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Abstract An enigmatic feature of behavioural state control is the rich diversity of

wake-promoting neural systems. This diversity has been rationalized as ‘robustness
via redundancy’, wherein wakefulness control is not critically dependent on one

type of neuron or molecule. Studies of the brain orexin/hypocretin system challenge

this view by demonstrating that wakefulness control fails upon loss of this neuro-

transmitter system. Since orexin neurons signal arousal need, and excite other

wake-promoting neurons, their actions illuminate nonredundant principles of

arousal control. Here, we suggest such principles by reviewing the orexin system

from a collective viewpoint of biology, physics and engineering. Orexin peptides

excite other arousal-promoting neurons (noradrenaline, histamine, serotonin, ace-

tylcholine neurons), either by activating mixed-cation conductances or by

inhibiting potassium conductances. Ohm’s law predicts that these opposite conduc-

tance changes will produce opposite effects on sensitivity of neuronal excitability to

current inputs, thus enabling orexin to differentially control input-output gain of its

target networks. Orexin neurons also produce other transmitters, including gluta-

mate. When orexin cells fire, glutamate-mediated downstream excitation displays

temporal decay, but orexin-mediated excitation escalates, as if orexin transmission

enabled arousal controllers to compute a time integral of arousal need. Since the

anatomical and functional architecture of the orexin system contains negative

feedback loops (e.g. orexin ! histamine ! noradrenaline/serotonin—orexin),

such computations may stabilize wakefulness via integral feedback, a basic engi-

neering strategy for set point control in uncertain environments. Such dynamic
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behavioural control requires several distinct wake-promoting modules, which per-

form nonredundant transformations of arousal signals and are connected in feed-

back loops.

Keywords Arousal • Brain state • Control theory • Hypocretin • Hypothalamus •

Neurons • Orexin
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1 Postsynaptic Actions of Orexin/Hypocretin Mediate

Arousal Control

Efficient behaviour requires optimal adjustment of behavioural state (i.e. arousal,

wakefulness, activity, energy expenditure) to perturbations in the environment. The

environmental perturbations come in many diverse types, which differ greatly in

their speed and predictability, necessitating an evolution of behavioural control

systems that can deal with this perturbation diversity. A fundamental example of a

slow and predictable perturbation in the environment is the ca. 24 h day-night cycle

on Earth. The hypothalamic suprachiasmatic nucleus (SCN) adjusts behaviour to

this cycle by emitting sinusoidal (ca. 24 h period) neural signals that schedule

behavioural activity for either the day (for diurnal animals) or the night (for

nocturnal animals), depending on specific survival advantages afforded to different

animals by being active during light or dark. These slow daily rhythms of

behavioural activity collapse upon description of the SCN [1].

However, wakefulness also needs to be controlled on a much more rapid and

unpredictable timescale than that controlled by the SCN. Most of us take this rapid

wakefulness adjustment for granted, assuming that we will not fall asleep in the

middle of laughing or talking. This is not so for patients suffering from the sleep-

wake disorder narcolepsy, which affects about 1:2000 people and where sleep and

paralysis suddenly and uncontrollably intrude into normal wakefulness [2, 3]. Most

cases of human narcolepsy are associated with reduced levels of orexin/hypocretin

peptides in the CSF and lack of central orexin/hypocretin-producing neurons in the

brain [4–7]. Loss of orexin/hypocretin peptides in humans, dogs, mice and rats
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impairs arousal control, resulting in abnormally frequent and rapid loss of con-

sciousness (‘sleep attacks’). It seems that without the orexin/hypocretin system,

wakefulness is prone to instability in the face of rapid perturbations in the environ-

ment, and processes enabled by orexin/hypocretin cells keep this instability under

control. Orexin/hypocretin and the SCN systems are thus two hypothalamic sys-

tems that are essential for appropriate matching of behavioural state to the envi-

ronment on rapid and slow timescales, respectively.

The orexin/hypocretin cells act as controllers rather than critical generators of

wakefulness: with them, the average amount of arousal (sleep and waking) does not

change, but the ability to control arousal based on salient environmental set point is

impaired [8, 9]. Coordination of many other behaviours, such as reward-seeking,

also critically relies on orexin/hypocretin neurons [10–12], but since these behav-

iours are wakefulness dependent, it is often unclear to what extent these effects are

secondary to wakefulness control. Since the discovery of orexin/hypocretin neu-

rons, a key question has been why they are so critical for arousal control, consid-

ering the numerous other arousal-controlling neurons in the brain

(e.g. noradrenaline, histamine, acetylcholine, serotonin cells). Here, we review

the biological properties of brain orexin/hypocretin circuits related to wakeful-

ness/arousal, with particular emphasis on postsynaptic actions of orexin/hypocretin

peptides and from a viewpoint of basic principles of signal processing and dynamic

set point control. For more comprehensive overviews of orexin/hypocretin physi-

ology, we refer the reader elsewhere [10, 13].

In this article, we will take the view that orexin/hypocretin neurons signal

arousal need (or, in control system language, arousal error – see below). We define

arousal need as a need to counteract actual or potential dangers such as low energy

levels, high CO2 levels, or potentially threatening sensory stimuli (e.g. sudden

sounds, presence of another animal). Orexin neurons sense all these signals

(Fig. 1), and thus their activity represents a sum of diverse ‘arousal demands’
(e.g. they are inhibited by glucose but excited by H3O

�/CO2) [8, 14–18]. Orexin/

hypocretin neurons are also inhibited by at least some of the other wakefulness-

promoting transmitters such as serotonin and noradrenaline, i.e. transmitters that

may represent the actual level of arousal [19–21] (discussed below). Thus, orexin/

hypocretin cell output may represent an ‘arousal error’ (actual arousal minus

required arousal), thereby signalling how much arousal should be increased. In

the absence of these orexin/hypocretin signals, arousal is no longer appropriately

coupled to internal and external environment, which is an alternative way of

describing sleep-wake instability.

The wake-sleep instability seen upon loss of orexin/hypocretin-producing neu-

rons is recapitulated by the loss of orexin/hypocretin type 2 receptors or of orexin/

hypocretin peptides [22–24]. This suggests that postsynaptic actions of orexin/

hypocretin peptides on orexin/hypocretin type 2 G-protein-coupled receptors are

responsible for arousal control mediated by orexin/hypocretin cells. This also

suggests that orexin type 2 receptor-independent actions of orexin/hypocretin

cells, such as those mediated by their other transmitters (glutamate, dynorphin,

Narp) or by orexin/hypocretin via type 1 receptors, are insufficient to achieve
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Fig. 1 Input and outputs of orexin/hypocretin cells. Orexin/hypocretin neurons are activated

during high vigilance states associated with high gamma EEG, requiring increased arousal such

as exploratory behaviour or upon sensory or emotional stimulation. A multitude of excitatory and

inhibitory substances modulates orexin/hypocretin cell activity. These include hormones, neuro-

peptides and small molecule transmitters as well as homeostatic signals. Orexin/hypocretin

neurons receive direct inputs from brain areas involved in sleep/wake control, appetite control

and reward. Orexin/hypocretin neurons integrate this information via the release of orexin

peptides, affecting postsynaptic gain and synaptic drive in target neurons. Orexin/hypocretin

activity may thereby gate relevant information based on environmental and homeostatic needs

[14, 16, 124–129]
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proper arousal control without orexin/hypocretin action of type 2 orexin/hypocretin

receptors. The latter point may seem surprising, considering that some arousal-

promoting neurons, such as noradrenaline neurons of the LC which are important

for orexin/hypocretin-induced wakefulness [25], are excited by orexin/hypocretin

via type 1 rather than type 2 OX receptors [26]. In contrast, other arousal-promoting

neurons, such as histamine cells of the tuberomammillary hypothalamus, are

excited by orexin/hypocretin via type 2 receptors [26, 27]. Below, we catalogue

this biological complexity of postsynaptic actions of orexin/hypocretin cells in

more detail and comment on some functional biophysical implications of this

complexity. Then, we propose a framework that simplifies and generalizes the

diversity of postsynaptic orexin/hypocretin actions into a control systems model

that accounts for general dynamic features of orexin/hypocretin-dependent arousal

and offers an organizing principle for the puzzling diversity of wakefulness-

promoting neurons in the brain.

2 Sites and Biophysics of Postsynaptic Actions of Orexin/

Hypocretin Neurons

From their location in the lateral hypothalamus, orexin/hypocretin cells project

axons to the entire brain [28, 29] (Fig. 2). The anatomical distribution of these

projections largely mirrors that of two G-protein-coupled receptors for orexin

[30]. Increased firing rate of orexin/hypocretin neurons produces awakening [31],

and most of the brain’s classical arousal-related systems are innervated by orexin/

hypocretin axons and excited by orexin/hypocretin peptides (see Table 1, which

lists many key findings alongside corresponding references [19, 26, 27, 32–106]).

Orexin/hypocretin peptides also modulate neuronal activity in brain areas related to

eating, emotion, autonomic function and motor control (Table 1). Here, we only list

(Table 1) but do not discuss the latter actions of orexin/hypocretin in detail, since

this has been covered extensively in recent publications (e.g. [10, 107]). We would

just like to note that combined activation of arousal and reward systems may ensure

that a heightened arousal accompanies reward-seeking, thereby increasing proba-

bility of reward discovery and of avoiding danger while exploring for rewards.

Also, arousal and exploration may require motivational signals, since these behav-

iours are not intrinsically rewarding but are energy expending and potentially

dangerous. Orexin/hypocretin may provide this motivation [10, 108], at least until

reward consumption beings [109].

From a biophysical perspective on signal processing, the excitatory/depolarizing

actions of orexin/hypocretin on central neurons (Table 1) can be divided into those

increasing membrane conductance (e.g. activation of non-selective cation currents)

and those decreasing it (e.g. inhibition of K+ currents). This has profound implica-

tions for input processing capabilities of orexin/hypocretin-modulated neurons. The

ability of a current input (I) to change membrane potential (V) is inversely related to
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BF, pons

Thalamus

Arcuate

ACh

amines

glut

GABA
NPYOX,dyn

glut

OX,dyn
glut

Cortical 
arousal

Appetite

Exploration,
EscapeLHA Amygdala

GABA Emotional 
arousal

VTA
DA

Brainstem

Spinal cord

Motor 
neurons

Sympathetic drivers

Physical 
arousal

Fig. 2 Main anatomical targets for orexin/hypocretin control of cortical arousal, appetite, emo-

tional arousal and physical arousal. Together, orexin/hypocretin control of these targets would

facilitate exploratory or escape behaviour
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membrane conductance (g). This dependence is described by Ohm’s law, V ¼
I/g. The neuronal firing output depends on the membrane potential (it is increased

by depolarization, [110, 111]). Therefore, conductance-increasing actions of

orexin/hypocretin will not only depolarize and electrically excite the target neuron

but also reduce the sensitivity of the neuron’s firing to other inputs. This would

effectively lock the neuron in a high-output state, which could be useful for

overriding other inputs in times of danger. In turn, conductance-reducing actions

of orexin/hypocretin will not only depolarize and excite the neuron but also

increase its sensitivity to other inputs. This would enable the neuron to be readily

modulated by other inputs (both stimulatory and inhibitory), thus allowing other

inputs to either augment or cancel the orexin/hypocretin-induced excitation. Over-

all, these conductance-related actions of orexin/hypocretin can be viewed as not

simply excitatory but also ‘gain modulating’. The ability to modulate the input-

output gain is an important feature of neural computation [112]. Therefore, the

functional/behavioural implications of gain-modulating postsynaptic actions of

orexin/hypocretin are an important question for future investigations.

Although the direct postsynaptic actions of orexin/hypocretin are usually excit-

atory, there are some exceptions. Per1 neurons of the hypothalamic suprachiasmatic

nucleus that function as the brain’s master circadian clock are inhibited by orexin/

hypocretin via activation of leak-like K+ channels, as well as presynaptically by

increasing GABA release [62]. Signal transduction pathways linking orexin/

hypocretin receptors to the inhibitory channels remain undefined. The inhibition

of mouse Per1 neurons by orexin/hypocretin may enable the circadian clock signals

to be overridden by arousal need signalled by orexin/hypocretin cells.

The above summary and classification of postsynaptic actions of orexin/

hypocretin highlight the diversity and some general themes of brain-wide orexin/

hypocretin signalling. However, such descriptions do not reveal critical compo-

nents of orexin/hypocretin actions nor why orexins/hypocretins are vital for brain

function stability. To achieve the latter insights, it is necessary to understand the

functionally critical modules mediating orexin/hypocretin action and the overall

control system architecture implemented by these modules. We address this in the

next section, continuing to focus on wakefulness control.

3 Which Orexin/Hypocretin-Regulated Sites Are Critical

for Wake Stability in the Normal Brain?

The diversity of orexin/hypocretin-excited neurons throughout the brain raises the

question of the relative roles of different orexin targets in preventing the narcoleptic

instability of wakefulness. An optimal way to deconstruct these natural roles would be

to examine the effects on wakefulness stability of targeted, specific and reversible

inactivation of orexin receptors in molecularly defined neurons in adult mice. Such

technically demanding experiments have not yet been accomplished. The relevant
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studies performed to date used other approaches, such as global receptor deletion

followed by targeted receptor restoration [113, 114] or experimental stimulation of

orexin/hypocretin cells concurrentwith experimental silencing of specific downstream

targets [25]. These approaches have caveats as far as the natural roles of orexin/

hypocretin targets in wake stability are concerned. For example, given the feedback

loops in wakefulness circuits (see below), the role of an orexin/hypocretin receptor site

in wakefulness control when all other orexin/hypocretin sites are genetically deleted is

not the same as its role in the natural brain. In turn, experimental stimulation of orexin/

hypocretin cells does not reproduce their natural firing patterns, and the ability of

orexin/hypocretin cells to stimulate awakening is not an assay ofwakefulness stability.

Nevertheless, the existing studies provide fundamental information about causal links

between specific neurons and wakefulness, as well as proof-of-concept information

relevant to narcolepsy treatment. Therefore, we briefly comment on some of them here

(for more in-depth discussions of current literature on this topic, see [2, 115]).

Carter et al. examined the mechanism of orexin-mediated wakefulness by

optogenetically stimulating orexin/hypocretin neurons while concurrently

optogenetically silencing one of their downstream effectors, the orexin type 1 recep-

tor expressing noradrenaline neurons of the locus coeruleus (LC) [25]. Note that

this does not address the question of which orexin/hypocretin targets are critical for

orexin/hypocretin-dependent wakefulness stability. They found that when the LC

noradrenaline neurons were inactivated, stimulation of orexin/hypocretin neurons

no longer produced awakening from sleep. This seminal finding establishes the

noradrenaline neurons as critical generators for the orexin/hypocretin-dependent

stimulation of wakefulness. However, it remains unclear how these generators are

controlled in order to maintain stable wakefulness, especially since the orexin type

2 receptor (not the type 1 expressed by the LC noradrenaline neurons) is essential

for the wake stability. In the next sections, we will propose a unifying framework

that can reconcile the wake-generator function of the noradrenaline neurons with

wake-controller functions of orexin type 2 receptor neurons.

Mochizuki et al. globally deleted orexin type 2 receptors in mice, producing a

narcoleptic instability ofwakefulness [113]. They then used a viral expression strategy

to restore these receptors locally in the tuberomammillary hypothalamus, an area rich

in histamine neurons that normally express high levels of orexin type 2 receptors. This

local manipulation rescued the wakefulness instability (but interestingly, not sleep

instability that also results from loss of orexin/hypocretin function). This suggests that

the histamine neurons could be critical for wake-controllers that signal to wake-

generators (such as noradrenaline cells) to adjust their signals properly.

Hasegawa et al. knocked out both types of orexin/hypocretin receptors inmice and

then reintroduced both of them at specific brain sites by viral delivery under a

non-specific promoter. They found that such receptor overexpression in the LC

restored the normal duration and number of wakefulness episodes [114]. It is not

clear whether this is the normal function of the orexin signals to the locus coeruleus or

an outcome of overexpression of orexin receptors that are not normally there. In

contrast, the dual orexin/hypocretin receptor overexpression in the tuberomammillary

hypothalamus did not restore the normal duration and number of wakefulness
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episodes. This shows that orexin/hypocretin signalling in the tuberomammillary

hypothalamus is insufficient for normal wakefulness when all orexin receptors are

missing from the locus coeruleus. Together with the data of Mochizuki et al., this can

be interpreted to suggest that the tuberomammillary hypothalamus requires an orexin-

sensitive downstream wakefulness generator in order to control wakefulness. For

effective wakefulness control, orexin/hypocretin may need to alter the activity of

both wakefulness regulators and generators in the brain, with different kinetics and via

different receptors (see Fig. 3, discussed below).
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Fig. 3 Brain arousal systems as control modules in a feedback loop. (a) A generalized control

system architecture (integral feedback loop) for tracking a desired set point (D) despite

unpredictable disturbances. After [120]. (b) Possible implementation of A by a diversity of

wake-promoting neurons in the brain (from more detail, see [18])
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4 Mapping Orexin/Hypocretin Biology onto Control

Operations

The above-discussed biological measurements define functionally important com-

ponents of orexin/hypocretin systems and the general signs (plus or minus) for

interactions between these components. This knowledge is fundamental, but alone

is insufficient to account for control operations performed by orexin/hypocretin to

achieve stable wakefulness. To clarify what we mean by control operations, a brief

formal definition of tracking and stability is warranted. From a general evolutionary

perspective, a highly desirable attribute of arousal control is set point tracking,

i.e. the ability to adjust a set point to relevant inputs while rejecting disturbances. A

good tracking system will follow salient inputs while resisting disturbances. Dis-

turbance resistance is the ability to protect a set point from irrelevant disturbance,

e.g. noise in brain/body internal signals, external events not requiring arousal

responses, etc. A system capable of disturbance-resistant tracking can be consid-

ered ‘robust yet flexible’. Note that this robust flexibility has to exist in the real

world, i.e. where neither noise/disturbance nor important inputs are completely

predictable, i.e. the control system has to be uncertainty proof. This need to deal

with uncertainty imposes important requirements (and thus constraints) on system

architecture (see below). For more detailed discussions of control principles as

applied to orexin/hypocretin networks, see [18].

Can the actions of orexin/hypocretin be considered to implement such robust-

yet-flexible arousal? We believe the answer is yes, since without orexin/hypocretin,

arousal becomes both flexible and less robust. For example, when orexin/

hypocretin is knocked out, mice cannot respond to potentially dangerous intrusions

by properly increasing blood pressure [116], and they cannot properly adapt to a fall

in their energy levels by increasing locomotion [8]. Thus, a vital flexibility of

arousal is lost without orexin/hypocretin. In terms of robustness, it is well known

that without orexin/hypocretin arousal can dip to inappropriately low levels (uncon-

sciousness) upon disturbances such as laughter in humans or sight of delicious food

in animals [2, 117, 118]. Without orexin/hypocretin, there is no appropriate track-

ing/adjustment of arousal state to internal and external state.

If orexin/hypocretin actions implement arousal tracking, the understanding of

arousal control will increase by viewing orexin/hypocretin system from general

perspectives of robust-yet-flexible control systems. Such systems generally must

contain autocorrecting feedback loops, since neither the world nor system perfor-

mance can be precisely predicted [119, 120]. As a minimum, such a feedback loop

circuit must contain at least three operationally different elements in order to be

robust yet flexible, which we here call a comparator, a controller and a generator

(Fig. 3). This error-based feedback system is a canonical engineering strategy to

track a set point despite noise [119, 120]. Note that although artificial, stimulation

of each of these elements would increase the final output of the system

(e.g. arousal). However, this ‘test’ does not mean that the elements are redundant:

their functions and dynamics are fundamentally distinct.
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These distinct functions of the three components in this autocorrecting system

architecture (Fig. 3) have been discussed in detail in control engineering literature

[119, 121] and recently in arousal control literature [18, 58]. A summary of the

latter discussions is that orexin/hypocretin neurons display functional hallmarks of

comparators, some orexin type 2 receptor neurons (histamine cells) exhibit func-

tional signatures of controllers, while some orexin type 1 receptor neurons (nor-

adrenaline cells) have operational features of generators (for detailed arguments,

see [18]). A particularly curious feature of some orexin type 2 receptor cells is that

they appear to transmit a signal resembling a temporal integral of orexin/hypocretin

neuron activity (Fig. 4) [18, 58]. This integration may enable them to function as

integral controllers, engineering signals that are theoretically necessary and suffi-

cient for robust-and-flexible control mediated by orexin/hypocretin in general and

its type 2 receptors in particular [18]. Therefore, from an operational perspective,

integral feedback is an important candidate mechanism for how orexin/hypocretin

maintains appropriate behavioural state.

5 Explanatory and Predictive Value of Viewing Orexin/

Hypocretin Actions as Control Computations

What is the scientific value, for orexin/hypocretin biology and clinical applications,

of control engineering theories such as those shown in Fig. 3?

First, an important corollary is that these control schemes assign a clear opera-

tional reason for the hitherto puzzling diversity of seemingly redundant wake-

promoting neurons in the brain. If brain wakefulness control was operating via

integral control or a related feedback scheme, there would have to be several

operationally nonredundant neural types (comparators, controllers, generators)

cooperating together. Note that these neurons are nonredundant in the sense of

operations they perform, for example in this case, addition, integration and ampli-

fication, respectively. However, the comparator, controller and generator neurons

are redundant in the sense that they all promote wakefulness if separately stimu-

lated (this follows mathematically from the scheme in Fig. 3). The latter ‘redun-
dancy’, however, is a by-product of experimental manipulation – it could be useful

clinically for achieving rapid arousal, but it does not mean that the wakefulness

control architecture is redundant. Such considerations are attractive because they

settle a long-standing enigma in the field – the diversity of wake-promoting neurons

– and emphasize that wakefulness control/stability/flexibility/robustness is a sepa-

rate process from wakefulness stimulation, which allows the terms redundant and

nonredundant to be applied more precisely. Thus, a control view adds clarity and

explanatory power to understanding how the complex biology of arousal control

relates to the need for the brain to operate flexibly yet robustly in uncertain

environments.
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of virally delivered ChR2-eYFP in orexin-cre mice allows selective expression in lateral
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Second, control schemes such as those shown in Fig. 3 are formal mathematical

theories that produce precise experimentally testable predictions about the temporal

dynamics of distinct neurons. Such predictions of dynamics can be directly com-

pared with real biological dynamics (measuring of temporal patterns of neuronal

activity) and are thus essential for falsifying any theories of dynamic brain function.

For example, when mathematically simulated, comparator, regulator and generator

neurons produce different temporal signatures of activity in response to an input

[18], and this can be experimentally tested. Furthermore, a mathematical control

scheme such as that in Fig. 3 allows a proof-of-concept examination of whether a

particular experimentally discovered neural operation is necessary to account for

wakefulness stability. For example, if integration by orexin type 2 receptor cells is

taken out of the model and replaced by a different computation (amplification), it

can be mathematically demonstrated that both robustness and flexibility of the

system are lost [18]. In contrast, more conventional (in biology) descriptions of

arousal-implicated orexin/hypocretin biology that we gave earlier in this chapter

(Fig. 1 and Table 1) are not mathematical theories and do not produce useful

predictions and wakefulness dynamics. Thus, control engineering theories are

useful for biology because they generate clearer predictions to guide experiments

aimed at brain dynamics.

6 Overview, Omissions and Future Perspectives

In summary, we have reviewed postsynaptic orexin/hypocretin actions relating to

arousal and presented a control theoretical view of these actions. This view theo-

retically accounts both for how orexin/hypocretin generates robust-yet-flexible

arousal and for why multiple nonredundant types of arousal-promoting neurons

exist in the brain.

We have omitted from this brief article many publications on the topic that have

potential bearing on our interpretations. However, to the best of our knowledge,

there are currently no experimental observations that invalidate our general argu-

ment. For example, under some behavioural manipulations, the actions of

⁄�

Fig. 4 (continued) hypothalamic orexin-positive neurons. Data are from [61]. (c) Left: Light-
activated action potential firing in ChR2-eYFP-expressing orexin/hypocretin cells recorded using

whole-cell patch clamp. Right: Whole-cell recording of histamine neurons shows increased

glutamate inputs (bottom) and action potential firing (top) upon light stimulation of adjacent

orexin/hypocretin fibres. Adapted from [130], Fig. 2. (d) Top: Prolonged stimulation of orexin/

hypocretin fibres for 30 s at 20 Hz produces fast and sustained increase in histamine cell firing.

Bottom: Blockade of CNQX-sensitive glutamate currents blocks the fast rise in histamine firing,

while a slow, long-lasting component remains. In contrary, orexin 2 receptor blockade (TCS)

abolishes the slow component, leaving the fast component unaltered. Data from [58]. (e) Orexin-

mediated increase in histamine firing integrates orexin/hypocretin activity (top), while glutamate-

mediated increase in histamine firing does not (bottom). Data from [58]
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noradrenaline on orexin/hypocretin cells in vitro have been reported to switch from

inhibition to excitation [21, 122]. However, this does not mean that under such

circumstances the negative feedback of arousal signals to orexin/hypocretin neu-

rons does not exist; for example, it can be signalled by 5-HT. It would also be

important to determine whether fast transmitters expressed by arousal-promoting

neurons (e.g. GABA) affect orexin/hypocretin neurons. It has also been reported

that some orexin/hypocretin neurons sense orexin/hypocretin themselves via orexin

type 2 receptors [123], although this is controversial [19]. This opens up the

possibility that orexin/hypocretin population may perform a dual function of

regulators and comparators/error generators). Furthermore, we did not discuss the

possible reasons for why different arousal-regulating neurons synthesize and use

different transmitters, considering that activating or inhibiting downstream targets

could be accomplished via glutamate, GABA and their many receptors. We spec-

ulate that transmitter diversity evolved to facilitate parallel signalling in a tight

space [62], but it is beyond the scope of this review to discuss this in detail.

Overall, we feel that the results of our analysis provide some evidence that

control-based logic is used by orexin/hypocretin system to dynamically control

arousal. Furthermore, the integral feedback model provides a framework for study-

ing wakefulness stability in both animal models and patients with narcolepsy. This

model predicts transient responses of orexin/hypocretin neurons and more sustained

responses of their downstream effector neurons to a change in arousal need

[58]. These specific predictions can be tested in animal models with tools such as

cell type-specific neural recordings, and this testing may aid the development of

biomimetic medical robotics for patients with wakefulness disabilities.
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