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Abstract Animal models of impaired sensorimotor gating, as assessed by prepulse
inhibition (PPI) of startle, have demonstrated clear validity at face, predictive, and
construct levels for schizophrenia (SZ) therapeutics, neurophysiological endophe-
notypes, and potential causative insults for this group of disorders. However, with
the growing recognition of the heterogeneity of the schizophrenias, and the less
sanguine view of the clinical value of antipsychotic (AP) medications, our field
must look beyond “validity,” to assess the actual utility of these models. At a
substantial cost in terms of research support and intellectual capital, what has come
from these models, that we can say has actually helped schizophrenia patients?
Such introspection is timely, as we are reassessing not only our view of the genetic
and pathophysiological diversity of these disorders, but also the predominant
strategies for SZ therapeutics; indeed, our field is gaining awareness that we must
move away from a “find what’s broke and fix it” approach, toward identifying
spared neural and cognitive function in SZ patients, and matching these residual
neural assets with learning-based therapies. Perhaps, construct-valid models that
identify evidence of “spared function” in neural substrates might reveal opportu-
nities for future therapeutics and allow us to study these substrates at a mechanistic
level to maximize opportunities for neuroplasticity. Such an effort will require a
retooling of our models, and more importantly, a re-evaluation of their utility. For
animal models to remain relevant in the search for schizophrenia therapeutics, they
will need to focus less on what is valid and focus more on what is useful.
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1 Introduction

It is a fair assumption that for much of our history, and certainly since the emer-
gence of our brain’s capacity for introspection, humans have looked to infrahuman
species for clues to understanding the complexities of our own thoughts, feelings,
and behaviors. This “reverse anthropomorphism” reflects the compelling data from
evolutionary biology that man’s nervous system is fashioned on the neurobiological
foundations of lower organisms (MacLean 1954; Karten 1991) as well as the
perhaps less-compelling assumption that the infrahuman features retained in man’s
more advanced neural workings are informative about a brain that has acquired new
and potentially emergent properties in abstract thought and complex emotions. It
might be hard to pinpoint the first use of simple behaviors in infrahumans to
understand human disorders. But studies of the late 1960s and early 1970s, from
among others Michael Davis and his laboratory at Yale University (cf. Davis 1984),
took one simple rodent behavior—the startle reflex—and developed a powerful
laboratory-based assay for a simple cross-species behavior of relevance to human
brain disorders. In this chapter, we review and critically evaluate the use of this
simple behavior as part of a model with face, predictive, and construct validity for
sensorimotor gating deficits in schizophrenia, and speculate on future applications
of this model in the development of novel therapeutics for this disorder.

2 The Evolution of Prepulse Inhibition as a Validated
Animal Model for Schizophrenia-Linked
Neurobehavioral Deficits

The startle reflex is a constellation of responses to sudden, relatively intense stimuli.
In humans, the blink reflex component of startle is measured using electromyog-
raphy of orbicularis oculi; in laboratory animals, whole-body startle is quantified by
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assessing the downward force resulting from the contraction of the skeletal muscles.
Prepulse inhibition (PPI) occurs when a weak prestimulus 30–500 ms prior to the
startling stimulus inhibits the startle response; this inhibition is an operational
measure of sensorimotor gating (Graham 1975). While the inhibitory effect of the
prepulse on the startle reflex is exerted in the pons, studies have described the
limbic forebrain circuitry and descending pontine projections that regulate the
inhibitory “tone” within the pons and determine the degree to which the prepulse
inhibits the subsequent motor response (cf. Swerdlow et al. 1992a, 2001a, 2008).
PPI thus appears to reflect the activation of “hardwired,” centrally mediated inhi-
bitory processes that are regulated by forebrain neural circuitry.

PPI is a useful experimental measure for understanding brain mechanisms for a
number of reasons (Davis 1984). It is tested in an automated apparatus, under tight
stimulus control, and stimulus parameters can be easily modified by the experi-
menter to elicit optimal response characteristics for studying a number of different
aspects of this measure. Because PPI is a form of startle plasticity, it is measured
using a “fight-or-flight” behavior that is simple, robust, and exhibited across all
mammalian species tested to date. Of relevance to the present discussion, PPI is
easily studied across species and has been investigated in mice (Carter et al. 1999;
Francis et al. 2003; Frankland et al. 2004), rats (Swerdlow et al. 2001a), guinea pigs
(Vaillancourt and Boksa 2000), pigs (Lind et al. 2004), and infrahuman primates
(Linn et al. 2003), using stimulus parameters and equipment for stimulus delivery
and response acquisition that are similar or identical to what are used in humans.
This cross-species similarity in the appearance of the behavior and its response to
parametric manipulations is the basis for the face validity of animal models that use
PPI. While there appear to be differences in the neurochemical regulation of PPI
across species (cf. Swerdlow et al. 2008), the basic parametric properties of PPI
exhibit striking similarities from rodents to humans (e.g., Swerdlow et al. 1994a, b).
Furthermore, PPI is under significant genetic control in both rodents (Francis et al.
2003) and humans (Greenwood et al. 2007).

Despite its advantages as a laboratory measure of simple brain processes, PPI
would likely be a scientific footnote were it not for the fact that it is reduced in
humans afflicted with any one of several different brain disorders. Compared with
matched controls, PPI is deficient in patients with schizophrenia (e.g., Braff et al.
1978; Swerdlow et al. 2006), Huntington’s disease (Swerdlow et al. 1995;
Valls-Sole et al. 2004), obsessive-compulsive disorder (OCD) (Swerdlow et al.
1993; Hoenig et al. 2005; Ahmari et al. 2012), nocturnal enuresis (Ornitz et al.
1992), Asperger’s syndrome (McAlonan et al. 2002), 22q11 syndrome (Sobin et al.
2005), Kleinfelter syndrome (Van Rijn et al. 2011), fragile X syndrome (Frankland
et al. 2004), blepharospasm (Gomez-Wong et al. 1998), and Tourette syndrome
(Castellanos et al. 1996; Swerdlow et al. 2001b).

Development and applications of PPI in animal models: While it is clear that PPI
deficits are not clinically specific, the real catalyst behind the intense investigation
of PPI came from the initial reports of PPI deficits in schizophrenia patients (Braff
et al. 1978). With this 1978 study and its subsequent replication in almost 40 reports
in the literature (cf. Swerdlow et al. 2014), investigators have viewed the
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cross-species similarities in startle and PPI as an opportunity to leverage animal
model studies to explicate the biology of this disorder. In the first connection of this
initial report of PPI deficits in schizophrenia (Braff et al. 1978) with findings in
experimental animals, evidence that startle inhibition by pulsating tactile tail
pressure was eliminated after ablation of the nucleus accumbens (NAC; Sorenson
and Swerdlow 1982) was viewed as potential evidence that accumbens dysfunction
might contribute to the loss of startle inhibition by acoustic prepulses in
schizophrenia; this suggestion has been substantiated by the number of subsequent
reports, and 30+ years later, the NAC remains a central structure in current models
for the regulation and dysregulation of PPI (e.g., Ma and Leung 2014).

A focus on the PPI-regulatory role of NAC dopaminergic systems (Swerdlow
et al. 1986) and dopamine activity more broadly (Mansbach et al. 1988) was
initially motivated by the prevailing hypothesis of a causative role of DA hyper-
function in the etiology of schizophrenia. The finding that PPI was disrupted in
rodents by DA agonists (Swerdlow et al. 1986; Mansbach et al. 1988) was applied
in a manner prescribed for animal models of that era, i.e., by assessing the ability of
this pharmacological effect to predict the antipsychotic (AP) potential and potency
of established and novel compounds (cf. Swerdlow et al. 1991, 1994b; Swerdlow
and Geyer 1993). This approach differed from preexisting predictive models, such
as apomorphine-induced canine emesis (Janssen and Niemegeers 1959), primarily
because the behavior being measured (PPI) as a predictive index was analogous, if
not homologous, across species. Thus, known AP compounds prevented the
PPI-disruptive effects of DA agonists, and their potency in this assay correlated
highly (R = 0.99) with their clinical AP potency (Swerdlow et al. 1994a, b). This
compelling relationship is the basis for the predictive validity of this PPI model and
led to the identification or validation of compounds with novel AP properties [e.g.,
ICI 204, 636 (quetiapine; Swerdlow et al. 1994a, b)].

The predictive model was expanded significantly by the observation that puta-
tive APs with novel chemical properties were distinguished by their ability to block
the PPI-disruptive effects of NMDA antagonists (Johansson et al. 1994; Bakshi
et al. 1994). Indeed, the prevailing wisdom of the early 1990s was that the ability to
prevent the PPI-disruptive effects of NMDA antagonists such as phencyclidine and
ketamine might predict the properties unique to “atypical” or second-generation
APs (SGAPs) and thereby identify agents that would be both more clinically
effective and better tolerated than first-generation APs. Over time, this approach ran
into some experimental and clinical headwind. First, the ability to prevent NMDA
antagonist-induced PPI deficits was not always specific to SGAPs [e.g., chlorpro-
mazine blocks the PPI-disruptive effects of ketamine (Swerdlow et al. 1998)] or
particularly sensitive to SGAPs (e.g., several studies reported either marginal or no
ability of clozapine to prevent the PPI-disruptive effects of phencyclidine in rats).
Second, and more importantly, clinical experience revealed that the benefits of
SGAPs over older, first-generation APs were not robust, and in fact SGAPs carried
a new and non-trivial list of adverse properties. Thus, while the predictive validity
of these PPI models for antipsychotics were further extended in many informative
ways as reviewed previously (e.g., Geyer et al. 2001; Swerdlow et al. 2008), they
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ultimately must be seen in the more humbling context of the clinical reality that APs
of any generation are not well-tolerated and have limited ability to enhance the
function and improve the quality of life in schizophrenia patients (Lieberman et al.
2005). This is not to say that APs lack clinical value: In fact, APs appear to have
utility in blunting the severity of acute psychotic symptoms, and their use is
associated with a lower risk of adverse consequences of schizophrenia—from
hospitalization to suicide (Palmer et al. 1999; Meltzer et al. 2003; Sun et al. 2007).
Nonetheless, 20 years of experimentation with PPI as a model predicting AP effi-
cacy and potency has done little to advance us toward treatments that achieve either
greater clinical improvement or fewer significant adverse effects than those that
predated this model.

One obvious advantage of animal models of a human behavior is that they make
it feasible to study neural substrates and extrapolate from these substrates to cor-
responding circuitry in humans. Indeed, extending from the initial findings of a
nucleus accumbens locus of forebrain PPI regulation (Sorenson and Swerdlow
1982; Swerdlow et al. 1986; Kodsi and Swerdlow 1994), this approach was applied
to understand the neural basis of PPI deficits in schizophrenia and revealed that the
forebrain substrates regulating PPI overlap somewhat with those implicated in the
pathophysiology of this disorder. Thus, disturbances in prefrontal cortex (PFC),
basal forebrain dopamine (DA) function, and thalamic and mesial temporal lobe
function figure prominently in current models of schizophrenia neuropathology;
similarly, PPI is potently reduced by experimentally induced manipulations of the
medial PFC, ventral striatum, pallidum, thalamus, and mesial temporal lobe (cf.
Swerdlow et al. 1992a, b, 2001a, 2008; Rohleder et al. 2014). The apparent overlap
in the neural substrates regulating PPI, with those implicated in the pathophysiol-
ogy of schizophrenia, is part of the support for the construct validity of animal
models for impaired PPI in schizophrenia and has been used in an iterative
cross-species strategy. In this strategy, PPI changes after neural circuit manipula-
tions in laboratory animals have been used to develop and then test hypotheses
about specific circuit disturbances in patients (e.g., Kumari et al. 2003), and in some
cases, circuit-based therapeutics are being modeled based on PPI deficits in rats
(e.g., Posch et al. 2012; Angelov et al. 2014; Ma and Leung 2014). Often, when
substrates have been demonstrated to regulate PPI in rodents, the fact that PPI is
deficient in schizophrenia patients has been used as the basis for justifying a fine
grain analysis of those substrates in rats, in terms of their anatomical, neuro-
chemical, and molecular properties. In turn, information about the detailed char-
acteristics of this circuitry derived from studies in rodents has been used to support,
develop, or test hypotheses regarding the nature of neural circuit disturbances in
schizophrenia (e.g., Hines et al. 2013; Miller et al. 2010).

The construct validity of PPI models in rodents for PPI deficits in schizophrenia
is also strengthened by the fact that experimental manipulations in rodents that are
thought to model some of the suspected pathogenic insults contributing to
schizophrenia also produce adult rodents with deficient PPI. Of the more studied
models of this kind—social isolation rearing and neonatal ventral hippocampal
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lesions—the former model was the subject of a recent review (Powell and
Swerdlow 2015), and we will briefly review the latter model here.

In schizophrenia patients, the integrity of the hippocampal-PFC connection is
reduced, and this deficiency predicts both neurocognitive and functional impair-
ment (Hanlon et al. 2012). Lesions of the ventral hippocampus in neonatal rats
(NVHLs) have been shown to recreate a number of deficits associated with
schizophrenia (Lipska et al. 1993; Marquis et al. 2006; Angst et al. 2007; Marquis
et al. 2008; cf. O’Donnell 2012), including reductions in PPI (Lipska et al. 1995; Le
Pen and Moreau 2002; Le Pen et al. 2003; Daenen et al. 2003; Swerdlow et al.
2012a, b). To the degree that some forms of schizophrenia are characterized by
aberrant ventral hippocampal development and connectivity, the NVHL model has
been used to identify the expected “neuromaladaptive” consequences of such
pathology and thereby help focus studies of pathophysiology and even therapeutics
in this disorder. The model has been extended to demonstrate that a variety of early
developmental insults to the mesial temporal lobe are accompanied by PPI deficits
that emerge in adulthood, including immune/inflammatory activation of the VH
(e.g., Zhu et al. 2014a, b; Ribeiro et al. 2013), neonatal pilocarpine-induced seizures
(Labbate et al. 2014), and neonatal lesions of the basolateral amygdala
(Vázquez-Roque et al. 2012). Other in utero or neonatal neurotoxic manipulations
also produce PPI deficits in adult rats, including methylazoxymethanol
(MAM) exposure (Le Pen et al. 2006), elevated neonatal allopregnanolone (Darbra
et al. 2014), and neonatal administration of NMDA antagonists (Uehara et al.
2010). In some cases, the expression of PPI deficits induced by these early
developmental manipulations can be blocked by acute treatments during adulthood,
using antipsychotics (e.g., clozapine: Ribeiro et al. 2013), putative neuroprotective
agents (e.g., minocycline: Zhu et al. 2014b), and glycinergic agents (Le Pen et al.
2003). Thus, it appears that PPI deficits are a common adult behavioral response to
a wide range of perturbations in early rodent brain development, and particularly
those that impact the mesial temporal lobe by various mechanisms. In total, this
literature is consistent with the empirical evidence that PPI deficits are detected in
many clinically and etiologically distinct brain disorders, as well as the prevailing
wisdom that schizophrenia (and by extension its accompanying PPI deficits) reflects
a heterogeneous neuropathology induced by any one or combination of a number of
different possible early developmental insults.

Presumably, the failure to develop normal levels of PPI in these variations of the
NVHL model could reflect many different underlying mechanisms. One potential
mechanism implicated in recent studies is a developmental “hypercoupling” of
forebrain regions (Chambers et al. 2010; Swerdlow et al. 2013a, b)—including PFC
and nucleus accumbens (NAC)—due to the loss of their normal innervation by the
ventral hippocampus (VH) after experimentally induced VH damage. Thus, the VH
innervates both the PFC and the NAC, and conditions fostering greater PFC-NAC
interconnectivity might be created by NVHLs via reduced competition at a synaptic
level, or by the loss of a differentiating signal normally provided by VH innervation
of either structure. NVHLs result in restructuring and electrophysiological changes
within the PFC (Ryan et al. 2013), and hyper-correlated expression of
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schizophrenia-linked genes in the PFC and NAC (Swerdlow et al. 2013a, b). Others
have reported aberrant limbic–cortical connectivity associated with both endogenous
(Anticevic et al. 2013) and drug-induced psychosis (Driesen et al. 2013) in humans;
similarly, excessive fronto-striatal metabolic correlation [“Brain Lock” (Schwartz
1997)] has been demonstrated in other disorders associated with the reduced PPI,
such as OCD. Importantly, in OCD, therapeutic response to medication or psy-
chotherapy is associated with a metabolic “uncoupling” of fronto-striatal regions
(Schwartz et al. 1996; Schwartz 1998). Perhaps, the most speculative but exciting
concept to emerge from the NVHL/“hypercoupling model” is the possibility that an
“uncoupling” of fronto-striatal circuitry might provide an avenue for early thera-
peutic interventions in schizophrenia. That such an “uncoupling” can be produced in
OCD via cognitive interventions (Schwartz et al. 1996) may suggest such a thera-
peutic option in schizophrenia, as discussed below.

One approach to capitalize on the validity of PPI models has been to explore the
genetic underpinnings of impaired PPI in rodents, to generate or support hypotheses
related to the genetic basis of impaired PPI in schizophrenia [and other disorders
(e.g., Castellan Baldan et al. 2014; Charles et al. 2014; Renoux et al. 2014)]. Given
the numerous brain regions and interconnections known to regulate PPI, it is not
surprising that these studies have identified a long list of genes that, by their
deletion, suppression, or differential expression, lead to a modification in PPI or its
sensitivity to pharmacologic disruption (cf. Swerdlow et al. 2008). A number of
creative strategies have been used to understand this complex genetic landscape and
its overlap with brain circuitry, via assessing the PPI-altering effects of gene
knockouts, humanized gene insertions (e.g., Risbrough et al. 2014), strain differ-
ences in regional gene expression (e.g., Shilling et al. 2008), drug-induced changes
in regional expression of genes identified in postmortem schizophrenia brain tissue
(e.g., Dietz et al. 2014), and pharmacogenetic manipulations of neural activity in
targeted neuron populations via the use of Designer Receptors Exclusively
Activated by Designer Drugs (DREADDs) (e.g., Nguyen et al. 2014), among other
techniques. These strategies are not without potential pitfalls, including the
importance of assessing hearing loss in mutant animals as a potential basis for
reduced inhibitory effects of auditory prepulses. More generally, the long list of
candidate genes for which modification reduces PPI in rodents suggests limitations
to the utility of this approach in clarifying the genetic basis of reduced PPI in
schizophrenia. The use of genetic manipulations to understand the role of regionally
selective cell populations and proteins in the regulation of PPI, however, continues
to be a promising and informative experimental strategy.

But, just as the sobering news about the limited clinical value of APs limit the
utility of PPI as a predictive model, there is sobering news about the heterogeneity
of the neural and genetic substrates of schizophrenia that may limit the utility of PPI
as a construct model. As noted below, published reports now catalog over twenty
different brain regions with identifiable abnormalities in different cohorts of
schizophrenia patients (cf. Levitt et al. 2010). Furthermore, current estimates sug-
gest that over 100 loci explain 7 % of the risk for the development of schizophrenia
(e.g., Schizophrenia Working Group of the Psychiatric Genomics Consortium
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2014; Stefansson et al. 2014), and it is likely that only after we identify gene × gene
and gene × environment interactions among these many risk variants will we ever
account for a significant amount of the variance in the expression of the
schizophrenia phenotype. Thus, though there is substantial basic scientific value in
understanding brain circuits and candidate gene effects on behavior, it is not clear
that the construct validity of PPI will bring us substantially closer to an under-
standing of the complex and heterogeneous neural and genetic bases for
schizophrenia.

Of course, the neural and genetic heterogeneity of schizophrenia reflects, at least
in part, the fact that this diagnosis is defined by clinical criteria that do not map
neatly onto any single biological substrate. Perhaps, it does not make sense to judge
the ultimate utility of a biological model, like PPI, based on its ability to clarify the
treatments or neural basis for such an imprecise, non-biologically defined clinical
entity. One could even argue that sensorimotor gating is a meaningful domain of
brain function and that by identifying the neural substrates of PPI and its deficiency
in subgroups of patients, we will establish a basis for categorizing brain disorders
that is ultimately more valid and useful than the clinical nosology by which
schizophrenia has been characterized to date. Clarity on whether such a use of PPI
is feasible, or sensible, will need to await the substantial continued evolution of this
model.

3 Where Are We Now?

Three decades after the first use of PPI in cross-species models for impaired sen-
sorimotor gating in schizophrenia, we have substantial evidence supporting three
levels of validity for these models. With these models, we have gained a reasonable
understanding at a regional and circuit level of the neural regulation of PPI in
rodents, and we have several pieces of evidence supporting the translation of this
circuit “blueprint” onto the human brain and its regulation of PPI. Circuit models
are being magnified within several brain regions—particularly the PFC, NAC, and
VH—to explicate the regulation of PPI by these regions at the cellular and
molecular level. This “circuit biology of PPI” is perhaps the most productive and
still promising application of this cross-species model. But one great hope for PPI
models, based on their strong predictive validity, has not yet materialized, as evi-
denced by the substantial limitations in the clinical impact of APs on neurocog-
nition, function, and quality of life in schizophrenia populations. Indeed, it is in
some ways the greatest failing of this animal model—that PPI studies in rodents do
such an excellent job identifying compounds that reproduce the disappointing
clinical impact of existing AP agents. One could argue that this failing is not unique
to PPI models, and to some degree, it reflects a greater failing of modern psy-
chopharmacology in its approach to therapeutics for complex polygenic disorders
of neurodevelopmental origin with dispersed and heterogeneous neuropathology,
like the schizophrenias. Perhaps, the most dispassionate assessment is that in our
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extensive studies of PPI across species, we have developed models for which
validity is clear, and yet utility is not.

4 What’s Next: A Paradigm Shift in the Use
of Cross-Species PPI Models for Enhancing
Schizophrenia Therapeutics?

One unspoken assumption behind the anticipated utility of PPI as a model with pre-
dictive and construct validity is as follows: Because we can identify in rodents the
neural circuitry regulatingPPI and its deficiencies,we can determineways to intervene
within this circuitry to restore normal function, using PPI as a “readout.” And, more
importantly, we can then apply these restorative interventions, or derivatives thereof,
to “fix what’s broken” in the PPI-regulatory circuitry in schizophrenia patients and
thereby impart therapeutic change. The failings in this “fixwhat’s broken” assumption
are apparent, once we review our current understanding of this disorder.

As it is currently conceptualized, the root cause of schizophrenia is an in utero and
childhood developmental interruption and tangling of neural connections
(Weinberger 1987; Murray et al. 1991; Lewis and Levitt 2002) that are orders of
magnitude too complex to restore or replace. Failures of cell migration and axonal
guidance begin early, and this compounds the unpredictability of forebrain disorga-
nization, like a mechanical delay in the first of many tightly connecting trains. The
absurdity of trying to “fix what’s broken” is further appreciated by considering what
happens when cells or fibers do not get to where they are supposed to be, at the time
they are supposed to be there. When these passengers fail to arrive at their “final
destinations,” like the PFC, this triggers pre- and postsynaptic compensatory changes
among many functionally distinct subregions and cell types, and convergent influ-
ences of neurotransmitters, peptides, and other neuromodulators, all within adjacent
lamina. But it is not just the PFC: As noted above, the preponderance of findings in
different schizophrenia cohorts support significant volumetric and/or morphometric
abnormalities in over 20 brain regions (cf. Levitt et al. 2010). Calculate the permu-
tations of synaptic interactions in the simplest cartoon schematic, the number of
different risk genes, and the epigenetic events, and multiply by orders of magnitude,
and one can easily appreciate the futility of expecting even the smartest drugs to “fix
what’s broken.” The fundamental error in this “fix what’s broken” approach to the
development of pharmacotherapies for schizophrenia is that regardless of how valid
the PPI animal model (or any other model, for that matter) may be, the drugs that
it produces will not be able to reach backward two decades through a variable
web of absent and misguided neural connections, and replace missing and
improper ones with healthy ones. The sooner that we acknowledge that prefrontal
and limbic-cortico-striato-pallido-thalamic dysfunction and dysmorphogenesis in
schizophrenia are too widely distributed, complex, and variable to be “fixed” with
medications and that the strategies for gene therapies would require interventions so
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early in brain development as to present insurmountable ethical and logistical barriers
for the foreseeable decades, the soonerwewill be able to consider alternative strategies
for applying animalmodels to the development ofmore successful therapeutics for this
disorder. We do not presume to have found such a strategy, but we hope to begin the
discussion about one approach that may warrant some attention.

4.1 Biomarkers to the rescue?

Biomarkers are objective measures that can be informative about a variety of dif-
ferent clinical characteristics, such as an individual’s normal biology, their pathol-
ogy including the trajectory of illness, or their response to a therapeutic intervention.
They offer the hope that despite great heterogeneity and multivariate interactions in
the pathogenesis of brain disorders, meaningful clusters of individuals can be
associated with an objective measure and then reliably stratified in terms of the
cause, course, and/or treatment sensitivity of a given disorder (Perez et al. 2014).

An assumption driving the search for psychiatric biomarkers is that the biology
of these biomarkers will be simpler, more easily understood, and less heterogeneous
than the biology of clinical psychiatric syndromes. But if the pathogenic pathways
leading to schizophrenia are highly heterogeneous, we might expect that the
biomarkers for these pathways might also be highly heterogeneous. Importantly,
biomarkers might also be used to identify neural resources that remain intact and
functional in schizophrenia. These functional “assets” might then be used to
compensate for those lost to the aberrant developmental processes in this disorder.
Such a model is applied successfully to stroke rehabilitation, where interventions
are designed not to regrow brain circuitry that is lost or damaged, but rather to
engage the normal physiological and anatomical properties of healthy brain circuits
(e.g., in neighboring regions or parallel circuits) to restore or subsume the function
of damaged ones (cf. Taub et al. 2002). In many forms of psychotherapy, the
therapist’s task is to identify an individual’s psychological strengths (ego, intel-
lectual, social, or otherwise) and then to engage them to overcome damaging
thoughts or behaviors that are otherwise sustained by areas of psychological
weakness. At a neural level, both stroke rehabilitation and psychotherapy engage
viable and healthy systems to compensate for, or re-establish, functions lost to
illness. Similarly, biomarkers of “health” that reveal a patient’s neural “assets” can
then be leveraged in the service of therapy.

In keeping with this model of using biomarkers to identify residual intact neural
“assets,” it is reasonable to consider whether intact PPI can be used as a biomarker
of schizophrenia patients who might be capable of marshaling adequate neural
resources to meet the demands of and reap the benefits of a particular therapeutic
intervention. Consistent with such a model, Kumari et al. (2012) demonstrated that
baseline PPI levels positively predicted the therapeutic response to cognitive–be-
havioral therapy (CBT) (r = 0.69 between pretreatment PPI (120 ms) and pre-
versus post-CBT change in PANSS score). Schizophrenia patients who exhibited
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the highest pre-therapy PPI levels were the ones who benefitted most from CBT, in
terms of reductions in symptom severity. This finding supports the notion that
higher PPI provides evidence of intact, functioning neural mechanisms, that posi-
tively predicts the therapeutic response to a cognitive intervention; it also harkens to
the fronto-striatal “hypercoupling” state associated with PPI deficits in the NVHL
model (above), since CBT has been demonstrated to metabolically “uncouple”
fronto-striatal circuits in other clinical conditions (Schwartz et al. 1996).

Perhaps more importantly, this finding suggests that neural elements contributing
to intact PPI in any given schizophrenia patients might enhance that individual’s
sensitivity to the therapeutic benefits of CBT. To the degree that intact sensorimotor
gating reflects a generally “healthy brain,” it is not surprising that patients with more
intact brains would benefit more from learning-based therapies. An unanswered
question is whether a pharmacology for enhancing PPI in relatively intact nervous
systems, applied to patients whose PPI is then enhanced by these agents,might be able
to augment the therapeutic benefit of cognitive therapies in schizophrenia. In other
words, can a pharmacologically induced increase of sensorimotor gating serve as
“readout” of a change in brain function that makes a patient more able to benefit from
the therapeutic features of a cognitive therapy? This general paradigm called “PACT”
(pharmacologic augmentation of cognitive therapies) has been utilized effectively in
the treatment of anxiety disorders (e.g., Ressler et al. 2004) and is in the very early
stages of development for application to schizophrenia patients, as described below.

4.2 Drug-Enhanced PPI as a Biomarker for PACT?

While many pharmacological agents are capable of disrupting PPI in intact rodents,
relatively fewer are known to consistently enhance PPI. This may reflect the fact
that, at baseline, mechanisms for sensorimotor gating function at their optimal levels;
additionally, experimental stimulus parameters (in particular, prepulse intervals) are
typically selected to maximize inhibitory effects of prepulses and thereby are most
sensitive for detecting drug-induced reductions in inhibition. However, strains of
both mice and rats have been identified with relatively low basal PPI levels, and
investigators have also taken the strategy of identifying “low gating” rats within a
particular strain, and in both cases, these strains and substrains have been shown to
be more sensitive to PPI-enhancing effects of drugs or brain stimulation (Acheson
et al. 2012; Angelov et al. 2014; Swerdlow et al. 2006). Roussos et al. (2008)
reported parallel findings in humans, in which healthy subjects homozygous for the
Val allele of the rs4680 COMT polymorphism exhibited low basal PPI levels and
PPI-enhancing effects of the COMT inhibitor, tolcapone, while individuals
homozygous for the MET allele of rs4680 exhibited high basal PPI and PPI-reducing
effects of tolcapone. There are also rat strain differences in the sensitivity to
PPI-enhancing versus disruptive effects of the same drugs, even among commonly
used outbred rat strains (e.g., Swerdlow et al. 2004), that are independent of basal
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PPI levels, and are associated with the differential expression of several genes,
including COMT, within PPI-regulatory circuitry (Shilling et al. 2008).

Conceivably, by developing models sensitive to detecting the PPI-enhancing
effects of drugs, we might identify candidates suitable for assessment in a PACT
paradigm. A number of different drug classes have already been identified that
enhance PPI, such as nicotinic agonists and certain SGAPs, but under specific
experimental conditions, even psychostimulants can be shown to enhance PPI (cf.
Swerdlow et al. 2008). Of course, these various drug effects might reflect sites of
action anywhere from the PFC (Swerdlow et al. 2012a, b) to the pons (Pinnock et al.
2015) that might be more or less relevant to the ability of a drug to enhance the
therapeutic impact of a cognitive therapy.

It is important to emphasize that, in the PACT model—unlike the traditional use
of PPI as a predictive screen for AP efficacy—the ability of a drug to enhance PPI
does not predict that giving that drug to an individual with schizophrenia will, by
itself, have any therapeutic value. Indeed, our expectation would be that if a patient
is treated with such a drug without the concomitant delivery of a cognitive therapy,
this treatment will have little value. Cognitive therapies place demands on patients
to develop compensatory strategies for learning and remembering information. In
so doing, they specifically activate prefrontal regions subserving working memory
and attention (Kumari et al. 2009; Haut et al. 2010). Patients will benefit most from
cognitive therapies if they are able to meet the cognitive demands of these therapies,
and drugs that facilitate this process—e.g., via the enhancement of sensorimotor
gating, or activation of circuitries that lead to an enhancement of sensorimotor
gating—should augment the benefits of cognitive therapies. Conversely, we would
not predict that patients would benefit by taking these drugs and returning to an
environment that lacks engagement with an active learning process.

We have begun to assess PPI-enhancing drug effects in rats as a predictor of
utility in a PACT paradigm, using the low- to moderate-affinity NMDA-receptor
antagonist, memantine. While NMDA antagonists are generally reported to disrupt
PPI in rodents, PPI is actually increased in healthy subjects (HS) by NMDA
antagonists such as ketamine (Duncan et al. 2001; Abel et al. 2003) and by the mixed
NMDA antagonist/dopamine agonist, amantadine (Swerdlow et al. 2002). In intact
rats, we detected PPI-enhancing effects of memantine, using relatively short (10–
30 ms) prepulse intervals (Swerdlow et al. 2009). Based on this PPI enhancement,
and reports of PPI-enhancing effects of ketamine and amantadine in healthy subjects
(HS), we speculated that memantine would potentiate PPI in HS. Indeed, we
reported that 20 mg memantine (po) enhanced PPI modestly across all HS
(Swerdlow et al. 2009) and that this effect was most robust among HS with low basal
PPI levels (Fig. 1a), and among HS scoring high on personality scales for novelty
seeking, sensation seeking, and disinhibition. This set of findings provided us with a
cross-species model in which PPI is enhanced by a drug within neurologically intact
rodents and HS. Similar findings had been reported using the SGAPs, quetiapine
(Swerdlow et al. 2006), and clozapine (Vollenweider et al. 2006).

Based on these findings in HS, we assessed the effects of memantine on PPI in
schizophrenia patients (Chou et al. 2013a; Swerdlow et al. 2016). Our findings
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suggest that schizophrenia patients are very sensitive to the PPI-enhancing effects of
memantine (Fig. 1b), particularly among patients with low basal PPI levels; studies
in progress are examining other potential predictors of memantine-enhanced PPI, as
well as memantine-enhanced neurocognition in schizophrenia patients. These
findings would suggest that the circuitry responsible for sensorimotor gating
remains sufficiently intact and dynamic in schizophrenia patients to permit an
increase in PPI in response to an acute drug challenge. Conceivably, this plasticity
may represent a neural resource that could be engaged in a therapeutic capacity,

Fig. 1 a PPI in healthy subjects (HS) tested in a double-blind, placebo-controlled study of
memantine (0 vs. 20 mg po), reported in Swerdlow et al. (2009). Data from all subjects are at left;
at right, results are divided to show individuals with low versus high baseline PPI (grouped based
on a median split). Memantine significantly enhanced PPI for 120-ms intervals in the inclusive
group of HS (asterisk), but these effects were pronounced in “low gating” HS (asterisk) and absent
in “high gating” HS. b Data from an identical paradigm in schizophrenia patients (Swerdlow et al.
2016). Again, memantine (20 mg po) significantly enhanced PPI in an inclusive group of
schizophrenia patients (left; asterisk), and these effects were pronounced in “low gating” patients
(asterisk) and absent in “high gating” patients. The next important question being assessed is
whether PPI-enhancing effects of memantine predict properties beneficial to the therapeutic impact
of a cognitive intervention in schizophrenia
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which is a core tenet of the “PACT” strategy (Swerdlow 2011a, b). This is not to
say that a single dose of memantine would be expected to have therapeutic effects in
schizophrenia patients; however, the neural signal elicited by this drug challenge
provides evidence that mechanisms can be accessed that lead to neurobehavioral
evidence of enhanced sensorimotor gating. Memantine engaged the “target” cir-
cuitry regulating PPI, and the resulting signal provides a metric of specific available
neural resources within any given individual. The ultimate test of this “PACT”
predictive model will be to determine whether memantine-enhanced PPI predicts
sensitivity to the ability of memantine to augment the therapeutic benefits of a
cognitive intervention in these patients. We are pursuing a similar design with other
PPI-enhancing drugs from different chemical classes (Chou et al. 2013b; Swerdlow
et al. 2013a, b; Bhakta et al. 2014).

5 Conclusion

Observations of deficient PPI in schizophrenia patients, and in patients with a
number of other brain disorders, stimulated the development and extension of
cross-species models deficient in PPI. Variations of these models have achieved
face, predictive, and construct validity for the loss of PPI in schizophrenia patients.
Predictive validity has confirmed AP potential in a number of established drugs and
novel compounds, but has not yielded any “breakthrough” therapies for
schizophrenia. Construct validity has been used to understand the neurobiology of
developmental insults and genes that lead to deficient PPI in rodents, but there is no
clear pathway from this new information to a deeper understanding of the
anatomically and genetically heterogenous underpinnings of the schizophrenias.
More generally, the fact that pathogenesis of the schizophrenias appears to begin
very early in the brain development and is associated with variable abnormalities in
perhaps dozens of brain regions makes it unclear how—despite their 3 levels of
validity—PPI models will prove useful in identifying the causes of, or effective
treatments for, these disorders. We have described our preliminary experience with
an alternative use of cross-species measures of PPI, to identify plasticity within
PPI-regulatory neural mechanisms, that might be leveraged toward augmenting the
therapeutic impact of cognitive therapies. It is clearly too early to suggest an
abandonment of other efforts to develop and apply other animal models of PPI, but
at some point, it becomes worthwhile to move beyond models that are valid, in
search of ones that might have clinical utility for our patients.
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