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Abstract The present review briefly explores the neurotoxic properties of

methcathinone, mephedrone, methylone, and methylenedioxypyrovalerone

(MDPV), four synthetic cathinones most commonly found in “bath salts.”

Cathinones are β-keto analogs of the commonly abused amphetamines and display

pharmacological effects resembling cocaine and amphetamines, but despite their

commonalities in chemical structures, synthetic cathinones possess distinct neuro-

pharmacological profiles and produce unique effects. Among the similarities of

synthetic cathinones with their non-keto analogs are their targeting of monoamine

systems, the release of neurotransmitters, and their stimulant properties. Most of the

literature on synthetic cathinones has focused on describing their properties as

psychostimulants, their behavioral effects on locomotion, memory, and potential

for abuse, whereas descriptions of their neurotoxic properties are not abundant. The

biochemical gauges of neurotoxicity induced by non-keto analogs are well studied

in humans and experimental animals and include their ability to induce

neuroinflammation, oxidative stress, excitotoxicity, temperature alterations as

well as dysregulation of neurotransmitter systems and induce changes in mono-

amine transporters and receptors. These neurotoxicity gauges will serve as param-

eters to discuss the effects of the four previously mentioned synthetic cathinones

alone or in combination with either another cathinone or with some of their

non-keto analogs. Bath salts are not a defined combination of drugs and may consist

of one synthetic cathinone compound or combinations of more cathinones. Fur-

thermore, this review also presents some of the mechanisms that are thought to
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underlie this toxicity. A better understanding of the cellular and molecular mech-

anisms involved in the synthetic cathinones-induced neurotoxicity should contrib-

ute to generate modern therapeutic approaches to prevent or attenuate the adverse

consequences of use of these drugs in humans.

Keywords MDPV • Mephedrone • Methcathinone • Methylone • Neurotoxicity •

Synthetic cathinones
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1 Neuroinflammation

One of the most relevant issues related to non-ketoamphetamines-induced neuro-

toxicity is that they can trigger inflammatory processes in those brain areas that

exhibit terminal degeneration [1]. Studies have demonstrated that glial activation

participates in the events that induce neuronal damage, since chronic

neuroinflammation elevates the levels of glia-derived cytokines that exert neuro-

toxic effects on vulnerable neurons [2]. Microglia and astrocytes are the primary

modulators of inflammation in the CNS and have been associated with the toxicity

induced by administration of methamphetamine [3], amphetamine and

parachloroamphetamine [4], and 3,4-methylenedioxy-methamphetamine

(MDMA) [5]. Studies of the effects of β-ketoamphetamines on neuroinflammation

are summarized in Table 1.

To the best of our knowledge, no reports have been made on the

neuroinflammatory effects of methcathinone.

With regard to mephedrone, in vivo studies reported that there were no signs of

striatal [17] or cortical [25] astroglial activation after administration of mephedrone

in a binge paradigm. Similarly, no signs of microglial activation were observed in

the striatum at 2 or 7 days after administration of mephedrone [17]. Lopez-Arnau

and colleagues measured [3H]PK11195-specific binding to investigate the

microglial activation after neuronal injury in rats killed 24 h post-treatment with

mephedrone. PK11195 is an isoquinoline carboxamide that purportedly binds to

microglia in conditions of brain injury. In these animals, no increase in the density

of [3H]PK11195 binding sites was detected, indicating a lack of microglial
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activation [20]. However, Martinez-Clemente reported an increase in reactive

astrocytes in the dentate gyrus of the hippocampus of mice treated with mephedrone

at 7 days after a binge of 3 doses of 25 mg/kg for 2 days [25].

There were no signs of striatal, hippocampal, or cortical microgliosis in

methylone-treated rats using a regimen of 4 doses of 20 mg/kg every 3 h [39]. How-

ever, a significant increase of reactive astrocytes was reported in the frontal cortex

of methylone-treated rats. By contrast, no significant differences were found in the

expression of the astroglial marker GFAP in striatum or any subregion of the

hippocampus (dentate gyrus, CA1 or CA3) [39]. MDPV was not found to elicit

GFAP increases when administered in a binge regimen of 4 doses of 30 mg/kg

every 2 h in mice [19].

None of the β-ketoamphetamines mephedrone, methylone, or MDPV in combi-

nation with each other resulted in changes in the levels of GFAP in the striatum of

mice [19]. However, methylone was able to enhance by approximately 50% the

expression of GFAP induced by administration of methamphetamine [19]. MDPV,

on the contrary, prevented the striatal increases in GFAP observed after adminis-

tration of methamphetamine and MDMA [19].

2 Thermoregulation

A common adverse effect of non-ketoamphetamines such as methamphetamine

[52], amphetamine, and MDMA [53] is an increase in body temperature. This

hyperthermia is dependent on the frequency of exposure, dosing, age, ambient

temperature, and route of exposure [52]. MDMA and methamphetamine produce

hyperthermia following acute and repeated exposure at ambient temperature and

elevated ambient temperature [14, 54–58]. Hyperthermia is an important factor

known to exacerbate the deleterious effects of amphetamine-type drugs. Studies of

the effects of β-ketoamphetamines on thermoregulation are summarized in Table 1.

A single dose of 10 mg/kg of methcathinone caused a sustained increase in rectal

temperature that was not accompanied by any significant concomitant change in tail

temperature in individually housed rats [7]. Similarly, an acute intoxication with a

methcathinone infusion (5 mg/kg/min; 100 mg/mL) caused hyperthermia in rats

[6]. By contrast, acute exposure to mephedrone produces hypothermia in rats

[7, 59]. This hypothermic response at ambient and elevated temperatures is

rat-strain specific, with the reduction in body temperature detected in Wistar but

not Sprague-Dawley rats [27]. Alpha-1 adrenoreceptor and dopamine D1 receptor

blockade seem to enhance the hypothermic response induced by mephedrone

[7]. On the other hand, when mephedrone is administered repeatedly in a binge

paradigm, it produces hyperthermia in both mice [17, 19, 25] and rats [24]. These

studies indicate that mephedrone differs from MDMA and methamphetamine in its

thermoregulatory effects despite their neuropharmacological similarity. Lopez-

Arnau and colleagues showed that the effect of mephedrone changes with the

dose using a 2-day binge paradigm of 3 doses of 25 mg/kg a day every 2 h

212 M. Angoa-Pérez et al.



[20]. On day 1, after receiving the first dose of mephedrone, the treated animals

showed a significant transient reduction in body temperature; after the second dose,

temperature increased over the saline values but this hyperthermic response was

significant only after the third dose. On day 2, no significant hyperthermic response

was evidenced. Consistent with that report, other studies have suggested that the

mephedrone-induced hypothermia is attenuated with repeated dosing and that this

response can be attenuated by 6-hydroxydopamine or abolished by

5,7-dihydroxytryptamine [26]. Taken together, mephedrone produces hypothermia

following acute exposure, while producing hyperthermia following binge models of

dosing [60].

Studies of self-administration of mephedrone in rats evidenced that its thermo-

regulatory effects also differed between rat strains, with the Sprague-Dawley rats

being most sensitive. While in Sprague-Dawley rats the administration of

mephedrone produced a dose-dependently decreased body temperature, in Wistar

rats, the response was biphasic, starting with a decrease during the first 15 min,

followed by an increase during the next 25–30 min [61]. Another study with these

two strains of rats monitored the effects of the subcutaneous administration of

mephedrone under conditions of low (23�C) and high (27�C) ambient temperature.

A reliable reduction of body temperature was produced by mephedrone in Wistar

rats at low and high temperatures with only minimal effect in Sprague-Dawley rats.

Furthermore, hypothermia produced by serotonin (5-HT) 1A/7 receptor agonists

was similar in each strain [27].

Similar to mephedrone, methylone produces hyperthermia following binge

dosing [60]. In mice, 4 injections of methylone (20 mg/kg) every 3 h produced a

robust hyperthermic response that reached a peak between 25 and 35 min after each

drug administration. This effect of methylone increased significantly with the dose,

so that the last dose induced a greater increase in body temperature than the first one

[38]. In rats, methylone treatment (3 injections at 3 and 10 mg/kg every 2 h) caused

significant hyperthermia from 2 h through 6 h post-injection [24]. The thermoreg-

ulatory effects caused by a single administration of methylone did not differ from

the outcomes observed after repeated administration of the drug. Piao and col-

leagues evaluated the acute effects of methylone using 5-HT transporter (SERT)

and dopamine (DA) transporter (DAT) knockout (KO) mice and observed a slight

diminution in the hyperthermic effects of methylone in DAT KO mice, whereas a

slight enhancement of these effects was seen in SERT KO mice. Administration of

selective D1 and D2 receptor antagonists reduced methylone-induced hyperther-

mia, but these drugs also had hypothermic effects of their own in saline-treated

mice, which complicates interpretation of the findings [41].

MDPV exhibits a few important differences in altering body temperature by

comparison to other β-ketoamphetamines. Acute exposure to MDPV produces

hyperthermia [47] at elevated temperatures but not at normal ambient temperatures,

which contrasts with what is observed for MDMA and methamphetamine

[60]. MDPV has been shown to elevate body temperature in some cases of

human medical emergency and fatal overdose deaths [62]. In rats, treatment with

1.0, 5.6, and 10.0 mg/kg of MDPV elicited a significant hypothermia when

Neurotoxicology of Synthetic Cathinone Analogs 213



compared with the vehicle condition [44]. The effects were dose dependent and

lasted up to 3 h after dosing [44]. However, an unexpected lack of dose dependence

was characterized when MDPV was administered in the 20�C ambient environ-

ment. At that cool ambient temperature, MDPV doses from 1 to 30 mg/kg each

induced a rise in core temperature of approximately 1.5�C, which was not different
from that observed following saline administration, and the time course of this

effect was also similar across all tested doses [46]. Besides affecting body temper-

ature, MDPV has been found to induce brain hyperthermia through an increase in

peripheral vasoconstriction [40]. Furthermore, an age-dependent effect of MDPV

on thermoregulation was documented in rats. While adolescent rats increased their

body temperature following MDPV administration, adults showed a decrease in

temperature [48].

The β-ketoamphetamines mephedrone, methylone, and MDPV differentially

affect the temperature effects of their non-β-ketoamphetamine counterparts

[19]. In vivo studies demonstrated that the mephedrone-induced hyperthermia is

not enhanced by concomitant administration of methamphetamine [23]. When

given in two-drug combinations, mephedrone, methylone and MDPV caused sig-

nificant increases in body temperature [19]. When methylone or MDPV are given

with mephedrone, the initial hypothermic effect of mephedrone was retained and

slightly exaggerated. Combined treatment with MDPV and methylone results in a

steady 1–2�C increase in core body temperature that becomes evident within

15 min of treatment and persists for at least 8–9 h [19]. Neither MDPV nor

methylone attenuated the hyperthermic effects of methamphetamine in mice [19].

3 Neurotransmitters

Alterations in monoaminergic systems are one of the hallmarks of the most studied

non-keto-amphetamines. Methamphetamine is perhaps best known for its toxic

effects on DA nerve terminals of the striatum [63, 64]. MDMA has also been

shown to cause long-term deficits in DA and 5-HT nerve ending in both laboratory

animals and humans [65–67]. Even amphetamine has been linked to nerve terminal

damage [66]. Amphetamine neurotoxicity manifests as long-term depletion of DA

and 5-HT, inhibition of their biosynthetic enzymes tyrosine hydroxylase (TH) and

tryptophan hydroxylase 2 (TPH-2), inactivation of DAT and SERT, reduction in

function of the vesicle monoamine transporter (VMAT), degeneration of fine,

unmyelinated axons, and apoptosis [3]. Reductions in DA, TH, and DAT have

been documented in the postmortem striatum of chronic methamphetamine users

[68]. Studies of the effects of β-ketoamphetamines on neurotransmitter systems are

summarized in Table 1.

Methcathinone is a potent releaser of DA but not 5-HT, similar to amphetamine

and methamphetamine [15]. Methcathinone has previously been shown to release

radiolabeled DA [16] and 5-HT from rat brain preparations with similar DA versus

5-HT selectivity to amphetamine and methamphetamine, but with two- to threefold

214 M. Angoa-Pérez et al.



lower potency [15]. Multiple administrations of methcathinone caused persistent

deficits in monoaminergic systems [11], reflected by decreases in DA and 5-HT

uptake capacity, tissue content and associated TH and TPH-2 activities in frontal

cortex, hippocampus, and neostriatum after four doses of 30 mg/kg in rats

[8, 9]. However, the effects of this drug seemed to be more accentuated in rats

compared to mice. While in mice methcathinone produced long lasting depletions

of striatal DA, in rats it caused significant depletions of both DA and 5-HT [11]. A

single high-dose administration of methcathinone increased striatal DA release, as

measured by microdialysis in conscious rats [8]. Methcathinone was also found to

increase the metabolites homovanillic acid (HVA) and 5-hydroxyindoleacetic acid

(5-HIAA) levels in striatum [7].

Mephedrone alone did not cause persistent reductions in the levels of DA, 5-HT,

or TPH-2 [18, 19, 22, 28, 69] aside from a small decrease in the DA metabolite

HVA in the mouse striatum [28]. Mephedrone is considered a more potent releaser

of DA than MDMA [15, 70]. An in vivo microdialysis study in rats showed that

mephedrone produced a rapid and pronounced increase in DA levels in the nucleus

accumbens that was comparable with amphetamine and greater than MDMA,

which only elevates DA levels moderately [71]. While both mephedrone and

MDMA also produced strong increases in extracellular 5-HT, amphetamine had

only a moderate effect on 5-HT levels [71]. Self-administration of mephedrone was

shown to decrease the levels of striatal 5-HIAA in rats [21]. Mephedrone admin-

istered in a binge of 3 doses of 10 mg/kg every 2 h showed that the extracellular

increase in striatal DA seen after the first mephedrone injection was similar in

magnitude and time course to those following the second and third injections.

However, the extracellular overflow of striatal 5-HT was more variable but was

enhanced when second and third injections were given when compared with the

first response [26]. Other microdialysis studies in the rat nucleus accumbens

showed that mephedrone elevated extracellular DA and 5-HT levels, with relatively

higher effects on 5-HT levels [24, 27], similar to MDMA and unlike methamphet-

amine, which preferentially increases DA [24]. Thus, mephedrone shares some of

the DA-releasing properties of amphetamine and methamphetamine and the

5-HT-releasing property of MDMA [15]. Repeated administration of mephedrone

in rats showed no significant effect on tissue concentrations of DA, 5-HT, or their

metabolites in the striatum or frontal cortex and hippocampus 7 days post-

administration although the concentration of DOPAC was significantly increased

in this region following mephedrone [29]. The same study further evaluated the

acute effects of mephedrone in comparison with MDMA, and reported reductions

in hippocampal 5-HT and 5-HIAA 2 h after a single injection of MDMA but not

following acute mephedrone [29]. The expression of TH, a biochemical marker of

neuronal integrity in DA neurons, was found to be decreased in frontal cortex but

not in the striatum after a binge regimen of 25 mg/kg of mephedrone [20]. The

overall effects of mephedrone do not involve long-lasting depletions of DA but they

seem to affect 5-HT. Repeated administration of mephedrone in rats caused per-

sistent decreases in hippocampal 5-HT levels but no changes were observed in

striatal DA after 7 days of treatment [70]. Another study reported decreases in TH

Neurotoxicology of Synthetic Cathinone Analogs 215



and TPH-2 after a binge of mephedrone for 2 consecutive days [25]. The fact that

mephedrone has DA-releasing capability resembling methamphetamine and yet

does not cause DA deficits is of significant interest for studying the differential

mechanisms of damage induced by stimulants.

Methylone administration does not result in damage to DA nerve endings in

mice [19]. Binge administration of methylone to single-housed rats (3 or 10 mg/kg,

3 doses) has no long-lasting effects on brain tissue monoamines [24] but produced

significant elevations on extracellular levels of DA and 5-HT [24, 34, 42]. There

seem to be species differences in the sensitivity to long-term neurochemical effects

of methylone [28]. The effects of drug treatments on mouse brain monoamine

levels in the frontal cortex, striatum, and hippocampus indicate that methylone

did not cause any significant changes in neurotransmitter levels. However, in the rat

brain methylone had a profound impact on 5-HT levels, causing a decrease in 5-HT

levels in the frontal cortex, striatum, and hippocampus comparable to that induced

by amphetamine. Additionally, 5-HIAA levels were reduced in the striatum and

hippocampus [28].

In vivo microdialysis studies indicate that MDPV increases extracellular con-

centrations of DA in the nucleus accumbens in a dose-related manner similar to

cocaine. However, MDPV was tenfold more potent than cocaine in its ability to

increase extracellular dopamine [49]. This robust stimulation of DA transmission

by MDPV predicts serious potential for abuse [49]. Despite the high potency to

block the DAT, MDPV did not produce DA efflux. Thus, this cathinone is thought

to be a pure transporter uptake inhibitor [15].

Studies in mice indicate that combined treatment with mephedrone and meth-

amphetamine or MDMA did not change the status of 5-HT nerve endings to an

extent that was different from either drug alone [18]. Methamphetamine and

MDMA alone caused mild reductions in 5-HT but did not change SERT and

TPH2 levels [23]. While mephedrone did not produce changes in the 5-HT system,

it enhanced the DA and TH depletions induced by methamphetamine, amphet-

amine, and MDMA in striatum [23].

In mice, none of the β-ketoamphetamines mephedrone, methylone, or MDPV in

combination with each other resulted in changes in striatal DA or TH, but

mephedrone and methylone potentiated the depletions of DA and TH induced by

administration of methamphetamine [19, 23]. On the other hand, MDPVwas able to

prevent the striatal decreases in DA and TH observed after administering metham-

phetamine, MDMA, and MPTP [19]. Consistent with this study, in vitro data

showed that MDPV blocked methamphetamine-induced DA release with high

potency reflecting its elevated efficiency as an uptake inhibitor. The finding sug-

gests that the more potently a drug antagonizes the DA release produced by

methamphetamine, the more potently it also blocks DA uptake [51].

216 M. Angoa-Pérez et al.



4 Biochemical Mechanisms: Oxidative Stress

and Cytotoxicity

Evidence indicates that reactive oxygen species (ROS) are responsible for

amphetamine-related damage but neither the manner by which these drugs cause

oxidative stress nor the cellular source of the reactant species is known [4, 68]. Oxi-

dative stress is believed to be a prominent factor in methamphetamine-induced

cellular toxicity [72]. By increasing DA release, amphetamines increase the avail-

able DA for oxidation and its metabolism into ROS [73]. Methamphetamine’s
ability to flood the intracellular medium with DA is thought to be the first step in

a cascade that leads to mitochondrial dysfunction, enhanced excitatory neurotrans-

mission, increases in oxidative stress, nerve ending damage, and apoptosis

[74]. Similar to the other amphetamines, metabolism of MDMA also results in

the formation of ROS, which ultimately induce long-term neurotoxic effects

[2]. However, none of the β-ketoamphetamines (methcathinone, mephedrone,

methylone, and MDPV) showed cytotoxicity at the highest concentrations tested

in functional assays [36]. Studies of the effects of β-ketoamphetamines on oxidative

stress and cytotoxicity are summarized in Table 1.

Methcathinone is manufactured by a clandestine process that involves potassium

permanganate oxidation of ephedrine and pseudoephedrine contained in readily

available pharmaceuticals. Intravenous injections of such methcathinone prepara-

tions expose users to a high manganese load because the resultant methcathinone is

not purified [75]. Although studies of methcathinone abusers have described move-

ment disorders similar to Parkinson’s disease attributed to the manganese toxicity,

the syndrome lacks typical features of this condition such as resting tremor and gait

initiation failure [75]. The accumulation of manganese can lead to the development

of encephalopathy and might trigger secondary pathogenic mechanisms, such as

mitochondrial dysfunction and oxidative stress [76].

Animal studies showed that mephedrone induced an increase in the expression

of the antioxidant enzymes superoxide dismutase, catalase, and glutathione perox-

idase in the hippocampus, striatum, and frontal cortex in rats. Along with these

enzyme protein increases, treatment with mephedrone caused a significant increase

in the levels of lipid peroxidation in the frontal cortex [20]. In mice, a single

injection of mephedrone at 2.5 mg/kg caused both an increase in lipid peroxidation

levels and a decrease of catalase activity in the hippocampus and prefrontal cortex

[37] whereas at a dose of 25 mg/kg, mephedrone induced a significant increase of

glutathione peroxidase in striatum [30].

The exposure of mouse cultured cortical cells to various concentrations of

mephedrone for 24 h or 48 h caused a concentration-dependent decrease in meta-

bolically active cells. The calculated LD50 value for mephedrone after 24 h of

incubation was significantly higher to that obtained after 48 h of drug exposure

[25]. In addition, neuroblastoma cells exposed to mephedrone showed an increase

in cytotoxic damage only at high concentrations [31]. Cell culture studies

documented the cytotoxicity of methylone and methamphetamine in CHO cells
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stably expressing the rat transporters DAT, NET, and SERT. Methylone was not

cytotoxic to any cell line except that expressing the SERT [43], indicating higher

specificity for the 5-HT system.

The cytotoxic effects of MDPV have only been evaluated in a developing brain

mouse model, where a single administration of the drug caused a prominent

increase in the number of apoptotic cells in the piriform cortex, retrosplenial area,

hippocampus CA1, and nucleus accumbens, without an overall change in the

density of cells. The neurons of the nucleus accumbens appeared to be especially

sensitive to MDPV as they showed an increase of apoptotic cells in the core and

shell regions of the accumbens. However, this effect of MDPV was not observed in

the brain of adult mice [45]. While methylone alone was reported to be cytotoxic in

cell lines expressing the rat SERT, the combination of methamphetamine with

methylone caused a significant increase in the toxicity in the cells stably expressing

the rat monoamine transporters DAT, NET, and SERT but not in the control CHO

cells [43].

5 Neurotransmitter Transporters and Receptors

The non-keto-amphetamines including amphetamine, methamphetamine, and

MDMA cause neurotoxic effects to monoaminergic systems in part through alter-

ations in DA and 5-HT transporters and receptors [66]. Methamphetamine causes

acute increases in both DA and 5-HT release that result from the direct and indirect

actions on the DAT and SERT. Amphetamines can disrupt the vesicle proton

gradient to cause an increase in cytoplasmic DA and 5-HT from vesicular com-

partments by altering the function of the vesicular monoamine transporter-2

(VMAT-2). Both methamphetamine and MDMA also increase 5-HT release

through similar transporter mediated mechanisms, though MDMA has a preferen-

tial affinity for SERT over DAT and consequently more pronounced effects on the

5-HT system [74]. Studies of the effects of β-ketoamphetamines on neurotransmit-

ter transporters and receptors are summarized in Table 1.

In animals, repeated administration of methcathinone was shown to reduce the

content of DA and 5-HT, the number of transporter sites, as well as the activity of

TPH-2 and TH [9]. In humans, persistent reductions of DAT density have been

reported using PET in methcathinone users and are suggestive of loss of DAT or

loss of DA terminals [10, 77]. Methcathinone exhibited a monoamine transporter

inhibition profile that was very similar to that of the non-keto analogs amphetamine

and methamphetamine, with high inhibitory potencies at the DAT and low poten-

cies at the SERT [13, 15, 78]. It is believed that the deficits in DAT and SERT

produced by methcathinone may reflect potential long-term damage to DA and

5-HT neurons. Nevertheless, to become evident, these neural deficits require

massive, multiple doses of methcathinone over several days. Such doses are 10 to

100 times higher than behaviorally active doses [12]. Deficits in DA function

induced by methcathinone were prevented by pretreatment with dopamine D1 or
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D2 receptor antagonists, whereas 5-HT changes were prevented with a depletion of

striatal DA by lesioning with 6-hydroxydopamine [8]. Apparently the serotonergic

neurotoxicity of methcathinone is promoted by the presence of the N-methyl group

on the drug molecule as it was earlier reported that no long-term changes in 5-HT

levels were observed with repeated high doses of the desmethyl parent compound,

cathinone [12]. In a cell study, methcathinone was less efficacious in releasing

preloaded radiolabeled neurotransmitter via VMAT-2 than methamphetamine

[33]. Methcathinone also exhibited low μM potency at 5-HT2A receptor

binding [15].

Mephedrone administration alone did not cause persistent reductions in the

levels of SERT [18]. Uptake inhibition studies using rat synaptosomes found that

mephedrone potently inhibits DAT and SERT [35, 70], and the drug is a substrate

for DAT, SERT, and the norepinephrine transporter (NET) [24]. Similar to

methcathinone, mephedrone can bind to 5-HT2A receptors and stimulation of

these receptors has also been shown to enhance DA release potentially increasing

abuse liability [79]. Mephedrone and methcathinone also exhibited affinity for α1A
adrenoceptors, which have been implicated in stimulant-induced vasoconstriction,

hyperthermia, and euphoria [15] and methcathinone has been found to be a low

potency partial agonist at the 5-HT1A receptors [33].

In mice, repeated administration of mephedrone induced a significant loss in DA

and 5-HT reuptake sites in striatum, hippocampus, and frontal cortex [25]. In

addition, mephedrone decreased the number of D2 receptors in striatum and the

number of 5-HT2A receptors in frontal cortex and hippocampus of treated mice

[25]. In adolescent mice, mephedrone elicited an increase in D3 receptors in the

striatum [30]. In rats, a binge of mephedrone induced a significant loss in DAT in

frontal cortex and a decrease in the density of SERT in striatum, cortex, and

hippocampus. This effect was accompanied by decreased TPH-2 expression in all

the three brain areas and a moderate decrease in the concentration of D2 receptors

in the striatum [20]. The effects of mephedrone on the human monoamine trans-

porters were studied using cell lines stably expressing the human NET, DAT, and

SERT. These data indicate that mephedrone and MDMA were equally potent in

inhibiting noradrenaline uptake at NET. Compared to their NET inhibition potency,

both drugs were weaker uptake inhibitors at DAT and SERT, with mephedrone

being more potent than MDMA at DAT and less potent than MDMA at SERT.

Nonetheless, mephedrone and MDMA differed most in their inhibition of DA

uptake by synaptic vesicles isolated from human striatum, with MDMA being

tenfold more potent than mephedrone, and their ability to release DA from

human VMAT expressing cells [80]. In general, the in vitro releasing capabilities

of mephedrone resemble those of MDMA. With regard to selectivity ratios,

mephedrone displayed NET/DAT ratios and DAT/SERT ratios close to unity,

similar to MDMA [24]. Interestingly, a recent report suggests that the para ring-

substitution of the methyl group in mephedrone left-shifted the SERT inhibition

curves over the DAT inhibition curves (DAT:SERT inhibition ratios <1), resulting

in monoamine transporter inhibition profiles that were more similar to MDMA and

less similar to the parent compound methcathinone [36]. Similarly, in vitro and
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in vivo studies have shown that methcathinone para ring-substituted analogs

increase monoamine release via SERT relative to DAT, and that this shift in

selectivity markedly reduces the abuse-related effects of the drugs as assessed by

intracranial self-stimulation [81, 82].

Methylone was reported to act somewhat more potently in inhibiting DAT than

SERT at the human transporter [15], but equally potent for DAT and SERT

inhibition in rat synaptosomes [83]. Methylone was a substrate for NET and

DAT, with slightly lower potency at SERT, displaying a selectivity profile similar

to mephedrone but about half as potent. In general, the in vitro releasing capabilities

of methylone resembled those of MDMA. With regard to selectivity ratios,

methylone displayed NET/DAT ratios and DAT/SERT ratios close to unity, similar

to MDMA [24]. In cells expressing the VMAT-2, methylone elicited less than 35%

of methamphetamine maximal efficacy to stimulate release of neurotransmitter via

the VMAT-2 [33]. Similar to mephedrone, methylone is also a low potency partial

agonist at the 5-HT1A receptors, and an antagonist with very low potency at the

5-HT2A receptor [33]. While methamphetamine and MDMA are likely to be sub-

strates for VMAT-2, methcathinone and methylone are not. Therefore, the behav-

ioral effects of methcathinone and methylone arise largely from the drugs’ effects at
the plasma membrane transporters, not VMAT-2. In summary, due to the large

decrease in potency at VMAT-2, methcathinone and methylone are highly selective

for the plasma membrane catecholamine transporters and moderately selective for

SERT. As a result of its greater potency at the SERT, methylone is somewhat less

discriminating than methcathinone at the plasma membrane [13].

MDPV exhibited very high affinity for the DAT and NET in the low nanomolar

range (<10 nM) in vitro, consistent with its high potency as a DAT and NET

inhibitor [15, 33, 49]. MDPV exhibited the most potent DAT inhibition [15], being

at least tenfold more potent than cocaine and methamphetamine [15]. In contrast,

MDPV is a weak inhibitor of the SERT, resulting in high DAT selectivity, with

DAT/SERT inhibition ratios >100. MDPV is also one of the most potent NET

inhibitors [15]. Studies using fast-scan cyclic voltammetry in mouse striatal slices

indicate that MDPV is more potent than cocaine at inhibiting DA clearance [49]. In

contrast to mephedrone, MDPV is a very potent NET and DAT inhibitor with very

low 5-HT activity, reflected by high DAT:SERT inhibition ratios. The

3,4-methylenedioxy ring substitution that is shared by MDMA and MDPV would

be predicted to increase serotonergic activity compared with the non-substituted

compound methamphetamine. However, in the case of MDPV, the SERT inhibition

potency is very low despite the presence of this substitution [36]. In this regard, data

have shown that the carbonyl and the extended alpha alkyl groups in MDPV have

greater contributions to this drug’s affinity for DAT than the methylenedioxy group

[84]. In addition, in vitro findings revealed that the presence of a pyrrolidine ring in

any cathinone-like compound such as MDPV confers potent blocking properties at

DAT and NET [85].

An examination of methylone’s ability to influence the reverse transport of

substrates through DAT, NET, and SERT was done in comparison with metham-

phetamine, since unlike cocaine, methamphetamine induces the release of
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monoamines via a reversal of transport. Similar to methamphetamine, methylone

elicited the release of radiolabeled DA, NE, and 5-HT from CHO cells expressing

the rat DAT, NET, and SERT. In addition, the combination of methylone with

methamphetamine did not cause a further increase in the release of substrates

[43]. None of the β-ketoamphetamines mephedrone, methylone, or MDPV in

combination with each other resulted in changes in striatal DAT [19]. In combina-

tion with methamphetamine, mephedrone and methylone enhanced the reductions

in DAT observed in mouse striatum [19, 23]. In contrast, administration of MDPV

prevented the depletions in DAT observed after methamphetamine, amphetamine,

MDMA, and MPTP [19].

6 Transendothelial Blood–Brain Barrier Dysfunction

The rate at which drugs reach the brain parenchyma depends not only on their route

of administration but also on their ability to cross the cerebral endothelium, also

called the blood–brain barrier (BBB), which constitutes the main brain interface

modulating the exchange of compounds between the brain and blood [50]. Alter-

ations in BBB function are likely involved in drug abuse neurotoxicity [1, 86]. Both

MDMA and METH have been shown to produce disruption of the BBB as reflected

by IgG extravasation and Evans Blue leakage [5, 87]. In fact, it was previously

shown that METH compromises BBB function and its capacity to protect the brain

against infection by the human immunodeficiency virus [88]. Studies of the effects

of β-ketoamphetamines on BBB dysfunction are summarized in Table 1.

Methcathinone exhibited a brain permeability ratio �3, indicating high perme-

ability. However, the apical to basolateral transport of methcathinone was not

consistent with active transport by one of the blood-to-brain influx carriers

[15]. No studies on the compromise of the BBB by methcathinone have been

reported to date. The permeability ratio for mephedrone was >10, suggesting

very high BBB permeability [15], and confirming that mephedrone readily enters

the brain [15, 70]. Although highly permeable into the brain, mephedrone admin-

istration has not been linked to any BBB dysfunction. It is well recognized that

compounds with a brain/plasma concentration ratio greater than 1 freely cross the

blood–brain barrier and the obtained brain/plasma ratio for methylone of 1.42

demonstrates access to central nervous system [89]. As a reference, methamphet-

amine, amphetamine, and MDMA brain/plasma ratios are >3 [15].

Similar to mephedrone, the permeability ratio for MDPV was >10, suggesting a

very high permeability [15]. The apical to basolateral transport of MDPV was

significantly greater than basolateral to apical transport, consistent with active

transport by one of the blood-to-brain influx carriers [15]. MDPV is a monoamine

uptake inhibitor that is more lipophilic and potent than other cathinone derivatives.

The high lipophilicity of this substance is caused by the pyrrolidine ring and the

tertiary amino group creating a less polar molecule more able to cross the blood–

brain barrier [90]. No combinations of the β-ketoamphetamines mephedrone,
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methylone, or MDPV with each other or any other amphetamine compound have

been evaluated on BBB dysfunction to date.

7 Mechanisms of Action

Drugs that target monoamine transporters can be classified generally as either

substrates, such as methamphetamine, or blockers, such as cocaine [83]. Both

types of compounds elicit profound psychostimulant effects that render them liable

for recreational abuse [91]. Substrates or blockers increase monoamine neurotrans-

mitter concentrations in the synaptic cleft but this action can be the result of at least

two distinct mechanisms [13]. One mechanism is through drug inhibition of plasma

membrane transporter-mediated uptake of released neurotransmitters (i.e., for

transporter blockers). The inhibition is believed to arise from competition by

drugs for substrate binding sites in the monoamine uptake transporters, thereby

reducing the effectiveness with which DA, 5-HT, and NE are cleared from the

synapse following release. Typical DAT blockers are expected to fully inhibit DA

uptake and to fully inhibit binding of another blocker, as well as release of substrate

by reverse transport [92]. A second mechanism is through the drug-evoked release

of the monoamine neurotransmitters, apparently by transporter-mediated exchange

(i.e., for transporter substrates). The drug-evoked neurotransmitter release arises

from two intracellular compartments. Methamphetamine and MDMA induce the

release of newly synthesized, cytosolic pools of monoamines and also release

monoamines from synaptic vesicle stores [13]. Typical DAT releasers are expected

to fully release another substrate accumulated in cell or synaptosomes [92]. This

mechanistic distinction is important to consider because transporter substrates and

blockers display critical differences in their acute and long-term effects. Only

substrates are translocated into cells where they could disrupt vesicular storage

and stimulate non-exocytotic release of neurotransmitters by reversing the normal

direction of transporter flux, and could produce persistent deficits in monoamine

neurons, including depletion of neurotransmitters and loss of functional trans-

porters [83]. The flux-coupled channel model suggests that whereas some

cathinones, such as mephedrone, behave as DA-releasing agents (depolarizing

current), some others such as MDPV act as DA-reuptake inhibitors

(hyperpolarizing current) [93]. An “excitatory substrate” implies that in addition

to the proposed transporter-mediated chemical effects of methamphetamine,

mephedrone, and related cathinones, these substances have a depolarizing action

that could itself promote exocytotic neurotransmitter release [32]. Structurally

analogous MDPV, however, induces an outward hyperpolarizing current under

similar conditions and therefore acting as an “inhibitory,” non-substrate blocker

[93]. Results from release assays reveal that mephedrone and methylone function as

substrates at monoamine transporters [33], thereby stimulating the release of

radiolabeled substrates via DAT, NET, and SERT [83]. Mephedrone, methylone,

and MDMA are non-selective transporter substrates (i.e., non-selective releasers),
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while methcathinone and amphetamine are selective substrates at DAT and NET.

Mephedrone displays similar releasing potency at all three transporters and is about

twice as potent as methylone [83]. While mephedrone, methylone, MDMA, and

amphetamine are fully efficacious in the release assays, MDPV and cocaine are

inactive as releasers [15]. MDPV displays a novel pharmacological profile when

compared to other synthetic cathinones as it is a potent uptake blocker at DAT and

NET with no measurable substrate activity [83]. When compared to the prototypical

transporter blocker cocaine, MDPV was 50-fold more potent at DAT, 10-fold more

potent at NET, and 10-fold less potent at SERT [94]. Taken together, the in vitro

results indicate that mephedrone and methylone are non-selective transporter sub-

strates, whereas MDPV is a pure catecholamine-selective transporter blocker

[94]. This dichotomy of interaction with the DAT by mephedrone and methylone

on one hand and by MDPV on the other can explain their opposing effects on

methamphetamine-induced neurotoxicity [19]. While mephedrone and methylone

enhanced the neurotoxic effects of methamphetamine, MDPV protected. It has

previously shown that treatments resulting in an increase in the releasable pool of

DA significantly accentuate methamphetamine-induced damage in DA nerve end-

ings [95]. MDPV has an effect that is similar to more classical DAT blockers,

including amphonelic acid and nomifensine, which also provide protection against

methamphetamine-induced neurotoxicity [19]. By blocking DAT-mediated trans-

port (inward or outward), MDPV blocks methamphetamine-induced efflux of DA

[15]. Therefore, these properties as substrates or blockers represent an important

mechanism by which synthetic cathinones influence the synaptic levels of mono-

amines but they do not explain why they lack neurotoxic properties on their own or

how they enhance the neurotoxicity of the amphetamines.

While the principal targets of amphetamines are plasmalemmal transporters,

these drugs have concerted actions on other two important elements of the mono-

amine nerve ending: vesicular transporters and the degrading enzymes monoamine

oxidase (MAO) and catechol-O-methyl transferase [91], both of which may con-

tribute to their toxic properties. Amphetamine interactions with these three targets

are the core tenet of the so-called weak base hypothesis [96]. Amphetamines enter

nerve terminals via plasmalemmal transporters and disrupt vesicular storage as

weak bases by dissipating the proton gradient across the membrane [96]. A reduc-

tion of the vesicular pH gradient promotes the reverse transport of DA into the

cytosol. DA is then released into the synaptic space via reverse transport through

the DAT. This flooding of the cytoplasm and synaptic space with the oxidatively

labile DA is thought to be a critical first step in the neurotoxic cascade of the

amphetamines [73]. These conditions of elevated concentrations of cytosolic mono-

amines could be further aggravated by inhibition of MAO [91]. Unlike amphet-

amines, mephedrone and methylone have little if any affinity for VMAT-2

[33]. Therefore, their lack of neurotoxicity could derive from an inability to

promote the release of DA from storage vesicles into the cytoplasm.

If not toxic on their own, how can mephedrone and methylone increase the

neurotoxicity of methamphetamine, MDMA, and amphetamine? We hypothesize

that the enhancement of neurotoxicity elicited by the combination of
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methamphetamine plus either mephedrone or methylone could be explained by a

reversal of greater numbers of DAT molecules than caused by either drug alone,

resulting in heightened DA efflux into the cytoplasm (i.e., via methamphetamine

actions on the VMAT) and synapse (i.e., via combined methamphetamine plus

mephedrone actions on the DAT). This possibility is supported by the observation

that amphetamine-induced DA release is greater when originating from both

synaptic vesicles and cytoplasmic stores than from cytoplasmic stores only

[97]. In addition, a possible inhibition of MAO could be speculated for mephedrone

and methylone as it has been shown that MAO inhibitors increase significantly the

DA depletion induced by methamphetamine [95]. However, a well-established

mechanism to explain why some β-ketoamphetamines such as mephedrone and

methylone are not neurotoxic on their own but are capable of potentiating the

damage induced by amphetamines remains to be elucidated.

8 Conclusion

As β-keto analogs of amphetamines, synthetic cathinones may be expected to have

amphetamine-like effects because of their structural similarity. However,

β-ketoamphetamines are a diverse class of chemical compounds with differential

neurotoxic properties on monoaminergic neurons. Some of the benchmarks used to

gauge the neurotoxicity induced by amphetamines include inflammation, disruption

of monoaminergic neurotransmitters, their transporters and receptors, alterations in

thermoregulation, oxidative stress, and cytotoxicity. Compared to the effects

induced by amphetamines on these parameters, the effects described for

β-ketoamphetamines seem to be more moderate. Administration of synthetic

cathinones is not consistently associated with long-term depletions in the levels

of DA and 5-HT or with inhibition of these neurotransmitters biosynthetic enzymes.

While hyperthermia has been established as one of the hallmark effects of amphet-

amines, synthetic cathinones elicit more complex responses that involve hypother-

mia and oscillations between hyper and hypothermia. Neuroinflammation markers

such as microglial activation have not been documented after administration of

synthetic cathinones and reports of increases in GFAP have been sparse. The

evaluation of the effects of these cathinones on oxidative stress and cytotoxicity

are limited and mostly circumscribed to in vitro studies, where concentrations are

very high. Nonetheless, some studies in animals have described increases in lipid

peroxidation and in the expression of antioxidant enzymes after mephedrone.

Deficits in DAT and SERT were only observed after multiple doses that are several

times higher than behaviorally active doses or with exacerbation of other factors

such as high ambient temperature. Although only a few studies have reported the

neurotoxic effects of β-ketoamphetamines alone or in combination with other drugs

of the same group or with amphetamines, the overall outcome appears to be

associated with their interaction with the vesicular and plasma transporters.

The fact that mephedrone and methylone cause little or no toxicity themselves on
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the one hand, while being capable of enhancing amphetamines toxicity on the other

hand, remains a provocative and open question that requires additional research.

The role of these synthetic cathinones as weak bases to collapse the vesicular pH

gradient necessary for monoamine storage, their capacity to increase the releasable

pool of cytosolic monoamines, their potential to inhibit monoamine degrading

enzymes, their ability to increase monoamine oxidation and metabolism into

ROS, as well as their additive effects in recruiting DAT molecules along with

amphetamines to enhance the DA efflux into the synapse, constitute some of the

possible manners in which these β-ketoamphetamines may heighten the neurotox-

icity induced by amphetamines.
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