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Abstract Over the past 60 years, a large number of selective neurotoxins were
discovered and developed, making it possible to animal-model a broad range of
human neuropsychiatric and neurodevelopmental disorders. In this paper, we
highlight those neurotoxins that are most commonly used as neuroteratologic
agents, to either produce lifelong destruction of neurons of a particular phenotype,
or a group of neurons linked by a specific class of transporter proteins (i.e.,
dopamine transporter) or body of receptors for a specific neurotransmitter (i.e.,
NMDA class of glutamate receptors). Actions of a range of neurotoxins are
described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP,
methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and val-
proate. Their neuroteratologic features are outlined, as well as those of nerve growth
factor, epidermal growth factor, and that of stress. The value of each of these
neurotoxins in animal modeling of human neurologic, neurodegenerative, and
neuropsychiatric disorders is discussed in terms of the respective value as well as
limitations of the derived animal model. Neuroteratologic agents have proven to be
of immense importance for understanding how associated neural systems in human
neural disorders may be better targeted by new therapeutic agents.
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1 Introduction

The concept posed in this paper is that perinatal insult can influence later-life neural
survival or later-life susceptibility to toxic challenge. Also, perinatal insult can
alone result in lifelong neural and behavioral abnormalities in humans, able to be
modeled by appropriate treatments of animals. The series of topics highlighted here
provide support for what was once a concept, but which is now recognized fact,
supported by experimental and observational data in animal subjects and humans.

There are an encyclopedic number of studies demonstrating that perinatal
exposure of noxious or seemingly innocuous agents alter the pattern of neural
ontogenetic development and produce permanent neuroanatomical, neurochemical,
and/or behavioral abnormalities. Examples of this are provided for what might be
termed selective neurotoxins.
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One general and surviving notion has been that the neurodegenerative and, for
that matter, even the neurodevelopmental psychiatric disorders are induced by
specific agents that degenerate one or more clearly defined population(s) of neu-
rons, circuits, and/or regions, e.g., dopaminergic neurons in parkinsonism.
However, the much more prevalent issue of senescence is a wider phenomenon
affecting cells throughout the body, including spontaneous dying of neurons, as per
pars compacta substantia nigra (SNpc) dopaminergic neurons and onset of
Parkinson’s disease (PD) (Rodriguez et al. 2015). Neuropsychiatric disorders, such
as schizophrenia, attention deficit/hyperactivity disorder (ADHD), autism and
depression, and Lesch–Nyhan disease (LND), stem from abnormalities and dis-
ruptions, both genetic and environmental, of the normal courses of the develop-
mental cycles (Grados et al. 2014; Groves et al. 2014). For example, exposure to
femtomolar concentrations (fM, 10−15 mol/dm3 or 10−12 mol/m3) of fragrances
(generally sweet or pleasant smell) results in morphological changes at the light
microscopic level in fetal neuroblastoma cell lines pertaining to reduced
oxytocin-positive and arginine vasopressin-positive neurons in male but not female
neuroblastoma cell lines (Sealey et al. 2015). Stressor exposure during early life has
the potential to increase an individual’s susceptibility to a number of neuropsy-
chiatric conditions such as mood and anxiety disorders and schizophrenia in
adulthood. Epigenetic processes exert cellular/tissue-specific changes in regulating
expression of genes, providing potential biomarkers for examining the develop-
mental trajectory of early stress-induced susceptibility to adult neuropsychiatric
and/or neurologic disorders (Ibi and González-Maeso 2015; Marco et al. 2016).
With the proliferation of gene-based models and etiology-based models for
studying brain disorders (Bezard et al. 2013), the predictability of human and
animal in vivo outcomes for neurotoxicity and retardation of developmental tra-
jectories proceeds apace.

Under conditions of chronic inflammation, “mediator” molecules like cytokines
may be disadvantageous to organism development over prolonged or exaggerated
periods. Neuroprotective or neurotoxic outcomes evolving from interactions
between cytokines and/or metabolites of tryptophan catabolism, the neuroactive
kynurenines, partly influenced by corticosteroid action, contribute to the fate of
several signaling pathways, e.g., serotonergic, dopaminergic, and glutamatergic
transmissions, and receptor functions such as N-methyl-D-aspartate receptor
(NMDA-R) or α7-nicotinic acetylcholine receptor (Myint 2013). For instance,
altered kynurenine metabolism is implicated in the pathogenesis of Alzheimer’s
disease (AD), PD, and Huntington’s disease (HD), whereas the metabolites and key
enzymes, analogs of the metabolites, and small-molecule enzyme inhibitors, pre-
venting the formation of neurotoxic compounds, confer both neuroprotective and
therapeutic properties (Tan et al. 2012). Inflammatory mediators activate the
kynurenine metabolic pathway and immobilize the production of neuroactive
metabolites, thereby initiating a pathogenic cascade with neuropsychiatric conse-
quences (Allison and Ditor 2015; Brundin et al. 2015; Meier et al. 2015).
According to the (genetic) Vulnerability-stress-inflammation developmental notion
of schizophrenia, stress generates immune alterations (proinflammatory cytokines)
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that influence dopaminergic, serotonergic, noradrenergic, and glutamatergic neu-
rotransmission through the activation of the enzyme indoleamine 2,3-dioxygenase
(IDO) of tryptophan/kynurenine metabolites, leading to kynurenic acid, with the
concomitant activation of microglia, a veritable cascade of neuroinflammatory
events (Müller et al. 2015).

1.1 Developmental Inflammatory Processes

Immune activation through prenatal or early postnatal exposure to viruses or bac-
terial products (e.g., lipopolysaccharide (LPS)) consistently impairs brain devel-
opment and influences behavioral, emotional, and cognitive functional domains
(Kirsten et al. 2013; Xia et al. 2014; Zhu et al. 2014a, b) with consequences for the
pathogenesis of neuropsychiatric conditions (Delany et al. 2015; Kelly et al. 2015;
Mossakowski et al. 2015; Pariante 2015). Maternal inflammation is similarly
reflected in neuroinflammatory events resulting in structural and functional dis-
turbances to the developing offspring brain.

Prenatal LPS-induced reorganization of the dendritic architecture was found in
both L2PC-A and L2PC-B types, predominantly in the L2PC-A type in mouse
offspring (Gao et al. 2015); there was also a differential alteration of intrinsic
electrophysiological properties of the two L2PC types. As the resting membrane
potential of L2PC-A neurons became hyperpolarized, these neurons were less
excitable, whereas the resting membrane potential of L2PC-B neurons was partially
depolarized and more excitable. Thus, morphological and electrophysiological
abnormalities were linked to pyramidal neuron dysfunction stemming from
inflammatory events during pregnancy. Parental microglia-induced neuroinflam-
mation, triggered by bacterial or viral infections, may induce features of
neuropsychiatric/neurologic disorders, such as ADHD, schizophrenia, and autism in
offspring (Byrnes et al. 2009). In mice exposed prenatally to LPS at gestational days
15 and 17, there was downregulation of peripheral benzodiazepine receptors
(PBRs), mediated by the activation of mGluR5 in astrocytes (Arsenault et al. 2015).
In addition, the mGluR5–PBR interaction in a mouse model of schizophrenia
(Basta-Kaim et al. 2015; Wischhof et al. 2015) was applicable to brain disorder
pathophysiology. Thus, LPS-driven ontogenetic effects at mGluR5 have implica-
tions in later-life onset of neuropsychiatric disorders.

Inflammatory cytokines are able to affect neuronal ontogeny indirectly by acting
at glia and subverting their imbued neuroprotective action to one that is adverse for
neurons. By this means, gestational inflammation can indirectly affect neural
function—and thereby pose a risk for later age development of neurological or
psychiatric disorders (Fukushima et al. 2015; Jo et al. 2015; Steardo et al. 2015).
A number of mechanisms may come into play: (i) stimulation of the phagocyte
NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) ex-
pression of inducible nitric oxide synthase (iNOS) that produces NO and derivative
oxidants, (iii) release of glutamate and glutaminase, (iv) release of tumor necrosis
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factor alpha (TNF-α), (v) release of cathepsin B, (vi) phagocytosis of stressed
neurons, and finally, (vii) decreased release of nutritive brain-derived neurotrophic
factor (BDNF) and insulin-like growth factor-1 (IGF-1) (Brown and Vilalta 2015).

Despite all the evidence that neuroinflammation and reactive gliosis feature
prominently in most brain and CNS disorders, the notion of glial cells as passive
responders to neuronal damage rather than drivers of synaptic dysfunction is
changing. Glia have active signaling activity with neurons and influence synaptic
development, transmission, and plasticity by mobilizing a plethora of secreted and
contact-dependent signals (Chung et al. 2015). Reactive astrogliosis, a feature of
AD, presents a continuum of neuropathological processes with accompanying
morphological, functional, genetic, and epigenetic events (Jain et al. 2015; Pekny
et al. 2014; Steardo et al. 2015; Verkhratsky et al. 2015). Calcium, proteoglycan,
TGF-β, NFκB, and complement mediate the neuron–glia interactions under phys-
iological and neurodegenerative states (Lian and Zheng 2015). Although the
influences of astrocytes on the aging process are more suspected than implicated,
they appear to adopt different functions dependent on disease progression and the
extent of accompanying parenchymal inflammation. Astrocytes enable clearance of
Aβ and restrict the spread of inflammation in brain, yet astrocytes promote neu-
rodegeneration in AD by releasing neurotoxins and negating crucial metabolic roles
(Birch 2014). Using an experimental model of small subcortical infarcts in mice for
studying pathophysiological changes in the corticospinal tract and assessing
long-term neurologic outcomes and behavioral performance, Uchida et al. (2015)
administered the vasoconstrictor peptide, endothlin-1 (ET-1), and the NOS inhibitor
N(G)-nitro-L-arginine methyl ester (L-NAME), into the internal capsule of mice. At
two months, they observed a loss of axons and myelin surrounded by reactive
gliosis in the region of the injection and severe neurological deficits.

1.2 Perinatal Insult and Neurologic Neurodegenerative
Disorders

The Latent Early-life Associated Regulation (LEARn) model poses environmental
exposures as “hits,” which, when sufficient in strength and/or number as a fetal
insult, leads to altered neural development and later-life disorder or susceptibility to
disorder (Lahiri et al. 2009)—giving support to the “developmental origins of
health and disease” (DOHaD) hypothesis (Barker 2007). This topic has been
recently reviewed, in reference to perinatal insult and the ultimate development of
neurodegenerative disorders (Tartaglione et al. 2016).

For example, perinatal exposure of mice or monkeys to lead (Pb) results in
later-life cognitive deficits accompanied by the upregulation of amyloid precursor
protein (APP), Aβ deposits, and phosphorylated tau in brain—features of
Alzheimer’s disease (AD) (Bihaqi and Zawia 2013; Bihaqi et al. 2014). Similarly,
perinatal exposure of rats to lead (Pb) leads to a similar pattern of deficits along
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with an increase in the brain level of 8-hydroxy-2ʹ-deoxyguanosine (oxo8dG), a
major DNA oxidation metabolite reflecting oxidative stress (Bolin et al. 2006).
Other heavy metals (arsenic, cadmium) and pesticide exposure during perinatal
development produce similar dysfunctions in animals (Baldi et al. 2011; Ashok
et al. 2015). This series of examples supports the contention that early-life insults
can have permanent effects in brain and behavior.

In an analogous manner, perinatal exposure or treatment with iron leads to
behavioral indices of PD in mice (Fredriksson et al. 1999, 2000) and rats
(Dal-Pizzol et al. 2001), with effects thought to be associated with observed
oxidative stress in brain. Manganese (Mn) had a direct effect but also increased the
susceptibility of brain to later-life toxic insult (Cordova et al. 2012).

These examples give credence to the likelihood that there are multiple kinds of
perinatal insults that produce lifelong neural dysfunctions, some of which lead to a
greater incidence of neurological, neurodegenerative, and psychiatric disorders in
humans.

1.3 Neurotrophins and Neuronal Development

In a long series of studies beginning in the first half of the twentieth century,
R. Levi-Montalcini discovered that there were proteins termed neurotrophins that
were essential for the development of the nervous system. One of these neu-
rotrophins, nerve growth factor (NGF), was shown to promote the growth and
development of the sympathetic nervous system during ontogeny, now known to
act by regulating the expression of genes associated with axonal growth and
synaptogenesis (Miller and Kaplan 2001). NGF likewise has a prominent effect on
the maintenance and development of cholinergic nerves in basal forebrain
(Niewiadomska et al. 2009). Impaired cleavage of proNGF to NGF has been
suggested as one of the possible causes of degeneration of basal forebrain
cholinergic nuclei in AD (Tuszynski and Blesch 2004). Reduced neuronal
responding to NGF is another of many other possibilities related to the loss of
cholinergic nerves in AD (Cooper et al. 1994). The multifactorial effect of NGF on
the nervous system and on the immune system development has been recently
reviewed (Bracci-Laudiero and De Stefano 2016).

Synthesis of NGF in brain cells and in the peripheral nervous system is
upregulated by the catecholamines (Barra et al. 2014; Hasan and Smith 2014;
Sygnecka et al. 2015), which is in keeping with the physiological relation between
the level of NGF mRNA and the density of innervation in the peripheral sympa-
thetic nervous systems (Furukawa 2015). NGF is essential for the survival and
functional maintenance of forebrain cholinergic neurons projecting mainly to the
cortex and hippocampus (Hohsfield et al. 2014; Iulita and Cuella 2014; Perez et al.
2015), with particular importance for the relative levels of pro-NGF and mature
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NGF. Thus, for example, diabetic encephalography has been characterized by
deteriorations in the maturation of NGF (Soligo et al. 2015). NGF increases
low-density lipoprotein receptor levels in PC6.3 cells and in cultured septal neurons
from embryonic rat brain (Do et al. 2015), indicating that NGF and simvastatin,
which is used to decrease unhealthy lipid levels, stimulates lipoprotein uptake by
neurons with a positive effect on neurite outgrowth. Increases in low-density
lipoprotein receptors and lipoprotein particles in neurons may exert a functional role
during the brain development, as well as in neuroregenerative processes and fol-
lowing traumatic brain injuries. Although aging is a normal physiological process
accompanied, more often than not, by deteriorations in certain cognitive domains,
alterations in the levels of neurotrophic factors NGF, BDNF, and GDNF
(glia-derived neurotrophic factor) are implicated in this decline, which implicates
lowered neurotrophic levels in the pathogenesis of AD and other age-related dis-
orders (Budni et al. 2015).

2 Actions and Mechanisms of Selective Neurotoxins

2.1 6-Hydroxydopamine

6-Hydroxydopamine (6-OHDA), the first selective neurotoxin to come into com-
mon use, was discovered in the late 1960s by H Thoenen and JP Tranzer during
their search for norepinephrine (NE) analogs that might provide dark osmophilic
“staining” of noradrenergic nerves during the electron microscopic observation
(Thoenen and Tranzer 1968a, b). 5-Hydroxydopamine (5-OHDA) fulfilled that
criterion, but 6-OHDA to their surprise produced overt destruction of noradrenergic
nerves and its action was selective, leaving surrounding tissues and other nerves
intact. 6-OHDA was eventually found to produce its neurotoxicity by generating
intraneuronal oxidative stress and by an action on mitochondrial cytochromes,
thereby blocking ATP formation and energy depletion of neurons (Cohen and
Heikkila 1974). Later, 6-OHDA neurotoxicity was extended to dopaminergic
nerves, as well (Ungerstedt 1968, 1971).

6-OHDA has found extensive use in neuroscience research, being cited (as
“6-hydroxydopamine OR 6-OHDA”) in *12,000 papers in PubMed. 6-OHDA is a
useful agent for uncovering effects of noradrenergic and dopaminergic nerves and
for studying neurotoxic processes and mechanisms and reactive neuroprotective
strategic mechanisms of these nerves. As a neurotoxin, 6-OHDA destruction of pars
compacta SNpc in adult species (rodents, non-human primates) is of value for
producing animal modeling of PD. As a neuroteratogen—6-OHDA administration
during ontogeny—6-OHDA has effectively modeled several neural disorders
including PD, ADHD, and LND, each of which is described subsequently.
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2.2 6-Hydroxydopa

Following the discovery of 6-OHDA as a neurotoxin, 6-hydroxydopa
(6-OHDOPA) was developed with the rationale that (1) 6-OHDOPA would be
able to cross the blood–brain barrier (6-OHDA does not), (2) to be decarboxylated
to 6-OHDA in brain; thus, 6-OHDOPA would actually be a protoxin, and
(3) 6-OHDOPA-derived 6-OHDA would then destroy noradrenergic and/or
dopaminergic nerves deep in brain, (4) while obviating unintentional damage to
other nerves which would otherwise occur during injection of 6-OHDA per se into
brain (Ong et al. 1969; Berkowitz et al. 1970). Subsequently, 6-OHDOPA was
confirmed as a neurotoxin, able to produce destruction to noradrenergic sympathetic
nerves (Kostrzewa and Jacobowitz 1972; Sachs and Jonsson 1972a, b) and nora-
drenergic nerves in brain (Jacobowitz and Kostrzewa 1971; Kostrzewa and
Jacobowitz 1973; Zieher and Jaim-Etcheverry 1973, 1975a, b). 6-OHDOPA also
proved to be a unique neuroteratologic agent, able to destroy noradrenergic nerves
in brain (Kostrzewa and Harper 1974)—with preference for locus coeruleus nuclei
(Kostrzewa and Harper 1974; Tohyama et al. 1974a, b; Clark et al. 1979) and the
dorsal bundle providing noradrenergic innervation to dorsal brain (Kostrzewa and
Garey 1976, 1977)—while leaving dopaminergic innervation to rodent striatum
virtually intact (Kostrzewa et al. 1988). This specificity of 6-OHDOPA for nora-
drenergic nerves provided a unique advantage in mapping noradrenergic nerves in
brain in the 1970s (Jacobowitz and Kostrzewa 1971; Sachs et al. 1973).

6-OHDOPA, however, had specifically low potency and also lethality at high
dose (Kostrzewa and Garey 1976). Part of the lethal effect may reside in additional
agonist action of 6-OHDOPA at non-NMDA glutamatergic receptors (Rosenberg
et al. 1991). At the time of its discovery 35 years ago, 6-OHDOPA was useful as a
selective noradrenergic neurotoxin. Important discoveries were made by the use of
this neurotoxin on noradrenergic systems in brain, including mapping of the dorsal
noradrenergic bundle to forebrain, cerebellum, and spinal cord. 6-OHDOPA like-
wise was useful in uncovering the labile nature of locus coeruleus neurons. At this
time, the inherent limitations of 6-OHDOPA relegate it to secondary status; tagged
antibodies for marker enzymes (e.g., immunotoxin for dopamine-β-hydroxylase)
also provide a more advantageous means to assess noradrenergic nerves.
6-OHDOPA mechanisms and actions were recently reviewed (Kostrzewa 2016).

2.3 DSP-4

DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine] is another neurotoxin
discovered by S Ross and colleagues in the early 1970s during their search for
bretylium-related compounds (Ross et al. 1973; Ross and Renyi 1976). DSP-4 was
initially found to cross the blood–brain barrier and cyclize to a reactive aziridinium
targeted to the NE transporter (NET) and taken up primarily by locus coeruleus
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noradrenergic nerves, leading to NE depletion (Jonsson et al. 1981, 1982) and overt
destruction (Lyons et al. 1989). DSP-4 was recently reviewed (Bortel 2014; Nowak
2016; Ross and Stenfors 2015).

As a neuroteratogen, DSP-4 has relatively selective action on locus coeruleus
projections to neocortex, hippocampus, cerebellum, and spinal cord, while leaving
peripheral sympathetic nerves relatively unaffected (Zieher and Jaim-Etcheverry
1975a). Typically, reactive sprouting of noradrenergic innervation to hindbrain and
cerebellum occurs consequent to relative inactivation or destruction of locus
coeruleus-derived innervation to neocortex, hippocampus and spinal cord (Jonsson
et al. 1981, 1982; Dabrowska et al. 2007; Bortel et al. 2008; Sanders et al. 2011).
Effects are lifelong. DSP-4 has been used to study the neurotoxic and neuropro-
tective mechanisms of noradrenergic neurons and to determine the association
between early loss of noradrenergic innervation and brain and behavioral outcomes.

2.4 Co-administration of DSP-4 and MPTP

When noradrenergic nerves are lesioned with DSP-4 prior to MPTP
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) treatment of C57/Bl6 mice,
dopaminergic lesioning is enhanced (Fornai et al. 1997). Prenatal iron (Fe2+,
7.5 mg/kg, on postnatal days 19–12) further exacerbates the effects on dopamin-
ergic neurons and extent of movement disordering produced by the combination of
DSP-4 and MPTP (Archer and Fredriksson 2006). Noradrenergic neuronal dys-
function is considered to add to the motor dysfunction in PD, as indicated by
enhanced dysfunction of the subthalamic nucleus following the combination of
DSP4 and 6-OHDA (Wang et al. 2014). This topic was recently reviewed (Archer
2016b).

2.5 Methamphetamine

The AMPH analog methamphetamine (METH) replicates many of the effects of
AMPH. METH (like AMPH), with high affinity for the NET, DAT (dopamine
transporter), and the serotonin (5-HT) transporter SERT, is accumulated by these
nerves to evoke non-exocytotic release of NE, DA, and 5-HT (Sitte and Freissmuth
2010). Acute effects reflect sympathomimetic and serotoninergic actions at their
respective receptor sites (de la Torre et al. 2000). Chronic METH is associated with
neurotoxicity (Seiden et al. 1976), being related to acute METH-induced hyper-
thermia, promotion of reactive oxygen species (ROS), and excitotoxicity (Krasnova
and Cadet 2009). Neuroteratologic effects of METH are expressed in large part by a
spectrum of behavioral alterations, as outlined later in this paper.
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2.6 Domoic Acid

Domoic acid, an agonist at AMPA/kainate-R, is an excitotoxin in high dose
(Verdoorn et al. 1994; Tasker et al. 1996), producing neuronal loss and astrocytosis
in hippocampus and amygdala, as well as prefrontal cortex and thalamus
(Teitelbaum 1990). In both humans and laboratory rodents, neuropathological
disturbances are characterized also by reactive gliosis and loss of neurons detected
from 24 h onward and most severely after a week or two (Ananth et al. 2001, 2003).
Immunohistochemical and histopathologic evidence of chronic inflammation from
rats treated with domoic acid indicated severe neuronal degeneration, astrocytosis,
microgliosis, universal NOS expression, and dystrophic calcification from 5 days to
54 days after administration (Vieira et al. 2015).

When administered to perinatal rats, domoic acid produces head tremor with
vacuous chewing, “wet-dog shakes,” circling, forelimb tremor, hindlimb hyperex-
tension, and hind-paw biting. At very high dose myoclonic jerks and clonic-tonic
convulsions (Xi et al. 1997; Doucette et al. 2000).

When administered in low dose during the second week of postnatal ontogeny,
these rats in adulthood displayed prominent cell loss in hippocampal CA1 and CA3
regions (Doucette et al. 2004; Bernard et al. 2007), a reduction in GABA neurons
(Gill et al. 2010) with prominent mossy fiber sprouting (Holmes et al. 1999), and
behaviorally, these rats, as adults, had stage 2/3 seizure (Racine 1972) induced by a
novel/stressful environment (Doucette et al. 2004). Other behavioral deficits have
been noted (Pérez-Gómez and Tasker 2014). The neurotoxic and behavioral out-
come of perinatal domoic acid was recently reviewed (Pérez-Gómez and Tasker
2014; Doucette and Tasker 2016).

2.7 192 IgG-Saporin

The immunotoxin 192 IgG-saporin consists of the monoclonal antibody 192 IgG
conjugated to the ribosome-inactivating protein (RIP) saporin. In perinatal rats, 192
IgG targets the low-affinity rat NGF receptor (p75NGF), which is expressed solely
on cholinergic neurons in the nucleus basalis magnocellularis (NBM) and diagonal
band of Broca (DBBh) in rat basal forebrain. Saporin, being then internalized by
receptor-mediated endocytosis, travels by retrograde axonal transport to the neu-
ronal perikaryon and inactivates ribosomes to inhibit protein synthesis, leading to
neuronal cell death (Wenk et al. 1994; Leanza et al. 1995; Pappas et al. 1996;
Robertson et al. 1998). Perinatal IgG-saporin selectively destroys 70–75 % of
cholinergic in NBM/DBBh (Leanza et al. 1996), leading to *70 % cholinergic
denervation of hippocampus. In contrast to 192 IgG-saporin treatment of adult rats,
which also destroys cerebellar Purkinje cells (Leanza et al. 1995; Waite et al. 1995;
De Bartolo et al. 2009, 2010), perinatal 192 IgG-saporin spares Purkinje cells which
have a lower expression of p75NGF.
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192 IgG-saporin reduces ultrasonic vocalization (Kehoe et al. 2001; Ricceri et al.
2007) and impairs passive avoidance learning in rat pups (Ricceri et al. 2002). In
adulthood, 192 IgG-saporin-lesioned rats spent less time exploring a novel envi-
ronment (Ricceri et al. 1997; Scattoni et al. 2003), but otherwise there was limited
impairment in learning and memory (Leanza et al. 1996; Pappas et al. 1996) except
at 22 months (Pappas et al. 2005). The perinatal effects of IgG-saporin were
recently reviewed (Petrosini et al. 2014, 2016).

2.8 Quinpirole

Acute administration of the DA D2-R agonist quinpirole produces several
short-lived behavioral effects, the most prominent being yawning with penile
erection in male rats (Kostrzewa and Brus 1991). However, when administered to
rats once a day for several days during postnatal ontogeny, quinpirole produces DA
D2-R supersensitization that is manifested as enhanced yawning, locomotor activ-
ity, altered pain threshold, and vertical jumping with paw treading (Kostrzewa et al.
1991, 1993a, b; Kostrzewa 1995; Kostrzewa and Kostrzewa 2012). DA D2-R
supersensitivity persists for the duration of the life span (Oswiecimska et al. 2000)
and is associated with enhanced AMPH-induced release of DA in rat striatum
(Nowak et al. 2001; Cope et al. 2010).

Rats that had been quinpirole-primed during the first week or more of postnatal
life have cognitive impairment (Brown et al. 2002) and deficits in prepulse inhi-
bition (Maple et al. 2015). These behavioral effects are accompanied by a reduced
brain level of BDNF (Brown et al. 2008; Thacker et al. 2006) and reduced
expression level of the regulator of G-protein-signaling (RGS) RGS 9 gene which
functions to terminate D2-R agonist action. Because these effects are largely
attenuated by olanzapine (Thacker et al. 2006), rats with permanent D2-R super-
sensitivity have been posited as an animal of schizophrenia (Brown et al. 2012;
Brown and Peterson 2016; Kostrzewa et al. 2016c; Maple et al. 2015).

3 Animal Modeling with Neuroteratologic Agents

3.1 Rodent Model of PD Produced by Perinatal 6-OHDA
Treatment

Perinatal intracerebral (icv) treatment of rats with 6-OHDA (134 μg, half on each
side) produces near-total lesioning of SNpc and lifelong near-total dopaminergic
denervation of striatum. Acutely there is no discernible behavioral effect, and rats
develop into adulthood with no motor deficit. Permanent serotoninergic
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hyperinnervation of striatum occurs as rats develop into adulthood (Berger et al.
1985; Snyder et al. 1986). Repeated DA D1 agonist treatments in adulthood prime
DA D1-R, which remain supersensitized for the remainder of life, while DA D2-R
are less affected (Breese et al. 1984a, 1985a, b, 1987; Criswell et al. 1989; Hamdi
and Kostrzewa 1991; Kostrzewa and Gong 1991; Gong et al. 1992, 1993a, 1994;
see Kostrzewa 1995; Kostrzewa et al. 1998). The perinatal 6-OHDA-lesioned rats
represents a suitable animal model of severe PD (Kostrzewa et al. 2006; Kostrzewa
et al. 2016b).

An alternative animal model of PD is produced by administering 6-OHDA
unilaterally in adult rats to lesion the SNpc; effectiveness of known and putative
anti-parkinsonian agents can be assessed by counting the numbers of rotations
produced by those treatments (Ungerstedt 1971). Bilateral 6-OHDA adulthood
treatment would produce aphasia, adipsia, lack of grooming, and immobility—with
consequent death in a matter of day, except with prolonged special care. Still, these
rats remain fragile.

In contrast to adulthood 6-OHDA-lesioned rats, the perinatally 6-OHDA-
lesioned rats provide immense advantages for assessing anti-parkinsonian agents.
Because perinatally 6-OHDA-lesioned rats are able to eat, drink, groom, and
ambulate—as per intact controls, even in the relative absence of SNpc dopamin-
ergic neurons, this neurochemical/neuroanatomical model of PD is behaviorally
robust and demonstrates ambulatory enhancement when treated with anti-
parkinsonian agents; motor dyskinesia produced by high-dose L-DOPA is able to
be discerned (Kostrzewa et al. 2006; Kostrzewa et al. 2016b). These rats have been
used to assess the elevation of tissue levels of striatal DA after acute L-DOPA
treatment (Kostrzewa et al. 2002, 2005); also the effect of acute AMPH on striatal
exocytosis (Nowak et al. 2005); and the effect of acute L-DOPA on striatal levels of
ROS (Kostrzewa et al. 2000, 2002; Nowak et al. 2010). The perinatal
6-OHDA-lesioned rat, as a modeling of PD, is described in detail in a recent paper
(Kostrzewa et al. 2016b).

3.2 Exercise Effectiveness in Improving Behavioral Deficits
in a Rodent Model of PD

Physical exercise has proven to be effective and is a recommended alternative for
ameliorating, even reversing motor and behavioral dysfunctions in neurodegenera-
tive disorders (Archer 2011, 2012, 2014; Archer et al. 2014a, b; Archer and Garcia
2015; Archer and Kostrzewa 2012; Archer et al. 2011a, b, 2014a, b). In a rodent
model of PD, exercise produced profound ameliorative effects (Archer and
Fredriksson 2010, 2012, 2013; Archer et al. 2011a, b, 2014a, b; Fredriksson et al.
2011). Exercise is a particularly useful intervention in PD patients in sedentary
occupations. The several links between exercise and quality of life, disorder
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progression and staging, risk factors, and symptom biomarkers in PD all endow a
promise for improved prognosis. Nutrition provides a strong determinant for dis-
order vulnerability and prognosis, with fish oils and vegetables with a Mediterranean
diet offering both protection and resistance, whereas exercise increases synaptic
strength and influences neurotransmission. Nevertheless, the heterogeneity of
exercise/activity programs, including stretching, muscle strengthening, balance,
postural exercises, occupational therapy, cueing, and/or treadmill training, remains
an issue and consensus concerning the optimal approach (Abbruzzese et al. 2015;
but see also Uhrbrand et al. 2015). Three factors determining the effects of exercise
on disorder severity of patients may be presented: (i) exercise effects on motor
impairment, gait, posture, and balance; (ii) exercise reduction of oxidative stress,
stimulation of mitochondrial biogenesis, and upregulation of autophagy; and
(iii) exercise stimulation of dopaminergic neurochemistry and trophic factors.

Running-wheel performance, as measured by distance run by control and
parkinsonian-modeled mice from different treatment groups, was related to
dopaminergic system integrity, indexed by striatal DA levels (Archer and Kostrzewa
2016). Support for these notions (regarding the almost finite advantages to be
gleaned from exercise) continues to emerge. Exercise triggers plasticity-related
events in the human PD brain, such as corticomotor excitation, increases in gray
matter volume, and an elevation in BDNF levels (Hirsch et al. 2015). Finally, both
nutrition and exercise may facilitate positive epigenetic outcomes, such as lowering
the dosage of L-DOPA required for a therapeutic effect. Exercise, as a potent epi-
genetic regulator, implies a potential to counteract pathophysiological processes and
alterations, notwithstanding a paucity of understanding in the underlying molecular
mechanisms and dose–response relationships (Archer 2015).

3.3 Rodent Model of ADHD Produced by Perinatal
6-OHDA with Adulthood 5,7-DHT Lesions

In the 1970s, B Shaywitz and colleagues produced an animal of “minimal brain
dysfunction,” akin to today’s nomenclature for ADHD, by 6-OHDA lesioning of
perinatal rats. These rats demonstrate attentional deficits with spontaneous hyper-
locomotor activity, each of which is attenuated by acute AMPH treatment
(Shaywitz et al. 1976a, b). Over the past 40 years, this has remained the gold
standard for rodent modeling of ADHD.

A variation of this model consists of perinatal 6-OHDA lesioning (134 μg, half
on each side), followed by adulthood (10 weeks of age) lesioning with
5,7-dihydroxytryptamine (5,7-DHT, 75 μg icv). Treatment of 6-OHDA-lesioned
rats with 5,7-DHT had the effect of reducing striatal serotoninergic hyperinnerva-
tion by 30 % and suppressing D1-R supersensitivity while enhancing 5-HT2C-R
sensitivity. Behaviorally, these rats displayed enhanced hyperlocomotor activity (vs
rats lesioned solely with 6-OHDA), and this activity was attenuated by AMPH
(Kostrzewa et al. 1994). Moreover, this animal model of ADHD was able to discern
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the ability of m-chlorophenylpiperazine (mCPP), a 5-HT agonist, to suppress the
hyperlocomotor activity and thereby indicate a new approach toward ADHD
treatment (Brus et al. 2004). In vivo microdialysis study indicates that the
activity-suppressant effects of AMPH and mCPP are unrelated to exocytosis of
striatal DA and 5-HT (Nowak et al. 2007). The higher level of hyperlocomotor
activity in rats with the dual 6-OHDA + 5,7-DHT lesions represents a more robust
model of ADHD in testing agents with the potential for ADHD treatment (Paterak
and Stefański 2014; Kostrzewa et al. 2008). This animal model for ADHD was
recently reviewed (Kostrzewa et al. 2016a). A non-pharmacological approach
toward abating features of ADHD has been demonstrated (Archer and Kostrzewa
2012).

3.4 ADHD and NMDA-R Systems

An imbalance between central inhibitory/excitatory neurotransmitters and relative
activity/connectivity between brain regions, with concomitant disturbances of
higher cognitive function, is considered to reflect the pathogenesis of ADHD (He
et al. 2015; Mohl et al. 2015; Monden et al. 2015; Roman-Urrestarazu et al. 2015).

Dysfunction of the default-mode network in ADHD patients is considered
together with some of the animal models used to examine the neurobiological
aspects of ADHD. Much evidence indicates that compounds/interventions that
antagonize/block glutamate receptors and/or block glutamate signaling during the
“brain growth spurt” (or in the adult animal model) may induce functional and
biomarker deficits. Mice treated with glutamate receptor antagonist (MK-801,
dizocilpine; ketamine) during the “brain growth spurt” fail to display exploratory
activity when placed in a novel environment (the test cages) and later fail to adapt to
the environment with locomotor suppression, implying a cognitive dysfunction.
A disturbance of glutamate signaling during a critical stage of neural ontogeny may
contribute to the ADHD pathophysiology. In a functional magnetic resonance
imaging (fMRI) study of executive functioning in ADHD adults and matched
controls, it was observed that in people with ADHD, there was a failure of deac-
tivation of the medial prefrontal cortex (Salavert et al. 2015). In another study of
ADHD adults, using a rest-to-take switching task, there was a disturbed reinitiation
of a rest state.

“Hot” and “cool” cognitive functions present a dichotomy within executive
function whereby the former refers to affective domains and the latter to cognitive
domains (Doebel and Zelazo 2013; Hongwanishkul et al. 2006; Zelazo et al. 2003,
2004). Top-down processes that operate in more affectively neutral contexts have
been termed “cool” executive functioning, whereas those operating in motiva-
tionally and emotionally significant situations are referred to as “hot” (Zelazo and
Carlson 2012). ADHD children exhibited “cool” executive function deficits which
appeared to be unrelated to comorbid oppositional defiant disorder (Antonini et al.
2015). Finally, Babenko et al. (2015) have highlighted the intricate interplay
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between prenatal stress exposure, associated changes in miRNA expression, and
DNA methylation in placenta and brain with possible links to greater risks for
incidence of ADHD later in life. The association of studies with NMDA-R
antagonists and ADHD has been reviewed recently (Archer 2016a; Archer and
Garcia 2016).

3.5 Rodent Model of Lesch–Nyhan Disease Produced
by Perinatal 6-OHDA Treatment

Lesch–Nyhan disease (LND), a relatively rare neuroteratologic disorder attributable
to a mutation in the HPRT 1 gene, is characterized by deficiency in hypoxanthine–
guanine phosphoribosyltransferase (HGPRT). Abnormality in purine recycling
leads to high serum levels of uric acid, the end product of purine metabolism, and
gout—deposition of uric acid crystals in joints and soft tissue. Neurological
symptoms represent a range of stages from mild to severe, but often being asso-
ciated with self-biting and self-mutilation (Abel et al. 2014; Fu et al. 2015;
Schroeder et al. 2001). In five different strains of mice with an HPRT gene
knockout—characterized by one of two different HPRT gene mutations (Jinnah
et al. 1999)—the nigrostriatal dopaminergic tract was found to be incompletely
developed and the striatum had both reduced DA content and increased oxidative
stress (Visser et al. 2001). While the HPRT-deficient mouse represents a viable
model for the enzymatic deficiency in LND, the behavioral counterpart representing
self-mutilation, however, is better modeled in rats that were perinatally lesioned
with 6-OHDA (Breese et al. 1984b, 1986, 1989, 1990a, b; 1994; 2005). In these
rats, DA D1-R are overtly supersensitive (for some behaviors) (Kostrzewa and
Gong 1991; Kostrzewa et al. 1992; Gong et al. 1993a, b; 1994) and are further able
to be supersensitized by repeated treatments with L-DOPA or a D1-R agonist—a
priming process (Breese et al. 1984a, 1985a, b, 1987). When perinatal
6-OHDA-lesioned rats are acutely treated as adults with L-DOPA or with a DA D1-
R agonist, there is prominent self-biting and self-mutilation that can be counteracted
with a DA D1-R antagonist (see Wong et al. 1996; Papadeas and Breese 2014).
Curiously, LND individuals have a DA deficiency in basal ganglia (as per 6-OHDA
rats), and this apparently accrues from inadequate development of dopaminergic
innervation (Göttle et al. 2014). The perinatal 6-OHDA-lesioned rat as a model of
LND has recently been reviewed (Knapp and Breese 2016).

3.6 Permanent Animal Model of Tardive Dyskinesia

Tardive dyskinesia (TD) is a movement disorder produced in primates and other
mammalian species by repeated treatments, over a period of months, with a DA D2-
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R antagonist. In humans, the D2-R antagonist is a common feature of antipsychotic
agents used to treat schizophrenia. TD presents as involuntary repetitive purpose-
less movements, most often of the lower face—resembling someone chewing gum
and sometimes also with tongue thrusting (Casey 1987; Jeste and Caligiuri 1993).
In rats, TD is most reasonably produced by including haloperidol or other D2-R
antagonist in the drinking water (Waddington et al. 1983; Waddington 1990). After
a period of *3 months, these rats, behaviorally, display spontaneous purposeless
(vacuous) chewing movements (VCMs) which persist for as long as the D2-R
antagonist is present in the drinking water. After withdrawal of the D2-R antagonist
from drinking water, VCMs gradually disappear over a period of 4 to 6 weeks. This
latter feature in rats—relating to the regression of TD upon D2-R antagonist
withdrawal—contrasts with human TD, in which the TD persists and is often
permanent even after the D2-R antagonist withdrawal.

In an attempt to produce a permanent model of TD, rats were first lesioned as
perinates with 6-OHDA (134 μg, half on each side). When these rats (and controls)
reached adulthood, haloperidol was added to the drinking water for a period of
nearly one year. While intact control rats developed TD (i.e., increased number of
VCMs) after *3 months, 6-OHDA-lesioned rats developed TD only after
2 months. Moreover, the number of VCMs in haloperidol/6-OHDA rats was 2-fold
greater than the number of VCMs in haloperidol/intact control rats. Significantly,
after the removal of haloperidol from drinking water (i.e., haloperidol withdrawn
stage), VCMs gradually disappeared in haloperidol/intact rat over a period of
*2 months, while VCMs persisted in 6-OHDA-lesioned rats, at the same elevated
level and until the experiment ended 8 months later. At that time, it was determined
that the D2-R number (i.e., Vmax) had been increased during the haloperidol phase
and that D2-R number had reverted to normal by 8 months—signifying that
numbers of VCMs were unrelated to numbers of strital D2-R (Huang et al. 1997).

The advantage of persistent VCMs in the withdrawal phase is that it becomes
possible to test agents that might have the ability to suppress VCMs. To this end, it
was found that agonists and antagonist at both the D2-R and D1-R had no effect, nor
did agonists or antagonists at a number of other types of receptors. Only antagonists
at 5-HT-R attenuated VCMs in rats in the withdrawal phase, and the common
feature of each of these antagonists was that they have affinity for the 5-HT2C-R, a
likely site that can be targeted to reduce TD in humans during the antipsychotic
withdrawal phase (Kostrzewa et al. 2007). This animal model of TD is described in
detail in a recent paper (Kostrzewa and Brus 2016).

3.7 Valproate Modeling of Autism Spectrum Disorder

Prenatal/postnatal/perinatal etiologies, ranging from exposures involving drugs to
infections, as well as genetic factors, are complicit in autism spectrum disorder
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(ASD) that affects roughly 1–2 % of all children, according to the current analyses
(Pelly et al. 2015). Several maternal diseases during pregnancy are linked to ASD,
pregestationally and/or gestationally, including diabetes mellitus, maternal infec-
tions (i.e., rubella, cytomegalovirus), prolonged fever, and maternal inflammation,
inducing changes in a variety of inflammatory cytokines (Ornoy et al. 2015); among
external agents affecting ASD outcome are drugs such as valproic acid (VPA), the
anticonvulsant agent and mood stabilizer, and antiepileptic compounds (Kulaga
et al. 2011; Jacobsen et al. 2014). VPA is associated with poorer longer-term child
developmental outcomes (Galbally et al. 2010).

Several aspects of animal models, generally and specifically pertaining to ASD,
are scrutinized and surveyed, including construct validity, face validity, ASD-like
behavioral and neurochemical alterations, histone deacetylase inhibition which
elevates ROS, oxidative stress, and the status of experimental models and miti-
gating factors. These above processes relate to an altered epigenetic landscape in
ASDs via altered methylation/hydroxymethylation patterns, local histone modifi-
cation patterns, and chromatin remodeling (Banerjee et al. 2014; Grayson and
Guidotti 2015; Siniscalco 2015).

ASD is characterized by deficits in social interaction and restricted or repetitive
behaviors, but often accompanied by other behavioral (e.g., aggression), intellectual
(e.g., lower IQ), neurological (e.g., epilepsy), or psychiatric (e.g., anxiety,
depression) symptoms (Levy et al. 2009). The antiepileptic drug valproate (VPA),
when used clinically to treat epilepsy and bipolar disorder in pregnant women
(Lloyd 2013), is associated with a 4 % risk for offspring to develop ASD
(Christianson et al. 1994; Christensen et al. 2013), with the incidence being
4–5 times greater in males (Wingate et al. 2014). Several types of animal models of
ASD have been produced, but the most common model is produced by VPA
treatment of perinatal rats (Rodier et al. 1997; Ranger and Ellenbroek 2016).

When pregnant rats are treated with VPA on gestation day 12, the time of fetal
neural tube closure (Kim et al. 2011), the brain of offspring has notable abnor-
malities, including increased neocortical thickness with a higher number of cortical
neurons (Sabers et al. 2015), reduced spine density in the hippocampus (Takuma
et al. 2014), hyperserotonemia (Narita et al. 2002), and other defects. Behaviorally
in rats and mice, there is hyperactivity, repetitive behaviors, and social deficits (Kim
et al. 2014), resembling the behavioral spectrum in humans with ASD.

VPA is thought to act by inhibiting histone deacetylase (Phiel et al. 2001),
resulting in hyperacetylated histones and associated increased transcriptional
activity of multiple genes (Lloyd 2013), which is thought to account for the neu-
roteratologic effects. Secondarily, VPA increases the production of ROS in brain
(Winn and Wells 1999), which may be detrimental to DNA integrity.

Animal modeling of ASD by VPA has been reviewed recently (Roullet et al.
2013; Ranger and Ellenbroek 2016).
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4 Perinatal Insults that Model Psychosis Schizophrenia

There are a plethora of agents that, when administered to animals during ontoge-
netic development, model features of schizophrenia in the adulthood stage. Some of
the more common agents having such an effect include epidermal growth factor
(EGF) and its homologue neuregulin (NRG-1), METH, phencyclidine (PCP), and
quinpirole. Details regarding these substances and their respective roles in animal
modeling of psychosis and schizophrenia are described in the following section.

4.1 Epidermal Growth Factor and Schizophrenia Modeling

When administered to perinatal rats and mice, both EGF and NRG-1 produce
adulthood effects that mirror some of the features common in schizophrenia: PPI
deficit, altered sensorimotor gating and social interaction, exploratory suppression,
cognitive deficit, sensitization to psychostimulants (METH; MK-801, dizocilpine),
and other behavioral effects (Sotoyama et al. 2011, 2013; Sakai et al. 2014). Most
deficits are reversed by atypical antipsychotics such as clozapine and risperidone
but not by typical antipsychotics such as haloperidol (Sotoyama et al. 2013). Yet, in
the EGF and NRG-1 models, learning is not compromised, as demonstrated by
testing for context fear learning and passive avoidance learning (Futamura et al.
2003; Tohmi et al. 2005).

EGF is thought to exert its major effect on dopaminergic neurons in the SN,
increasing dopaminergic activity in the globus pallidum (Sotoyama et al. 2011),
while NRG-1 is more selective for dopaminergic neurons in the VTA (Abe et al.
2009; Iwakura et al. 2011a, b), producing enhanced dopaminergic activity in the
prefrontal cortex (Kato et al. 2011). ROS formation is considered as a primary
process in mediating these effects, as antioxidants suppress some of the adulthood
behavioral deficits (Mizuno et al. 2008, 2010). This topic has been reviewed
recently (Nagano et al. 2016).

4.2 Phencyclidine and Schizophrenia Modeling

In rodents, prolonged non-competitive NMDA-R antagonism by ketamine or PCP
evokes a change in biomarkers in brain accompanied by a spectrum of behavioral
activities that model schizophrenia—with non-classical antipsychotics acutely
reversing many of the deficits (Barnes et al. 2015; Pyndt Jørgensen et al. 2015).
Acute and subchronic treatments with PCP affect differentially the neuronal activity
of different brain regions: basal DA, but not serotonin. Output in the medial pre-
frontal cortex is markedly reduced, and tyrosine hydroxylase expression in the
ventral tegmental area is decreased, thereby accounting in part for concomitant
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behavioral alterations expressed through locomotor sensitization and cognitive
deficits (Castañé et al. 2015).

Perinatal administration of the NMDA-R antagonist PCP to rodents produces a
spectrum of neuropathological and behavioral effects that model some of the fea-
tures of schizophrenia. Disruption of glutamate signaling during ontogeny by PCP
is thought to impede development of the GABAergic system in brain (Ben-Ari et al.
1997; Le Magueresse and Monyer 2013), resulting in an overall imbalance in
neuronal excitation and inhibition in brain in adulthood (Hoftman and Lewis 2011).
In perinatal PCP-treated rats and mice, there is an adulthood reduction in
fast-spiking GABAergic interneurons in medial prefrontal cortex, nucleus accum-
bens, and hippocampus (Nakatani-Pawlak et al. 2009; Kaalund et al. 2013;
Radonjic et al. 2013; Kjaerby et al. 2014), mimicking reduced GABAergic
interneuronal activity in the brain of schizophrenic patients (Reynolds et al. 2004).
In the nucleus accumbens, there is also a prominent reduction in dendritic spine
density of spiny neurons (Nakatani-Pawlak et al. 2009). Anatomic and neuro-
chemical changes in PCP rodents include a decrease in the number of
parvalbumin-positive cells and spine density in the frontal cortex, nucleus
accumbens, and hippocampus (Nakatani-Pawlak et al. 2009). Also in brain, glu-
tathione and antioxidant defenses are reduced (Radonjic et al. 2010; Stojkovic et al.
2012).

Behaviorally, there are cognitive deficits in the adulthood rodents that were
treated perinatally with PCP, as demonstrated by impaired working memory
(Morris water maze testing (Sircar 2003) and rate of learning (delayed spontaneous
alternation task) (Wang et al. 2001), sensorimotor dysfunction (deficit in prepulse
inhibition) (Anastasio and Johnson 2008; Broberg et al. 2010, 2013; Chen et al.
2011; Kjaerby et al. 2013), social withdrawal (White et al. 2009), reduced attention
in a social novelty discrimination paradigm (Terranova et al. 2005), and executive
function (attentional set-shifting task for executive function) (Broberg et al. 2008).
Many of the behavioral deficits are reversed by atypical antipsychotics. This topic
was recently reviewed (Neill et al. 2014; Grayson et al. 2016).

4.3 Methamphetamine and Schizophrenia Modeling

METH, used and abused illicitly as an aphrodisiac and euphoriant, produces ele-
vated mood, increased alertness and concentration, “energy” in fatigued individu-
als, and reduced appetite and promotes (initial) weight loss at lower doses, whereas
at higher doses the drug induces psychosis, affective disorders, and rhabdomyolysis
(Ago et al. 2006; De Carolis et al. 2015; Harro 2015; Mouton et al. 2015). METH
use by pregnant women is associated with cognitive, attentional, and mood dys-
functions in offspring (Hrebíčková et al. 2014; McDonell-Dowling and Kelly 2015;
Smith et al. 2015).

Ontogenetic effects of METH are diverse and heavily reliant on gestational age
in terms of long-lived alterations in behavior, epigenetic expression, neuronal
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organization, and overall neurotransmission and receptor parameters (Roos et al.
2015; Vrajová et al. 2014). The prenatal effects on cognitive and emotional
behavior provide evidence of drastic disruptions of normal behavioral patterns
(Fialová et al. 2015; Malinová-Ševčíková et al. 2014; Šlamberová et al. 2014,
2015). Long-term behavioral alterations induced by chronic METH use imply
alterations in gene and protein expression within specific brain subregions involved
in the reward circuitry and accompanied by major epigenetic modifications—his-
tone acetylation and methylation (Desplats et al. 2014; Godino et al. 2015).
Although epigenetic changes have not as yet been detected following prenatal
METH exposures, these findings are awaited (Cadet 2014; Cadet and Jayanthi
2013).

Perinatal METH treatment has a range of effects on adulthood behaviors in
rodents, depending upon whether METH is pre- and/or postnatal (Graham et al.
2013; Jablonski et al. 2016). Postnatal METH treatment in the range of birth
through the postweaning period has the most pronounced effects, generally sup-
pressing adulthood spontaneous locomotor activity and increasing acoustic startle
reactivity (Vorhees et al. 2009). Given at the critical postnatal period, METH
produces learning impairment and spatial memory impairment (Vorhees et al.
1994a, b, 2009).

Perinatal METH produces a persistent reduction in brain levels of DA and 5-HT,
inhibiting tyrosine hydroxylase activity (Ricaurte et al. 1982; Bowyer et al. 1998),
also 5-HT transporters (Kokoshka et al. 1998), and also other neurotransmitter
systems. This topic was recently reviewed (Bisagno and Cadet 2014; Jablonski
et al. 2016).

4.4 Quinpirole and Schizophrenia Modeling

Repeated daily postnatal quinpirole treatments of rats produce permanent DA D2-R
supersensitivity (Kostrzewa 1995; Kostrzewa et al. 2003, 2004, 2008, 2011, 2016c).
In adulthood, these rats display enhanced D2-R agonist-evoked behaviors and a
spectrum of behavioral alterations. Rats exhibit improved active avoidance
responding (Brus et al. 1998b), learning and memory deficits (Brus et al. 1998a) in
the Morris water maze task, on place, and on match-to-place versions of this task
(Brown et al. 2002, 2004a, 2005), and a deficit in prepulse inhibition (PPI) to acute
startle (Maple et al. 2007). In the hippocampus on these rats, BDNF and NGF were
reduced (Thacker et al. 2006; Maple et al. 2007), while in the striatum, nucleus
accumbens, and frontal cortex expression of RGS9, a transcript regulating G-protein
coupling to the D2-R was reduced (Maple et al. 2007). Long-term olanzapine
treatment reversed the cognitive deficits, reversed the PPI deficit, and normalized
otherwise reduced BDNF and NGF levels in hippocampus (Thacker et al. 2006;
Maple et al. 2007) and RGS9 expression (Maple et al. 2007). Because nicotine
likewise reverses D2-R supersensitization, drugs acting on α7 nAChRs (e.g., nico-
tine) have been suggested for the treatment of schizophrenia (Tizabi et al. 1999;
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Brown et al. 2004b, 2006; Perna and Brown 2013). Quinpirole modeling of
schizophrenia was recently reviewed (Kostrzewa et al. 2016a, b, 2016c; Brown and
Peterson 2016).

4.5 Stress and Neuropsychiatric Disorders

Prenatal restraint stress (PRS) during the last week of gestation is associated with
postweaned offspring displaying attentional deficits, increased anxiety, impaired
spatial learning (Lemaire et al. 2000) and deficit in working memory (Maccari et al.
2003), reduction in social play behavior, increased latency in approaching a novel
object (Laviola et al. 2004), and a syndrome complex resembling features of ASD
(see Weinstock 2008). Clearly, glucocorticoids are implicated in these outcomes.
Disruption in the circadian rhythm also has analogous effects to PRS, as each is
posed as a means to model psychiatric disorders (Marco et al. 2016).

4.6 Genetic Model of Alzheimer’s Disease

In the laboratory mouse model for AD, APPswe/PS1dE9, with mutant transgenes of
APP and presenilin-1 (PS1), chronic inflammation provokes amyloid plaque for-
mation as early as 4 months of age, with numbers of plaques increasing with aging
(Ruan et al. 2009). CD11b-positive microglia clusters appeared in hippocampus and
neocortex at the same period of development and these also proliferated with age.
Clustered glial fibrillary acidic protein (GFAP)-positive astrocytes were observed in
hippocampus and cortex after six months of age and became more numerous with
aging. Astrocytes appear to be central to AD pathophysiology since the β-amyloid
peptide Aβ suppresses cholinergic innervation and synaptic function, subsequent to
astrocytic glutamate gliotransmission. Further, Aβ causes neuronal hyperex-
citability (Hertz et al. 2015). Other developmental animal models of AD are
expected to be introduced and to become more commonplace.

5 Conclusion

Neurotoxins have become paramount in exploring neuronal function in relation to
neuroscience research and, in particular, in animal modeling of neurological, psy-
chiatric, and behavioral dysfunctional states. This concise review highlights the
mechanisms and action of the most commonly used neurotoxins and reviews the
use of individual neurotoxins in animal modeling of PD, ADHD, LND, autism, TD,
and psychotic and schizophrenic states. The influence of neurotrophins, EGF in
particular, on ontogenetic is outlined, and the influence of perinatal stress as well as
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disrupted circadian cycling on neuronal ontogeny is described. Animal modeling of
human disorders is likely to be used to an ever greater extent and through use of
neurotoxins yet to be discovered.
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