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Abstract Early adverse experiences are associated with heighted vulnerability for

stress-related psychopathology across the lifespan. While extensive work has

investigated the effects of early adversity on neurobiology in adulthood, develop-

mental approaches can provide further insight on the neurobiological mechanisms

that link early experiences and long-term mental health outcomes. In the current

review, we discuss the role of emotion regulation circuitry implicated in stress-

related psychopathology from a developmental and transdiagnostic perspective.

We highlight converging evidence suggesting that multiple forms of early adverse

experiences impact the functional development of amygdala-prefrontal circuitry.

Next, we discuss how adversity-induced alterations in amygdala-prefrontal devel-

opment are associated with symptoms of emotion dysregulation and psychopathol-

ogy. Additionally, we discuss potential mechanisms through which protective

factors may buffer the effects of early adversity on amygdala-prefrontal develop-

ment to confer more adaptive long-term outcomes. Finally, we consider limitations

of the existing literature and make suggestions for future longitudinal and transla-

tional research that can better elucidate the mechanisms linking early adversity,

neurobiology, and emotional phenotypes. Together, these findings may provide

further insight into the neuro-developmental mechanisms underlying the emer-

gence of adversity-related emotional disorders and facilitate the development of

targeted interventions that can ameliorate risk for psychopathology in youth

exposed to early life stress.
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1 Introduction

Early life stress (ELS) is associated with higher incidence of mental health

problems across the lifespan, accounting for 29% of health disorders worldwide

[1–3]. Multiple forms of postnatal adversities confer vulnerability for stress-related

psychopathology, including maltreatment, neglect, parental stress or psychopathol-

ogy, trauma, family conflict, poverty-related stressors, and institutionalized care

[3–6]. Although these adverse exposures often occur during infancy and/or child-

hood, emotional difficulties often continue to persist throughout development, with

three quarters of stress-related mental health diagnoses made by the age of

24 [2, 7]. Given the robust epidemiological evidence linking ELS with long-lasting

emotional difficulties, it is important to identify the neurobiological mechanisms

through which early experiences “get under the skin” to increase risk for

psychopathology.

Developmental mechanisms of adaptation play an important role in understand-

ing the long-term links between ELS and mental health outcomes in adulthood.

According to the Dynamic Systems Theory, development is experience-driven,

emerging via interactions with the environment that unfold over time [8]. In the

context of ELS, several developmental theories (Barker’s hypothesis, Developmen-

tal Origins Theory, Adaptive Recalibration Model, Experiential Canalization)

emphasize the role of adaptation in response to adversity, such that the organism

develops in order to promote survival in the expected environment [9–12]. Simi-

larly, the Stress-Acceleration Hypothesis posits that neurobiological changes in

response to early adverse experiences are adaptive in the short-term, but may have

long-term trade-offs in the functional integrity of neuro-affective circuitry and

heighten vulnerability for maladaptive mental health outcomes later in life [13].
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In line with this developmental perspective, the current review will discuss how

early adverse experiences influence neuro-affective development to confer risk for

stress-related emotion dysregulation. We will delineate how the amygdala-

prefrontal circuit, implicated in threat-reactivity and emotion regulation, appears

to be particularly sensitive to the effects of stress during early life. The current

paper focuses on the functional development of amygdala-prefrontal circuitry, as

stress-induced changes in structural development have been reviewed elsewhere

[14]. Specifically, we will highlight converging evidence suggesting that multiple

forms of ELS are characterized by similar functional phenotypes of neuro-affective

circuitry across development: (1) heightened amygdala reactivity and (2) altered

amygdala-prefrontal connectivity. Next, we will discuss how developmental

changes in amygdala-prefrontal circuitry predict individual differences in symp-

toms of stress-related psychopathology. Finally, we will discuss potential protective

factors that may buffer the effects of stress on neuro-affective development to

confer more resilient long-term trajectories. Given that ELS increases risk across

several, often comorbid psychiatric disorders [3, 15], this paper will focus on the

neurobiology of emotion dysregulation from a transdiagnostic and dimensional

perspective.

2 Target Neural Circuitry: Amygdala and Prefrontal

Cortex

2.1 The Role of Amygdala-Prefrontal Circuitry in Emotion
Regulation

Robust translational and clinical research has linked amygdala-prefrontal circuitry

with symptoms of emotion dysregulation [16]. In adults, regulatory connections

between amygdala and prefrontal cortex are critically implicated in learning and

responding to emotional cues in the environment [17, 18]. The amygdala is

involved in detecting salient information in the environment to initiate physiolog-

ical responses to potential threat [17]. Top-down recruitment of medial prefrontal

regions regulates amygdala reactivity to facilitate extinction learning [19, 20]

whereas dorsolateral prefrontal regions implicated in more effortful processes,

like cognitive reappraisal, modulate amygdala reactivity during emotion regulation

[21]. Functional alterations of amygdala reactivity and amygdala-prefrontal con-

nectivity have been identified in patients with internalizing and stress-related

disorders, including anxiety, depression, and PTSD [22–24]. In the Research

Domain Criteria (RDoC) recently outlined by the National Institutes of Mental

Health [25], amygdala-prefrontal circuitry has been implicated in the psychological

constructs of fear and sustained threat, highlighting its role in the neurobiological

underpinnings of transdiagnostic dimensions of threat-reactivity and emotion

regulation [26].
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In humans, amygdala-prefrontal circuitry undergoes protracted development,

with age-related changes observed across childhood, adolescence, and young adult-

hood. Several studies have observed heightened amygdala reactivity in response to

emotionally salient cues in younger ages [27–31]. As amygdala reactivity declines

with increasing age [27–32], the functional integrity of amygdala-mPFC circuitry

continues to strengthen into young adulthood [33]. Importantly, age-related

changes in amygdala reactivity and/or connectivity with the prefrontal cortex

during cognitive reappraisal tasks correspond to the maturation of emotion regula-

tion abilities across development [34–36]. Pediatric disorders of anxiety, depres-

sion, and PTSD are characterized by heightened amygdala reactivity and atypical

amygdala-prefrontal connectivity during emotion processing tasks [37–42]. More-

over, altered patterns of age-related changes in amygdala-prefrontal connectivity

have been shown in a cross-sectional sample of anxious youth and young adults

[43] suggesting that deviations from the normative trajectory of amygdala-

prefrontal development are associated with symptoms of emotional dysregulation

in clinical samples.

2.2 Plasticity of Amygdala-PFC Circuitry in Early Life

Converging evidence across species suggests that amygdala-prefrontal circuitry is

highly sensitive to environmental inputs, particularly during early life [44]. The

amygdala is heavily innervated by glucocorticoid receptors [45], with the highest

peak in corticotrophin releasing hormone (CRH) receptor density during the first

few postnatal weeks [45]. Stress exposure during early life results in increased

mRNA expression of CRH in the amygdala in rodents [46]. Importantly, the

functional development of the amygdala is tightly linked to hypothalamic–

pituitary–adrenal (HPA) axis function, such that increases in cortisol are associated

with the developmental onset of amygdala reactivity and fear learning in

rodents [47].

Several animal models of ELS (e.g., abusive maternal care, maternal separation,

chronic restraint stress, and odor-shock conditioning) have shown that early adverse

environments have enduring effects on amygdala structure and function [48–

50]. Moreover, regulatory connections between amygdala and prefrontal cortex

are highly susceptible to environmental influences during early life in rodent

models. For example, chronic stress exposure during the juvenile stage causes

dendritic atrophy in the prefrontal cortex (PFC; [48]) and alters the emergence of

amygdala projections to the PFC, resulting in long-term imbalance of amygdala-

prefrontal circuit function in adult rats [51]. In light of these findings, amygdala-

prefrontal development may play an important role in the neurobiological etiology

of emotion dysregulation in humans following ELS.
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3 Effects of ELS on Amygdala-PFC Circuitry in Humans

When examining the effects of ELS on neurobiological development in humans,

there are two important considerations that delineate the state of current research.

First, aside from notable exceptions in which there is known timing and duration of

adverse exposures (i.e., adoption from institutionalized care), many forms of ELS

are chronic in nature, making it difficult to delineate the effects of stressors during

specific time points across development (reviewed in [14]). Given cross-species

evidence suggesting that amygdala development is most sensitive to environmental

input early in life [44], the current review focuses on adverse experiences that occur

during infancy and/or childhood. Second, recent theoretical frameworks have

suggested that certain dimensions of adverse experiences (e.g., threat

vs. deprivation) may have differential effects on neurobiological development

[52]. Although early adversities are often complex exposures comprised of multiple

dimensions of experience (e.g., abuse and neglect; [53]), many forms of ELS are

considered threatening to children’s physical or emotional well-being [52]. In the

current review, we focus on research examining threat-related alterations in neuro-

affective development following exposure to ELS. Specifically, we present con-

verging evidence suggesting that amygdala-prefrontal circuitry, implicated in

threat-reactivity and emotion regulation, is a common neurobiological target

impacted by multiple forms of early adverse experiences.

3.1 Effects of ELS on Amygdala Reactivity

In adults, heightened amygdala reactivity to emotional cues has been identified

across several domains of ELS reported retrospectively, including maltreatment

[54, 55] emotional neglect [56, 57], and lower perceived social status [58]. Recent

prospective longitudinal studies have corroborated these effects, showing that

cumulative childhood stressors associated with low socioeconomic status have

lasting effects on amygdala function in adulthood [59, 60]. For example, childhood

poverty has been associated with increased amygdala reactivity to negative relative

to positive emotional cues in adulthood [60]. In the same prospective cohort,

cumulative risk exposure associated with childhood poverty was directly related

to higher amygdala reactivity to neutral facial expressions, suggesting that stress-

related increases in amygdala reactivity may not be specific to threat-related

stimuli, also extends to neutral socio-emotional cues [59].

In accordance with studies in adult ELS samples, children and adolescents with a

history of early adversity also show enhanced amygdala reactivity to emotional

stimuli. Previously institutionalized (PI) youth with a history of institutional care

exhibit heightened amygdala reactivity to threat-related facial expressions across

childhood and adolescence [61–63]. Similarly, increased amygdala response to

negative emotional stimuli has been identified in children and adolescents with
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prior exposure to maltreatment [64, 65], traumatic events [66], and family violence

[67]. Moreover, greater levels of stressful life events have been associated with

longitudinal increases in threat-related amygdala reactivity during adolescence,

suggesting that heightened amygdala reactivity may represent a neural marker of

previous stress exposure [68]. Importantly, McCrory et al. [64] found that children

with earlier onset of maltreatment exposure showed higher levels of amygdala

reactivity to pre-attentively presented emotional stimuli, suggesting a relationship

between the timing of stress exposure onset and degree of amygdala reactivity.

However, further research is needed to delineate whether stress-induced increases

in amygdala reactivity are primarily driven by the developmental timing (i.e., age

of onset) or the duration (i.e., chronic versus acute) of adverse experiences.

3.2 Effects of ELS on Amygdala-PFC Connectivity

In addition to heightened amygdala-reactivity, ELS has also been characterized by

altered functional connectivity of the amygdala with prefrontal regions. Although

the valence (i.e., positive or negative) and regional specificity (i.e., dorsolateral or

medial regions of PFC) of amygdala-prefrontal connectivity findings are task-

dependent and often vary across studies, ELS has been consistently associated

with atypical connectivity patterns relative to non-stressed control groups. In a

prospective study, young adults with a history of childhood maltreatment showed

atypical connectivity between the amygdala and inferior frontal gyrus when

processing threat-related emotional stimuli [69]. Childhood poverty has also been

associated with alterations of amygdala-prefrontal connectivity in adulthood, such

that lower family income during childhood is associated with reduced amygdala-

ventrolateral PFC (vlPFC) connectivity during cognitive reappraisal [70]. Impor-

tantly, cumulative stress exposure mediated the effects of family income on vlPFC

recruitment during reappraisal, suggesting that associations between childhood

poverty and prefrontal dysregulation are driven by effects of chronic stress

[70]. Together, these findings suggest that heightened emotional reactivity follow-

ing ELS may emerge from impaired top-down prefrontal regulation of amygdala

reactivity in response to emotional cues.

Given that ELS is associated with atypical amygdala-prefrontal function in

adulthood, recent research has examined how these adversity-induced changes

emerge across development. In a cross-sectional study from early childhood to

late adolescence, PI youth showed an atypical trajectory of age-related changes in

threat-related amygdala-mPFC connectivity relative to comparison youth, such that

PI youth exhibited more mature (i.e., adult-like) connectivity at younger ages

[61]. Youth with trauma exposure also show atypical amygdala-prefrontal function

in response to emotional distractors, with weaker negative connectivity between the

amygdala and pregenual ACC (pgACC) relative to comparison youth [66]. More-

over, the strength of amygdala-pgACC connectivity predicted performance on the

emotional conflict task, suggesting that impaired regulation of emotional distractors
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in trauma-exposed youth may be related to altered circuit function [66]. Similarly,

PTSD youth exhibit weaker amygdala-dACC connectivity and atypical age-related

changes in amygdala-mPFC connectivity in response to threat-related stimuli

[42]. Importantly, the youth diagnosed with PTSD in this sample were exposed to

a wide range of early adverse experiences (e.g., trauma, abuse, neglect; [42]),

suggesting evidence of equifinality with regard to neuro-affective phenotypes

following exposure to different forms of ELS [71].

In addition to changes in task-elicited functional connectivity, ELS has also been

associated with weaker resting-state amygdala-prefrontal connectivity across

developmental stages, suggesting that early adversity has long-lasting impacts on

the functional integrity of emotion regulation circuitry. In adults, self-reported

history of childhood trauma is associated with weaker resting-state connectivity

between amygdala and pregenual ACC (pgACC; [72]). Similarly, adolescents who

experienced childhood maltreatment [73] and youth with history of trauma expo-

sure [74] show weaker amygdala-subgenual anterior cingulate cortex (sgACC)

connectivity at rest. In a younger cohort of children and young adolescents, higher

levels of cumulative stress during childhood predicted weaker amygdala-ACC

connectivity [75]. Importantly, ELS-induced changes in amygdala connectivity

may be identifiable as early as infancy. At 6 months of age, family stress, as defined

by high levels of interparental conflict, is associated with altered patterns of resting-

state amygdala connectivity with posterior cingulate cortex, a regional hub of the

default mode network [76]. Although further research is needed to delineate how

early alterations in amygdala connectivity influence longitudinal neuro-affective

development, these findings highlight the potential role of amygdala connectivity as

a neurobiological marker for stress vulnerability as early as the first year of life [77].

4 Amygdala-PFC Circuitry and Individual Differences

in Psychopathology Following ELS

In the previous section, we presented evidence suggesting that there is some degree

of equifinality in neurobiological development following ELS [71], such that

different types of early adverse experiences have converging effects on the devel-

opment of emotion regulation circuitry, resulting in atypical amygdala-prefrontal

circuit function. However, there is also evidence of multifinality, such that there is

wide heterogeneity in long-term mental health outcomes following ELS [71]. For

example, similar adverse experiences (e.g., institutional care) confer risk for mul-

tiple types of psychopathology across individuals [5, 15, 71]. In the context of

developmental theory (Adaptive Calibration Model, Experiential Canalization, and

Stress Acceleration Hypothesis), environmentally driven changes in neurobiology

represent an ontogenetic response to adversity, and may confer adaptive or mal-

adaptive behavioral outcomes in specific domains or contexts across development

[10–13]. Given the heterogeneity in mental health outcomes associated with ELS, it
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is important to consider how individual trajectories of neuro-affective development

predict risk or resilience following exposure to early adversity. The following

discussion will review recent evidence linking adversity-induced changes in

amygdala-prefrontal function with individual differences in psychopathology

(i.e., anxiety, depression, PTSD).

4.1 Amygdala Reactivity and Psychopathology

Individual differences in amygdala reactivity predict dimensional measures of

emotional functioning in both typically developing and stress-exposed youth. In

typical children and adolescents, increased amygdala reactivity to sad facial expres-

sions predicts level of concurrent internalizing symptoms [30] and depressive

symptoms [78]. Youth with trauma exposure and post-traumatic stress symptoms

have shown greater amygdala reactivity to emotional facial expressions relative to

non-exposed youth [38] although there are mixed findings [42, 79]. A recent study

examined the interaction of early trauma exposure and psychiatric status on amyg-

dala reactivity to emotional stimuli during childhood [80]. Amygdala response

varied as a function of both early trauma and concurrent levels of psychopathology,

such that children with trauma exposure and current diagnosis of major depressive

disorder exhibited the greatest levels of amygdala reactivity [80]. Moreover, recent

evidence suggests that heightened amygdala reactivity predicts long-term increases

in negative affect in both healthy and depressed preschool children [81]. Together,

these studies suggest that amygdala reactivity may represent a neural marker for

current and/or future levels of stress-related psychopathology during childhood and

adolescence. However, further longitudinal studies are needed to delineate the

specific effects of different types of stressors on amygdala reactivity phenotypes

and long-term mental health outcomes.

4.2 Longitudinal Studies of Amygdala-PFC Connectivity
and Psychopathology

Recent longitudinal findings also suggest that atypical amygdala-prefrontal con-

nectivity may represent a neurobiological risk factor for the emergence of

psychopathology following ELS. In adolescents with a history of childhood

maltreatment, the strength of resting-state amygdala-sgACC connectivity medi-

ated the relationship between maltreatment exposure and internalizing symptoms,

such that weaker amygdala-sgACC connectivity conferred higher levels of anxiety

and depressive symptoms [73]. In a recent study of cumulative childhood stress,

Pagliaccio et al. [75] examined the relationship between resting-state amygdala-

ACC connectivity and longitudinal assessments of internalizing psychopathology
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in children. Similar to Herringa et al. [73], weaker amygdala-ACC connectivity

mediated the effect of stressful and traumatic life events on current symptoms of

anxiety. Moreover, amygdala-prefrontal connectivity and concurrent symptom

levels were both significant predictors of anxiety symptoms one year later,

providing longitudinal evidence that stress-related changes in the functional integ-

rity of amygdala-prefrontal circuitry confer vulnerability for future stress-related

psychopathology [75].

Given that amygdala functional development is tightly linked to the HPA axis

[82], cortisol reactivity may play an important role in the developmental cascade

linking neuro-affective changes to long-term mental health outcomes following

ELS. In a long-term prospective study, Burghy et al. [83] examined the effects of

cumulative maternal stress on cortisol levels during childhood and resting-state

amygdala-prefrontal connectivity in late adolescence. Greater levels of maternal

stress during the first year of life were associated with heightened baseline cortisol

levels during childhood, suggesting a dose-dependent response in the HPA axis

response to ELS [83]. Although maternal stress did not directly predict amygdala-

ventromedial PFC (vmPFC) connectivity, higher childhood baseline cortisol levels

were associated with altered resting-state amygdala-vmPFC connectivity in ado-

lescent females. Moreover, the strength of amygdala-vmPFC connectivity mediated

the relationship between heightened cortisol and symptoms of depression and

anxiety in adolescent females, albeit in different directions. Specifically, weaker

amygdala-vmPFC connectivity predicted greater symptoms of anxiety, while stron-

ger connectivity predicted greater symptoms of depression, suggesting that diver-

gent trajectories of amygdala-prefrontal development following ELS confer risk for

different forms of internalizing psychopathology. Overall, this study provides

longitudinal evidence across multiple-levels of analysis that stress-related changes

in HPA-axis regulation are associated with atypical amygdala-prefrontal connec-

tivity and heightened vulnerability for internalizing psychopathology

following ELS.

4.3 Cross-Sectional Studies of Amygdala-PFC Connectivity
and Psychopathology

Cross-sectional studies have examined the effects of ELS on age-related changes in

the developmental trajectory of amygdala-prefrontal circuit function. PI youth with

a history of orphanage care showed atypical age-related changes in task-elicited

amygdala-mPFC connectivity in response to fearful faces [61]. In typically devel-

oping youth, children showed more positive amygdala-mPFC connectivity,

whereas adolescents showed negative amygdala-mPFC connectivity. However, PI

children showed more mature (i.e., negative) connectivity at earlier ages relative to

age-matched comparisons. In line with previous literature [83], cortisol levels

mediated the relationship between ELS and amygdala-mPFC connectivity,
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supporting the role of the HPA axis in stress-related changes in neuro-affective

development [61]. Importantly, amygdala-mPFC connectivity predicted current

levels of psychopathology in the PI group, such that more mature connectivity

conferred lower levels of anxiety. In the context of the Stress Acceleration Hypoth-

esis [13], these findings suggest that earlier functional maturation of this circuitry

may represent an adaptive response to previous stress exposure that reduces vul-

nerability for emotion dysregulation. However, given the cross-sectional nature of

this study, further longitudinal research is needed to delineate whether these early

stress-induced adaptations predict risk or resilience in the long-term.

Atypical amygdala-prefrontal functioning has also been identified in a cross-

sectional study of PTSD youth with a history of early adversity [42]. Specifically,

threat-related connectivity between the amygdala and dACC/dmPFC predicted

severity of avoidant symptoms in PTSD youth. Moreover, they identified altered

patterns of age-related connectivity phenotypes in the PTSD group, such that

amygdala-vmPFC connectivity increased with age in typically developing youth,

but decreased with age in PTSD youth [42]. Similar to PI children [61], children

with PTSD exhibited a more mature pattern of amygdala-vmPFC connectivity,

suggesting a developmental adaptation to compensate for heightened emotional

reactivity following ELS. However, adolescents with PTSD showed less mature

amygdala-vmPFC connectivity relative to age-matched controls. When considering

the Stress Acceleration Hypothesis, these findings suggest that early maturation of

this circuitry following ELS may be adaptive during childhood, but may result in

reduced functional maturity of the circuit during adolescence. Although it is

possible that exposure to traumatic events at earlier vs. later stages of development

(i.e., childhood vs. adolescence) may differentially alter neuro-affective develop-

ment, there were no reported effects of duration-since-exposure of adversity, nor

the length of PTSD diagnosis on amygdala-vmPFC connectivity in this study

[42]. Although the observed age-related changes in amygdala-vmPFC connectivity

were not directly associated with PTSD symptoms, these findings highlight the

importance of examining developmental trajectories when considering the effects

of ELS on amygdala-prefrontal function and emotional disorders.

5 Protective Factors and Neuro-Affective Development

Following ELS

Although ELS is associated with a higher incidence of stress-related psychopathol-

ogy, many individuals exposed to early adversity do not develop clinical disorders

[84]. Moreover, individuals with history of ELS may show difficulties in specific

domains of socio-emotional functioning (e.g., anxiety), but show competence in

other domains (e.g., social skills; [85]). A broad literature on resilience has iden-

tified factors at both the individual level (e.g., cognitive factors) and environmental

level (e.g., family, community) that contribute to individual differences in mental
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health and well-being following ELS [85, 86]. Given the evidence of multifinality

following ELS, it is important to identify how protective factors influence neuro-

biological development to reduce risk for stress-related psychopathology

[87, 88]. For the purposes of the current review, we will focus on protective factors

of the social environment that may ameliorate the effects of ELS on neuro-affective

development via social buffering.

In behavioral studies, quality caregiving and family stability have been consis-

tently shown to promote more resilient long-term outcomes following exposure to

early adversity (reviewed in [89]). For example, in the Bucharest Early Intervention

Project (BEIP), youth with stable foster-care placements following institutional

care showed lower levels of internalizing symptoms during early adolescence

relative to those who experienced disruptions in foster care [5]. Importantly, the

two groups did not differ in the amount of time spent in institutional care or

psychiatric history at age 4, suggesting that the observed difference in adolescent

levels of psychopathology occurred as a function of caregiver stability, as opposed

to earlier levels of trauma exposure or psychopathology [5]. Similarly, longitudinal

studies of childhood maltreatment have shown that family level protective factors,

such as caregiving stability [90], perceived parental care [91], and parental warmth

[92] are associated with reduced risk for future psychopathology. Together, these

findings suggest that positive and stable caregiving is associated with lower levels

of emotional problems following multiple forms of early adverse experiences.

In light of strong evidence linking caregiver support and mental health out-

comes, ample research has focused on identifying the neurobiological mechanisms

underlying these social buffering effects [93, 94]. Evidence across species has

shown that caregivers regulate emotional and neurobiological development

(reviewed in [44]). In rodent pups, maternal presence has transient effects on

cortisol release and amygdala function, such that maternal presence blocks stress

reactivity and fear learning during the early stage of rat pup development [82]. Sim-

ilar social buffering effects have been identified in humans; parent availability

reduces cortisol response to social stress [95] and enhances emotion regulation

abilities in children [96]. Moreover, parental stimuli can induce transient changes in

functional connectivity of amygdala-mPFC circuitry, and these neurobiological

changes predict the degree of parental buffering of children’s emotion regulation

abilities [96]. Together, these findings provide a plausible neurobiological mecha-

nism through which caregivers can directly influence neuro-affective functioning

during development.

Despite robust evidence of social buffering effects during typical neuro-affective

development, no evidence to date has examined these effects on emotion regulation

circuitry in youth with history of ELS. However, recent behavioral evidence

suggests that interventions such as high-quality foster care may promote healthy

emotional development in youth with a history of early institutional caregiving

[97]. In the BEIP study, children with earlier placement into high-quality foster care

showed greater attention bias to positive stimuli relative to children who experi-

enced prolonged institutional rearing and typically developing children [97]. Impor-

tantly, positive attention bias in foster care youth predicted lower externalizing
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symptoms at age 8 and lower internalizing problems at age 12, suggesting that

positivity-bias following early foster-care placement is associated with improved

socio-emotional functioning in the long-term [97, 98]. However, a recent study of

internationally adopted PI children and adolescents found that parental presence

during a social stress task had no greater regulatory effect on cortisol reactivity

relative to stranger presence, suggesting that social buffering mechanisms may

exert differential effects on stress-related neurobiology depending on prior social

experiences [99]. Moreover, animal models have shown that social buffering

effects are diminished following atypical caregiving experiences (i.e., nursery

rearing; reviewed in [94]). As such, further research is needed to investigate

potential mechanisms through which protective factors such as positive parenting

behaviors may be able to recalibrate the developmental trajectory of neuro-

affective circuitry, and whether they exert effects over and above the effects of

ELS to protect against future risk for stress-related psychopathology.

6 Limitations and Future Directions

While the current review focused on common phenotypes of neuro-affective

circuitry associated with ELS, there are several directions of future research that

will advance our understanding of how early adversity and protective factors

influence neurobiological development and subsequent mental health outcomes.

First, there is limited research examining the effects of timing and chronicity of

stressors on neuro-affective functional development. Recent studies examining

structural brain development have identified differential effects of adversity on

amygdala volume depending on age of exposure [14, 100], and there is preliminary

evidence linking the age of maltreatment exposure to degree of amygdala reactivity

during childhood [64]. However, the complexity and chronicity of adverse experi-

ences in the majority of human studies makes it challenging to differentiate whether

stress-related effects on amygdala-prefrontal development occur as a function of

the duration or timing of the stress exposure. Although international adoption

studies can provide insight into the effects of ELS (e.g., institutional care) that

occurs during a discrete developmental window, there may be limitations in its

generalizability. These limitations highlight the important role of preclinical studies

that use animal models of ELS. While there will always be the ethical limitations in

studying stress exposure in humans, animal studies can experimentally manipulate

age of onset, chronicity, and severity of ELS to allow for greater conclusions of

causality. Moreover, translational research can provide more precise examination

of the underlying neurobiological mechanisms associated with early adverse expe-

riences that cannot be accessed through human neuroimaging studies.

Second, recent theoretical frameworks have emphasized importance of examin-

ing specific dimensions of early adverse experiences, such as threat and neglect, and

how they influence different aspects of neurobiological development [52]. Although

the current review focused specifically on threat-related alterations in amygdala-
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prefrontal circuitry, other dimensions of early experience may target different

neural circuits (e.g., cortico-striatal circuitry) and neuro-cognitive domains (e.g.,

reward learning, executive functions; [52, 101]). Further longitudinal research is

needed to compare how certain dimensions of adverse experiences differentially

alter neurobiological circuitry to confer risk for specific domains of

psychopathology.

In addition to protective factors of the social environment, genetic factors play

an important role in moderating risk for emotional psychopathology following ELS

[102, 103]. For example, genetic polymorphisms in neuroplasticity genes (e.g.,

BDNF) have been associated with ELS-related changes in neurobiological devel-

opment and emotion regulation [104]. More recent work has shown that cumulative

risk profiles across several HPA-related genetic alleles moderate the association

between amygdala-prefrontal connectivity and anxiety symptoms in children

exposed to stressful life events [75]. Importantly, genetic factors are often corre-

lated with variability in the early environment in human studies, representing a

significant challenge for researchers to differentiate the effects of genetics (e.g.,

parent psychopathology) from the effects of ELS (e.g., family conflict). This can

include studies of adoption and foster-care cohorts, as children who display more

emotional difficulties at a young age may experience greater disruptions in family

placements [105]. Despite these potential confounds, not all individuals with

genetic predispositions (e.g., family history of psychopathology) will develop an

emotional disorder, and emerging research suggests that environmentally induced

epigenetic modifications in gene expression also predict vulnerability for psycho-

pathology [106]. For example, low socioeconomic status has been associated with

longitudinal increases in promotor methylation of the serotonin transporter gene

during adolescence [106]. Importantly, these epigenetic changes were associated

with enhanced threat-related amygdala reactivity, which in turn predicted longitu-

dinal increases in depressive symptoms in adolescents with a family history of

depression [106]. These findings emphasize the critical role of early experiences on

the developmental trajectories of neuro-affective circuitry and risk for stress-related

psychopathology.

7 Conclusion

In summary, emerging research has begun to identify the developmental pathways

through which early adverse experiences alter emotion regulation circuitry to

increase risk for stress-related psychopathology. However, little is known regarding

the differential effects of adversity on amygdala-prefrontal function during differ-

ent developmental stages (i.e., infancy, childhood, adolescence) and different

dimensions of exposure (i.e., maltreatment vs. neglect). Further research delineat-

ing the effects of timing and type of adversities, as well as their interplay with

genetic and epigenetic factors, is needed to advance our understanding of the neuro-

developmental mechanisms implicated in vulnerability for psychopathology
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following ELS. This research will be facilitated by the incorporation of transla-

tional studies that directly compare human studies with animal models of ELS to

provide further insight into the mechanisms underlying the link between early

experiences and neuro-affective development. By applying a dimensional and

developmental framework to future research, we can also begin to elucidate how

and when protective factors can buffer the effects of ELS on neurobiological

development to mitigate long-term risk for psychopathology. Ultimately, such

research will be informative for developing policies and targeted interventions to

improve mental health outcomes for individuals who have experienced early

adversity.
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