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Abstract Systemic inflammation rapidly impairs mood, motivation, and cognition

inducing a stereotyped cluster of symptoms collectively known as “sickness behav-

iors.” When inflammation is severe or chronic, these behavioral changes can appear

indistinguishable from major depressive disorder (MDD). Human and rodent neu-

roimaging combined with experimental inflammatory challenges has clarified the

neural circuitry associated with many of the key features of inflammation-induced-

sickness behavior, and in so doing revealed often-remarkable commonalities with

circuit abnormalities observed in MDD. This review aims to provide the first

synthesis of this work illustrating areas of convergence and divergence with the

MDD literature as well as highlighting areas for future study.
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1 Introduction

Human and animal studies implicate systemic inflammation in the pathogenesis of

depression [1]. In healthy mammals, systemic infection triggers profound behav-

ioral changes, including cognitive and mood symptoms (e.g., memory impairment,

social withdrawal, anxiety, and depression), change in motivation (anorexia,

adipsia, and anhedonia), and neurovegetative symptoms (sleep disturbance, fatigue,

and psychomotor slowing) [2–4] known as sickness behaviors. Clinical and

pre-clinical studies suggest that inflammatory cytokines play a central role in

mediating these sickness-related behaviors by communicating peripheral inflam-

mation to the brain. These cytokine-induced sickness behaviors show striking

similarity to symptoms of major depression [1] supporting a role for immune–

brain interactions in the etiology of at least some patients with major depressive

disorder (MDD).

In rodents, systemic administration of interleukin (IL)-1β or bacterial lipopoly-

saccharide (LPS), a potent stimulant of cytokine release, can rapidly elicit a

depression-like syndrome characterized by a reduction in positively motivated

approach behaviors such as exploration, social interaction, and operant behaviors

for food reward [5–7]. Similarly, experimental induction of inflammation in healthy

human participants using either LPS [8, 9] or typhoid vaccination [10–12] induces

symptoms of fatigue, psychomotor slowing, mild cognitive confusion, memory

impairment, social withdrawal, anxiety, and deterioration in mood that mirror

features of depression. However, arguably, the most powerful empirical support

for an etiological role for inflammation in depression comes from studies of patients

with chronic Hepatitis-C infection treated with interferon-alpha (IFN-α)-based
therapies, up to 50% of whom develop major depressive episodes [13]. Moreover,

in patients with MDD, the presence of high levels of pro-inflammatory cytokines

(in particular IL-6) [14] and acute phase proteins [15] suggest that inflammatory

mediators might contribute to the pathophysiology of depression even in the

absence of medical illness.

Far from being a unitary construct, depression is recognized to be a multi-

componential disorder involving changes in motivation, cognition, attention, mem-

ory, and mood; as well as features such as disturbed appetite, sleep, and sexual

dysfunction and physiological changes including cardiovascular and metabolic

change. In studies of MDD, patients are typically recruited when symptoms are

well established across each of these domains. However, following chronic IFN-α
administration, individual features of clinical depression evolve with characteristic

time-courses allowing a unique opportunity to investigate the temporal evolution of
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individual symptom domains. For example, changes in mood, motivation, and

fatigue (and in some cases feelings of social connection and spatial memory) can

be readily observed within hours of IFN-α administration [16] and/or other exper-

imental inflammatory challenges such as typhoid vaccination [11, 12, 17, 18] and

LPS injection [8, 9, 19]. Changes in physiology, including altered central auto-

nomic regulation of heart rate variability (similar to that observed in MDD) also

occur acutely [20]. However in contrast, subjective reports of depressed mood,

anxiety, and irritability assessed with clinical depression scales typically develop

later, between the first and third months of IFN-α therapy [21].

This differential evolution of individual features of inflammation-associated

clinical depression also provides a unique opportunity to characterize the neural

circuitry underpinning specific components of inflammation-induced depression.

To date, rodent and human brain imaging studies have successfully identified a

discrete set of cortical and sub-cortical structures that appear particularly sensitive

to changes in peripheral inflammation. These include the amygdala, striatum

(particularly ventral regions), substantia nigra, insula, sub-genual and dorsal ante-

rior cingulate, orbitofrontal cortex, and hippocampus/parahippocampus. Some of

these structures appear to play relatively specific roles in particular aspects of

inflammation-associated behavioral change. For example, actions on the ventral

striatum [8, 22, 23] are associated with impaired reward sensitivity and hippocam-

pus/parahippocampus acute memory impairment [4, 20] whereas other regions such

as the insula, anterior and sub-genual cingulate, and amygdala appear to play

broader less circumscribed roles [11, 16]. Common to many of these regions is

that they form part of the extended limbic circuitry critical to complex motivational

behavior, emotion, learning, and memory and the integration of behavioral and

physiological allostatic responses to infection [24, 25].

Together, these studies are beginning to clarify how changes in peripheral

inflammation are communicated to the brain. As discussed in more detail in the

following sections they are also beginning to identify how actions of inflammation

on discrete neural circuits induce individual components of this coordinated behav-

ioral reorientation, which when chronic may evolve to MDD.

2 Communicating Inflammation to the Brain

In rodents, both the early central communication of peripheral inflammatory signals

[26] and the subsequent motivational reorientation appear dependent upon the

integrity of interoceptive visceral afferents traveling in the vagus nerve, visceral

terminals of which express cytokine binding sites [27]. Early in the inflammatory

response, antigen-presenting cells cluster in the vicinity of vagus nerve afferents

and act as immune chemosensory elements signaling to vagal neurons via cytokine-

dependent [28] and -independent mechanisms [29].

Immunohistochemical studies using the immediate early gene c-Fos to index

neural activation confirm that peripheral inflammation and specifically binding of
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pro-inflammatory cytokines to vagus nerve receptors activate a network of brain

structures implicated in homeostasis and the representation of internal bodily state

(interoception) [26]. This afferent signaling is rapid; in the rat peripheral inflam-

mation induces c-Fos expression in the primary projection nucleus of the vagus

nerve (nucleus tractus solitarius – NTS) and secondary projection regions (includ-

ing parabrachial, paraventricular and supraoptic hypothalamic nuclei, central

amygdala, and bed nucleus of the stria terminalis) within an hour of peripheral

inflammatory challenge [26].

In addition to signaling via the vagus nerve, central signaling of peripheral

inflammation may also occur via interoceptive information conveyed via the spinal

cord. For example, information traveling through spinal lamina I is predominantly

tuned to motivationally salient sensations, including pain [30, 31], temperature

[32], itch [33], and sensual touch [34], and converges with afferents traveling in

the vagus nerve within the brainstem and thalamus [35]. In humans, cortical pro-

jections of convergent vagus and spinal interoceptive pathways to the posterior then

mid/anterior insula cortex have been proposed to support a consciously accessible

representation of physical wellbeing [36] and provide a neural substrate for sub-

jective emotional feelings [30, 36].

We have previously demonstrated that this human interoceptive pathway is also

activated by mild systemic inflammation [12]. Specifically, we demonstrated

increased activity on fMRI within bilateral thalamic (basal (VMb) and posterior

(VMpo) ventromedial nuclei) and dorsal mid and anterior insula components of this

interoceptive pathway within 3 h of typhoid vaccine induced inflammation. The

location of these activations is noteworthy as both the VMb (which receives

predominantly vagal fibers) and VMpo (predominantly sympathetic inputs) project

to dorsal mid/posterior insula in a rostrocaudal topographic manner (with vagal

projections extending more rostrally) [30]. Following inflammation activations

occurred in more rostral regions of interoceptive insula cortex than those reported

for thermal sensation [32], noxious pain, and itch (non-vagal) but close to the region

previously reported to be activated by antigen-induced airways inflammation in

asthmatic patients [37].

Insula (and cingulate cortices) also played a key role in mediating subjective

responses to inflammation, particularly fatigue (Fig. 1). For example, inflammation

but not placebo-associated fatigue was predicted by activity changes within bilat-

eral mid/posterior insula and right anterior cingulate (pACC/aMCC). These find-

ings highlight a degree of specificity of the neural mechanisms underlying

inflammation-associated fatigue that is not seen in more general placebo-associated

fatigue (which might result from more heterogeneous mechanisms).

Previous studies showing insula responses to subjective experience of graded

cooling [32], itch [38], and intensity of dynamic exercise [39] support the hypoth-

esis that the subjective experience of inflammation-associated fatigue results from

an insula-based interoceptive mechanism. This hypothesis has also been reinforced

by three more recent studies. The first, using typhoid vaccine induced inflammation

and fluorodeoxyglucose PET (FDG-PET) imaging, which replicated associations

between changes in mid insula activity (in this case glucose metabolism) and the
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subjective experience of inflammation-induced fatigue [23]. The two other studies

used a more potent model of inflammation (0.8–0.6 ng/kg LPS) and either

FDG-PET or resting state fMRI which is a powerful technique for identifying

functionally connected brain networks [40]. The first demonstrated an increase in

right anterior insula glucose metabolism that correlated with loss of social interest

(but not fatigue) [41] while the latter demonstrated correlations between subjective

feelings of both inflammation-induced malaise and discomfort and heightened

functional connectivity between the left anterior insula and mid-cingulate cortex

[42]. Together, these studies highlight the importance of this interoceptive pathway

projecting to insula in the central communication of inflammation induced using

experimental models of bacterial infection. They also emphasize the likely impor-

tance of the insula in translating these interoceptive signals into negative subjective

experiences of inflammation-induced fatigue and malaise (and possibly social

disconnect) that develop early after the onset of inflammation.

Interestingly, patients with left or right insular strokes describe significantly

greater subjective anergia with under activity and tiredness than patients with

Fig. 1 Inflammation-induced insula activity predicts subjective fatigue. (a) Increase in bilateral

insula activity on fMRI during performance of a color word Stroop task after inflammation

compared to placebo. Lower panel shows that left insula cortex activity predicted experience of

inflammation-induced fatigue (blue) but not fatigue associated with placebo (red). Data from

Harrison et al. [12]. (b) Increase in bilateral resting glucose metabolism (FDG-PET) after typhoid

vaccine induced inflammation compared to placebo. Lower panel shows correlation between

change in left insula glucose uptake and subjective fatigue. Data from Harrison et al. [23]. (c)
Left insula region showing an increase in magnetization transfer constant kf after typhoid vaccine

induced inflammation compared to placebo (yellow), correlation with fatigue (blue), and overlap

of these regions (green). Data from Harrison et al. [23]
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strokes sparing the insula region [43]. Furthermore, increased insula metabolism

and altered interoceptive processing have also emerged as key features of MDD

[44, 45]. Increases in insula (particularly anterior insula) glucose metabolism occur

following sadness induction with a converse reduction in insula glucose metabo-

lism observed following successful depression remission [44]. Insula functional

connectivity [46] and regional homogeneity (ReHo) (a measure of the temporal

homogeneity of neural activity within this region) are also impaired in MDD with

the later correlating with retardation components of depression [47]. These findings

have been interpreted as consonant with neurovegetative features of MDD (such as

fatigue) and associated changes in autonomic function [44].

In addition to this neurally mediated pathway, LPS-induced peripheral inflam-

mation also results in a rapid (within 3 h) and diffuse increase in the central nervous

system (CNS) expression of translocator protein (TSPO) [48]. In the CNS, TSPO is

predominantly expressed in activated microglial cells suggesting that systemic

inflammation may be translated into a central microglial inflammatory signal

through diffuse actions at the cerebrovascular endothelium. However to date,

relatively few participants have undergone TSPO imaging post-LPS and no asso-

ciation has been identified between regionally specific increases in TSPO uptake

and subjective experiences of inflammation-induced fatigue.

Curiously, activation of interoceptive projections to insula appears less critical in

mediating subjective responses to inflammation induced using mimics of viral

infection such as IFN-α. Indeed, IFN-α does not appear to be associated with

substantial changes in insula microstructure or glucose metabolism either acutely

[16] or when chronically administered [49] suggesting that visceral afferents may

not be the principle pathway mediating IFN-α-induced fatigue. Why such marked

differences exist between models of bacterial and virally induced infection is

currently unclear though may be usefully informed by the pre-clinical rodent and

non-human primate literature. For example, though IFN-α injection results in a

rapid increase in circulating and cerebrospinal fluid (CSF) concentrations of type-I

interferon [50] other pro-inflammatory cytokines such as IL-6, TNF-alpha, and IL-1

are only modestly elevated [16]. Furthermore, in rodents profound CNS induction

of IFN-inducible genes is observed within hours of intraperitoneal IFN injection

[51], indicating that IFN-α likely gains rapid access to the CNS where its actions

may be more directly transduced.

To summarize, the dorsal insula represents the ultimate projection of interocep-

tive pathways and is believed to provide a cortical representation of all aspects of

bodily physiology including changes in peripheral inflammation [24]. Progressive

posterior to anterior projections are proposed to integrate and translate this infor-

mation into experiential feeling states such as feelings of warmth, malaise, or

fatigue. Experimental models of bacterially induced inflammation result in rapid

structural and functional changes in posterior, mid, and anterior insula cortices that

correlate with concomitant increases in subjective fatigue and malaise. Similar

changes in insula function are also well described in MDD where they correlate

with neurovegetative symptoms of depression including fatigue illustrating striking
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commonalities between inflammation-induced fatigue/malaise and neurovegetative

symptoms of depression.

3 Motivational Change

Impairment in reward-related behavior is a core feature of the motivational

reorientation characteristic of both inflammation-induced sickness behavior [2]

and idiopathic depression [52]. In the context of sickness, this motivational shift

is proposed to efficiently prioritize whole organism responses to clearing the

infecting agent. However when inflammation is severe or prolonged this persistent

motivational reorientation may predispose to the development of MDD [1].

A wealth of human and rodent studies have identified the ventral striatum as a

critical structure for mammalian reward-related processing and appetitive motiva-

tion [53]. Single cell recordings demonstrate that a subgroup of dopaminergic cells

within the midbrain encode a reward prediction error, increasing (or decreasing)

firing rate if a reward is higher (or lower) than predicted [54]. Dopaminergic

projections from the midbrain to the ventral striatum serve to update estimates of

the value of different available options and bias behavioral choice so that long-term

future reward is maximized. Reinforcement learning algorithms such as temporal

difference models [55] have provided a powerful framework for modeling this

dopaminergic prediction error signal that is proposed to mediate learning of asso-

ciations between stimuli, responses, and outcomes [56]. They also allow interroga-

tion of brain imaging data to identify brain regions whose activity correlates with

these reward prediction error signals [57]. Dopamine firing may also contribute to

“incentive salience,” the process by which a stimulus grasps attention and motivates

goal-directed behavior by its association with reinforcing events [58].

Interestingly, both MDD patients [59] and previously healthy participants given

an inflammatory challenge show a reduction in ventral striatal responses to reward

outcomes [22, 60]. Inflammation has also been linked to acute reductions in ventral

striatal reactivity to cues predicting rewards [19], though this is less convincingly

reported in MDD [60]. In the context of inflammation, reduced ventral striatal

responses to both reward cues and reward outcomes also correlate with induced

anhedonia [19, 22]. Patients with MDD have also been shown to exhibit reduced

reward prediction error encoding in the striatum and midbrain [59]. This change

also correlated with the severity of anhedonia symptoms suggesting that abnormal

encoding of prediction errors in MDD could result in anhedonia by altering the

learning and salience of rewarding events [59].

Using a similar probabilistic instrumental learning task we have recently dem-

onstrated that mild inflammatory challenge (induced with typhoid vaccination) also

results in a relative impairment in sensitivity to rewards compared to punishments

[61]. Furthermore, this motivational reorientation was associated with opposing

actions on ventral striatal reward (and right anterior insula punishment) prediction

error encoding [61]. Similar to patients with MDD, inflammation was associated
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with reduced striatal reward prediction error encoding. Behaviorally, after inflam-

mation participants in this study also showed a reduced propensity to choose

rewarded options but enhanced avoidance of punished ones. This behavioral change

was captured computationally as a significant condition (gain, loss) by inflamma-

tion (vaccine, placebo) interaction for the subjective value of rewards compared

with punishments.

Though dopamine activity was not measured in this (or Eisenberger’s study

demonstrating effects of inflammation on reward cues), a similar reduction in

striatal reward prediction error magnitude (and propensity to choose the most

rewarded action) has been reported on this task after haloperidol (a dopamine

receptor-2 antagonist) [57]. This suggests that effects of inflammation on striatal

prediction errors were likely mediated by actions on dopamine release. Supporting

this, inflammation has been linked to altered nucleus accumbens dopamine efflux in

rodents [62] and disrupted presynaptic dopamine synthesis/release in humans

[22]. After LPS challenge monkeys also exhibit significantly lower cerebrospinal

fluid concentrations of the dopamine metabolite homovanillic acid [50].

However, exactly how inflammation modulates dopamine function is currently

unclear. Cytokines such as interferon-alpha have been shown to inhibit dopamine

synthesis by reducing CNS tetrahydrobiopterin, an essential cofactor for tyrosine

hydroxylase, the rate-limiting step in dopamine synthesis [63]. Inflammation can

also decrease synaptic dopamine by increasing expression of the monoamine

reuptake transporter [63–66]. Inflammation may further influence dopamine neu-

rotransmission via activation of the tryptophan-degrading enzyme indoleamine

2,3-dioxygenase and resultant formation of neurotoxic kynurenine metabolites [1].

To date most studies investigating the basis of the motivational reorientation

associated with inflammation have focused on reward-related processing. However,

in our recent study we also showed that inflammation significantly enhances

sensitivity to punishment. This was captured in the data modeling as a significant

increase in the subjective (negative) value of punishment; i.e., the magnitude of the

potential punishment was experienced as being greater after inflammation

[61]. This behavioral change was also associated with greater encoding of negative

punishment prediction error in the right anterior insula.

Increasing punishment prediction error is one way to increase the subjective

value of punishment and may serve as the computational mechanism by which the

anterior insula drives this improvement in avoidance behavior. This interpretation

is in keeping with theories proposing that brain areas like the insula involved with

somatic affective representations (as discussed above) are causally involved in

choice behaviors [24, 30, 57]; particularly in the context of potential losses

[67]. This association between punishment sensitivity and insula activity also

complements an earlier study showing impaired punishment sensitivity in patients

with selective insula lesions [68] and suggests that relative sensitivity to reward

versus punishment is a state rather than a trait-dependent attitude; flexibly enhanc-

ing loss minimization in the context of a serious threat (such as an infection) yet

maximizing responses to gains when in good health.
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As predicted by models of learned helplessness, dysfunctional responses to

negative feedback were some of the earliest cognitive changes described in depres-

sion [69]. More recently, meta-analysis of computationally modeled reinforcement

learning tasks in patients with current or past history of MDD has reported a

selective reduction in subjective reward value (rather than reward learning rate)

[52] similar to what has been observed in the context of inflammation. Relatively

selective actions on reward/punishment magnitude have also been reported follow-

ing dopamine manipulation and insular damage [57, 68]. This rapid cognitive

adaptation following inflammation serves to heighten relative sensitivity to pun-

ishment versus reward raising the intriguing possibility that while this may be

beneficial in the context of an infective challenge when metabolic resources are

diverted to fighting the infecting organism, when chronic, it may predispose to

developing the maladaptive changes in motivation observed in depression. Evi-

dence for common neural mechanisms mediating motivational change and anhe-

donia in MDD and inflammation have been further strengthened by a recent paper

in unmedicated MDD patients showing that decreased connectivity between the

ventral striatum and ventromedial prefrontal cortex (vmPFC) also mediates

observed associations between raised CRP and anhedonia [70].

4 Psychomotor Retardation

Psychomotor retardation, defined as a slowing-down of thought and physical

movements, is a core feature of depression [71] and readily induced following

systemic administration of pro-inflammatory cytokines or other experimental

models of inflammation [72].

In rodents, systemic administration of bacterial LPS or inflammatory cytokines

(notably IL-1β) consistently suppresses locomotor and motivational behaviors,

resulting in increased periods of immobility [73]. These depressant effects of

peripheral IL-1β on behavior are potentiated by IL-6 [74] and motor-suppressing

effects of inflammatory challenge are reduced by antibodies against IL-6 [75, 76]

and attenuated in IL-6 knockout mice [77]. Psychomotor retardation expressed as

prolonged motor reaction times is also a feature of human sickness behaviors

[78, 79], and is observed even after relatively mild inflammatory challenges [10].

In the first study to directly investigate the neural mechanisms underlying the

psychomotor consequences of peripheral inflammation Brydon et al. [10] recorded

whole brain responses to performance of a simple motor task (button press). They

demonstrated that low-level inflammation (induced using typhoid vaccine) selec-

tively modulated substantia nigra reactivity to performance of a button press task

during both a low-level visual stimulation (flashing checkerboard) task and a more

demanding cognitive (color word Stroop) task. They also observed a striking

correlation between peripheral IL-6 responses and motor response time on the

Stroop task for both low level (congruent) and attentionally demanding (incongru-

ent) trials suggesting an action on low-level pre-cognitive processes. Supporting
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this, both peripheral IL-6 responses and changes in left substantia nigra reactivity

predicted inter-individual differences in sensitivity to the motor impairing effects of

inflammation (Fig. 2).

Located in the midbrain, the substantia nigra is the major source of dopamine in

the brain with striatal projections playing a pivotal role in the facilitation of

movement [80]. Nigral dopaminergic projections within striatal target regions

also modulate sensorimotor processing in response to stimulus salience [81] and

have been linked to the reduction in novelty salience observed during inflammation

[17]. Agonists that potentiate dopaminergic neurotransmission improve the speed

of motor responses in animals, whereas striatal dopamine depletion and selective

blockade of dopamine D1 or D2 receptors have been shown to significantly impair

performance on reaction time tasks [82, 83]. Similar to effects of inflammation,

impaired task performance following inhibition of dopamine is due to lengthened

response latencies rather than deficits in the accuracy of responses [83]. Lower

levels of striatal dopamine transporter have also been associated with slower motor

reactions in healthy elderly humans [84]. Brydon’s results extend these observa-

tions and provide empirical evidence for involvement of the dopamine system in

behavioral consequences of peripheral inflammation, highlighting a role for IL-6

and substantia nigra neural activity in infection-related psychomotor impairments.

Fig. 2 Inflammation induces psychomotor slowing through actions on substantia nigra. (a) Effect
of inflammation on substantia nigra reactivity during a low-grade visual stimulation task (flashing

checkerboard). (b) Correlation between IL-6 response to typhoid vaccination and reaction time on

a color word Stroop task. (c) Correlation between IL-6 response to typhoid vaccine and increase in
left substantia nigra activity during Stroop task performance. (d) Correlation between mean Stroop

reaction time and left substantia nigra reactivity following inflammation. Reproduced from

Brydon et al. [10] with permission
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As discussed in the previous section, brain dopamine levels are modulated by

peripheral administration of IFN-α and other inflammatory cytokines in rodents

[66]. Human patients receiving IFN-α-based immunotherapy also experience

marked psychomotor slowing [72] which has been shown to correlate with abnor-

malities in left dorsal striatal glucose metabolism [49]. These patients also demon-

strate bilateral reductions in striatal 18F-DOPA turnover on PET imaging

suggesting decreased presynaptic dopamine synthesis or release, though associa-

tions with psychomotor responses were not reported in this study [22]. Interestingly,

elevated circulating IL-6 and altered striatal dopaminergic neurotransmission are

also associated with psychomotor slowing in people with MDD [85, 86]. However,

these studies have tended to focus on changes within striatal projection regions

(rather than the substantia nigra) that are typically easier to image in human

functional imaging studies. Interestingly, a recent study has shown that older

individuals appear particularly susceptible to the psychomotor effects of IFN-α
treatment. In this study, increased choice movement time correlated with changes in

both peripherally induced TNF and left basal ganglia glutamate (reflected by

glutamate/creatine ratio (Glu/Cr)), the other major neurochemical input to the

striatum [87].

Correspondingly, decreased left striatal presynaptic dopamine function has been

described in depressed patients presenting with marked psychomotor retardation

[86]. Left dorsal striatum (caudate) lesions are also associated with a higher

frequency and severity of post-stroke depression [88]. In their study using

18F-DOPA PET Martinot et al. [86] demonstrated a reduction in left caudate tracer

uptake in MDD patients with psychomotor retardation but not MDD patients with

high impulsivity or comparison control participants, providing direct evidence of a

link between striatal dopamine hypofunction and psychomotor retardation. The

importance of the left dorsal striatum to psychomotor retardation associated with

MDD and inflammation has been further strengthened by a recent paper demon-

strating a link between plasma and CSF levels of C-reactive protein (CRP), left

basal ganglia glutamate, and psychomotor slowing in untreated depressed

patients [89].

Together, these data support a central role for bottom-up dopaminergic

(substantia nigra) and top-down glutaminergic inputs into the dorsal striatum in

both inflammation- and MDD-associated psychomotor retardation. Curiously, most

of these studies also report strikingly left lateralized effects. Though robustly

reported this finding is currently poorly understood and will require further inves-

tigation in future studies. During an infection, psychomotor slowing may serve to

minimize energy expenditure and conserve heat, thereby enhancing immune func-

tion. Convergent findings in inflammation and MDD-associated psychomotor retar-

dation suggest that chronic activation of these mechanisms may differentiate MDD

patients presenting with predominant psychomotor retardation or impulsivity/anx-

iety symptoms. Whether this difference in presentation also relates to differences in

peripheral inflammatory markers is the focus of ongoing studies.
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5 Autonomic Responses

Physiological changes including hyperactivity of the hypothalamic-pituitary-adre-

nal axis [90] and disturbance in the autonomic control of the heart and vasculature

[91] are another feature of MDD, with the later proposed to mediate the relationship

between MDD and risk for cardiovascular disease. Inflammation is also increas-

ingly implicated in cardiovascular disease and has been highlighted as a potentially

modifiable risk factor by the American Heart Association (AHA) and Centers for

Disease Control (CDC) [92]. In this context it is therefore noteworthy that, in

addition to impairing mood, experimentally induced inflammation can also perturb

both local cardiovascular reactivity [93] and the central autonomic control of the

cardiovasculature [20].

One of the most consistent physiological changes reported in MDD is a change

in heart rate variability (HRV) which provides an index of beat-to-beat changes in

heart rate [91]. Briefly, high frequency (HF) variation in heart rate is mediated by

parasympathetic tone and is believed to maintain cardiac stability and protect

against myocardial infarction and heart failure. In contrast low frequency

(LF) variation tends to reflect sympathetic tone which is associated with an

increased risk of malignant arrhythmias and sudden cardiac death. The ratio of

these measures (LF/HF) provides a composite measure of HRV with lower values

reflecting healthy cardiac function [94]. Meta-analysis demonstrates a significantly

higher LF/HF ratio in MDD patients, suggesting an increase in sympathetic and

reciprocal decrease in parasympathetic activity [91] that may underlie the associ-

ation with increased cardiovascular risk.

A similar acute increase in LF/HF ratio has also been observed following

induction of mild inflammation using typhoid vaccination [20] and shown to

mediate associated changes in blood pressure. Within the brain, inflammation-

induced shifts in LF/HF balance are associated with changes in glucose metabolism

(FDG-PET) within three discrete regions: dorsal anterior cingulate, posterior cin-

gulate, and pons. Each of these regions is implicated in regulating stressor-evoked

blood pressure reactivity. Their recruitment following inflammation and role in

mediating effects on blood pressure further illustrates how central effects of

inflammation can also contribute to peripheral physiological changes. Together,

these findings demonstrate that commonalities between MDD and inflammation

extend beyond mood and motivational changes to include changes in physiological

function and highlight the brain mechanisms that bind psychological and physio-

logical wellbeing in these conditions.
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6 Attention and Executive Function

Cognitive alterations are a prominent feature of sickness behaviors and manifest

predominantly as disturbances in attention, memory, and higher-level executive

function [4, 95]. Following experimentally induced influenza infection perfor-

mance is impaired on oddball type tasks that demand sustained attention, though

hand-eye coordination and logical reasoning are unaffected [95]. Similar impair-

ments on attentionally demanding tasks are also observed after acute [96] and

chronic administration of interferon-alpha [78]. Patients receiving chronic

interferon-alpha also show impaired performance on tests of cognitive speed,

verbal memory, and executive functions indicating likely impairment of frontal-

sub-cortical brain function [97]. This interpretation is supported by EEG which

shows focal changes in frontal lobe regions after acute IFN-alpha

administration [98].

Cognitive impairments are an important feature of MDD with deficits particu-

larly prominent in measures of sustained attention, memory, and executive function

[99, 100]. Deficits in executive function appear wide-ranging and include impair-

ments in inhibition, set shifting, updating, working memory, and planning indicat-

ing frontal-sub-cortical dysfunction [100]. Focusing on inhibition, which has been

most closely investigated in inflammation, meta-analysis of color word Stroop

studies (where target words are presented in congruent or incongruent font colors)

shows a relatively selective impairment on incongruent trials that demand inhibi-

tion of pre-potent lexical responses [100]. Studies investigating this effect using

neuroimaging suggest that MDD patients show greater interference because they

fail to adequately recruit left dorsolateral prefrontal cortex (DLPFC) [101] or

require greater left DLPFC activation to achieve performance levels observed in

controls [102]. Interestingly, mid-DLPFC is implicated in selecting and biasing

attention to the most task-relevant representation indicating a potential

circumscribed cognitive deficit in MDD patients [100].

In the first neuroimaging study of inflammation and cognition Capuron

et al. [103] used a variation of the CANTAB response time (RT) task to investigate

effects of IFN-α on visuospatial attention. Interferon-alpha did not impair task

performance or recruitment of the parieto–occipital attention network. However,

IFN-α treated patients did recruit an additional dorsal anterior cingulate cortex

(ACC) region that was not observed in controls. ACC is implicated in conflict

monitoring and its activation is proposed to reflect the degree of intentional effort or

willed control needed to perform a task [104]. ACC activation in IFN-treated

patients therefore potentially reflects a need to exert greater cognitive control to

maintain normal levels of task performance in the face of inflammation.

Interestingly, a similar pattern of behavioral and neuroimaging changes also

emerged in a study using the color word Stroop task to investigate effects on mild

inflammation (typhoid vaccination) on cognitive inhibition [12]. Again, inflamma-

tion was not associated with any significant change in task performance. However,

it did have a striking impact on the network of brain regions recruited during
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attentionally demanding incongruent trials (that require inhibition of pre-potent

responses) including DLPFC and mid-cingulate (aMCC/pMCC) cortices. Because

participants showed no performance differences, these effects likely represent a

need for additional neural resources to maintain task performance under inflamma-

tion. As mentioned above, activity within both DLPFC and dorsal ACC is typically

enhanced with increasing cognitive demands. Both regions also show an increase in

activity during performance of a cognitively demanding visual task in the face of

cross-modal auditory distracters [105]. Their concurrent activation in states of

inflammation therefore suggests that interdependent cognitive/attentional [106]

and somatic (autonomic) [107] mechanisms may be invoked to maintain perfor-

mance in the face of increased conflict from interoceptive processing.

In sum, these studies indicate the need to recruit additional neural resources,

notably DLPFC and ACC to maintain cognitive performance in the face of systemic

inflammation. Similar to findings observed in MDD, this is particularly marked in

tasks with high attentional demand or requiring inhibition of pre-potent responses.

Exactly how closely the cognitive deficits induced by inflammation relate to those

observed in MDD is yet to be fully determined. Future research will need to further

clarify the origin of impairments in executive function observed in MDD and

dissect the neurobiological and cognitive mechanisms underlying the broad cogni-

tive deficits reported in both MDD and inflammation. Neurobiological differences

including changes in inflammatory state and its impact on neurotransmitters such as

serotonin or kynurenine breakdown products are one possible cause for these

changes and recent studies are now beginning to characterize this [108].

7 Memory

Work in rodents has demonstrated that inflammatory cytokines modulate a number

of neuronal processes including long-term potentiation (LTP) [109, 110], synaptic

plasticity [111], and neurogenesis [112] that are critical to learning and memory. In

health, immune mechanisms play a role in each of these processes and contribute to

the remodeling of neural circuits that promote learning and memory [4, 111]. How-

ever, during systemic infection this positive regulatory function is disrupted

resulting in acute memory impairments [113]. When inflammation is severe,

cognitive impairment may also become persistent [114] and when it is chronic

typical age-related impairments in cognition are accelerated [115].

Medial temporal lobe (MTL) structures appear to be particularly sensitive to the

effects of inflammation. This may reflect their relatively high receptor and messen-

ger RNA expression for pro-inflammatory cytokines [116, 117] and their connec-

tivity to regions such as the insula [118] that support cortical representations of

peripheral inflammatory states [24]. Rodent studies have particularly emphasized

the role of the hippocampus in inflammation-associated memory impairments. For

example, IL-1 administration into the hippocampus selectively impairs spatial and

contextual memory processes and contextual, but not (hippocampus independent)
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auditory-cued, fear conditioning [4, 119, 120]. Similarly, over-expression of IL-1

mRNA within the hippocampus has been associated with delayed acquisition of

spatial memory [120]. LTP is arguably the key neuronal mechanism for synaptic

plasticity that underlies memory encoding and recall. It is therefore noteworthy that

IL-1 compromises both hippocampal and dentate gyrus LTP [109, 121,

122]. Peripheral inflammatory challenges also induce IL-1 expression within

brain regions, including the MTL [123] and can replicate many of the direct actions

of inflammatory cytokines on MTL-dependent memory [124, 125].

In humans, individuals suffering from acute flu-like symptoms have been shown

to exhibit impaired memory on tests of immediate and delayed verbal (and delayed

picture) recall [126]. However, retrieval of semantic information consolidated in

long-term store is unimpaired [126]. Similarly, inflammation induced experimen-

tally with LPS impairs both verbal and nonverbal, declarative memory [9]. Impor-

tantly, these memory impairments remain prominent even when mood normalizes

suggesting an effect induced by inflammation rather than being secondary to

associated changes in mood [9]. Impaired verbal memory is also reported following

IFN-α [97]. These studies, which have focused on declarative memory, broadly

support the MTL sensitivity to inflammation observed in rodents. However, marked

differences in the memory testing paradigms used in rodents and humans limit

finer-grained translational inferences.

This difficulty has been partially mitigated (in the context of spatial memory) by

the recent translation of the Morris water maze, used extensively to assess rodent

spatial memory, for human use [127]. This task requires participants to remember

the identity and spatial location of objects in a virtual arena and has been recently

used to demonstrate that low-level inflammation also selectively impairs human

spatial memory [18]. In particular, inflammation was associated with a selective

impairment in remembering object location but not object identity. Furthermore,

inflammation did not impair motor skill learning (indexed by performance on a

mirror tracing task), a form of procedural memory that relies on a separate dorsal

striatum-based memory system independent of the MTL [127]. Interestingly,

inflammation was also associated with bilateral reductions in MTL resting glucose

metabolism (measured using FDG-PET) with changes in the right

parahippocampus significantly mediating the inflammation-induced impairment

in spatial memory [18] (Fig. 3). The location of this effect is noteworthy as studies

in rodents associate similar spatial memory impairments with changes localized to

the hippocampus not the parahippocampus [4].

Why these inter-species differences exist may be usefully informed by human

lesion studies, that show that human performance on Morris water maze type tasks

and direct tests of object-location memory can be more strongly dependent on right

parahippocampal than hippocampal integrity [128, 129]. Right parahippocampal

activity during object-location encoding has also been shown to predict subsequent

retrieval success with a spatial cue [130]. Furthermore one-trial memory for object-

place associations also appears to be critically dependent on posterior

parahippocampus rather than the hippocampus in monkeys [131].
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Episodic memory is also one of the cognitive functions most susceptible to

depression suggesting a relatively selective impairment in MTL function

[132, 133]. Supporting this, meta-analyses of structural MRI studies have shown

an 8–10% reduction in hippocampal volume in MDD [134, 135]. Similar to

participants receiving LPS or experiencing flu-like symptoms, studies conducted

on large populations of MDD patients (>8,000) report impaired performance on the

delayed paragraph recall test of verbal declarative memory [136]. MDD patients

have also been shown to perform significantly worse on a virtual reality measure of

spatial memory [137]. Though to date most studies investigating memory function

in MDD have focused on the hippocampus, evidence suggests that MDD may also

be associated with abnormalities in broader MTL structures [138]. Future studies

characterizing the specific pattern of memory deficits associated with MDD and

Fig. 3 Inflammation impairs spatial memory via actions on medial temporal lobe glucose

metabolism. (a) Virtual reality object-location task. Inset shows that object-location accuracy

(y axis) improves after placebo (red) but deteriorates after typhoid vaccine induced inflammation

(blue). (b) Control mirror tracing task. Inset shows equivalent improvement in performance after

both placebo (red) and vaccine (blue). (c) Decrease in medial temporal lobe (MTL)

fluorodeoxyglucose (FDG) uptake in participants given typhoid vaccine after scan 1 (V1 to V2

red) compared to controls (blue). (d) Similar reduction in MTL FDG uptake in participants given

typhoid vaccine after scan 2 (P2 to P3 blue). Note participants given typhoid vaccine after scan

1 (red) show a sustained reduction in FDG uptake at scans 2 and 3 (V2 to V3). (e) Reduction in

MTL FDG uptake after typhoid vaccination (blue), correlation between object-location accuracy

and FDG uptake (yellow), and area correlating with interaction between task performance and

inflammation illustrated in a (red). Data from Harrison et al. [18]
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inflammation and their underlying neural substrates will be essential to furthering

our understanding of how inflammatory processes contribute to the memory deficits

observed in MDD.

8 Social Responses

Another feature of sickness behaviors is social withdrawal and social disconnection

[139]. Feelings of social disconnection (experienced as loneliness) contribute to the

development and maintenance of depression [140]. The observation that

inflammation-induced social withdrawal can be reversed by antidepressant treat-

ment [141] has motivated a number of recent human studies seeking to understand-

ing how inflammation leads to social disconnection as a way of potentially

understanding the mechanistic relationship between inflammation and depression.

In an early study, Eisenberger et al. [8] showed that inflammation increases

feelings of social disconnection and furthermore that this change mediated the

relationship between inflammatory activity and depressed mood. The questionnaire

used to assess feelings of social disconnection in this study included items reflecting

both a desire to withdraw socially and items that reflected a feeling of being socially

isolated or disconnected from others. Both types of items were altered following

LPS suggesting potentially dissociable effects on motivational processes (“I want to

be alone”) as well as processes involved in social cognition and social perception.

Addressing this, Moieni et al. have recently demonstrated that LPS induced inflam-

mation impairs performance on the “Reading the Mind in the Eyes” test of theory of

mind [142]. This task evaluates how accurately participants can identify another’s
emotional state by looking only at their eyes [143] and suggests that in addition to

effects on motivation, inflammation can additionally alter social processes central

to our ability to correctly infer others mental and emotional states.

Another important feature of MDD is that it is twice as common in women as

men. One factor proposed to mediate womens’ increased vulnerability is their

greater exposure and reactivity to interpersonal stressors [144]. It is therefore

noteworthy that though women do not show convincingly greater

pro-inflammatory cytokine responses to LPS they do report greater increases in

feelings of social disconnection and depressed mood suggesting that inflammation

may play a role in mediating sex differences in rates of MDD [145]. This is

supported by another study that combined LPS and the Cyberball task during

fMRI to investigate effects of inflammation on social exclusion [146]. In this

study, LPS-induced increases in IL-6 correlated with increased activity within a

matrix of brain regions including dorsomedial prefrontal cortex (PFC), posterior

superior temporal sulcus (STS), dorsal anterior cingulate (dACC), and insula that

are implicated in social processing. However, though this relationship was observed

across all participants only in women did it significantly mediate associations

between inflammation and depressed mood.

Brain Structures Implicated in Inflammation-Associated Depression



Brain regions such as the posterior superior temporal sulcus (pSTS) and medial

prefrontal cortex are strongly implicated in tasks of social cognition that involve

extracting socially meaningful information and inferring another’s mental state

[147]. It is therefore noteworthy that each of these regions showed heightened

activity in proportion to induced inflammation [146]. This interpretation is also in

keeping with reported impairments in performance on the “Mind in the Eyes” test

on theory of mind [142]. Supporting these findings, inflammation has also been

shown to disrupt the functional connectivity of both the pSTS and medial prefrontal

cortex to sub-genual cingulate (sACC) (a region central to integrating social,

emotional, and physiological responses) during an implicit emotional face

processing task [11]. Together, these studies demonstrate effects of inflammation

on social processing including increased feelings of social disconnection and

impaired theory of mind. Accumulating evidence suggests that in some partici-

pants, particularly women, these changes may mediate associated impairments in

mood and illustrate a potential mechanism linking inflammation to depression.

9 Network Connectivity

The preceding sections have focused on dissecting effects of inflammation and

MDD on discrete emotional, cognitive, behavioral, and physiological changes and

relating this to regional changes in brain function. However, a small number of

recent studies have begun to look at the effects of inflammation on network

connectivity, driven by the recognition that even the simplest cognitive functions

involve highly distributed processing [148]. The first such study used a simple

psychophysiological interaction (PPI)-based approach to investigate the effects of

systemic inflammation on connectivity of the sub-genual cingulate (sACC) [11]. In

so doing, this study showed that inflammation-associated changes in total mood

modulated not just sACC activity but also its functional connectivity to the nucleus

accumbens, amygdala and superior temporal sulcus, regions central to the

processing of reward, and emotionally and socially salient information, respec-

tively. Furthermore, inflammation-induced reductions in the effective connectivity

of the sACC to each of these regions predicted the associated deterioration in

total mood.

This study is noteworthy as the sACC is recognized as a key node in functional

and anatomical models of mood regulation [149] and the coordination of emotional

processing. It is also strongly implicated in the pathophysiology of MDD

[44]. Increased sACC activity seen in depression has also been shown to reverse

with successful depression treatment with a selective serotonin reuptake inhibitor

[44, 150], deep brain stimulation [151] of adjacent white matter tracts, and even

placebo [150]. Importantly, the sACC is a region that is strongly implicated in

integrating multiple components of mood homeostasis. Its recruitment in

inflammation-induced mood change suggests that inflammation-associated changes
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in mood recruits a network of brain regions similar to that implicated in primary

depression.

More recently three further studies have investigated the effects of inflammation

on brain functional connectivity networks observed at rest. In the first using low

dose LPS (0.4 ng/kg), seed-based analysis revealed a rapid and widespread reduc-

tion in the functional coupling of the amygdala, insula, and cingulate cortices to

multiple brain networks involved in affective-emotional, motivational, and

cognitive-modulatory processes [152]. Similar to the PPI analysis of task-related

fMRI [11], LPS was associated with reduced connectivity between the amygdala

and prefrontal structures, though these authors were unable to show any significant

relationship to changes in mood. The second study used a slightly higher dose

(0.6 ng/kg) of LPS and specifically investigated effects on connectivity between

anterior and posterior insula seeds and orbitofrontal and cingulate (anterior and

middle). This study identified a specific increase in left anterior insula to left

mid-cingulate cortex that additionally predicted LPS associated back pain and

global sickness [42]. These regions form key components of the pain matrix, and

it is noteworthy that they have also been previously linked to LPS induced increases

in visceral pain sensitivity [153].

The third study adopted a different approach and investigated effects of IFN-α
on measures of network function derived from graph theory [154]. Briefly, graph

theory provides a powerful mathematical approach for analyzing the structure of

complex networks, and application to the human brain has revealed insights

unavailable from conventional approaches. For example, it has shown that similar

to other complex networks, the brain utilizes an efficient “small-world” connectiv-

ity architecture that serves to minimize wiring cost while maintaining robustness to

random damage to individual regions (nodes) or connections (edges) [155]. Within

4 h of administration, IFN-α was associated with a striking reduction in global

network connectivity and network efficiency indicating a global reduction in

information transfer among nodes forming the whole brain network. Furthermore,

these changes in global network connectivity and efficiency of information

exchange correlated strongly with IFN-α induced changes in mood, confusion,

fatigue, and tension/anxiety.

How peripherally administered IFN-α or LPS can so rapidly impair the func-

tional connectivity of such large-scale brain networks is currently uncertain. How-

ever, the observation that these actions are effected on a global scale points towards

a likely role for neuromodulators such as dopamine, norepinephrine, or serotonin

that can rapidly alter diverse and widespread neuronal populations rather than a

more regionally targeted effect. In support of this, inflammation has been linked to

altered nucleus accumbens dopamine efflux in rodents [62], decreased striatal

dopamine release in rhesus monkeys [156, 157], and reduced presynaptic dopamine

synthesis or release in humans [22]. Further, monkeys showing behavioral impair-

ment after inflammatory challenge with lipopolysaccharide exhibit significantly

lower cerebrospinal fluid concentrations of the dopamine metabolite homovanillic

acid [50].
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Network-based analyses have also been pursued in MDD and, similar to the

findings of post-LPS, have shown reduced functional connectivity within broad

prefrontal-limbic-thalamic areas, particular regions sub-served by the left

amygdala-ACC and the right insula–precuneus Labrenz et al. [158]. Graph theo-

retic analyses of MDD have also demonstrated changes in network topology

including abnormal small-world organization and network efficiency [159]. Though

application of advanced connectivity analyses to both MDD and inflammation

remains in its relatively infancy, similar marked changes in network connectivity,

particularly within prefrontal and limbic regions across conditions, support the

utility of this approach as a way of characterizing the relationship between inflam-

mation and MDD. Demonstration of often-marked correlations between global

measures of network function and mood/cognition suggests a likely role for

neuromodulators such as dopamine and serotonin, that are implicated in the path-

ophysiology of both MDD and sickness behaviors. Further characterization of these

associations will require combination of network-based analyses with PET imaging

of specific neuromodulators and/or metabolomic approaches.

10 Summary

Rodent and human brain imaging studies have been successful in characterizing a

discrete set of cortical and sub-cortical structures sensitive to changes in peripheral

inflammation and highlighted their role in many of the key components of sickness

behavior. These regions show a striking similarity to the network of areas impli-

cated in the mood, motivational, and cognitive deficits characteristic of MDD. In

the context of models of bacterial infection, peripheral inflammation rapidly

recruits an interoceptive pathway projecting to insula. This pathway and its termi-

nal projection to the insula provides a central representation of all aspects of bodily

physiological state and its translation into consciously accessible feeling states.

Following inflammation, recruitment of the insula cortex is implicated in feelings

of fatigue and malaise (and possibly social disconnection) as well as a heightened

sensitivity to punishment. Bidirectional connections between the insula and the

anterior and mid-cingulate cortex provide a substrate for the heightened sensitivity

to visceral and pressure pain. Similar to MDD, actions of inflammation on ventral

striatal reward processing and reward prediction error encoding appear to underlie

shifts in reward sensitivity and motivation. Cognitive deficits (particularly impaired

MTL dependent memory and performance on attentionally demanding tasks) are

characteristic of both MDD and inflammation and relate to disrupted hippocampal/

parahippocampal processing and DLPFC, respectively. More recent functional

connectivity studies highlight the distributed nature of cognitive processes and

hint at the likely importance of broadly acting neuromodulators like dopamine

and serotonin in the mood, motivational, and cognitive impairments characteristic

of both MDD and inflammation.
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Based on these foundations, future studies combining multiple functional neu-

roimaging techniques with metabolomic and proteomic approaches should help us

move closer to the goal of a mechanistic understanding of the relationships between

peripheral inflammation, regional brain structure/function, and discrete cognitive

phenotypes observed in MDD.
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