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Abstract Mood disorders are associated with persistently high rates of morbidity

and mortality, despite the widespread availability of antidepressant treatments. One

limitation to extant therapeutic options has been that nearly all approved antide-

pressant pharmacotherapies exert a similar primary action of blocking monoamine

transporters, and few options exist for transitioning treatment resistant patients to

alternatives with distinct mechanisms. An emerging area of science that promises

novel pathways to antidepressant and mood-stabilizing therapies has followed from

evidence that immunological factors play major roles in the pathophysiology of at

least some mood disorder subtypes. Here we review evidence that the compounds

that reduce the release or signaling of neuroactive cytokines, particularly IL-1β,
IL-6, and TNF-α, can exert antidepressant effects in subgroups of depressed

patients who are identified by blood-based biomarkers associated with inflamma-

tion. Within this context we discuss the role of microglia in central

neuroinflammation, and the interaction between the peripheral immune system

and the central synaptic microenvironment during and after neuroinflammation.

Finally we review data using preclinical neuroinflammation models that produce

depression-like behaviors in experimental animals to guide the discovery of novel

neuro-immune drug targets.
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Mood disorders constitute clinically pleomorphic syndromes consisting of behav-

ioral and experiential changes in the emotional, cognitive, visceral, and appetitive

domains that show moderate to high heritability, but remain idiopathic with respect

to etiology. The main mood disorders, major depressive disorder (MDD) and

bipolar disorder (BD) show relatively high lifetime prevalence rates [1] and despite

the availability of many antidepressant drugs, MDD is ranked by the World Health

Organization (WHO) as the highest global cause of “years of life lived with

disability” for all age groups. The persistence of this global public health problem

partly reflects the limited efficacy of extant therapies, as about one third of MDD

patients do not achieve remission despite multiple trials using different treatments,

while another third experience illness relapse and recurrence despite continued

adherence to initially effective treatments [2–4]. One limitation of extant antide-

pressant pharmacotherapies is that they essentially all target biogenic amine based

mechanisms, so that for patients who do not respond to such mechanisms, thera-

peutic options with distinct mechanisms have been largely unavailable.

Notably, the results of studies that compared depressed patients who respond to

monoamine reuptake inhibiting agents versus those who do not consistently have

shown that the non-responders manifest abnormal elevations in a variety of

pro-inflammatory immunological markers [5–9]. These data converge with evi-

dence that factors within the innate and the adaptive immune system play roles in

the pathophysiology of MDD and BD, potentially thereby illuminating new targets

for novel therapeutics in mood disorders [10, 11]. As reviewed below the findings

that administration of pro-inflammatory cytokines such as interferon-alpha or low

dose endotoxin can induce depressive symptoms in a subset of humans who have

not previously been depressed [12], along with the implication of immune pathway

dysregulation by genome-wide association studies (GWAS) of primary mood

disorders, suggest that some individuals have a biological diathesis to manifest

depressive symptoms under immune challenge [13, 14]. Such conclusions have

been corroborated pre-clinically by similar phenomena, specifically by showing

that immune activation produces depression-like behaviors in repeatedly stressed

animals and that these behaviors can be prevented or reversed by anti-inflammatory

treatments [15]. Similarly, an emerging clinical literature provides evidence that
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some types of anti-inflammatory treatments can produce antidepressant effects in

depressed patients with peripheral blood evidence of inflammation [16].

1 Interplay of the Immune System and the Central Nervous

System (CNS)

The emerging neuro-immunological literature suggests that immune cells in the

periphery and/or the brain interact with neurons in the CNS to play roles in the

pathophysiology of mood disorders [11, 17]. These data point to the existence of a

bi-directional immune-connectivity between the peripheral and central compart-

ments [18–20]. The interplay of the immune system and the CNS involving

pro-inflammatory cytokines, chemokines, and related molecular processes that

lead to microglial activation and astrogliosis is referred to as neuroinflammation.
However, in the CNS the biological concomitants of an inflammatory state differ in

many respects from conventional inflammation involving peripheral immune cells

[21]. Thus the neuroimmunology field has broadened in perspective to also encom-

pass the mechanisms by which the peripheral immune system modulates central

neurophysiology. In contrast, the neuroinflammatory changes in microglia, astro-

cytes, and oligodendrocytes that putatively contribute to the causal mechanisms

underlying multiple sclerosis, Parkinson’s disease, and epilepsy are generally

absent in mood disorders. For example, post mortem studies of glial cell function,

structure and density do not show the astrocytosis and amoeboid microglial mor-

phology that is manifest in multiple sclerosis, trauma, or neurodegeneration.

Instead such studies have demonstrated reductions in oligodendroglia, impaired

astroglial function, and intermediate morphologies of activated microglia [22]. One

exception to this general set of findings in post mortem studies of mood disorders

involves elderly patients characterized by a late age of depression onset; such
patients show clinical and neuropathological evidence for a pathophysiological

process mediated via cerebrovascular disease, including astrogliosis, inflammation,

and other histopathological correlates of ischemic disease [23]. Nevertheless,

debate remains whether neuroinflammatory processes play pathological or adap-

tive/compensatory roles in the pathophysiology underlying early onset mood dis-

orders, which instead have been associated with a combination of genetic and

environmental (e.g., early life trauma) risk factors [24–26].
In the CNS, bone marrow derived immune cells have a restricted access due to

an intact blood–brain barrier (BBB) and blood–CSF barrier. During an injury or

infection when this barrier is compromised, peripheral immune cells can penetrate

the CNS causing neuroinflammation. Nevertheless, other conditions exist in which

macrophages and monocytes from the periphery can migrate into the CNS [27, 28]

and the CNS lymphatics may serve as conduits of peripheral to central cellular

migration [29, 30]. In addition, and probably more pertinent to the topic of

neuroinflammation, microglia constitute the critical cell types that change from a
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“surveillance” mode to a “response” mode during injury and disease pathology.

Resting microglia manifest a distinct “ramified” morphology whose function is to

sense the local environment and maintain homeostasis among the neurons, astro-

cytes, and oligodendrocytes that participate in synaptic function [31] and transmis-

sion. During pathology associated with neuroinflammation, microglia respond by

adopting an amoeboid morphology and release gliotransmitters such as

pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-γ), chemokines, glutamate,

ATP, nitric oxide, and reactive oxygen and nitrogen species that alter the neuro-glia

functional interactions [32]. Microglial activation also involves up-regulation of

cellular markers, increased microglial proliferation and migration, and a shift in

structure and function towards an “M1” pro-inflammatory phenotype. The M1

phenotype occurs in response to tissue injury, stress, and infection as part of the

adaptive immune response which ultimately leads to reparative processes. The

repair is mediated by microglia, predominantly of the anti-inflammatory

(M2) phenotype, which are more phagocytic in nature. Nevertheless, microglia

more commonly exist in a range of phenotypes that are intermediate in morphology

between the M1 and M2 [33–35]; the differential roles of M1/M2 microglia and

their role in CNS (patho)physiology are reviewed elsewhere [36, 37]. Notably, post

mortem assessment of brain tissue from patients with MDD and BD revealed that

the microglia manifest such an intermediate “activated” morphology associated

with greater quinolinic acid expression (implying pro-inflammatory activation of

the kynurenine pathway) in the subgenual anterior cingulate cortex area consis-

tently implicated in the pathophysiology of mood disorders [38].

One type of phagocytic activity performed by the microglia involves synaptic

pruning that regulates interneuronal connectivity and restores the optimal multi-

partite synaptic function from the altered states that arise during neuroinflammatory

states [39–41]. Thus in mood disorders it has remained unclear whether microglial

activation manifests as a reparative response or instead comprises a pathological

mechanism that initiates disruption of normative neurophysiology [42]. In other

neuropathological conditions, the extant data suggest that neuroinflammation can

play pathological roles under some conditions and adaptive/restorative roles in

others, with both roles potentially co-existing within the context of a particular

CNS disease states. Nevertheless, chronic and/or dysregulated neuroinflammation

eventually contributes to a pathological phenotype within the CNS. For example,

the extant preclinical and emerging clinical data suggest that glial factors released

from microglia and astrocytes during neuroinflammation modulate synaptic plas-

ticity and neurogenesis and impact the neurocircuitry in a manner that can manifest

behaviorally in much of the symptomology that defines mood disorders.

Peripheral immune cells also play roles in CNS function that include supporting

learning and memory [43–48], protecting against pathogens (e.g., as evidenced by

IFN-γ-mediated control of Toxoplasma gondii [49], and inducing neuropathology

(e.g., in multiple sclerosis). The peripheral immune system also can play a benefi-

cial or healing role in CNS pathology. For example, a controlled amplification of

the autoimmune response was associated with improved neuronal survival in rodent

models of acute CNS injury [50] and chronic neurodegeneration [51, 52]. The
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complex interplay between the peripheral immune system and the CNS in mediat-

ing beneficial components of the immune response to CNS pathology is only

beginning to be elucidated.

Conversely, changes in peripheral immune cell populations have also been

associated with CNS pathologies that do not feature clear penetration of the

blood–brain or blood–CSF barrier by circulating cells. Pro-inflammatory cytokines

released during peripheral infection are associated with behavioral correlates of

depressive mood—termed sickness behavior [53]. Links between sickness behavior

and a tryptophan metabolizing enzyme, namely indoleamine 2,3 dioxygenase

(IDO), have been demonstrated [54], establishing a potential association between

cytokines and monoamine deficiency.

Moreover, post-traumatic stress disorder (PTSD), a syndrome characterized by

chronic anxiety, depression, and hyperarousal arising in the aftermath of traumatic

stress constitutes a condition that links CNS pathology, stress, and immune system

dysregulation at the level of inflammatory cascades and gene networks. For

example, in soldiers studied before and after deployment in areas of active conflict,

CD14+ monocyte-associated factors were differentially regulated in PTSD suf-

ferers [55]. Notably monocytes are primary producers of the neuroactive cytokines

IL-6, IL-1β, and TNF-α, which have been linked to mood disorders in preclinical

studies and clinical populations (reviewed elsewhere in this volume). CD14+

monocytes are mobilized into circulation primarily by CCL2, a chemokine pro-

duced by glial [56] and blood–brain barrier cells [57] during neuroinflammation.

These findings implicate a link between glial activation and loss of peripheral

immune homeostasis leading to chronic feedback between the CNS and periphery

in PTSD.

2 Abnormalities in Immunological Factors in a Subset

of Patients with Mood Disorders Suggest Novel

Antidepressant Targets for Such Subgroups

A rapidly expanding scientific literature suggests that alterations in immune system

function and neuroinflammation play major roles in the pathophysiology of at least

some subtypes of mood disorders [17, 58–61]. This evidence has encouraged

targeted and rational drug discovery efforts with a view to intervene using immune

modulating treatments for mood disorders [16]. Immune mediators for which the

mean concentrations are increased in the blood and cerebrospinal fluid (CSF) of

patients with mood disorders versus healthy controls, both when assessed at base-

line and after exposure to stressors, include IL-6, IL-1β, IFN-α, TNF-α, prostaglan-
din E2, and the chemokine CCL2 [62–66]. The mRNA transcripts for these

cytokines and for other related innate immune system genes have also been

elevated in peripheral blood cells in patients with mood disorders relative to healthy

controls matched for age, BMI, smoking, and comorbid medical conditions [6, 22,
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67–70]. The clinical significance of these findings is supported by evidence that the

elevations of these cytokines in the plasma or CSF of patients with MDD or BD

relative to controls are correlated with illness severity and/or suicidality ratings

(reviewed elsewhere in this volume). Moreover, successful response to conven-

tional antidepressant drugs is associated with reductions in these cytokine levels in

depressed patients, although non-response to conventional antidepressants is

predicted by higher IL1-β, IL-6, and CRP levels in the pre-treatment baseline

[6, 9, 71]. The preliminary evidence reviewed below suggests that in depressed

patients who manifest both resistance to monoamine reuptake inhibitor antidepres-

sant agents and elevation in pro-inflammatory cytokines/acute phase proteins,

certain classes of anti-inflammatory agents can produce antidepressant effects.

The relationship between immune challenge and the development of “sickness

behavior” as well as other more clearly pathological depressive symptomatology is

instructive in considering the etiology of mood disorders. In one of the clearest

examples indicating that elevated cytokine signaling can cause depressive symp-

toms, immune challenge with interferon-α (IFN-α) during the treatment of hepatitis

C or other medical conditions reliably has induced the major depressive syndrome

(and less commonly manic symptoms) in 30–40% of previously non-depressed

humans [64]. This neuropsychiatric sequelae of IFN-α converges with other types

of evidence to suggest that elevated signaling of some neuroactive cytokines can

play a causal role in inducing depressive symptoms [72]. Within the days following

IFN-α administration, previously non-depressed patients show a behavioral com-

plex that includes anorexia, fatigue, lower mood, reduced social interaction, and

reduced engagement in pleasurable activities, a symptom complex referred to in the

research literature as “sickness behavior” [73]. Notably, in the subset of patients

who receive IFN-α who go on to develop major depressive episodes, more specific

depressive symptoms such as pessimism, anxiety, and suicide ideation arise later

than the initial appearance of sickness behavior, and the likelihood of developing an

MDE continues to rise with longer time spent receiving IFN-α [74]. Thus the

symptoms of the major depressive episode differ from those of sickness behavior

by magnitude in some cases (e.g., more severely depressed mood and pervasive

anhedonia in MDE) and by quality in others (e.g., pathological anxiety and suicide

ideation). In addition there is also evidence that IFN-α induced depression differs

from depression arising in medically healthy MDD subjects by the presence of

pathological guilt in the latter, but not in the former condition [75, 76]. These data

are notable within the context of evidence that primary MDD is heterogeneous,

with subgroups that are distinguishable on the basis of clinical symptomatology as

well as immunological markers [58], as reviewed below.

The prevailing hypothesis holds that IFN-α induced major depressive episodes

constitute an example of a “pro-inflammatory state induced mood disorder” that

manifests in some individuals exposed to IFN-α on the basis of a biological

predisposition. A corollary to this hypothesis posits that a subset of the “primary”

MDD population also manifests depressive symptoms due to the influence of

elevated neuroactive cytokine signaling caused via other etiologies. An example

of the existence of a biological predisposition toward IFN-α induced depression
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was provided by the report of a single nucleotide polymorphism (SNP) in the IL-6

receptor gene that resulted in lower IL-6 expression, and also was associated with

decreased susceptibility to the development of depressive symptoms during IFN-α
treatment [77].

Notably, some patients who manifest IFN-α induced major depressive episodes

improve during SSRI treatment, leading physicians to prophylactically initiate

SSRIs in the weeks prior to initiating IFN-α for some patients [78]. Of the symptom

domains affected by IFN-α, however, the depressed mood symptom dimension is

most responsive, whereas the anxiety, cognitive and neurovegetative symptoms

appear less responsive (or unresponsive) to prophylactic SSRI treatment

[79]. These observations hold intriguing therapeutic implications, because in

patients with primary mood disorders, higher blood levels of proinflammatory

cytokines or their mRNA transcripts predict non-response to treatment with SSRIs

or other conventional antidepressants [6–9]. It is conceivable that depressed patients

who both manifest chronic inflammation and prove nonresponsive to conventional

antidepressant drug treatment may benefit from immune modulating treatments.

The hypothesis that anti-inflammatory agents may exert antidepressant effects in

depressed patients has been tested both in patients who have primary MDD and in

patients with autoimmune disorders who manifest clinically significant depressive
symptoms [16]. For example, patients with psoriasis who received the anti-TNF-α
agent etanercept showed significant improvement in depressive symptoms in

response to drug versus placebo as assessed using conventional depression rating

scales, and this difference was evident earlier than the associated changes in pain or

skin lesions [80], implying the antidepressant response occurred independently of

psychological benefits related to the improvement in the skin lesions per se. In this

study patients treated with etanercept also had significant improvements in fatigue.

Notably, while the improvements in fatigue correlated with decreasing joint pain,

the improvements in depression were less correlated with objective measures of

skin clearance or joint pain.

3 Immunological Biomarker Data from Mood Disordered

Samples Shows Heterogeneity That May Hold

Therapeutic Implications

In studies of primary MDD patients treated using anti-inflammatory agents, the

extant data suggest that subgroups characterized by high levels of pro-inflammatory

biomarkers are most likely to benefit (see below). This observation appears intuitive

when the findings that mean concentrations of cytokine levels are elevated between

depressed and control samples are considered in further detail. The distribution of

the immunological data from these studies suggests that the differences reported in

mean values are attributable to a subset(s) of the depressed patients. This observa-

tion appears consistent with accumulating evidence of biological and genetic
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differences between subtypes of depressed subjects with MDD, who otherwise

appear phenotypically homogeneous in many aspects of symptom presentation.

For example, from the Netherlands Study of Depression and Anxiety database,

Lamers et al. [58] used subgroups defined initially using cluster analysis of depres-

sive signs and symptoms, and then further differentiated these subtypes based on

serum protein profiles. The identified analytes consisted largely of inflammatory

(e.g., CRP) and metabolic markers (e.g., insulin), supporting the conceptualization

of a subtype(s) characterized by metabolic disturbances and inflammation. These

researchers [81] also showed that these subgroups appeared stable across time, with

patients moving between different levels of severity, but not between subtypes,

during longitudinal follow-up. In another example, data from the Mood Inflame

Consortium identified three MDD subtypes: one manifest in MDD patients aged

�28 years that was characterized by increased expression of monocyte genes and

decreased expression of glucocorticoid receptor (GR) α versus β subunit ratio, a

second in MDD patients <28 years of age who showed a severe course of depres-

sion (characterized by recurrent type, illness onset <15 years of age, history of

childhood trauma, and prominent panic/arousal symptoms) but monocyte gene

expression similar to healthy controls, and a third also manifest in MDD patients

<28 years of age characterized by a milder illness course (most with first episode of

depression, age at onset �15 years, and absent panic symptoms) that exhibited a

strongly reduced inflammatory monocyte activation compared to controls [82].

Within the bipolar spectrum of mood disorders, another study from the Mood

Inflame Consortium identified a biomarker signature composed of multiple immu-

nological factors that discriminated the majority of BD patients from healthy

controls. Using whole-genome expression profiling of RNA obtained from purified

CD14+ monocytes, Padmos and colleagues reported elevated mRNAs of inflam-

matory (e.g., TNF, PDE4B, IL-1β, IL6, TNFAIP3), trafficking, survival (e.g.,

BCL2A), and mitogen-activated protein kinase pathway (e.g., MAPK6, ATF3)

genes in BD subjects in various illness phases, as well as in affected offspring of

BD parents [69]. Notably, in peripheral blood mononuclear cells (PBMC) from the

same subjects assessed via fluorescence-activated cell sorting (FACS) analysis, the

percentages of anti-inflammatory CD4+CD25highFoxP3+ regulatory T cells were

higher in BD patients <40 years of age, while percentages of Th1, Th2, and Th17

cells were normal. Together these results thus showed enhancement of both

pro-inflammatory monocyte and anti-inflammatory T cell mediators in BD [83].

4 Novel Drug Targets at the Crossroads

of Neuroimmunology and Mood Disorders

With continued and refined understanding of the role of immune cells and their

mediators in the periphery and the CNS, it is anticipated that new mechanisms will

be discovered that can exert antidepressant and mood-stabilizing effects in primary
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mood disorders. Several comprehensive reviews have highlighted potential drug

targets in neuroimmunology for mood disorders [11, 21, 84]. In this chapter, we

summarize evidence that highlights TNF-α, IL-6, and IL-1β signaling in the

pathophysiology of mood disorders.

TNF-α: TNF-α signaling appears to play a major role in mood disorders [85]. In

meta-analyses of clinical studies, plasma TNF-α correlated with depression severity
and level of resistance to conventional antidepressants [62]. A causal relationship

between TNF-α elevation and depressive symptoms was suggested by observations

that in patients with immunological diseases such as rheumatoid arthritis and

psoriasis, anti-TNF-α treatment alleviates depressed mood; as reviewed above,

these antidepressant effects do not appear attributable simply to improvement in

sickness symptoms, such as fatigue, or in the underlying autoimmune disorder

[86]. Consistent with these observations, the TNF-α receptor 1, TNF-α receptor

2, and TNF-α knockout mouse models all show antidepressant-like phenotypes

[87, 88]. Likewise, systemic administration of antibodies targeting TNF-α in

chronic models of stress reversed the anhedonic behaviors, suggesting that TNF-α
signaling contributes to depressogenic behaviors in rodents [89, 90].

Nevertheless, a clinical study of the efficacy of infliximab (a monoclonal anti-

body against TNF-α) in depressed patients generated negative results on depressive
symptoms rating using a conventional depression rating scale [91]. A post hoc
investigation of data from this study, however, revealed a significant positive

correlation between clinical improvement and pre-treatment levels of the

nonspecific inflammation marker, CRP, raising the possibility that antidepressant

effects may be limited to individuals who manifest a pro-inflammatory diathesis.

Nevertheless, because the test of the a priori hypothesis in this study was negative,
the question has remained whether targeting TNF-α via large molecules introduced

in the periphery alone can produce an antidepressant effect (since very low pro-

portions of peripherally administered monoclonal antibodies enter the brain fol-

lowing acute treatment), or whether therapies that reduce TNF-α signaling must

instead directly engage targets in the CNS.

IL-6: In studies of MDD or BD one of the more highly replicated biomarker

abnormalities has been an elevation in peripheral blood IL-6 concentrations

[92]. Notably during IFN-α treatment the magnitude of the increase in plasma

and CSF IL-6 levels correlates positively with depressive symptom severity. Con-

versely, the above-mentioned functional polymorphism in the promoter region of

the IL-6 gene (rs1800795) that results in decreased IL-6 expression is associated

with a significantly lower risk for developing major depressive episodes during

IFN-α treatment [77]. The relationship to IL-6 function is compatible with findings

that, in patients with primary mood disorders higher IL-6 levels in the CSF

correlated with suicidality, and elevated IL-6 levels in the plasma correlated with

non-responsiveness to conventional antidepressant drugs [93]. In contrast, during

the euthymic (i.e., asymptomatic) phase of BD, the CSF concentration of IL-6 was

decreased with respect to healthy controls, despite the same BD subjects showing

an abnormal elevation in the CSF levels of IL-1β [65].
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Although IL-6 can be released by immune cells in the CNS as well as in the

periphery, preclinical evidence suggests that elevated IL-6 release from peripheral

immune cells is sufficient to induce depressive behaviors, irrespective of central

immune system activation. In studies conducted by Hodes and colleagues [15] to

elucidate the biological basis of susceptibility to depression-like behaviors under

stress, mice that developed a persistent depression-like phenotype in response to

social defeat stress (SDS) were compared to genetically identical mice that did not

develop depression-like behaviors under SDS. The susceptible animals differed

from the resilient animals by showing elevated basal IL-6 levels in the pre-SDS

condition and higher IL-6 release in response to the stressed condition. In addition,

white blood cells sampled pre-SDS from susceptible mice showed higher

LPS-induced IL-6 release ex vivo compared to cells from resilient mice. Crucially,

the susceptibility to the depression-like phenotype could be altered toward either

susceptibility or resilience by generating bone marrow chimeras that had

hemopoetic stem cells transplanted from high IL-6 expressing mice or IL-6 knock-

out mice, respectively. The bone marrow recipients in these studies had received

radiation to their bodies while the head was shielded, so the hemopoetic stem cells

in periphery conferred the susceptibility to the depression-like phenotype under

stress.

IL-1β: In contrast to the therapeutic potential offered by neutralizing IL-6

predominantly in the periphery, the extant data suggest that for the

pro-inflammatory cytokine IL-1β, reducing signaling in the brain may prove critical

to achieving antidepressant effects. IL-1β is probably the most potent

pro-inflammatory cytokine released from microglia in the brain. Clinical studies

found that IL-1β is present at abnormally higher levels in plasma, CSF, and

postmortem brain tissue of individuals with mood disorders, and that IL-1β levels

correlated positively with depression severity [63, 65]. Anisman and colleagues

reported increased IL-1β production from lymphocytes in patients with dysthymic

disorder and a modest correlation existed between the cytokine and depressive

symptoms [94]. In studies of primary mood disordered subgroups, IL-1β has been

linked with both geriatric depression and postpartum depression [95, 96].

In animal models of stress-induced depression-like behaviors, several groups

showed that IL-1β signaling is critical to the acquisition of the depression-like

phenotype [97, 98]. The development of the depressive behavioral phenotype

during chronic stress can be blocked by IL-1 receptor antagonists, and is absent

in IL-1R receptor knockout mice [99]. In addition, manipulation of central IL-1β,
either by exogenous administration of IL-1β directly into the brain, or by selective

ablation of signaling via pharmacology or genetics, produced behavioral analogues

of depression when IL-1β was increased, or antidepressant-like effects when IL-1β
was decreased [100]. The IL-1β driven changes in the brain resulted in decreased

neurogenesis in the hippocampus [99] and increased corticosterone response to

stress in the periphery [101], suggesting an interplay between stress-induced-IL-1β
release and HPA axis function.

Recently, it was shown that both acute and chronic stress increase brain IL-1β
release [102] [100]. Stress-induced IL-1β release appears to be driven by
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ATP-induced activation of the P2X purinoceptor 7 ion channel (P2X7), and genetic

deletion of P2X7 receptors results in antidepressant-like reversal of stress-induced

depressogenic behaviors in rodents [102, 103]. Other experimental evidence has

similarly demonstrated that P2X7 activation causes release of IL-1β ([104]). The

initiation of transcription and translation of the pro-form of IL-1β is induced by

activation of Toll-like receptor (TLR), but it is the second signal from P2X7 (due to

ATP activating the ion channel) that results in maturation and release of the

pro-inflammatory IL-1β cytokine; this process has been referred as a “two-hit”

model of IL-1β release. Priming of the TLRs is achieved by factors such as cellular

debris, by endotoxins, by damage- and pathogen-associated molecular pattern

molecules (DAMPs and PAMPs, respectively). Since P2X7 is abundantly

expressed in blood cells, IL-1β release in the blood has been used as a biomarker

of P2X7 activity in both preclinical and clinical assessment of target engagement.

Based on robust microglial expression of P2X7, and IL-1β signaling leading to

neuroinflammation, CNS penetrable P2X7 antagonists would be potentially bene-

ficial for treating mood disorders, and there is growing evidence that strengthens the

role of P2X7 in MDD and BD. Several human genetic studies have associated the

highly polymorphic P2RX7 gene with the risk for developing both BD and MDD,

and some of these mutations have been linked to a modulation of P2X7 channel

function in vitro [105, 106]. The rs2230912-G allele exhibits a gain-of-function and

human monocytes expressing this variant secreted more IL-1β in response to

activation of P2X7 than monocytes expressing a wild-type variant [107]. It is

conceivable that such a variant in P2X7 receptors based in human microglia

would lead to enhanced IL-1β release (or production), leading to

neuroinflammation over time. Nevertheless, several other GWAS studies have not

confirmed the association between P2RX7 variants and the risk for mood disorders

[108], so the relationship between the variation in P2RX7 and depression is not yet

established. The lack of clarity for a genetic association of P2RX7 variation in the

risk for mood disorders (or any disease phenotype) is perhaps not surprising as the

underlying factors of such pathologies are often a result of interplay between

genetic (often many genes), environmental, and developmental factors.

In addition to the human genetic literature, several laboratories have demon-

strated that P2X7 knockout mice manifest a protective phenotype in models of

depression and mania, strengthening the hypothesis that P2X7 antagonism may be

therapeutically beneficial in mood disorders. Consistent with the antidepressant

phenotype observed in P2X7 knockout mice, emerging data suggest that P2X7

antagonists can reverse depressogenic behaviors in animal models. For example,

pharmacological antagonism of P2X7 (by AZ-10606120 and A-804598) restored

the deficit observed in the preference for a sucrose solution (a putative behavioral

analogue of anhedonia) induced by either chronic stress or systemic administration

of lipopolysaccharide (LPS) administration [103]. Recently, it was shown that a

P2X7 selective, brain-penetrant antagonist was efficacious in chronic stress models

in rats [102]. In addition, a large corpus of evidence suggests that manipulation of

central IL-1β (by either exogenous administration or selective ablation of signaling

by pharmacological or genetic manipulation) results in depression-like behaviors
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when IL-1β is increased, or in resilience against the development of depression-like

behaviors when IL-1β is decreased [97, 99, 109]. These observations appear

consistent with the above-mentioned findings that IL-1β levels are abnormally

elevated in the plasma, cerebrospinal fluid (CSF), and postmortem brain tissue

obtained from MDD and BD patients [63, 65, 110].

Preclinical data also suggest that P2X7 antagonism may produce anti-manic or

mood-stabilizing effects in BD [111]. For example, P2X7 antagonism produced

attenuation of amphetamine-induced sensitization of hyperactivity [112, 113], a

putative rodent model of mania-like behavior, and similar phenotypes were

observed in P2X7 knockout mice [111] suggesting a potential therapeutic role of

P2X7 antagonism in the manic phase of BD. Taken together, it remains plausible

that a selective and brain-penetrant P2X7 antagonist may be therapeutically bene-

ficial in mood disorders, especially targeting treatment resistant patient populations.

5 Conclusion

Neuroimmunology stands at the interface of emerging biology and breakthrough

therapeutics for mood disorders. Taken together, the extant data support the

hypothesis that elevated cytokine levels contribute to the pathophysiology of

depression and the neurobiological mechanisms underlying resistance to conven-

tional antidepressant drugs, in at least a subpopulation of depressed patients. They

also suggest that specific cytokines (such as TNF-α, IL-6, and IL-1β) and their

effectors and regulators (such as P2X7) may constitute novel therapeutic targets for

depression. However, the extant postmortem data also indicate that mood disorders

are not associated with classical neuroinflammation, and in vivo blood-based

biomarker studies suggest that not all patients suffering from mood disorders

manifest an inflammatory component. Consequently, for clinical proof-of-concept

studies with compounds that target signaling of microglia, astrocytes, or cytokines/

chemokines, it may prove necessary to discriminate the patient population suffering

from concomitant depression and neuroinflammation through the aid of immuno-

logical biomarkers.
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