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Abstract 6-hydroxydopa (6-OHDOPA) was synthesized with the expectation that
it would be able to cross the blood–brain barrier to be enzymatically decarboxylated
to 6-hydroxydopamine (6-OHDA), the newly discovered neurotoxin for nora-
drenergic and dopaminergic neurons. In part, 6-OHDOPA fulfilled these criteria.
When administered experimentally to rodents, 6-OHDOPA destroyed peripheral
sympathetic noradrenergic nerves and did exert neurotoxicity to noradrenergic
nerves in brain—in large part, from its conversion to 6-OHDA. However, the
efficacy of 6-OHDOPA was less than that of 6-OHDA; also, 6-OHDOPA was
relatively selective for noradrenergic neurons; near-lethal doses of 6-OHDOPA
were required to damage dopaminergic nerves; and ultimately, 6-OHDOPA was
found to be an agonist at AMPA receptors, thus accounting for more
non-specificity. Nevertheless, 6-OHDOPA was found to be a particularly valuable
tool in uncovering processes and mechanisms associated with noradrenergic nerve
regeneration and sprouting, particularly when administered to perinatal rodents.
Also, 6-OHDOPA was a good tool for selective mapping of noradrenergic nerve
tracts in brain, since dopaminergic tracts were unaffected and did not interfere with
the histofluorescent methodology used for this purpose in the early 1970s. As an
experimental research tool, 6-OHDOPA was valuable in a short time-window, but
its utility is largely limited because of newer research technologies that provide
better means today for nerve tract mapping, and for experimental approaches
engaged toward study of processes and mechanisms attending nerve regeneration.
AMPA actions of 6-OHDOPA have not been extensively studied, so this avenue
may enliven use of 6-OHDOPA in the future.
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1 Introduction

The norepinephrine (NE) isomer 6-hydroxydopamine (6-OHDA) was initially
found to produce long-lasting depletion of norepinephrine in heart (Porter et al.
1963, 1965). Subsequently, 6-OHDA was shown by electron microscopy to overtly
destroy noradrenergic nerves (Thoenen and Tranzer 1968a, b) and dopaminergic
nerves (Ungerstedt 1968). One limitation of 6-OHDA, however, was its inability to
cross the blood–brain barrier (BBB) (Kostrzewa and Jacobowitz 1974).

6-hydroxydopa (6-OHDOPA) was synthesized as an expected pro-toxin and,
like levodopa, able to cross the BBB prior to its decarboxylation to 6-OHDA (Ong
et al. 1969; Berkowitz et al. 1970; Evans and Cohen 1989, 1993). As expected,
6-OHDOPA produced norepinephrine (NE) depletion in brain and peripheral tis-
sues (Jonsson and Sachs 1973; Kostrzewa and Jacobowitz 1972, 1973; Richardson
and Jacobowitz 1973) and subsequently was shown by loss of tyrosine hydroxylase
activity and by histochemical, electronmicroscopic, and silver degeneration staining
to overtly destroy noradrenergic nerves (Jacobowitz and Kostrzewa 1971;
Kostrzewa and Harper 1974, 1975; Sachs et al. 1973; Kostrzewa et al. 1978;
Tohyama et al. 1974; Toyama et al. 1974), with preference for noradrenergic
perikarya in caudal locus coeruleus (LC) (Clark et al. 1979). Peripheral noradren-
ergic (i.e., sympathetic) nerves, in contrast to central noradrenergic nerves, appear
to fully recover from 6-OHDOPA damage (Kostrzewa and Jacobowitz 1972; Sachs
and Jonsson 1972a, b) and can be protected from damage by administering a
peripherally acting dopa decarboxylase inhibitor, namely carbidopa (Kostrzewa
et al. 2000).

2 Mechanism of Action of 6-OHDOPA

The destructive effects of 6-OHDOPA on noradrenergic and dopaminergic neurons
are attributable to its conversion to 6-OHDA, which is known to auto-oxidize to
ortho- and para-quinones, aminochromes, and hydroxyindoles (Adams et al. 1972;
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Blank et al. 1972; Saner and Thoenen 1971; Senoh and Witkop 1959; Wehrli et al.
1972)—reactive species leading to formation of intraneuronal peroxide (Heikkila
and Cohen 1971, 1972a, b), superoxide, and hydroxyl radical (Cohen and Heikkila
1974; Heikkila and Cohen 1973).

3 6-OHDOPA as a Neuroteratogen

When administered to perinatal rats, 6-OHDOPA (60 µg/g at P0 + P2 + P4) pro-
duced lifelong alterations in noradrenergic innervation of brain (Kostrzewa 1975;
Kostrzewa and Garey 1976). The nucleus LC providing the major portion of
noradrenergic innervation of dorsal brain was directly damaged, with there being
loss of one-third of the approximately 1500 perikarya, and with half the numbers of
cells in the caudal portion of the LC undergoing degeneration (Clark et al. 1979).
Hippocampal noradrenergic innervation was reduced by >95 %, and neocortex, by
*70 % (Kostrzewa and Harper 1974, 1975; Kostrzewa 1975; Kostrzewa and Garey
1976, 1977). As a consequence of damage to the dorsal bundle, the major ascending
noradrenergic tract to forebrain, noradrenergic fibers projecting to regions near the
LC per se sprouted and hyperinnervated midbrain, pons, medulla, and cerebellum
(Jaim-Etcheverry and Zieher 1977; Jaim-Etcheverry et al. 1975; Kostrzewa and
Harper 1974, 1975; Kostrzewa 1975; Kostrzewa and Garey 1976, 1977; Kostrzewa
et al. 1978; 1982; Zieher and Jaim-Etcheverry 1979). This reactive sprouting
resulted in as much as a twofold increase in numbers of fibers’ innervation of caudal
brain regions. In contrast, innervation to hypothalamus was slightly altered. The
pairing of noradrenergic hypoinnervation of forebrain with noradrenergic hyper-
innervation of hindbrain is replicated by knife cuts of the dorsal bundle shortly after
birth, suggesting that hindbrain hyperinnervation is an outcome of forebrain nora-
drenergic hypoinnervation (Klisans-Fuenmayor et al. 1986; Kostrzewa et al. 1988).

This spectrum of effects is replicated (1) by single 6-OHDOPA treatment of rats
at birth, also (2) by prenatal 6-OHDOPA, administered to pregnant rats at G14 or
later, and (3) by prenatal 6-OHDOPA to pregnant mice at G13 or later
(Jaim-Etcheverry et al. 1975; Kostrzewa 2007; Kostrzewa et al. 1978; Zieher and
Jaim-Etcheverry 1973, 1975a, b). When 6-OHDOPA is administered solely at P3,
there is an absence of noradrenergic sprouting to cerebellum. Described perinatal
6-OHDOPA effects on noradrenergic neurons persist throughout life
(Jaim-Etcheverry et al. 1975; McLean et al. 1976, 1980; Zieher and
Jaim-Etcheverry 1973, 1975a, b). A single 6-OHDOPA treatment at P5 fails to
produce noradrenergic hyperinnervation of midbrain, while single 6-OHDOPA
treatment as late as P14 still produces hyperinnervation of pons–medulla
(Kostrzewa and Garey 1977).

Agonists at µ-opioid receptors (i.e., morphine, met-/leu-enkephalin,
beta-endorphin, and d-ala-enkephalinamide) appeared to enhance perinatal
6-OHDOPA neurotoxicity and thereby enhance noradrenergic hyperinnervation of
hindbrain and cerebellum—the effect being attenuated by the opioid receptor
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antagonist naloxone (Harston et al. 1980, 1981; Kostrzewa and Klisans-Fuenmayor
1984).

Despite the consequences of 6-OHDOPA on noradrenergic innervation,
dopaminergic innervation to neostriatum is unaltered through the duration of
postnatal ontogeny and for the life span by perinatal low-dose 6-OHDOPA
(Kostrzewa and Garey 1976); at high-dose perinatal 6-OHDOPA, the tuberoin-
fundibular dopaminergic tract (Lin et al. 1993) is more susceptible to damage than
the nigrostriatal dopaminergic tract (Nomura and Segawa 1979). Also, serotonin-
ergic nerves are resistant to 6-OHDOPA neurotoxicity (Richardson et al. 1974).

Perinatal 6-OHDOPA treatment initially damaged sympathetic noradrenergic
nerves innervating peripheral organs (i.e., heart, salivary glands), but by maturity all
organs were fully innervated.

6-OHDOPA actions on noradrenergic neurons have been reviewed elsewhere
(Kostrzewa 1988, 1988, 2014).

4 6-OHDOPA Agonist Action at AMPA Receptors

Although 6-OHDOPA was shown, in 1976, to produce more of an excitatory action
than glutamate on frog spinal neurons (Biscoe et al. 1976), not until 1990 was
it discovered that 6-OHDOPA exerts agonist action at alpha-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPA-R) (Cha et al. 1991;
Kunig et al. 1994a, b; Olney et al. 1990). Actually, 6-OHDOPA-quinone is the sus-
pected agonist (Aizenman et al. 1990, 1992;Rosenberg et al. 1991).AMPA-R activity
would represent a confound to the actions of 6-OHDOPA per se on noradrenergic
neurons.

5 Non-specific Effects of Perinatal 6-OHDOPA

In rats treated with perinatal 6-OHDOPA, cholineacetyltransferase activity is
reduced in brainstem (Jaim-Etcheverry et al. 1975), and atropine-induced locomotor
activity at P20 and P50 is enhanced, while pilocarpine catalepsy is abated (Nomura
and Segawa 1979; Nomura et al. 1979). This cholinergic subsensitivity is reflected
in the Bmax for [3H]QNB (quinuclidinyl benzilate) binding at muscarinic receptor
sites in mesolimbic and striatal brain regions and also in heart (Nomura et al. 1979).

High-dose 6-OHDOPA treatment is associated with the production of methe-
moglobinemia (Corrodi et al. 1971), which of itself promotes in vivo formation of
6-OHDOPA from tyrosine, a process enhanced by hydrogen peroxide formation
(Agrup et al. 1983) and known to increase after 6-OHDOPA treatment.
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6 Summary

6-OHDOPA was envisioned as an experimental tool, able to cross the BBB to be
decarboxylated to 6-OHDA, and thus exert effects on noradrenergic and/or
dopaminergic nerves in brain. By this means, 6-OHDA effects on brain could be
realized without the necessity to otherwise inject 6-OHDA directly into brain—
since 6-OHDA does not cross the BBB. However, the neurotoxicity action (i.e.,
efficacy) of 6-OHDOPA is far less than that of 6-OHDA. Moreover, as a means of
minimizing global effects, experimental 6-OHDA is generally applied to specific
brain nuclei or specified tracts, not intraventricularly or intracisternally.
Consequently, the overall utility of 6-OHDOPA is greatly restricted in biomedical
research.

The non-specific effects of 6-OHDOPA, namely AMPA-R agonist activity by
non-enzymatically formed 6-OHDOPA-quinone, and the methemoglobinemia
arising from 6-OHDOPA and its quinone, further restrict the usefulness of
6-OHDOPA as an experimental tool.

Nevertheless, the early work with 6-OHDOPA did validate its role as a relatively
selective noradrenergic neurotoxin, and the actions of 6-OHDOPA in perinates led
to discovery of processes and mechanisms associated with nerve sprouting and
nerve regeneration. Conceivably, action at the AMPA-R could still be advantageous
in 6-OHDOPA use as a research tool.
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