, with a mean CSF IL-6 concentration of 1.5 pg/mL in controls and 2.68 pg/
mL in patients (Schwieler et al. 2015). Furthermore, significant increased CSF IL-6
levels were measured in recent-onset schizophrenic patients (median 0.85 pg/mL)
relative to controls (median 0.52 pg/mL) (Coughlin et al. 2016). Another study
found that patients who attempted violent suicide had significantly higher CSF IL6
levels (5.26 pg/mL) as compared to control (0.64 pg/mL) (Lindqvist et al. 2009). In
contrast to this, CSF IL-6 levels measured in multiple sclerosis (MS) patients have
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been found to increase from a mean of 0.87 pg/mL in controls to 13.4 pg/mL in MS
patients (Stelmasiak et al. 2000). Furthermore, CSF IL-6 levels measured in patients
suffering from meningitis have been found to peak up to 500 pg/mL (Pinto Junior
et al. 2011). Similar to IL-6, CSF IL-1β levels have been found to be increased in
schizophrenic patients relative to controls, whereby schizophrenic patients displayed
a median IL-1β of 4.37 pg/mL and controls 0.78 pg/mL (Soderlund et al. 2009).
IL-1β was also found to be elevated in the CSF of patients with acute depression,
where the mean level was 1.14 pg/mL in patients as compared to controls who had
an average level of 0.14 pg/mL (Levine et al. 1999). In comparison to this, menin-
gitis patients displayed CSF levels of IL-1β that can reach a peak of 1,000 pg/mL
(Coutinho et al. 2013). Lastly, in patients with traumatic brain injury, the levels of
CSF pro-inflammatory cytokines can increase up to several 100-fold in comparison
to controls (Sordillo et al. 2016).

It becomes evident that there is a substantial difference with respect to the
measured levels of pro-inflammatory cytokines in patients suffering from conditions
or diseases with ongoing neuroinflammation or psychiatric patients. The question
arises as to whether these observed alterations in psychiatric patients truly reflect
ongoing inflammatory processes or changes in the general physiological state of the
brain. To answer this question, future studies are needed to expand our knowledge of
the physiological roles of pro-inflammatory cytokines in health and disease.

9 Concluding Remarks

The growing understanding that central immune mediators are functionally involved
in regulating physiological processes of the CNS has revolutionized the field of
neuroimmunology. Microglia and cytokines have been implicated in the regulation
of neurodevelopment, neuronal wiring, and synaptic plasticity. The functional
relevance and underlying mechanisms of these non-immunological functions
remain, however, largely unknown and await further investigation. It is, however,
clear that the reductive conception of microglia as merely central immune cells is too
simplistic. Rather, they emerge as a distinct but heterogeneous cell population of the
CNS with a high degree of functional diversity and complexity. Unequivocally
implying changes in microglia activity profiles and/or inflammatory factors
with ongoing neuroinflammation or neuroinflammatory processes may therefore
be too simplistic and could result in misconceptions. In contrast, alterations in
neuroimmune systems – particularly in neurological and psychiatric diseases
where there is no apparent ongoing inflammation that is evident – should be
interpreted in relation to the functional complexity of immune cells and molecules
in physiological brain processes. This could help unravelling the functional rele-
vance of neuroimmune dysfunctions in psychiatric illnesses and aid defining future
research directions in the field of psychoneuroimmunology.
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