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Abstract Attention-deficit/hyperactivity disorder (ADHD) pathophysiology
persists in an obscure manner with complex interactions between symptoms,
staging, interventions, genes, and environments. Only on the basis of increasing
incidence of the disorder, the need for understanding is greater than ever. The
notion of an imbalance between central inhibitory/excitatory neurotransmitters is
considered to exert an essential role. In this chapter, we first review how the default
mode network functions and dysfunction in individuals diagnosed with ADHD. We
also present and briefly review some of the animal models used to examine the
neurobiological aspects of ADHD. There is much evidence indicating that
compounds/interventions that antagonize/block glutamic acid receptors and/or
block the glutamate signal during the “brain growth spurt” or in the adult animal
may induce functional and biomarker deficits. Additionally, we present evidence
suggesting that animals treated with glutamate blockers at the period of the “brain
growth spurt” fail to perform the exploratory activity, observed invariably with
control mice, that is associated with introduction to a novel environment (the test
cages). Later, when the control animals show less locomotor and rearing activity,
i.e., interest in the test cages, the MK-801, ketamine and ethanol treated mice
showed successively greater levels of locomotion and rearing (interest), i.e., they
fail to “habituate” effectively, implying a cognitive dysfunction. These disturbances
of glutamate signaling during a critical period of brain development may contribute
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to the ADHD pathophysiology. As a final addition, we have briefly identified new
research venues in the interaction between ADHD, molecular studies, and per-
sonality research.
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The incidence of attention-deficit/hyperactivity disorder (ADHD) is, very likely,
increasingly diagnosed, from about 5 % of all children in the USA (Kalat 2001), to
5.1 million or 8.8 % of all children in the age-group 4–17 years (CDC 2011). The
incidence over developmental trajectory breaks down as follows: (i) 6.8 % of all
children aged 4–10 years (1 in every 14), (ii) 11.4 % of all children aged 11–
14 years (1 in every 9), and (iii) 10.2% of all children aged 16–17 years (1 in every
10), with average age at current diagnosis 6.2, with “mild” ADHD diagnosed at
7 years, “moderate” at 6.1 years and “severe” at 4.4 years 3.5 million children
taking medication. Boys (12.1 %) remain as more likely to be diagnosed than girls
(5.5 %) to be diagnosed. High rates of comorbidity with of oppositional
defiant disorder (ODD), anxiety, and depression in children with ADHD have been
reported (Anckarsäter et al. 2006; Mitchison and Njardvik 2015; Garcia et al.
2013). The primary symptoms manifested in children with ADHD include: inces-
sant talking in the classroom, restlessness, inattention, impulsiveness, lack of
concentration, and hyperactivity (Antonini et al. 2015; Barkley et al. 2002; Bussing
et al. 2015; Swanson et al. 1998). In adults with ADHD, symptom profiles are
defined by poor attention with excessive distractibility, over-impulsivity, i.e.,
thoughtless utterances/actions, restlessness/hyperactivity, chronic procrastination,
difficulty initiating and completing tasks, frequently losing objects, poor organi-
zation, planning and time management, and excessive forgetfulness (Froehlich et al.
2007, 2009, 2010, 2011; Jaber et al. 2015; Lin and Gau 2015; Micoulaud-Franchi
et al. 2015). Individuals presenting ADHD exhibit excessive levels of default mode
network1 activity during goal-directed tasks, which are associated with attentional
disturbances and performance decrements. However, the process of downregulating
the default mode network activity when preparing to switch from rest to task is

1A network of brain regions that are active when the individual is not focused on the outside world
and the brain is at wakeful rest.

296 T. Archer and D. Garcia



unimpaired in adults with ADHD adults and these adults also lack switch-specific
deficit in right anterior insula modulation (Sidlauskaite et al. 2015). In addition,
individuals presenting ADHD show difficulties in upregulating the default mode
network activity when switching from task phase to rest phase (Sidlauskaite et al.
2015). Kucyi et al. (2015) showed evidence of impaired cerebellar areas of
the default mode network coupling with cortical networks in adult patients with
ADHD and highlights a role of cerebro–cerebellar interactions in cognitive
function. ADHD is associated with significantly increased mortality rates and
individuals diagnosed with ADHD during adulthood show higher mortality rates
than did those diagnosed in childhood and adolescence (Dalsgaard et al. 2015).

The vast number of studies examining neurobiological aspects of ADHD attests
to variety of laboratory animal models available including (i) genetically based
models, (ii) neurotoxin-induced models, (iii) Neonatal NMDA-R antagonist
administration models, (iv) environmentally based models, and (v) sleep disorder
problems. (i) Genetically based models present strains of rats/mice with particular,
measureable ADHD phenotypes with phenotypic behaviors and biomarkers such as
spontaneously hypertensive (SHR) rats, Naples high-excitability (NHE) rat, rats
giving poor performers in the 5-choice serial reaction time task, dopamine trans-
porter (DAT) knock-out mice, SNAP-25-deficient mutant coloboma mice, mice
expressing a human mutant thyroid hormone receptor, nicotinic receptor knock-out
mice, 22q11.2 deletion syndrome (Meechan et al. 2015), and tachykinin-1 receptor
knock-out mice. (ii) Neurotoxin-induced models of ADHD applying N-
(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) or 6-hydroxydopamine
(6-OHDA) as catecholamine neurotoxins or 5,7-dihydroxytryptamine (5,7-DHT)
to induce deficits. (iii) NMDA-R antagonist administration models administer
MK-801, ketamine, ethanol, polychlorinated biphenyls, or phencyclidine (PCP).
(iv) Environmentally based models such as pups reared in deprived environments or
isolated housing or neonatal anoxia or variations of environmental stress (Ishii and
Hashimoto-Torii 2015). (v) Complex regulatory circuits involving clock genes
themselves and their influence on circadian rhythms of diverse body functions and
behavioral domains form an important aspect of the gene-environment interaction
(Dueck et al. 2015).

As indicated by Russell (2011), one major insight provided by animal models
was the consistency of findings regarding the involvement of dopaminergic,
noradrenergic, and sometimes also serotonergic systems, as well as glutamateric
and GABAergic pathways (see also Russell 2007). Blockade of the N-methyl-D-
aspartate receptors (NMDA-Rs) during the neonatal period has been to induce
long-term behavioral and neurochemical alterations that are applied as laboratory
models for ADHD, schizophrenia, borderline personality disorder and depression.
During development, GABA exerts a depolarizing action on immature neurons.
Ende et al. (2015) studied glutamate and GABA influences in relation to impul-
siveness and aggressive behavior associated with the anterior cingulate cortex in the
groups of female patients presenting borderline personality disorder and ADHD,
respectively. The links between glutamate and GABA levels and further borderline
personality disorder (symptom severity) and ADHD aspects (hyperactivity and
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inattention) were evaluated in an explorative manner. They acquired 1H MR spectra
at 3T to determine the glutamate to total creatine ratios (Glu/tCr) and GABA levels
from the anterior cingulate cortex in a borderline personality disorder group
(n = 26), an ADHD group (n = 22), as well as a healthy control (HC) group
(n = 30); all the participants were females. Both patient groups, i.e., borderline
personality disorder and ADHD, presented higher scores on self-reported impul-
siveness, anger, and aggression compared with the healthy controls. Anterior cin-
gulate cortex GABA levels were significantly lower in ADHD than HC. Although
measures of impulsiveness were related positively to glutamate and negatively to
GABA, in the case of aggression only a negative correlation with GABA was
obtained. This pattern of results may provide human in vivo evidence for the role of
anterior cingulate cortex Glu/tCr and GABA in impulsiveness and aggression.

1 N-Methyl-D-Aspartate Receptors (NMDA-R)
Linked ADHD Models

ADHD pathophysiology persists in an obscure manner with complex interactions
between symptoms, staging, interventions, genes, and environments (Archer and
Bright 2012; Archer and Kostrzewa 2012; Archer et al. 2011; Kyeong et al. 2015;
Rommel et al. 2013; Schuch et al. 2015). Functional magnetic resonance imaging
(fMRI) has shown that almost all test–retest reliability of resting state fMRI metrics
presented significantly higher intra-class correlation coefficient in typically devel-
oping children than in with ADHD children for one or more brain regions studied
(Somandepalli et al. 2015). Several physiological biomarkers besides brain neu-
rochemical show deficits in the disorder: for example, serum levels of oxytocin in
total subjects presenting ADHD were reduced significantly compared with those
levels of neurotypical control individuals, and serum levels of oxytocin in drug
naïve ADHD patients were significantly lower than those in
medicated ADHD patients. Interestingly, there was a significant negative correla-
tion between serum oxytocin levels and ADHD-RS total scores, as well
as ADHD-RS inattentive scores in all ADHD patients Sasaki et al. 2015). The
genetic factor in ADHD is undeniable (Fang et al. 2015; Salatino-Oliveira et al.
2015; Thapar and Cooper 2015; Van Rooij et al. 2015a; Pettersson et al. 2013),
connected with sibling associations (Richards et al. 2015; Thissen et al. 2015; Van
Rooij et al. 2015b), parents (Costa Dde et al. 2015; Grizenko et al. 2015; Van der
Kolk et al. 2015), and with extremely high twin concordance (Arcos-Burgos et al.
2004; Ehli et al. 2012; Langner et al. 2013; McLoughlin et al. 2014; Garcia et al.
2014) and comorbidity (Volh et al. 2005; Garcia et al. 2013). The notion of an
imbalance between central inhibitory/excitatory neurotransmitters is considered to
exert an essential role in the pathophysiology of ADHD (Purkayastha et al. 2015;
Sadile et al. 1996), although this is not always the case (Endres et al. 2015). For
instance, in contrast to children, adult patients presenting ADHD display altered
cerebral levels of GABA+ in a subcortical voxel (Bollmann et al. 2015).
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Additionally, there are also increased cerebral glutamine levels in children
with ADHD, but this difference is normalized among adults with ADHD (Bollmann
et al. 2015). In other words, suggesting that this alteration might change through
development.

There is a plethora of results showing that compounds/interventions that
antagonize glutamic acid receptors and/or block the glutamate signal during the
“brain growth spurt” or in the adult animal may induce functional and biomarker
deficits (Davison and Dobbing 1968; Di Miceli and Gonier 2015; Fredriksson and
Archer 2002, 2003; Fredriksson et al. 2004; Pozzi et al. 2011; Zimmermann et al.
2015; Zhou et al. 2011). Normal regional brain development follows an inherited,
preprogrammed route that differentiates the specific structural characteristics and
functional domains that are expressed in the adult human and animal (Dobbing and
Sands 1970, 1979). Any interference with the course of normal brain development
threatens the regional structural and functional integrity with more or less perma-
nent consequences for the individual (Chen et al. 1999; Dobbing 1970a, b, c, 1971;
Huebner et al. 2015). The period of the “brain growth spurt” starts with the final
trimester of pregnancy in humans and continues until about three years after birth
(Ikonomidou et al. 2001). The corresponding period in rodents is encompassed by a
rapid increase in brain weight, proliferation of astroglial and oligodendrocyte cells,
axonal elongation, arborization, and synaptogenesis (Byrnes et al. 2001; Davison
and Dobbing 1966). Agents affecting glutamate system are implicated highly in the
vulnerability of brain development since chronic prenatal exposure to an ethanol
regimen throughout gestation induced suppression of the hippocampal
glutamate-NMDA receptor-NOS signaling system, decreased number of hip-
pocampal CA1 pyramidal cells, increased spontaneous locomotor activity, and
impaired performance in the Morris water maze (Byrnes et al. 2001; but see also
Byrnes et al. 2003, 2004). Anticonvulsant drugs can initiate neuron and oligo-
dendroglia apoptosis, suppress neurogenesis, and inhibit normal synapse develop-
ment and regional-sculpting (Turski and Ikonomidou 2012). The behavioral
correlates in rodents and non-human primates consist of long-lasting cognitive
impairment and motor deficits. Physiological apoptosis and that caused by other
agents, a naturally occurring process of the developing brain, modulates regional
progressions at cellular and circuitry levels periodically (Dikranian et al. 2001;
Ishimaru et al. 1999; Olney et al. 2000).

Several studies have demonstrated marked deficits in behavioral domains in the
adult animal following disruptions in glutamate signaling and GABAergic activity
(Cohen Kadosh et al. 2015; Kim et al. 2015; Tzanoulinou et al. 2015; Zhang et al.
2015) in the prenatal or neonatal human and animal (Higuera-Matas et al. 2015;
Jantzie et al. 2015; Keimpema et al. 2014; Kleteckova et al. 2014; Simões et al. 2015).
It was shown more than twenty years ago that chronic neonatal treatment with the
glutamate antagonist, MK-801 (postnatal days 8 to 19), inducedmarked alterations of
monoamines (Gorter et al. 1992a) whereby dihydroxyphenylacetic acid (DOPAC)
concentrations were elevated (greater than 40%) in both regions (cortex and striatum)
tested, while 5-hydroxyindoleacetic acid (5-HIAA) concentration was significantly
elevated only in the cortex (19 %), and 3-methoxy-4-hydroxyphenylglycol (MHPG)
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only in the striatum (47 %). When tested spatial learning and memory using a water
maze, the neonatal MK-801-treated rats were shown to be capable of learning the
spatial task as well as control rats but did so at a significantly slower rate. Their
performance in a visual cue taskwas not affected by the neonatal treatment, suggesting
that the slower spatial learning is not caused by locomotor or sensory deficits (Gorter
and de Bruin 1992). The authors interpreted their findings to imply that chronic
NMDA receptor blockade during the neonatal period leads to long-lasting distur-
bances of hippocampal function (but see also Gorter et al. 1991, 1992b). The gluta-
mate antagonists, MK-801 (3 × 0.5 mg/kg), ketamine (1 × 50 mg/kg), and ethanol
(2 × 2.5 mg/kg) were administered postnatally to mouse pups on days 10 or 11
postpartum (cf. Fredriksson and Archer 2004), and behavioral testing was performed
at adult ages over and above 65 days-of-age. At testing, it was found that over 60-min
periods of motor activity testing, the mice administered the glutamate antagonists
showed a somewhat bizarre pattern of activity that was completely different to that
shown by untreated, saline- or vehicle-treated, or sham-operated mice: The former
presented markedly lower levels of motor activity than the latter during the initial
period of activity testing (1st 20 min) and then successively greater levels of motor
activity than the latter during the middle and final periods of activity testing (2nd and
3rd 20 min periods). Table 1 presents the motor activity, locomotion, and rearing of

Table 1 Locomotion and rearing behavior expressed as percent of control values (0.9 %
saline-vehicle) over successive 20-min periods in the motor activity test cages by adult mice
administered either MK-801, ketamine or ethanol, glutamate antagonists at the doses used, or
diazepam, GABA agonist at the doses used. MK-801 (0.5 mg/kg, s.c.) was administered to male
mouse pups on postnatal day 11 on three occasions over that day. Ketamine (1 × 50 mg/kg, s.c.)
and ethanol (2 × 25 mg/kg, s.c., with a 2-h interval between injections) were administered on
postnatal day 10

Neonatal treatment 20-min period Locomotion %
of control values

Rearing %
of control values

MK-801 20 38 32

40 199 247

60 3439 8405

Ketamine 20 36 34

40 207 225

60 1967 3812

Diazepam 20 99 86

40 112 101

60 189 544

Ketamine + Diazepam 20 35 27

40 188 261

60 2617 7422

Ethanol 20 38 29

40 224 239

60 2128 4122
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mice injected postnatally with either MK-801, ketamine, or ethanol expressed as a
percentage of each respective vehicle control group. It will be noted that the mice
administered glutamate antagonists evidenced massively greater levels of apoptosis
(as measured by fluoro-jade positive staining) in several brain regions, including
frontal cortex, hippocampus, cerebellum, parietal cortex, and laterodorsal thalamus,
compared to controls, 24 h after administration of the drugs, MK-801, ketamine, or
ethanol. The results on Table 1 indicate that these animals fail to perform the
exploratory activity, observed invariably with control mice, that is associated with
introduction to a novel environment (the test cages). Later, when the control animals
show less locomotor and rearing activity, i.e., interest in the test cages, the MK-801-,
ketamine-, and ethanol-treatedmice showed successively greater levels of locomotion
and rearing (interest), i.e., they fail to “habituate” effectively, implying a cognitive
dysfunction. The cognitive dysfunctionality of the MK-801-, ketamine-, and
ethanol-treated mice was demonstrated in both the radial arm maze and the circular
swimming maze (Fredriksson and Archer 2004). Spontaneously hypertensive rats
(SHRs) present several of the characteristic behavioral anomalies observed in ADHD
children and adults: hyperactivity, impulsiveness and poorly sustained attention,
restlessness, and comorbid drug self-administration (Grünblatt et al. 2015; Jordan
et al. 2015; Womersley et al. 2015).

2 Aberrant Glutamate in Spontaneously Hypertensive
(SHR) Rats

There is emerging evidence that spontaneously hypertensive (SHR) rats possess
disruptions in glutamate systems or in glutamate signaling or in region (e.g.,
nucleus accumbens) characteristics (Russell 2003). For example, it was observed
that the glutamatergic system in the prefrontal cortex of the SHR rats was hyper-
functional (Miller et al. 2014). Sterley et al. (2015) have provided evidence for a
disturbed glutamatergic and GABAergic transmission in the hippocampus of SHRs
and that maternal separation induced effects on glutamate uptake in these rats and
Wister-Kyoto and Sprague-Dawley rats as well. Furthermore, compared to control
animals, SHRs displayed a lower expression of both NMDA (Grin1) and AMPA
(Gria1) gene receptors in the nucleus accumbens. It has been observed also that
SHRs express decreased levels of several proteins involved in energy metabolism,
cytoskeletal structure, myelination, and neurotransmitter function when compared
to Wistar-Kyoto rats2 (Dimatelis et al. 2015). Liso Navarro et al. (2014) found
significant correlations between brain metabolites and the behavior registered in the
open field and elevated plus maze: SHR rats expressing higher levels of brain total
creatine levels and glutamate levels exhibited higher levels of hyperactivity in a
familiar environment, but conversely, risk-taking exploratory behavior, an

2The Wistar rat is an outbred albino rat.
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indication of impulsivity, of the elevated plus maze’s open arms correlated nega-
tively with forebrain total N-acetylaspartate and lactate levels. It has been shown
also that there is a reduction in extracellular concentrations of GABA in the hip-
pocampus of SHR rats, in vivo, by comparison with Wistar-Kyoto and
Sprague-Dawley rats (Sterley et al. 2013). The authors suggest that an underlying
defect in GABA function may be the underlying cause of the dysfunction in cat-
echolamine transmission noted in SHR and may underlie their ADHD-like
behaviors (see also Mc Fie et al. 2012; Miller et al. 2012). Ye et al. (2013) observed
that there were increases in presynaptic group II metabotropic glutamate receptor
activity at the glutamatergic terminals at hypothalamic paraventricular nucleus sites
in SHR rats. The activation of group II metabotropic glutamate receptors in the
hypothalamic paraventricular nucleus inhibits sympathetic vasomotor tone through
attenuation of increased glutamatergic input and neuronal hyperactivity in SHR
rats, thereby affecting sympathetic outflow in hypertension and related
conditions. In this context, physical exercise was shown to ameliorate the
enhancement in the tonically acting glutamatergic input to the rostral ventrolateral
medulla of SHR rats, thereby reducing the sympathetic hyperactivity and blood
pressure (Zha et al. 2013). Following exposure to the NMDAR antagonist,
MK-801, during postnatal days 5–14, to male Sprague-Dawley rat pups (Li et al.
2015), the animals were tested for object and object-in-context recognition memory
during adolescence (PND 35) and adulthood (PND 63). They examined also
parvalbumin-positive GABA-ergic interneurons and presynaptic markers for exci-
tatory and inhibitory neurons, vesicular glutamate transporter-1, and vesicular
GABA transporter in the hippocampus to reflect the excitatory/Inhibitory balance.
They observed that rats that had received MK-801 treatment displayed deficits of
recognition memory, reduction in parvalbumin-positive cell counts, and upregula-
tion of the vesicular glutamate transporter-1/vesicular GABA transporter ratio in
both adolescence and adulthood. It would appear that the changes of the vesicular
glutamate transporter-1/vesicular GABA transporter ratio at the two time points
exhibited distinct mechanisms. Furthermore, prenatal alcohol exposure affected
cortical angiogenesis negatively both in mice and in fetal alcohol syndrome
patients, implying that vascular defects contributed to alcohol-induced brain
abnormalities (Jegou et al. 2012). Postnatal treatment with domoic acid, which
disturbs glutamate signaling, induced deficits in latent inhibition and sensory gating
through prepulse inhibition impairments (Marriott et al. 2012).

Finally, several genetic linkage and association studies point to candidate genes
relating to ADHD (Franke et al. 2009). Associations between ADHD and a handful
of NMDA-R gene variants [GRM1, GRM5, GRM7, and GRM8: encoding
G-protein coupled receptor family] (Diana et al. 2015; Akutagava-Martins et al.
2014). Santoro et al. (2015) compared the gene expression profile of neurotrans-
mitter receptors and regulators in the prefrontal cortex and nucleus accumbens
of SHR and control Wistar rats, as well as the DNA methylation pattern of promoter
region of the genes differentially expressed. They found that four genes were
downregulated significantly in the prefrontal cortex of the SHRs in comparison with
Wistar rats (Gad2, Chrnb4, Slc5a7, and Qrfpr) and none of those in nucleus
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accumbens. Gad2 and Qrfpr showed CpG islands in their promoter region. For both
of these genes, the promoter region was hypomethylated in SHR rats and may be
linked to the abnormalities displayed by these animals. Since adverse life events,
dysfunctional families, pregnancy and birth complications, etc, all increase risk for
ADHD (Class et al. 2014; Lindström et al. 2011; Pires et al. 2013; Webb 2013), the
epigenetic influences upon glutamatergic integrity seems immeasurable (Grissom
and Reyes 2013; Schuch et al. 2015). van Mil et al. (2014) examined the association
between DNA methylation levels at different regions and ADHD symptoms. They
observed that DNA methylation levels were linked negatively with ADHD symp-
toms scores in the analysis of eleven brain regions.

3 Conclusions and Final Remarks

The notion of a disruption of the normal brain developmental trajectory, due an
over-stimulation of GABAergic systems and/or an understimulation (antagonism)
of the glutamate systems, i.e., excitatory-inhibitory imbalance, in the underlying
pathophysiology of ADHD, particularly regarding motor and cognitive domains, is
appealing. The pattern of behavioral deficits when tested as adult animals and
“accelerated apoptosis” 24 h after administrations of the glutamate antagonists
offers a useful laboratory model of the disorder. Babenko et al. (2015) have offered
a plausible account that describes the complex gene–environment interactions
between prenatal stress exposure, whether chemical intervention or
social-behavioral, associated changes in miRNA expression and DNA methylation
in placenta and brain regions together with the possible links to greater risks of
schizophrenia, ADHD, autism, anxiety-, or depression-related disorders that may be
expressed later in life.

Finally, ADHD is associated with an increased risk of personality disorders and
deficits and specific temperament configurations: high novelty seeking and high
harm avoidance (Anckarsäter et al. 2006). Individuals high in novelty seeking tend
to be highly active or to direct their attention/behaviors in response to novel stimuli,
potential rewards, and punishments. This is expressed as frequent exploration of
new unfamiliar places or situations, quick loss of temper, impulsive
decision-making, and active avoidance of monotony. High levels of harm avoid-
ance are expressed as the tendency to avoid or cease behaviors due to intense
response to aversive stimuli expressed as fear of uncertainty, shyness of strangers,
quick fatigability, and pessimistic worry of future problems (Cloninger et al. 1993).
This “explosive” temperament profile (high novelty seeking and high harm
avoidance) does fit in the ADHD pathophysiology outlined in this chapter. What is
more, molecular genetics studies have found an association between novelty
seeking and the dopamine-4 receptor (Benjamin et al. 1996; Ebstein et al. 1996;
Noble et al. 1998; Ono et al. 1997) and between harm avoidance and the serotonin
transporter 5HTTLPR (Rybakowski et al. 2006; Samochowiec et al. 2001).
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Fortunately, recent advances using person-centered interventions (i.e., well-being
coaching) suggest that the expression of genes as personality traits can be changed
(Cloninger 2004; Wong and Cloninger 2010; see also Fahlgren et al. 2015), In
particular when the intervention focuses on the development of character traits,
such as self-directedness (e.g., sense of control, self-efficacy, self-acceptance),
cooperativeness (e.g., tolerance, helpfulness, empathy), and self-transcendence
(e.g., spirituality, meaningfulness, ability to experience flow). Relatedly, changes in
mean levels of character traits are much greater between 20 and 45 years of age than
for temperament traits (Josefsson et al. 2013). Hence, upcoming studies using
person-centered interventions among individuals with ADHD are most welcome.
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